Home | History | Annotate | Download | only in Scalar
      1 //===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements Loop Rotation Pass.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Transforms/Scalar/LoopRotation.h"
     15 #include "llvm/ADT/Statistic.h"
     16 #include "llvm/Analysis/AliasAnalysis.h"
     17 #include "llvm/Analysis/BasicAliasAnalysis.h"
     18 #include "llvm/Analysis/AssumptionCache.h"
     19 #include "llvm/Analysis/CodeMetrics.h"
     20 #include "llvm/Analysis/InstructionSimplify.h"
     21 #include "llvm/Analysis/GlobalsModRef.h"
     22 #include "llvm/Analysis/LoopPass.h"
     23 #include "llvm/Analysis/LoopPassManager.h"
     24 #include "llvm/Analysis/ScalarEvolution.h"
     25 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
     26 #include "llvm/Analysis/TargetTransformInfo.h"
     27 #include "llvm/Analysis/ValueTracking.h"
     28 #include "llvm/IR/CFG.h"
     29 #include "llvm/IR/Dominators.h"
     30 #include "llvm/IR/Function.h"
     31 #include "llvm/IR/IntrinsicInst.h"
     32 #include "llvm/IR/Module.h"
     33 #include "llvm/Support/CommandLine.h"
     34 #include "llvm/Support/Debug.h"
     35 #include "llvm/Support/raw_ostream.h"
     36 #include "llvm/Transforms/Scalar.h"
     37 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     38 #include "llvm/Transforms/Utils/Local.h"
     39 #include "llvm/Transforms/Utils/LoopUtils.h"
     40 #include "llvm/Transforms/Utils/SSAUpdater.h"
     41 #include "llvm/Transforms/Utils/ValueMapper.h"
     42 using namespace llvm;
     43 
     44 #define DEBUG_TYPE "loop-rotate"
     45 
     46 static cl::opt<unsigned> DefaultRotationThreshold(
     47     "rotation-max-header-size", cl::init(16), cl::Hidden,
     48     cl::desc("The default maximum header size for automatic loop rotation"));
     49 
     50 STATISTIC(NumRotated, "Number of loops rotated");
     51 
     52 namespace {
     53 /// A simple loop rotation transformation.
     54 class LoopRotate {
     55   const unsigned MaxHeaderSize;
     56   LoopInfo *LI;
     57   const TargetTransformInfo *TTI;
     58   AssumptionCache *AC;
     59   DominatorTree *DT;
     60   ScalarEvolution *SE;
     61 
     62 public:
     63   LoopRotate(unsigned MaxHeaderSize, LoopInfo *LI,
     64              const TargetTransformInfo *TTI, AssumptionCache *AC,
     65              DominatorTree *DT, ScalarEvolution *SE)
     66       : MaxHeaderSize(MaxHeaderSize), LI(LI), TTI(TTI), AC(AC), DT(DT), SE(SE) {
     67   }
     68   bool processLoop(Loop *L);
     69 
     70 private:
     71   bool rotateLoop(Loop *L, bool SimplifiedLatch);
     72   bool simplifyLoopLatch(Loop *L);
     73 };
     74 } // end anonymous namespace
     75 
     76 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
     77 /// old header into the preheader.  If there were uses of the values produced by
     78 /// these instruction that were outside of the loop, we have to insert PHI nodes
     79 /// to merge the two values.  Do this now.
     80 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
     81                                             BasicBlock *OrigPreheader,
     82                                             ValueToValueMapTy &ValueMap) {
     83   // Remove PHI node entries that are no longer live.
     84   BasicBlock::iterator I, E = OrigHeader->end();
     85   for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
     86     PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader));
     87 
     88   // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
     89   // as necessary.
     90   SSAUpdater SSA;
     91   for (I = OrigHeader->begin(); I != E; ++I) {
     92     Value *OrigHeaderVal = &*I;
     93 
     94     // If there are no uses of the value (e.g. because it returns void), there
     95     // is nothing to rewrite.
     96     if (OrigHeaderVal->use_empty())
     97       continue;
     98 
     99     Value *OrigPreHeaderVal = ValueMap.lookup(OrigHeaderVal);
    100 
    101     // The value now exits in two versions: the initial value in the preheader
    102     // and the loop "next" value in the original header.
