Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineSelect.cpp ----------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visitSelect function.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "InstCombineInternal.h"
     15 #include "llvm/Analysis/ConstantFolding.h"
     16 #include "llvm/Analysis/InstructionSimplify.h"
     17 #include "llvm/Analysis/ValueTracking.h"
     18 #include "llvm/IR/PatternMatch.h"
     19 using namespace llvm;
     20 using namespace PatternMatch;
     21 
     22 #define DEBUG_TYPE "instcombine"
     23 
     24 static SelectPatternFlavor
     25 getInverseMinMaxSelectPattern(SelectPatternFlavor SPF) {
     26   switch (SPF) {
     27   default:
     28     llvm_unreachable("unhandled!");
     29 
     30   case SPF_SMIN:
     31     return SPF_SMAX;
     32   case SPF_UMIN:
     33     return SPF_UMAX;
     34   case SPF_SMAX:
     35     return SPF_SMIN;
     36   case SPF_UMAX:
     37     return SPF_UMIN;
     38   }
     39 }
     40 
     41 static CmpInst::Predicate getCmpPredicateForMinMax(SelectPatternFlavor SPF,
     42                                                    bool Ordered=false) {
     43   switch (SPF) {
     44   default:
     45     llvm_unreachable("unhandled!");
     46 
     47   case SPF_SMIN:
     48     return ICmpInst::ICMP_SLT;
     49   case SPF_UMIN:
     50     return ICmpInst::ICMP_ULT;
     51   case SPF_SMAX:
     52     return ICmpInst::ICMP_SGT;
     53   case SPF_UMAX:
     54     return ICmpInst::ICMP_UGT;
     55   case SPF_FMINNUM:
     56     return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
     57   case SPF_FMAXNUM:
     58     return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
     59   }
     60 }
     61 
     62 static Value *generateMinMaxSelectPattern(InstCombiner::BuilderTy *Builder,
     63                                           SelectPatternFlavor SPF, Value *A,
     64                                           Value *B) {
     65   CmpInst::Predicate Pred = getCmpPredicateForMinMax(SPF);
     66   assert(CmpInst::isIntPredicate(Pred));
     67   return Builder->CreateSelect(Builder->CreateICmp(Pred, A, B), A, B);
     68 }
     69 
     70 /// We want to turn code that looks like this:
     71 ///   %C = or %A, %B
     72 ///   %D = select %cond, %C, %A
     73 /// into:
     74 ///   %C = select %cond, %B, 0
     75 ///   %D = or %A, %C
     76 ///
     77 /// Assuming that the specified instruction is an operand to the select, return
     78 /// a bitmask indicating which operands of this instruction are foldable if they
     79 /// equal the other incoming value of the select.
     80 ///
     81 static unsigned GetSelectFoldableOperands(Instruction *I) {
     82   switch (I->getOpcode()) {
     83   case Instruction::Add:
     84   case Instruction::Mul:
     85   case Instruction::And:
     86   case Instruction::Or:
     87   case Instruction::Xor:
     88     return 3;              // Can fold through either operand.
     89   case Instruction::Sub:   // Can only fold on the amount subtracted.
     90   case Instruction::Shl:   // Can only fold on the shift amount.
     91   case Instruction::LShr:
     92   case Instruction::AShr:
     93     return 1;
     94   default:
     95     return 0;              // Cannot fold
     96   }
     97 }
     98 
     99 /// For the same transformation as the previous function, return the identity
    100 /// constant that goes into the select.
    101 static Constant *GetSelectFoldableConstant(Instruction *I) {
    102   switch (I->getOpcode()) {
    103   default: llvm_unreachable("This cannot happen!");
    104   case Instruction::Add:
    105   case Instruction::Sub:
    106   case Instruction::Or:
    107   case Instruction::Xor:
    108   case Instruction::Shl:
    109   case Instruction::LShr:
    110   case Instruction::AShr:
    111     return Constant::getNullValue(I->getType());
    112   case Instruction::And:
    113     return Constant::getAllOnesValue(I->getType());
    114   case Instruction::Mul:
    115     return ConstantInt::get(I->getType(), 1);
    116   }
    117 }
    118 
    119 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode.
    120 Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
    121                                           Instruction *FI) {
    122   // If this is a cast from the same type, merge.
    123   if (TI->getNumOperands() == 1 && TI->isCast()) {
    124     Type *FIOpndTy = FI->getOperand(0)->getType();
    125     if (TI->getOperand(0)->getType() != FIOpndTy)
    126       return nullptr;
    127 
    128     // The select condition may be a vector. We may only change the operand
    129     // type if the vector width remains the same (and matches the condition).
    130     Type *CondTy = SI.getCondition()->getType();
    131     if (CondTy->isVectorTy()) {
    132       if (!FIOpndTy->isVectorTy())
    133         return nullptr;
    134       if (CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements())
    135         return nullptr;
    136 
    137       // TODO: If the backend knew how to deal with casts better, we could
    138       // remove this limitation. For now, there's too much potential to create
    139       // worse codegen by promoting the select ahead of size-altering casts
    140       // (PR28160).
    141       //
    142       // Note that ValueTracking's matchSelectPattern() looks through casts
    143       // without checking 'hasOneUse' when it matches min/max patterns, so this
    144       // transform may end up happening anyway.
    145       if (TI->getOpcode() != Instruction::BitCast &&
    146           (!TI->hasOneUse() || !FI->hasOneUse()))
    147         return nullptr;
    148 
    149     } else if (!TI->hasOneUse() || !FI->hasOneUse()) {
    150       // TODO: The one-use restrictions for a scalar select could be eased if
    151       // the fold of a select in visitLoadInst() was enhanced to match a pattern
    152       // that includes a cast.
    153       return nullptr;
    154     }
    155 
    156     // Fold this by inserting a select from the input values.
    157     Value *NewSI = Builder->CreateSelect(SI.getCondition(), TI->getOperand(0),
    158                                          FI->getOperand(0), SI.getName()+".v");
    159     return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
    160                             TI->getType());
    161   }
    162 
    163   // TODO: This function ends awkwardly in unreachable - fix to be more normal.
    164 
    165   // Only handle binary operators with one-use here. As with the cast case
    166   // above, it may be possible to relax the one-use constraint, but that needs
    167   // be examined carefully since it may not reduce the total number of
    168   // instructions.
    169   if (!isa<BinaryOperator>(TI) || !TI->hasOneUse() || !FI->hasOneUse())
    170     return nullptr;
    171 
    172   // Figure out if the operations have any operands in common.