    103     SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
    104     SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
    105     SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal);
    106 
    107     // Visit each use of the OrigHeader instruction.
    108     for (Value::use_iterator UI = OrigHeaderVal->use_begin(),
    109                              UE = OrigHeaderVal->use_end();
    110          UI != UE;) {
    111       // Grab the use before incrementing the iterator.
    112       Use &U = *UI;
    113 
    114       // Increment the iterator before removing the use from the list.
    115       ++UI;
    116 
    117       // SSAUpdater can't handle a non-PHI use in the same block as an
    118       // earlier def. We can easily handle those cases manually.
    119       Instruction *UserInst = cast<Instruction>(U.getUser());
    120       if (!isa<PHINode>(UserInst)) {
    121         BasicBlock *UserBB = UserInst->getParent();
    122 
    123         // The original users in the OrigHeader are already using the
    124         // original definitions.
    125         if (UserBB == OrigHeader)
    126           continue;
    127 
    128         // Users in the OrigPreHeader need to use the value to which the
    129         // original definitions are mapped.
    130         if (UserBB == OrigPreheader) {
    131           U = OrigPreHeaderVal;
    132           continue;
    133         }
    134       }
    135 
    136       // Anything else can be handled by SSAUpdater.
    137       SSA.RewriteUse(U);
    138     }
    139 
    140     // Replace MetadataAsValue(ValueAsMetadata(OrigHeaderVal)) uses in debug
    141     // intrinsics.
    142     LLVMContext &C = OrigHeader->getContext();
    143     if (auto *VAM = ValueAsMetadata::getIfExists(OrigHeaderVal)) {
    144       if (auto *MAV = MetadataAsValue::getIfExists(C, VAM)) {
    145         for (auto UI = MAV->use_begin(), E = MAV->use_end(); UI != E;) {
    146           // Grab the use before incrementing the iterator. Otherwise, altering
    147           // the Use will invalidate the iterator.
    148           Use &U = *UI++;
    149           DbgInfoIntrinsic *UserInst = dyn_cast<DbgInfoIntrinsic>(U.getUser());
    150           if (!UserInst)
    151             continue;
    152 
    153           // The original users in the OrigHeader are already using the original
    154           // definitions.
    155           BasicBlock *UserBB = UserInst->getParent();
    156           if (UserBB == OrigHeader)
    157             continue;
    158 
    159           // Users in the OrigPreHeader need to use the value to which the
    160           // original definitions are mapped and anything else can be handled by
    161           // the SSAUpdater. To avoid adding PHINodes, check if the value is
    162           // available in UserBB, if not substitute undef.
    163           Value *NewVal;
    164           if (UserBB == OrigPreheader)
    165             NewVal = OrigPreHeaderVal;
    166           else if (SSA.HasValueForBlock(UserBB))
    167             NewVal = SSA.GetValueInMiddleOfBlock(UserBB);
    168           else
    169             NewVal = UndefValue::get(OrigHeaderVal->getType());
    170           U = MetadataAsValue::get(C, ValueAsMetadata::get(NewVal));
    171         }
    172       }
    173     }
    174   }
    175 }
    176 
    177 /// Rotate loop LP. Return true if the loop is rotated.
    178 ///
    179 /// \param SimplifiedLatch is true if the latch was just folded into the final
    180 /// loop exit. In this case we may want to rotate even though the new latch is
    181 /// now an exiting branch. This rotation would have happened had the latch not
    182 /// been simplified. However, if SimplifiedLatch is false, then we avoid
    183 /// rotating loops in which the latch exits to avoid excessive or endless
    184 /// rotation. LoopRotate should be repeatable and converge to a canonical
    185 /// form. This property is satisfied because simplifying the loop latch can only
    186 /// happen once across multiple invocations of the LoopRotate pass.
    187 bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) {
    188   // If the loop has only one block then there is not much to rotate.