    173   Value *MatchOp, *OtherOpT, *OtherOpF;
    174   bool MatchIsOpZero;
    175   if (TI->getOperand(0) == FI->getOperand(0)) {
    176     MatchOp  = TI->getOperand(0);
    177     OtherOpT = TI->getOperand(1);
    178     OtherOpF = FI->getOperand(1);
    179     MatchIsOpZero = true;
    180   } else if (TI->getOperand(1) == FI->getOperand(1)) {
    181     MatchOp  = TI->getOperand(1);
    182     OtherOpT = TI->getOperand(0);
    183     OtherOpF = FI->getOperand(0);
    184     MatchIsOpZero = false;
    185   } else if (!TI->isCommutative()) {
    186     return nullptr;
    187   } else if (TI->getOperand(0) == FI->getOperand(1)) {
    188     MatchOp  = TI->getOperand(0);
    189     OtherOpT = TI->getOperand(1);
    190     OtherOpF = FI->getOperand(0);
    191     MatchIsOpZero = true;
    192   } else if (TI->getOperand(1) == FI->getOperand(0)) {
    193     MatchOp  = TI->getOperand(1);
    194     OtherOpT = TI->getOperand(0);
    195     OtherOpF = FI->getOperand(1);
    196     MatchIsOpZero = true;
    197   } else {
    198     return nullptr;
    199   }
    200 
    201   // If we reach here, they do have operations in common.
    202   Value *NewSI = Builder->CreateSelect(SI.getCondition(), OtherOpT,
    203                                        OtherOpF, SI.getName()+".v");
    204 
    205   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
    206     if (MatchIsOpZero)
    207       return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI);
    208     else
    209       return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
    210   }
    211   llvm_unreachable("Shouldn't get here");
    212 }
    213 
    214 static bool isSelect01(Constant *C1, Constant *C2) {
    215   ConstantInt *C1I = dyn_cast<ConstantInt>(C1);
    216   if (!C1I)
    217     return false;
    218   ConstantInt *C2I = dyn_cast<ConstantInt>(C2);
    219   if (!C2I)
    220     return false;
    221   if (!C1I->isZero() && !C2I->isZero()) // One side must be zero.
    222     return false;
    223   return C1I->isOne() || C1I->isAllOnesValue() ||
    224          C2I->isOne() || C2I->isAllOnesValue();
    225 }
    226 
    227 /// Try to fold the select into one of the operands to allow further
    228 /// optimization.
    229 Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal,
    230                                             Value *FalseVal) {
    231   // See the comment above GetSelectFoldableOperands for a description of the
    232   // transformation we are doing here.
    233   if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) {
    234     if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
    235         !isa<Constant>(FalseVal)) {
    236       if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
    237         unsigned OpToFold = 0;
    238         if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
    239           OpToFold = 1;
    240         } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
    241           OpToFold = 2;
    242         }
    243 
    244         if (OpToFold) {
    245           Constant *C = GetSelectFoldableConstant(TVI);
    246           Value *OOp = TVI->getOperand(2-OpToFold);
    247           // Avoid creating select between 2 constants unless it's selecting
    248           // between 0, 1 and -1.
    249           if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
    250             Value *NewSel = Builder->CreateSelect(SI.getCondition(), OOp, C);
    251             NewSel->takeName(TVI);
    252             BinaryOperator *TVI_BO = cast<BinaryOperator>(TVI);
    253             BinaryOperator *BO = BinaryOperator::Create(TVI_BO->getOpcode(),
    254                                                         FalseVal, NewSel);
    255             BO->copyIRFlags(TVI_BO);
    256             return BO;
    257           }
    258         }
    259       }
    260     }
    261   }
    262 
    263   if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) {
    264     if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
    265         !isa<Constant>(TrueVal)) {
    266       if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
    267         unsigned OpToFold = 0;
    268         if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
    269           OpToFold = 1;
    270         } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
    271           OpToFold = 2;
    272         }
    273 
    274         if (OpToFold) {
    275           Constant *C = GetSelectFoldableConstant(FVI);
    276           Value *OOp = FVI->getOperand(2-OpToFold);
    277           // Avoid creating select between 2 constants unless it's selecting
    278           // between 0, 1 and -1.
    279           if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
    280             Value *NewSel = Builder->CreateSelect(SI.getCondition(), C, OOp);
    281             NewSel->takeName(FVI);
    282             BinaryOperator *FVI_BO = cast<BinaryOperator>(FVI);
    283             BinaryOperator *BO = BinaryOperator::Create(FVI_BO->getOpcode(),
    284                                                         TrueVal, NewSel);
    285             BO->copyIRFlags(FVI_BO);
    286             return BO;
    287           }
    288         }
    289       }
    290     }
    291   }
    292 
    293   return nullptr;
    294 }
    295 
    296 /// We want to turn:
    297 ///   (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
    298 /// into:
    299 ///   (or (shl (and X, C1), C3), y)
    300 /// iff:
    301 ///   C1 and C2 are both powers of 2
    302 /// where:
    303 ///   C3 = Log(C2) - Log(C1)
    304 ///
    305 /// This transform handles cases where:
    306 /// 1. The icmp predicate is inverted
    307 /// 2. The select operands are reversed
    308 /// 3. The magnitude of C2 and C1 are flipped
    309 static Value *foldSelectICmpAndOr(const SelectInst &SI, Value *TrueVal,
    310                                   Value *FalseVal,
    311                                   InstCombiner::BuilderTy *Builder) {
    312   const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition());
    313   if (!IC || !IC->isEquality() || !SI.getType()->isIntegerTy())
    314     return nullptr;
    315 
    316   Value *CmpLHS = IC->getOperand(0);
    317   Value *CmpRHS = IC->getOperand(1);
    318 
    319   if (!match(CmpRHS, m_Zero()))
    320     return nullptr;
    321 
    322   Value *X;
    323   const APInt *C1;
    324   if (!match(CmpLHS, m_And(m_Value(X), m_Power2(C1))))
    325     return nullptr;
    326 
    327   const APInt *C2;
    328   bool OrOnTrueVal = false;
    329   bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
    330   if (!OrOnFalseVal)
    331     OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));
    332 
    333   if (!OrOnFalseVal && !OrOnTrueVal)
    334     return nullptr;
    335 
    336   Value *V = CmpLHS;
    337   Value *Y = OrOnFalseVal ? TrueVal : FalseVal;
    338 
    339   unsigned C1Log = C1->logBase2();
    340   unsigned C2Log = C2->logBase2();
    341   if (C2Log > C1Log) {
    342     V = Builder->CreateZExtOrTrunc(V, Y->getType());
    343     V = Builder->CreateShl(V, C2Log - C1Log);
    344   } else if (C1Log > C2Log) {
    345     V = Builder->CreateLShr(V, C1Log - C2Log);
    346     V = Builder->CreateZExtOrTrunc(V, Y->getType());
    347   } else
    348     V = Builder->CreateZExtOrTrunc(V, Y->getType());
    349 
    350   ICmpInst::Predicate Pred = IC->getPredicate();
    351   if ((Pred == ICmpInst::ICMP_NE && OrOnFalseVal) ||
    352       (Pred == ICmpInst::ICMP_EQ && OrOnTrueVal))
    353     V = Builder->CreateXor(V, *C2);
    354 
    355   return Builder->CreateOr(V, Y);
    356 }
    357 
    358 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
    359 /// call to cttz/ctlz with flag 'is_zero_undef' cleared.