    189   if (L->getBlocks().size() == 1)
    190     return false;
    191 
    192   BasicBlock *OrigHeader = L->getHeader();
    193   BasicBlock *OrigLatch = L->getLoopLatch();
    194 
    195   BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
    196   if (!BI || BI->isUnconditional())
    197     return false;
    198 
    199   // If the loop header is not one of the loop exiting blocks then
    200   // either this loop is already rotated or it is not
    201   // suitable for loop rotation transformations.
    202   if (!L->isLoopExiting(OrigHeader))
    203     return false;
    204 
    205   // If the loop latch already contains a branch that leaves the loop then the
    206   // loop is already rotated.
    207   if (!OrigLatch)
    208     return false;
    209 
    210   // Rotate if either the loop latch does *not* exit the loop, or if the loop
    211   // latch was just simplified.
    212   if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch)
    213     return false;
    214 
    215   // Check size of original header and reject loop if it is very big or we can't
    216   // duplicate blocks inside it.
    217   {
    218     SmallPtrSet<const Value *, 32> EphValues;
    219     CodeMetrics::collectEphemeralValues(L, AC, EphValues);
    220 
    221     CodeMetrics Metrics;
    222     Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues);
    223     if (Metrics.notDuplicatable) {
    224       DEBUG(dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable"
    225                    << " instructions: ";
    226             L->dump());
    227       return false;
    228     }
    229     if (Metrics.convergent) {
    230       DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent "
    231                       "instructions: ";
    232             L->dump());
    233       return false;
    234     }
    235     if (Metrics.NumInsts > MaxHeaderSize)
    236       return false;
    237   }
    238 
    239   // Now, this loop is suitable for rotation.
    240   BasicBlock *OrigPreheader = L->getLoopPreheader();
    241 
    242   // If the loop could not be converted to canonical form, it must have an
    243   // indirectbr in it, just give up.
    244   if (!OrigPreheader)
    245     return false;
    246 
    247   // Anything ScalarEvolution may know about this loop or the PHI nodes
    248   // in its header will soon be invalidated.
    249   if (SE)
    250     SE->forgetLoop(L);
    251 
    252   DEBUG(dbgs() << "LoopRotation: rotating "; L->dump());
    253 
    254   // Find new Loop header. NewHeader is a Header's one and only successor
    255   // that is inside loop.  Header's other successor is outside the
    256   // loop.  Otherwise loop is not suitable for rotation.
    257   BasicBlock *Exit = BI->getSuccessor(0);
    258   BasicBlock *NewHeader = BI->getSuccessor(1);
    259   if (L->contains(Exit))
    260     std::swap(Exit, NewHeader);
    261   assert(NewHeader && "Unable to determine new loop header");
    262   assert(L->contains(NewHeader) && !L->contains(Exit) &&
    263          "Unable to determine loop header and exit blocks");
    264 
    265   // This code assumes that the new header has exactly one predecessor.
    266   // Remove any single-entry PHI nodes in it.
    267   assert(NewHeader->getSinglePredecessor() &&
    268          "New header doesn't have one pred!");
    269   FoldSingleEntryPHINodes(NewHeader);
    270 
    271   // Begin by walking OrigHeader and populating ValueMap with an entry for
    272   // each Instruction.
    273   BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
    274   ValueToValueMapTy ValueMap;
    275 
    276   // For PHI nodes, the value available in OldPreHeader is just the
    277   // incoming value from OldPreHeader.
    278   for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
    279     ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader);
    280 
    281   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
    282 
    283   // For the rest of the instructions, either hoist to the OrigPreheader if
    284   // possible or create a clone in the OldPreHeader if not.
    285   TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator();
    286   while (I != E) {
    287     Instruction *Inst = &*I++;
    288 
    289     // If the instruction's operands are invariant and it doesn't read or write
    290     // memory, then it is safe to hoist.  Doing this doesn't change the order of
    291     // execution in the preheader, but does prevent the instruction from
    292     // executing in each iteration of the loop.  This means it is safe to hoist
    293     // something that might trap, but isn't safe to hoist something that reads
    294     // memory (without proving that the loop doesn't write).
    295     if (L->hasLoopInvariantOperands(Inst) && !Inst->mayReadFromMemory() &&
    296         !Inst->mayWriteToMemory() && !isa<TerminatorInst>(Inst) &&
    297         !isa<DbgInfoIntrinsic>(Inst) && !isa<AllocaInst>(Inst)) {
    298       Inst->moveBefore(LoopEntryBranch);
    299       continue;
    300     }
    301 
    302     // Otherwise, create a duplicate of the instruction.
    303     Instruction *C = Inst->clone();
    304 
    305     // Eagerly remap the operands of the instruction.
    306     RemapInstruction(C, ValueMap,
    307                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
    308 
    309     // With the operands remapped, see if the instruction constant folds or is
    310     // otherwise simplifyable.  This commonly occurs because the entry from PHI
    311     // nodes allows icmps and other instructions to fold.
    312     // FIXME: Provide TLI, DT, AC to SimplifyInstruction.
    313     Value *V = SimplifyInstruction(C, DL);
    314     if (V && LI->replacementPreservesLCSSAForm(C, V)) {
    315       // If so, then delete the temporary instruction and stick the folded value
    316       // in the map.
    317       ValueMap[Inst] = V;
    318       if (!C->mayHaveSideEffects()) {
    319         delete C;
    320         C = nullptr;
    321       }
    322     } else {
    323       ValueMap[Inst] = C;
    324     }
    325     if (C) {
    326       // Otherwise, stick the new instruction into the new block!
    327       C->setName(Inst->getName());
    328       C->insertBefore(LoopEntryBranch);
    329     }
    330   }
    331 
    332   // Along with all the other instructions, we just cloned OrigHeader's
    333   // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
    334   // successors by duplicating their incoming values for OrigHeader.
    335   TerminatorInst *TI = OrigHeader->getTerminator();
    336   for (BasicBlock *SuccBB : TI->successors())
    337     for (BasicBlock::iterator BI = SuccBB->begin();
    338          PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
    339       PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
    340 
    341   // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
    342   // OrigPreHeader's old terminator (the original branch into the loop), and
    343   // remove the corresponding incoming values from the PHI nodes in OrigHeader.
    344   LoopEntryBranch->eraseFromParent();
    345 
    346   // If there were any uses of instructions in the duplicated block outside the
    347   // loop, update them, inserting PHI nodes as required
    348   RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap);
    349 
    350   // NewHeader is now the header of the loop.
    351   L->moveToHeader(NewHeader);
    352   assert(L->getHeader() == NewHeader && "Latch block is our new header");
    353 
    354   // At this point, we've finished our major CFG changes.  As part of cloning
    355   // the loop into the preheader we've simplified instructions and the
    356   // duplicated conditional branch may now be branching on a constant.  If it is
    357   // branching on a constant and if that constant means that we enter the loop,
    358   // then we fold away the cond branch to an uncond branch.  This simplifies the
    359   // loop in cases important for nested loops, and it also means we don't have
    360   // to split as many edges.
    361   BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
    362   assert(PHBI->isConditional() && "Should be clone of BI condbr!");
    363   if (!isa<ConstantInt>(PHBI->getCondition()) ||
    364       PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) !=
    365           NewHeader) {
    366     // The conditional branch can't be folded, handle the general case.
    367     // Update DominatorTree to reflect the CFG change we just made.  Then split
    368     // edges as necessary to preserve LoopSimplify form.
    369     if (DT) {
    370       // Everything that was dominated by the old loop header is now dominated
    371       // by the original loop preheader. Conceptually the header was merged
    372       // into the preheader, even though we reuse the actual block as a new
    373       // loop latch.
    374       DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader);
    375       SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(),
    376                                                    OrigHeaderNode->end());
    377       DomTreeNode *OrigPreheaderNode = DT->getNode(OrigPreheader);
    378       for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I)
    379         DT->changeImmediateDominator(HeaderChildren[I], OrigPreheaderNode);
    380 
    381       assert(DT->getNode(Exit)->getIDom() == OrigPreheaderNode);
    382       assert(DT->getNode(NewHeader)->getIDom() == OrigPreheaderNode);
    383 
    384       // Update OrigHeader to be dominated by the new header block.
    385       DT->changeImmediateDominator(OrigHeader, OrigLatch);
    386     }
    387 
    388     // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
    389     // thus is not a preheader anymore.