    360 ///
    361 /// For example, we can fold the following code sequence:
    362 /// \code
    363 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
    364 ///   %1 = icmp ne i32 %x, 0
    365 ///   %2 = select i1 %1, i32 %0, i32 32
    366 /// \code
    367 ///
    368 /// into:
    369 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
    370 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
    371                                   InstCombiner::BuilderTy *Builder) {
    372   ICmpInst::Predicate Pred = ICI->getPredicate();
    373   Value *CmpLHS = ICI->getOperand(0);
    374   Value *CmpRHS = ICI->getOperand(1);
    375 
    376   // Check if the condition value compares a value for equality against zero.
    377   if (!ICI->isEquality() || !match(CmpRHS, m_Zero()))
    378     return nullptr;
    379 
    380   Value *Count = FalseVal;
    381   Value *ValueOnZero = TrueVal;
    382   if (Pred == ICmpInst::ICMP_NE)
    383     std::swap(Count, ValueOnZero);
    384 
    385   // Skip zero extend/truncate.
    386   Value *V = nullptr;
    387   if (match(Count, m_ZExt(m_Value(V))) ||
    388       match(Count, m_Trunc(m_Value(V))))
    389     Count = V;
    390 
    391   // Check if the value propagated on zero is a constant number equal to the
    392   // sizeof in bits of 'Count'.
    393   unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
    394   if (!match(ValueOnZero, m_SpecificInt(SizeOfInBits)))
    395     return nullptr;
    396 
    397   // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
    398   // input to the cttz/ctlz is used as LHS for the compare instruction.
    399   if (match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) ||
    400       match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) {
    401     IntrinsicInst *II = cast<IntrinsicInst>(Count);
    402     IRBuilder<> Builder(II);
    403     // Explicitly clear the 'undef_on_zero' flag.
    404     IntrinsicInst *NewI = cast<IntrinsicInst>(II->clone());
    405     Type *Ty = NewI->getArgOperand(1)->getType();
    406     NewI->setArgOperand(1, Constant::getNullValue(Ty));
    407     Builder.Insert(NewI);
    408     return Builder.CreateZExtOrTrunc(NewI, ValueOnZero->getType());
    409   }
    410 
    411   return nullptr;
    412 }
    413 
    414 /// Visit a SelectInst that has an ICmpInst as its first operand.
    415 Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
    416                                                    ICmpInst *ICI) {
    417   bool Changed = false;
    418   ICmpInst::Predicate Pred = ICI->getPredicate();
    419   Value *CmpLHS = ICI->getOperand(0);
    420   Value *CmpRHS = ICI->getOperand(1);
    421   Value *TrueVal = SI.getTrueValue();
    422   Value *FalseVal = SI.getFalseValue();
    423 
    424   // Check cases where the comparison is with a constant that
    425   // can be adjusted to fit the min/max idiom. We may move or edit ICI
    426   // here, so make sure the select is the only user.
    427   if (ICI->hasOneUse())
    428     if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) {
    429       switch (Pred) {
    430       default: break;
    431       case ICmpInst::ICMP_ULT:
    432       case ICmpInst::ICMP_SLT:
    433       case ICmpInst::ICMP_UGT:
    434       case ICmpInst::ICMP_SGT: {
    435         // These transformations only work for selects over integers.
    436         IntegerType *SelectTy = dyn_cast<IntegerType>(SI.getType());
    437         if (!SelectTy)
    438           break;
    439 
    440         Constant *AdjustedRHS;
    441         if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
    442           AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() + 1);
    443         else // (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
    444           AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() - 1);
    445 
    446         // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
    447         // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
    448         if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
    449             (CmpLHS == FalseVal && AdjustedRHS == TrueVal))
    450           ; // Nothing to do here. Values match without any sign/zero extension.
    451 
    452         // Types do not match. Instead of calculating this with mixed types
    453         // promote all to the larger type. This enables scalar evolution to
    454         // analyze this expression.
    455         else if (CmpRHS->getType()->getScalarSizeInBits()
    456                  < SelectTy->getBitWidth()) {
    457           Constant *sextRHS = ConstantExpr::getSExt(AdjustedRHS, SelectTy);
    458 
    459           // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
    460           // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
    461           // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
    462           // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
    463           if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) &&
    464                 sextRHS == FalseVal) {
    465             CmpLHS = TrueVal;
    466             AdjustedRHS = sextRHS;
    467           } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
    468                      sextRHS == TrueVal) {
    469             CmpLHS = FalseVal;
    470             AdjustedRHS = sextRHS;
    471           } else if (ICI->isUnsigned()) {
    472             Constant *zextRHS = ConstantExpr::getZExt(AdjustedRHS, SelectTy);
    473             // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
    474             // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
    475             // zext + signed compare cannot be changed:
    476             //    0xff <s 0x00, but 0x00ff >s 0x0000
    477             if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) &&
    478                 zextRHS == FalseVal) {
    479               CmpLHS = TrueVal;
    480               AdjustedRHS = zextRHS;
    481             } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
    482                        zextRHS == TrueVal) {
    483               CmpLHS = FalseVal;
    484               AdjustedRHS = zextRHS;
    485             } else
    486               break;
    487           } else
    488             break;
    489         } else
    490           break;
    491 
    492         Pred = ICmpInst::getSwappedPredicate(Pred);
    493         CmpRHS = AdjustedRHS;
    494         std::swap(FalseVal, TrueVal);
    495         ICI->setPredicate(Pred);
    496         ICI->setOperand(0, CmpLHS);
    497         ICI->setOperand(1, CmpRHS);
    498         SI.setOperand(1, TrueVal);
    499         SI.setOperand(2, FalseVal);
    500 
    501         // Move ICI instruction right before the select instruction. Otherwise
    502         // the sext/zext value may be defined after the ICI instruction uses it.
    503         ICI->moveBefore(&SI);
    504 
    505         Changed = true;
    506         break;
    507       }
    508       }
    509     }
    510 
    511   // Transform (X >s -1) ? C1 : C2 --> ((X >>s 31) & (C2 - C1)) + C1
    512   // and       (X <s  0) ? C2 : C1 --> ((X >>s 31) & (C2 - C1)) + C1
    513   // FIXME: Type and constness constraints could be lifted, but we have to
    514   //        watch code size carefully. We should consider xor instead of
    515   //        sub/add when we decide to do that.