    390     // Split the edge to form a real preheader.
    391     BasicBlock *NewPH = SplitCriticalEdge(
    392         OrigPreheader, NewHeader,
    393         CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA());
    394     NewPH->setName(NewHeader->getName() + ".lr.ph");
    395 
    396     // Preserve canonical loop form, which means that 'Exit' should have only
    397     // one predecessor. Note that Exit could be an exit block for multiple
    398     // nested loops, causing both of the edges to now be critical and need to
    399     // be split.
    400     SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit));
    401     bool SplitLatchEdge = false;
    402     for (BasicBlock *ExitPred : ExitPreds) {
    403       // We only need to split loop exit edges.
    404       Loop *PredLoop = LI->getLoopFor(ExitPred);
    405       if (!PredLoop || PredLoop->contains(Exit))
    406         continue;
    407       if (isa<IndirectBrInst>(ExitPred->getTerminator()))
    408         continue;
    409       SplitLatchEdge |= L->getLoopLatch() == ExitPred;
    410       BasicBlock *ExitSplit = SplitCriticalEdge(
    411           ExitPred, Exit,
    412           CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA());
    413       ExitSplit->moveBefore(Exit);
    414     }
    415     assert(SplitLatchEdge &&
    416            "Despite splitting all preds, failed to split latch exit?");
    417   } else {
    418     // We can fold the conditional branch in the preheader, this makes things
    419     // simpler. The first step is to remove the extra edge to the Exit block.
    420     Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
    421     BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI);
    422     NewBI->setDebugLoc(PHBI->getDebugLoc());
    423     PHBI->eraseFromParent();
    424 
    425     // With our CFG finalized, update DomTree if it is available.
    426     if (DT) {
    427       // Update OrigHeader to be dominated by the new header block.
    428       DT->changeImmediateDominator(NewHeader, OrigPreheader);
    429       DT->changeImmediateDominator(OrigHeader, OrigLatch);
    430 
    431       // Brute force incremental dominator tree update. Call
    432       // findNearestCommonDominator on all CFG predecessors of each child of the
    433       // original header.
    434       DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader);
    435       SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(),
    436                                                    OrigHeaderNode->end());
    437       bool Changed;
    438       do {
    439         Changed = false;
    440         for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) {
    441           DomTreeNode *Node = HeaderChildren[I];
    442           BasicBlock *BB = Node->getBlock();
    443 
    444           pred_iterator PI = pred_begin(BB);
    445           BasicBlock *NearestDom = *PI;
    446           for (pred_iterator PE = pred_end(BB); PI != PE; ++PI)
    447             NearestDom = DT->findNearestCommonDominator(NearestDom, *PI);
    448 
    449           // Remember if this changes the DomTree.
    450           if (Node->getIDom()->getBlock() != NearestDom) {
    451             DT->changeImmediateDominator(BB, NearestDom);
    452             Changed = true;
    453           }
    454         }
    455 
    456         // If the dominator changed, this may have an effect on other
    457         // predecessors, continue until we reach a fixpoint.
    458       } while (Changed);
    459     }
    460   }
    461 
    462   assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
    463   assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
    464 
    465   // Now that the CFG and DomTree are in a consistent state again, try to merge
    466   // the OrigHeader block into OrigLatch.  This will succeed if they are
    467   // connected by an unconditional branch.  This is just a cleanup so the
    468   // emitted code isn't too gross in this common case.
    469   MergeBlockIntoPredecessor(OrigHeader, DT, LI);
    470 
    471   DEBUG(dbgs() << "LoopRotation: into "; L->dump());
    472 
    473   ++NumRotated;
    474   return true;
    475 }
    476 
    477 /// Determine whether the instructions in this range may be safely and cheaply
    478 /// speculated. This is not an important enough situation to develop complex
    479 /// heuristics. We handle a single arithmetic instruction along with any type
    480 /// conversions.