    516   if (IntegerType *Ty = dyn_cast<IntegerType>(CmpLHS->getType())) {
    517     if (TrueVal->getType() == Ty) {
    518       if (ConstantInt *Cmp = dyn_cast<ConstantInt>(CmpRHS)) {
    519         ConstantInt *C1 = nullptr, *C2 = nullptr;
    520         if (Pred == ICmpInst::ICMP_SGT && Cmp->isAllOnesValue()) {
    521           C1 = dyn_cast<ConstantInt>(TrueVal);
    522           C2 = dyn_cast<ConstantInt>(FalseVal);
    523         } else if (Pred == ICmpInst::ICMP_SLT && Cmp->isNullValue()) {
    524           C1 = dyn_cast<ConstantInt>(FalseVal);
    525           C2 = dyn_cast<ConstantInt>(TrueVal);
    526         }
    527         if (C1 && C2) {
    528           // This shift results in either -1 or 0.
    529           Value *AShr = Builder->CreateAShr(CmpLHS, Ty->getBitWidth()-1);
    530 
    531           // Check if we can express the operation with a single or.
    532           if (C2->isAllOnesValue())
    533             return replaceInstUsesWith(SI, Builder->CreateOr(AShr, C1));
    534 
    535           Value *And = Builder->CreateAnd(AShr, C2->getValue()-C1->getValue());
    536           return replaceInstUsesWith(SI, Builder->CreateAdd(And, C1));
    537         }
    538       }
    539     }
    540   }
    541 
    542   // NOTE: if we wanted to, this is where to detect integer MIN/MAX
    543 
    544   if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
    545     if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
    546       // Transform (X == C) ? X : Y -> (X == C) ? C : Y
    547       SI.setOperand(1, CmpRHS);
    548       Changed = true;
    549     } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
    550       // Transform (X != C) ? Y : X -> (X != C) ? Y : C
    551       SI.setOperand(2, CmpRHS);
    552       Changed = true;
    553     }
    554   }
    555 
    556   {
    557     unsigned BitWidth = DL.getTypeSizeInBits(TrueVal->getType());
    558     APInt MinSignedValue = APInt::getSignBit(BitWidth);
    559     Value *X;
    560     const APInt *Y, *C;
    561     bool TrueWhenUnset;
    562     bool IsBitTest = false;
    563     if (ICmpInst::isEquality(Pred) &&
    564         match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
    565         match(CmpRHS, m_Zero())) {
    566       IsBitTest = true;
    567       TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
    568     } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
    569       X = CmpLHS;
    570       Y = &MinSignedValue;
    571       IsBitTest = true;
    572       TrueWhenUnset = false;
    573     } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
    574       X = CmpLHS;
    575       Y = &MinSignedValue;
    576       IsBitTest = true;
    577       TrueWhenUnset = true;
    578     }
    579     if (IsBitTest) {
    580       Value *V = nullptr;
    581       // (X & Y) == 0 ? X : X ^ Y  --> X & ~Y
    582       if (TrueWhenUnset && TrueVal == X &&
    583           match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
    584         V = Builder->CreateAnd(X, ~(*Y));
    585       // (X & Y) != 0 ? X ^ Y : X  --> X & ~Y
    586       else if (!TrueWhenUnset && FalseVal == X &&
    587                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
    588         V = Builder->CreateAnd(X, ~(*Y));
    589       // (X & Y) == 0 ? X ^ Y : X  --> X | Y
    590       else if (TrueWhenUnset && FalseVal == X &&
    591                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
    592         V = Builder->CreateOr(X, *Y);
    593       // (X & Y) != 0 ? X : X ^ Y  --> X | Y
    594       else if (!TrueWhenUnset && TrueVal == X &&
    595                match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
    596         V = Builder->CreateOr(X, *Y);
    597 
    598       if (V)
    599         return replaceInstUsesWith(SI, V);
    600     }
    601   }
    602 
    603   if (Value *V = foldSelectICmpAndOr(SI, TrueVal, FalseVal, Builder))
    604     return replaceInstUsesWith(SI, V);
    605 
    606   if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder))
    607     return replaceInstUsesWith(SI, V);
    608 
    609   return Changed ? &SI : nullptr;
    610 }
    611 
    612 
    613 /// SI is a select whose condition is a PHI node (but the two may be in
    614 /// different blocks). See if the true/false values (V) are live in all of the
    615 /// predecessor blocks of the PHI. For example, cases like this can't be mapped:
    616 ///
    617 ///   X = phi [ C1, BB1], [C2, BB2]
    618 ///   Y = add
    619 ///   Z = select X, Y, 0
    620 ///
    621 /// because Y is not live in BB1/BB2.
    622 ///
    623 static bool CanSelectOperandBeMappingIntoPredBlock(const Value *V,
    624                                                    const SelectInst &SI) {
    625   // If the value is a non-instruction value like a constant or argument, it
    626   // can always be mapped.
    627   const Instruction *I = dyn_cast<Instruction>(V);
    628   if (!I) return true;
    629 
    630   // If V is a PHI node defined in the same block as the condition PHI, we can
    631   // map the arguments.
    632   const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
    633 
    634   if (const PHINode *VP = dyn_cast<PHINode>(I))
    635     if (VP->getParent() == CondPHI->getParent())
    636       return true;
    637 
    638   // Otherwise, if the PHI and select are defined in the same block and if V is
    639   // defined in a different block, then we can transform it.
    640   if (SI.getParent() == CondPHI->getParent() &&
    641       I->getParent() != CondPHI->getParent())
    642     return true;
    643 
    644   // Otherwise we have a 'hard' case and we can't tell without doing more
    645   // detailed dominator based analysis, punt.