    481 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin,
    482                                   BasicBlock::iterator End, Loop *L) {
    483   bool seenIncrement = false;
    484   bool MultiExitLoop = false;
    485 
    486   if (!L->getExitingBlock())
    487     MultiExitLoop = true;
    488 
    489   for (BasicBlock::iterator I = Begin; I != End; ++I) {
    490 
    491     if (!isSafeToSpeculativelyExecute(&*I))
    492       return false;
    493 
    494     if (isa<DbgInfoIntrinsic>(I))
    495       continue;
    496 
    497     switch (I->getOpcode()) {
    498     default:
    499       return false;
    500     case Instruction::GetElementPtr:
    501       // GEPs are cheap if all indices are constant.
    502       if (!cast<GEPOperator>(I)->hasAllConstantIndices())
    503         return false;
    504     // fall-thru to increment case
    505     case Instruction::Add:
    506     case Instruction::Sub:
    507     case Instruction::And:
    508     case Instruction::Or:
    509     case Instruction::Xor:
    510     case Instruction::Shl:
    511     case Instruction::LShr:
    512     case Instruction::AShr: {
    513       Value *IVOpnd =
    514           !isa<Constant>(I->getOperand(0))
    515               ? I->getOperand(0)
    516               : !isa<Constant>(I->getOperand(1)) ? I->getOperand(1) : nullptr;
    517       if (!IVOpnd)
    518         return false;
    519 
    520       // If increment operand is used outside of the loop, this speculation
    521       // could cause extra live range interference.
    522       if (MultiExitLoop) {
    523         for (User *UseI : IVOpnd->users()) {
    524           auto *UserInst = cast<Instruction>(UseI);
    525           if (!L->contains(UserInst))
    526             return false;
    527         }
    528       }
    529 
    530       if (seenIncrement)
    531         return false;
    532       seenIncrement = true;
    533       break;
    534     }
    535     case Instruction::Trunc:
    536     case Instruction::ZExt:
    537     case Instruction::SExt:
    538       // ignore type conversions
    539       break;
    540     }
    541   }
    542   return true;
    543 }
    544 
    545 /// Fold the loop tail into the loop exit by speculating the loop tail
    546 /// instructions. Typically, this is a single post-increment. In the case of a
    547 /// simple 2-block loop, hoisting the increment can be much better than
    548 /// duplicating the entire loop header. In the case of loops with early exits,
    549 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in
    550 /// canonical form so downstream passes can handle it.
    551 ///
    552 /// I don't believe this invalidates SCEV.
    553 bool LoopRotate::simplifyLoopLatch(Loop *L) {
    554   BasicBlock *Latch = L->getLoopLatch();
    555   if (!Latch || Latch->hasAddressTaken())
    556     return false;
    557 
    558   BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator());
    559   if (!Jmp || !Jmp->isUnconditional())
    560     return false;
    561 
    562   BasicBlock *LastExit = Latch->getSinglePredecessor();
    563   if (!LastExit || !L->isLoopExiting(LastExit))
    564     return false;
    565 
    566   BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator());
    567   if (!BI)
    568     return false;
    569 
    570   if (!shouldSpeculateInstrs(Latch->begin(), Jmp->getIterator(), L))
    571     return false;
    572 
    573   DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into "
    574                << LastExit->getName() << "\n");
    575 
    576   // Hoist the instructions from Latch into LastExit.
    577   LastExit->getInstList().splice(BI->getIterator(), Latch->getInstList(),
    578                                  Latch->begin(), Jmp->getIterator());
    579 
    580   unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1;
    581   BasicBlock *Header = Jmp->getSuccessor(0);
    582   assert(Header == L->getHeader() && "expected a backward branch");
    583 
    584   // Remove Latch from the CFG so that LastExit becomes the new Latch.
    585   BI->setSuccessor(FallThruPath, Header);
    586   Latch->replaceSuccessorsPhiUsesWith(LastExit);
    587   Jmp->eraseFromParent();
    588 
    589   // Nuke the Latch block.
    590   assert(Latch->empty() && "unable to evacuate Latch");
    591   LI->removeBlock(Latch);
    592   if (DT)
    593     DT->eraseNode(Latch);
    594   Latch->eraseFromParent();
    595   return true;
    596 }
    597 
    598 /// Rotate \c L, and return true if any modification was made.
    599 bool LoopRotate::processLoop(Loop *L) {
    600   // Save the loop metadata.