    646   return false;
    647 }
    648 
    649 /// We have an SPF (e.g. a min or max) of an SPF of the form:
    650 ///   SPF2(SPF1(A, B), C)
    651 Instruction *InstCombiner::FoldSPFofSPF(Instruction *Inner,
    652                                         SelectPatternFlavor SPF1,
    653                                         Value *A, Value *B,
    654                                         Instruction &Outer,
    655                                         SelectPatternFlavor SPF2, Value *C) {
    656   if (Outer.getType() != Inner->getType())
    657     return nullptr;
    658 
    659   if (C == A || C == B) {
    660     // MAX(MAX(A, B), B) -> MAX(A, B)
    661     // MIN(MIN(a, b), a) -> MIN(a, b)
    662     if (SPF1 == SPF2)
    663       return replaceInstUsesWith(Outer, Inner);
    664 
    665     // MAX(MIN(a, b), a) -> a
    666     // MIN(MAX(a, b), a) -> a
    667     if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
    668         (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
    669         (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
    670         (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
    671       return replaceInstUsesWith(Outer, C);
    672   }
    673 
    674   if (SPF1 == SPF2) {
    675     if (ConstantInt *CB = dyn_cast<ConstantInt>(B)) {
    676       if (ConstantInt *CC = dyn_cast<ConstantInt>(C)) {
    677         const APInt &ACB = CB->getValue();
    678         const APInt &ACC = CC->getValue();
    679 
    680         // MIN(MIN(A, 23), 97) -> MIN(A, 23)
    681         // MAX(MAX(A, 97), 23) -> MAX(A, 97)
    682         if ((SPF1 == SPF_UMIN && ACB.ule(ACC)) ||
    683             (SPF1 == SPF_SMIN && ACB.sle(ACC)) ||
    684             (SPF1 == SPF_UMAX && ACB.uge(ACC)) ||
    685             (SPF1 == SPF_SMAX && ACB.sge(ACC)))
    686           return replaceInstUsesWith(Outer, Inner);
    687 
    688         // MIN(MIN(A, 97), 23) -> MIN(A, 23)
    689         // MAX(MAX(A, 23), 97) -> MAX(A, 97)
    690         if ((SPF1 == SPF_UMIN && ACB.ugt(ACC)) ||
    691             (SPF1 == SPF_SMIN && ACB.sgt(ACC)) ||
    692             (SPF1 == SPF_UMAX && ACB.ult(ACC)) ||
    693             (SPF1 == SPF_SMAX && ACB.slt(ACC))) {
    694           Outer.replaceUsesOfWith(Inner, A);
    695           return &Outer;
    696         }
    697       }
    698     }
    699   }
    700 
    701   // ABS(ABS(X)) -> ABS(X)
    702   // NABS(NABS(X)) -> NABS(X)
    703   if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) {
    704     return replaceInstUsesWith(Outer, Inner);
    705   }
    706 
    707   // ABS(NABS(X)) -> ABS(X)
    708   // NABS(ABS(X)) -> NABS(X)
    709   if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) ||
    710       (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) {
    711     SelectInst *SI = cast<SelectInst>(Inner);
    712     Value *NewSI = Builder->CreateSelect(
    713         SI->getCondition(), SI->getFalseValue(), SI->getTrueValue());
    714     return replaceInstUsesWith(Outer, NewSI);
    715   }
    716 
    717   auto IsFreeOrProfitableToInvert =
    718       [&](Value *V, Value *&NotV, bool &ElidesXor) {
    719     if (match(V, m_Not(m_Value(NotV)))) {
    720       // If V has at most 2 uses then we can get rid of the xor operation
    721       // entirely.
    722       ElidesXor |= !V->hasNUsesOrMore(3);
    723       return true;
    724     }
    725 
    726     if (IsFreeToInvert(V, !V->hasNUsesOrMore(3))) {
    727       NotV = nullptr;
    728       return true;
    729     }
    730 
    731     return false;
    732   };
    733 
    734   Value *NotA, *NotB, *NotC;
    735   bool ElidesXor = false;
    736 
    737   // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C)
    738   // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C)
    739   // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C)
    740   // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C)
    741   //
    742   // This transform is performance neutral if we can elide at least one xor from
    743   // the set of three operands, since we'll be tacking on an xor at the very
    744   // end.
    745   if (IsFreeOrProfitableToInvert(A, NotA, ElidesXor) &&
    746       IsFreeOrProfitableToInvert(B, NotB, ElidesXor) &&
    747       IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) {
    748     if (!NotA)
    749       NotA = Builder->CreateNot(A);
    750     if (!NotB)
    751       NotB = Builder->CreateNot(B);
    752     if (!NotC)
    753       NotC = Builder->CreateNot(C);
    754 
    755     Value *NewInner = generateMinMaxSelectPattern(
    756         Builder, getInverseMinMaxSelectPattern(SPF1), NotA, NotB);
    757     Value *NewOuter = Builder->CreateNot(generateMinMaxSelectPattern(
    758         Builder, getInverseMinMaxSelectPattern(SPF2), NewInner, NotC));
    759     return replaceInstUsesWith(Outer, NewOuter);
    760   }
    761 
    762   return nullptr;
    763 }
    764 
    765 /// If one of the constants is zero (we know they can't both be) and we have an
    766 /// icmp instruction with zero, and we have an 'and' with the non-constant value
    767 /// and a power of two we can turn the select into a shift on the result of the
    768 /// 'and'.
    769 static Value *foldSelectICmpAnd(const SelectInst &SI, ConstantInt *TrueVal,
    770                                 ConstantInt *FalseVal,
    771                                 InstCombiner::BuilderTy *Builder) {
    772   const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition());
    773   if (!IC || !IC->isEquality() || !SI.getType()->isIntegerTy())
    774     return nullptr;
    775 
    776   if (!match(IC->getOperand(1), m_Zero()))
    777     return nullptr;
    778 
    779   ConstantInt *AndRHS;
    780   Value *LHS = IC->getOperand(0);
    781   if (!match(LHS, m_And(m_Value(), m_ConstantInt(AndRHS))))
    782     return nullptr;
    783 
    784   // If both select arms are non-zero see if we have a select of the form
    785   // 'x ? 2^n + C : C'. Then we can offset both arms by C, use the logic
    786   // for 'x ? 2^n : 0' and fix the thing up at the end.
    787   ConstantInt *Offset = nullptr;
    788   if (!TrueVal->isZero() && !FalseVal->isZero()) {
    789     if ((TrueVal->getValue() - FalseVal->getValue()).isPowerOf2())
    790       Offset = FalseVal;
    791     else if ((FalseVal->getValue() - TrueVal->getValue()).isPowerOf2())
    792       Offset = TrueVal;
    793     else
    794       return nullptr;
    795 
    796     // Adjust TrueVal and FalseVal to the offset.
    797     TrueVal = ConstantInt::get(Builder->getContext(),
    798                                TrueVal->getValue() - Offset->getValue());
    799     FalseVal = ConstantInt::get(Builder->getContext(),
    800                                 FalseVal->getValue() - Offset->getValue());
    801   }
    802 
    803   // Make sure the mask in the 'and' and one of the select arms is a power of 2.
    804   if (!AndRHS->getValue().isPowerOf2() ||
    805       (!TrueVal->getValue().isPowerOf2() &&
    806        !FalseVal->getValue().isPowerOf2()))
    807     return nullptr;
    808 
    809   // Determine which shift is needed to transform result of the 'and' into the
    810   // desired result.