    601   MDNode *LoopMD = L->getLoopID();
    602 
    603   // Simplify the loop latch before attempting to rotate the header
    604   // upward. Rotation may not be needed if the loop tail can be folded into the
    605   // loop exit.
    606   bool SimplifiedLatch = simplifyLoopLatch(L);
    607 
    608   bool MadeChange = rotateLoop(L, SimplifiedLatch);
    609   assert((!MadeChange || L->isLoopExiting(L->getLoopLatch())) &&
    610          "Loop latch should be exiting after loop-rotate.");
    611 
    612   // Restore the loop metadata.
    613   // NB! We presume LoopRotation DOESN'T ADD its own metadata.
    614   if ((MadeChange || SimplifiedLatch) && LoopMD)
    615     L->setLoopID(LoopMD);
    616 
    617   return MadeChange;
    618 }
    619 
    620 LoopRotatePass::LoopRotatePass() {}
    621 
    622 PreservedAnalyses LoopRotatePass::run(Loop &L, AnalysisManager<Loop> &AM) {
    623   auto &FAM = AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager();
    624   Function *F = L.getHeader()->getParent();
    625 
    626   auto *LI = FAM.getCachedResult<LoopAnalysis>(*F);
    627   const auto *TTI = FAM.getCachedResult<TargetIRAnalysis>(*F);
    628   auto *AC = FAM.getCachedResult<AssumptionAnalysis>(*F);
    629   assert((LI && TTI && AC) && "Analyses for loop rotation not available");
    630 
    631   // Optional analyses.
    632   auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(*F);
    633   auto *SE = FAM.getCachedResult<ScalarEvolutionAnalysis>(*F);
    634   LoopRotate LR(DefaultRotationThreshold, LI, TTI, AC, DT, SE);
    635 
    636   bool Changed = LR.processLoop(&L);
    637   if (!Changed)
    638     return PreservedAnalyses::all();
    639   return getLoopPassPreservedAnalyses();
    640 }
    641 
    642 namespace {
    643 
    644 class LoopRotateLegacyPass : public LoopPass {
    645   unsigned MaxHeaderSize;
    646 
    647 public:
    648   static char ID; // Pass ID, replacement for typeid
    649   LoopRotateLegacyPass(int SpecifiedMaxHeaderSize = -1) : LoopPass(ID) {
    650     initializeLoopRotateLegacyPassPass(*PassRegistry::getPassRegistry());
    651     if (SpecifiedMaxHeaderSize == -1)
    652       MaxHeaderSize = DefaultRotationThreshold;
    653     else
    654       MaxHeaderSize = unsigned(SpecifiedMaxHeaderSize);
    655   }
    656 
    657   // LCSSA form makes instruction renaming easier.
    658   void getAnalysisUsage(AnalysisUsage &AU) const override {
    659     AU.addRequired<AssumptionCacheTracker>();
    660     AU.addRequired<TargetTransformInfoWrapperPass>();
    661     getLoopAnalysisUsage(AU);
    662   }
    663 
    664   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
    665     if (skipLoop(L))
    666       return false;
    667     Function &F = *L->getHeader()->getParent();
    668 
    669     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    670     const auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
    671     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
    672     auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
    673     auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
    674     auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
    675     auto *SE = SEWP ? &SEWP->getSE() : nullptr;
    676     LoopRotate LR(MaxHeaderSize, LI, TTI, AC, DT, SE);
    677     return LR.processLoop(L);
    678   }
    679 };
    680 }
    681 
    682 char LoopRotateLegacyPass::ID = 0;
    683 INITIALIZE_PASS_BEGIN(LoopRotateLegacyPass, "loop-rotate", "Rotate Loops",
    684                       false, false)
    685 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
    686 INITIALIZE_PASS_DEPENDENCY(LoopPass)
    687 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
    688 INITIALIZE_PASS_END(LoopRotateLegacyPass, "loop-rotate", "Rotate Loops", false,
    689                     false)
    690 
    691 Pass *llvm::createLoopRotatePass(int MaxHeaderSize) {
    692   return new LoopRotateLegacyPass(MaxHeaderSize);
    693 }
    694