    811   ConstantInt *ValC = !TrueVal->isZero() ? TrueVal : FalseVal;
    812   unsigned ValZeros = ValC->getValue().logBase2();
    813   unsigned AndZeros = AndRHS->getValue().logBase2();
    814 
    815   // If types don't match we can still convert the select by introducing a zext
    816   // or a trunc of the 'and'. The trunc case requires that all of the truncated
    817   // bits are zero, we can figure that out by looking at the 'and' mask.
    818   if (AndZeros >= ValC->getBitWidth())
    819     return nullptr;
    820 
    821   Value *V = Builder->CreateZExtOrTrunc(LHS, SI.getType());
    822   if (ValZeros > AndZeros)
    823     V = Builder->CreateShl(V, ValZeros - AndZeros);
    824   else if (ValZeros < AndZeros)
    825     V = Builder->CreateLShr(V, AndZeros - ValZeros);
    826 
    827   // Okay, now we know that everything is set up, we just don't know whether we
    828   // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
    829   bool ShouldNotVal = !TrueVal->isZero();
    830   ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
    831   if (ShouldNotVal)
    832     V = Builder->CreateXor(V, ValC);
    833 
    834   // Apply an offset if needed.
    835   if (Offset)
    836     V = Builder->CreateAdd(V, Offset);
    837   return V;
    838 }
    839 
    840 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))).
    841 /// This is even legal for FP.
    842 static Instruction *foldAddSubSelect(SelectInst &SI,
    843                                      InstCombiner::BuilderTy &Builder) {
    844   Value *CondVal = SI.getCondition();
    845   Value *TrueVal = SI.getTrueValue();
    846   Value *FalseVal = SI.getFalseValue();
    847   auto *TI = dyn_cast<Instruction>(TrueVal);
    848   auto *FI = dyn_cast<Instruction>(FalseVal);
    849   if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
    850     return nullptr;
    851 
    852   Instruction *AddOp = nullptr, *SubOp = nullptr;
    853   if ((TI->getOpcode() == Instruction::Sub &&
    854        FI->getOpcode() == Instruction::Add) ||
    855       (TI->getOpcode() == Instruction::FSub &&
    856        FI->getOpcode() == Instruction::FAdd)) {
    857     AddOp = FI;
    858     SubOp = TI;
    859   } else if ((FI->getOpcode() == Instruction::Sub &&
    860               TI->getOpcode() == Instruction::Add) ||
    861              (FI->getOpcode() == Instruction::FSub &&
    862               TI->getOpcode() == Instruction::FAdd)) {
    863     AddOp = TI;
    864     SubOp = FI;
    865   }
    866 
    867   if (AddOp) {
    868     Value *OtherAddOp = nullptr;
    869     if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
    870       OtherAddOp = AddOp->getOperand(1);
    871     } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
    872       OtherAddOp = AddOp->getOperand(0);
    873     }
    874 
    875     if (OtherAddOp) {
    876       // So at this point we know we have (Y -> OtherAddOp):
    877       //        select C, (add X, Y), (sub X, Z)
    878       Value *NegVal; // Compute -Z
    879       if (SI.getType()->isFPOrFPVectorTy()) {
    880         NegVal = Builder.CreateFNeg(SubOp->getOperand(1));
    881         if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
    882           FastMathFlags Flags = AddOp->getFastMathFlags();
    883           Flags &= SubOp->getFastMathFlags();
    884           NegInst->setFastMathFlags(Flags);
    885         }
    886       } else {
    887         NegVal = Builder.CreateNeg(SubOp->getOperand(1));
    888       }
    889 
    890       Value *NewTrueOp = OtherAddOp;
    891       Value *NewFalseOp = NegVal;
    892       if (AddOp != TI)
    893         std::swap(NewTrueOp, NewFalseOp);
    894       Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp,
    895                                            SI.getName() + ".p");
    896 
    897       if (SI.getType()->isFPOrFPVectorTy()) {
    898         Instruction *RI =
    899             BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
    900 
    901         FastMathFlags Flags = AddOp->getFastMathFlags();
    902         Flags &= SubOp->getFastMathFlags();
    903         RI->setFastMathFlags(Flags);
    904         return RI;
    905       } else
    906         return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
    907     }
    908   }
    909   return nullptr;
    910 }
    911 
    912 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
    913   Value *CondVal = SI.getCondition();
    914   Value *TrueVal = SI.getTrueValue();
    915   Value *FalseVal = SI.getFalseValue();
    916   Type *SelType = SI.getType();
    917 
    918   if (Value *V =
    919           SimplifySelectInst(CondVal, TrueVal, FalseVal, DL, TLI, DT, AC))
    920     return replaceInstUsesWith(SI, V);
    921 
    922   if (SelType->getScalarType()->isIntegerTy(1) &&
    923       TrueVal->getType() == CondVal->getType()) {
    924     if (match(TrueVal, m_One())) {
    925       // Change: A = select B, true, C --> A = or B, C
    926       return BinaryOperator::CreateOr(CondVal, FalseVal);
    927     }
    928     if (match(TrueVal, m_Zero())) {
    929       // Change: A = select B, false, C --> A = and !B, C
    930       Value *NotCond = Builder->CreateNot(CondVal, "not." + CondVal->getName());
    931       return BinaryOperator::CreateAnd(NotCond, FalseVal);
    932     }
    933     if (match(FalseVal, m_Zero())) {
    934       // Change: A = select B, C, false --> A = and B, C
    935       return BinaryOperator::CreateAnd(CondVal, TrueVal);
    936     }
    937     if (match(FalseVal, m_One())) {
    938       // Change: A = select B, C, true --> A = or !B, C
    939       Value *NotCond = Builder->CreateNot(CondVal, "not." + CondVal->getName());
    940       return BinaryOperator::CreateOr(NotCond, TrueVal);
    941     }
    942 
    943     // select a, a, b  -> a | b
    944     // select a, b, a  -> a & b
    945     if (CondVal == TrueVal)
    946       return BinaryOperator::CreateOr(CondVal, FalseVal);
    947     if (CondVal == FalseVal)
    948       return BinaryOperator::CreateAnd(CondVal, TrueVal);
    949 
    950     // select a, ~a, b -> (~a) & b
    951     // select a, b, ~a -> (~a) | b
    952     if (match(TrueVal, m_Not(m_Specific(CondVal))))
    953       return BinaryOperator::CreateAnd(TrueVal, FalseVal);
    954     if (match(FalseVal, m_Not(m_Specific(CondVal))))
    955       return BinaryOperator::CreateOr(TrueVal, FalseVal);
    956   }
    957 
    958   // Selecting between two integer or vector splat integer constants?
    959   //
    960   // Note that we don't handle a scalar select of vectors:
    961   // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0>
    962   // because that may need 3 instructions to splat the condition value:
    963   // extend, insertelement, shufflevector.
    964   if (CondVal->getType()->isVectorTy() == SelType->isVectorTy()) {
    965     // select C, 1, 0 -> zext C to int
    966     if (match(TrueVal, m_One()) && match(FalseVal, m_Zero()))
    967       return new ZExtInst(CondVal, SelType);
    968 
    969     // select C, -1, 0 -> sext C to int
    970     if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero()))
    971       return new SExtInst(CondVal, SelType);
    972 
    973     // select C, 0, 1 -> zext !C to int
    974     if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) {
    975       Value *NotCond = Builder->CreateNot(CondVal, "not." + CondVal->getName());
    976       return new ZExtInst(NotCond, SelType);
    977     }
    978 
    979     // select C, 0, -1 -> sext !C to int
    980     if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) {
    981       Value *NotCond = Builder->CreateNot(CondVal, "not." + CondVal->getName());
    982       return new SExtInst(NotCond, SelType);
    983     }
    984   }
    985 
    986   if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
    987     if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal))
    988       if (Value *V = foldSelectICmpAnd(SI, TrueValC, FalseValC, Builder))
    989         return replaceInstUsesWith(SI, V);
    990 
    991   // See if we are selecting two values based on a comparison of the two values.
    992   if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
    993     if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
    994       // Transform (X == Y) ? X : Y  -> Y
    995       if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
    996         // This is not safe in general for floating point:
    997         // consider X== -0, Y== +0.
    998         // It becomes safe if either operand is a nonzero constant.
    999         ConstantFP *CFPt, *CFPf;
   1000         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
   1001               !CFPt->getValueAPF().isZero()) ||
   1002             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
   1003              !CFPf->getValueAPF().isZero()))
   1004         return replaceInstUsesWith(SI, FalseVal);
   1005       }
   1006       // Transform (X une Y) ? X : Y  -> X
   1007       if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
   1008         // This is not safe in general for floating point:
   1009         // consider X== -0, Y== +0.
   1010         // It becomes safe if either operand is a nonzero constant.
   1011         ConstantFP *CFPt, *CFPf;
   1012         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
   1013               !CFPt->getValueAPF().isZero()) ||
   1014             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
   1015              !CFPf->getValueAPF().isZero()))
   1016         return replaceInstUsesWith(SI, TrueVal);
   1017       }
   1018 
   1019       // Canonicalize to use ordered comparisons by swapping the select
   1020       // operands.
   1021       //
   1022       // e.g.
   1023       // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
   1024       if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
   1025         FCmpInst::Predicate InvPred = FCI->getInversePredicate();
   1026         IRBuilder<>::FastMathFlagGuard FMFG(*Builder);
   1027         Builder->setFastMathFlags(FCI->getFastMathFlags());
   1028         Value *NewCond = Builder->CreateFCmp(InvPred, TrueVal, FalseVal,
   1029                                              FCI->getName() + ".inv");
   1030 
   1031         return SelectInst::Create(NewCond, FalseVal, TrueVal,
   1032                                   SI.getName() + ".p");
   1033       }
   1034 
   1035       // NOTE: if we wanted to, this is where to detect MIN/MAX
   1036     } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
   1037       // Transform (X == Y) ? Y : X  -> X
   1038       if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
   1039         // This is not safe in general for floating point:
   1040         // consider X== -0, Y== +0.
   1041         // It becomes safe if either operand is a nonzero constant.
   1042         ConstantFP *CFPt, *CFPf;
   1043         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
   1044               !CFPt->getValueAPF().isZero()) ||
   1045             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
   1046              !CFPf->getValueAPF().isZero()))
   1047           return replaceInstUsesWith(SI, FalseVal);
   1048       }
   1049       // Transform (X une Y) ? Y : X  -> Y
   1050       if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
   1051         // This is not safe in general for floating point:
   1052         // consider X== -0, Y== +0.
   1053         // It becomes safe if either operand is a nonzero constant.
   1054         ConstantFP *CFPt, *CFPf;
   1055         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
   1056               !CFPt->getValueAPF().isZero()) ||
   1057             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
   1058              !CFPf->getValueAPF().isZero()))
   1059           return replaceInstUsesWith(SI, TrueVal);
   1060       }
   1061 
   1062       // Canonicalize to use ordered comparisons by swapping the select
   1063       // operands.
   1064       //
   1065       // e.g.
   1066       // (X ugt Y) ? X : Y -> (X ole Y) ? X : Y
   1067       if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
   1068         FCmpInst::Predicate InvPred = FCI->getInversePredicate();
   1069         IRBuilder<>::FastMathFlagGuard FMFG(*Builder);
   1070         Builder->setFastMathFlags(FCI->getFastMathFlags());
   1071         Value *NewCond = Builder->CreateFCmp(InvPred, FalseVal, TrueVal,
   1072                                              FCI->getName() + ".inv");
   1073 
   1074         return SelectInst::Create(NewCond, FalseVal, TrueVal,
   1075                                   SI.getName() + ".p");
   1076       }
   1077 
   1078       // NOTE: if we wanted to, this is where to detect MIN/MAX
   1079     }
   1080     // NOTE: if we wanted to, this is where to detect ABS
   1081   }
   1082 
   1083   // See if we are selecting two values based on a comparison of the two values.
   1084   if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
   1085     if (Instruction *Result = visitSelectInstWithICmp(SI, ICI))
   1086       return Result;
   1087 
   1088   if (Instruction *Add = foldAddSubSelect(SI, *Builder))
   1089     return Add;
   1090 
   1091   // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
   1092   auto *TI = dyn_cast<Instruction>(TrueVal);
   1093   auto *FI = dyn_cast<Instruction>(FalseVal);
   1094   if (TI && FI && TI->getOpcode() == FI->getOpcode())
   1095     if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
   1096       return IV;
   1097 
   1098   // See if we can fold the select into one of our operands.
   1099   if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) {
   1100     if (Instruction *FoldI = FoldSelectIntoOp(SI, TrueVal, FalseVal))
   1101       return FoldI;
   1102 
   1103     Value *LHS, *RHS, *LHS2, *RHS2;
   1104     Instruction::CastOps CastOp;
   1105     SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
   1106     auto SPF = SPR.Flavor;
   1107 
   1108     if (SelectPatternResult::isMinOrMax(SPF)) {
   1109       // Canonicalize so that type casts are outside select patterns.
   1110       if (LHS->getType()->getPrimitiveSizeInBits() !=
   1111           SelType->getPrimitiveSizeInBits()) {
   1112         CmpInst::Predicate Pred = getCmpPredicateForMinMax(SPF, SPR.Ordered);
   1113 
   1114         Value *Cmp;
   1115         if (CmpInst::isIntPredicate(Pred)) {
   1116           Cmp = Builder->CreateICmp(Pred, LHS, RHS);
   1117         } else {
   1118           IRBuilder<>::FastMathFlagGuard FMFG(*Builder);
   1119           auto FMF = cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
   1120           Builder->setFastMathFlags(FMF);
   1121           Cmp = Builder->CreateFCmp(Pred, LHS, RHS);
   1122         }
   1123 
   1124         Value *NewSI = Builder->CreateCast(CastOp,
   1125                                            Builder->CreateSelect(Cmp, LHS, RHS),
   1126                                            SelType);
   1127         return replaceInstUsesWith(SI, NewSI);
   1128       }
   1129     }
   1130 
   1131     if (SPF) {
   1132       // MAX(MAX(a, b), a) -> MAX(a, b)
   1133       // MIN(MIN(a, b), a) -> MIN(a, b)
   1134       // MAX(MIN(a, b), a) -> a
   1135       // MIN(MAX(a, b), a) -> a
   1136       // ABS(ABS(a)) -> ABS(a)
   1137       // NABS(NABS(a)) -> NABS(a)
   1138       if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
   1139         if (Instruction *R = FoldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2,
   1140                                           SI, SPF, RHS))
   1141           return R;
   1142       if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
   1143         if (Instruction *R = FoldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2,
   1144                                           SI, SPF, LHS))
   1145           return R;
   1146     }
   1147 
   1148     // MAX(~a, ~b) -> ~MIN(a, b)
   1149     if (SPF == SPF_SMAX || SPF == SPF_UMAX) {
   1150       if (IsFreeToInvert(LHS, LHS->hasNUses(2)) &&
   1151           IsFreeToInvert(RHS, RHS->hasNUses(2))) {
   1152 
   1153         // This transform adds a xor operation and that extra cost needs to be
   1154         // justified.  We look for simplifications that will result from
   1155         // applying this rule:
   1156 
   1157         bool Profitable =
   1158             (LHS->hasNUses(2) && match(LHS, m_Not(m_Value()))) ||
   1159             (RHS->hasNUses(2) && match(RHS, m_Not(m_Value()))) ||
   1160             (SI.hasOneUse() && match(*SI.user_begin(), m_Not(m_Value())));
   1161 
   1162         if (Profitable) {
   1163           Value *NewLHS = Builder->CreateNot(LHS);
   1164           Value *NewRHS = Builder->CreateNot(RHS);
   1165           Value *NewCmp = SPF == SPF_SMAX
   1166                               ? Builder->CreateICmpSLT(NewLHS, NewRHS)
   1167                               : Builder->CreateICmpULT(NewLHS, NewRHS);
   1168           Value *NewSI =
   1169               Builder->CreateNot(Builder->CreateSelect(NewCmp, NewLHS, NewRHS));
   1170           return replaceInstUsesWith(SI, NewSI);
   1171         }
   1172       }
   1173     }
   1174 
   1175     // TODO.
   1176     // ABS(-X) -> ABS(X)
   1177   }
   1178 
   1179   // See if we can fold the select into a phi node if the condition is a select.
   1180   if (isa<PHINode>(SI.getCondition()))
   1181     // The true/false values have to be live in the PHI predecessor's blocks.
   1182     if (CanSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
   1183         CanSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
   1184       if (Instruction *NV = FoldOpIntoPhi(SI))
   1185         return NV;
   1186 
   1187   if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
   1188     if (TrueSI->getCondition()->getType() == CondVal->getType()) {
   1189       // select(C, select(C, a, b), c) -> select(C, a, c)
   1190       if (TrueSI->getCondition() == CondVal) {
   1191         if (SI.getTrueValue() == TrueSI->getTrueValue())
   1192           return nullptr;
   1193         SI.setOperand(1, TrueSI->getTrueValue());
   1194         return &SI;
   1195       }
   1196       // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
   1197       // We choose this as normal form to enable folding on the And and shortening
   1198       // paths for the values (this helps GetUnderlyingObjects() for example).
   1199       if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
   1200         Value *And = Builder->CreateAnd(CondVal, TrueSI->getCondition());
   1201         SI.setOperand(0, And);
   1202         SI.setOperand(1, TrueSI->getTrueValue());
   1203         return &SI;
   1204       }
   1205     }
   1206   }
   1207   if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
   1208     if (FalseSI->getCondition()->getType() == CondVal->getType()) {
   1209       // select(C, a, select(C, b, c)) -> select(C, a, c)
   1210       if (FalseSI->getCondition() == CondVal) {
   1211         if (SI.getFalseValue() == FalseSI->getFalseValue())
   1212           return nullptr;
   1213         SI.setOperand(2, FalseSI->getFalseValue());
   1214         return &SI;
   1215       }
   1216       // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
   1217       if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
   1218         Value *Or = Builder->CreateOr(CondVal, FalseSI->getCondition());
   1219         SI.setOperand(0, Or);
   1220         SI.setOperand(2, FalseSI->getFalseValue());
   1221         return &SI;
   1222       }
   1223     }
   1224   }
   1225 
   1226   if (BinaryOperator::isNot(CondVal)) {
   1227     SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
   1228     SI.setOperand(1, FalseVal);
   1229     SI.setOperand(2, TrueVal);
   1230     return &SI;
   1231   }
   1232 
   1233   if (VectorType* VecTy = dyn_cast<VectorType>(SelType)) {
   1234     unsigned VWidth = VecTy->getNumElements();
   1235     APInt UndefElts(VWidth, 0);
   1236     APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
   1237     if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) {
   1238       if (V != &SI)
   1239         return replaceInstUsesWith(SI, V);
   1240       return &SI;
   1241     }
   1242 
   1243     if (isa<ConstantAggregateZero>(CondVal)) {
   1244       return replaceInstUsesWith(SI, FalseVal);
   1245     }
   1246   }
   1247 
   1248   // See if we can determine the result of this select based on a dominating
   1249   // condition.
   1250   BasicBlock *Parent = SI.getParent();
   1251   if (BasicBlock *Dom = Parent->getSinglePredecessor()) {
   1252     auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator());
   1253     if (PBI && PBI->isConditional() &&
   1254         PBI->getSuccessor(0) != PBI->getSuccessor(1) &&
   1255         (PBI->getSuccessor(0) == Parent || PBI->getSuccessor(1) == Parent)) {
   1256       bool CondIsFalse = PBI->getSuccessor(1) == Parent;
   1257       Optional<bool> Implication = isImpliedCondition(
   1258         PBI->getCondition(), SI.getCondition(), DL, CondIsFalse);
   1259       if (Implication) {
   1260         Value *V = *Implication ? TrueVal : FalseVal;
   1261         return replaceInstUsesWith(SI, V);
   1262       }
   1263     }
   1264   }
   1265 
   1266   return nullptr;
   1267 }
   1268