Home | History | Annotate | Download | only in InstSimplify
      1 ; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
      2 ; RUN: opt < %s -instsimplify -S | FileCheck %s
      3 
      4 ; If any bits of the shift amount are known to make it exceed or equal
      5 ; the number of bits in the type, the shift causes undefined behavior.
      6 
      7 define i32 @shl_amount_is_known_bogus(i32 %a, i32 %b) {
      8 ; CHECK-LABEL: @shl_amount_is_known_bogus(
      9 ; CHECK-NEXT:    ret i32 undef
     10 ;
     11   %or = or i32 %b, 32
     12   %shl = shl i32 %a, %or
     13   ret i32 %shl
     14 }
     15 
     16 ; Check some weird types and the other shift ops.
     17 
     18 define i31 @lshr_amount_is_known_bogus(i31 %a, i31 %b) {
     19 ; CHECK-LABEL: @lshr_amount_is_known_bogus(
     20 ; CHECK-NEXT:    ret i31 undef
     21 ;
     22   %or = or i31 %b, 31
     23   %shr = lshr i31 %a, %or
     24   ret i31 %shr
     25 }
     26 
     27 define i33 @ashr_amount_is_known_bogus(i33 %a, i33 %b) {
     28 ; CHECK-LABEL: @ashr_amount_is_known_bogus(
     29 ; CHECK-NEXT:    ret i33 undef
     30 ;
     31   %or = or i33 %b, 33
     32   %shr = ashr i33 %a, %or
     33   ret i33 %shr
     34 }
     35 
     36 
     37 ; If all valid bits of the shift amount are known 0, there's no shift.
     38 ; It doesn't matter if high bits are set because that would be undefined.
     39 ; Therefore, the only possible valid result of these shifts is %a.
     40 
     41 define i16 @ashr_amount_is_zero(i16 %a, i16 %b) {
     42 ; CHECK-LABEL: @ashr_amount_is_zero(
     43 ; CHECK-NEXT:    ret i16 %a
     44 ;
     45   %and = and i16 %b, 65520 ; 0xfff0
     46   %shr = ashr i16 %a, %and
     47   ret i16 %shr
     48 }
     49 
     50 define i300 @lshr_amount_is_zero(i300 %a, i300 %b) {
     51 ; CHECK-LABEL: @lshr_amount_is_zero(
     52 ; CHECK-NEXT:    ret i300 %a
     53 ;
     54   %and = and i300 %b, 2048
     55   %shr = lshr i300 %a, %and
     56   ret i300 %shr
     57 }
     58 
     59 define i9 @shl_amount_is_zero(i9 %a, i9 %b) {
     60 ; CHECK-LABEL: @shl_amount_is_zero(
     61 ; CHECK-NEXT:    ret i9 %a
     62 ;
     63   %and = and i9 %b, 496 ; 0x1f0
     64   %shl = shl i9 %a, %and
     65   ret i9 %shl
     66 }
     67 
     68 
     69 ; Verify that we've calculated the log2 boundary of valid bits correctly for a weird type.
     70 
     71 define i9 @shl_amount_is_not_known_zero(i9 %a, i9 %b) {
     72 ; CHECK-LABEL: @shl_amount_is_not_known_zero(
     73 ; CHECK-NEXT:    [[AND:%.*]] = and i9 %b, -8
     74 ; CHECK-NEXT:    [[SHL:%.*]] = shl i9 %a, [[AND]]
     75 ; CHECK-NEXT:    ret i9 [[SHL]]
     76 ;
     77   %and = and i9 %b, 504 ; 0x1f8
     78   %shl = shl i9 %a, %and
     79   ret i9 %shl
     80 }
     81 
     82 
     83 ; For vectors, we need all scalar elements to meet the requirements to optimize.
     84 
     85 define <2 x i32> @ashr_vector_bogus(<2 x i32> %a, <2 x i32> %b) {
     86 ; CHECK-LABEL: @ashr_vector_bogus(
     87 ; CHECK-NEXT:    ret <2 x i32> undef
     88 ;
     89   %or = or <2 x i32> %b, <i32 32, i32 32>
     90   %shr = ashr <2 x i32> %a, %or
     91   ret <2 x i32> %shr
     92 }
     93 
     94 ; FIXME: This is undef, but computeKnownBits doesn't handle the union.
     95 define <2 x i32> @shl_vector_bogus(<2 x i32> %a, <2 x i32> %b) {
     96 ; CHECK-LABEL: @shl_vector_bogus(
     97 ; CHECK-NEXT:    [[OR:%.*]] = or <2 x i32> %b, <i32 32, i32 64>
     98 ; CHECK-NEXT:    [[SHL:%.*]] = shl <2 x i32> %a, [[OR]]
     99 ; CHECK-NEXT:    ret <2 x i32> [[SHL]]
    100 ;
    101   %or = or <2 x i32> %b, <i32 32, i32 64>
    102   %shl = shl <2 x i32> %a, %or
    103   ret <2 x i32> %shl
    104 }
    105 
    106 define <2 x i32> @lshr_vector_zero(<2 x i32> %a, <2 x i32> %b) {
    107 ; CHECK-LABEL: @lshr_vector_zero(
    108 ; CHECK-NEXT:    ret <2 x i32> %a
    109 ;
    110   %and = and <2 x i32> %b, <i32 64, i32 256>
    111   %shr = lshr <2 x i32> %a, %and
    112   ret <2 x i32> %shr
    113 }
    114 
    115 ; Make sure that weird vector types work too.
    116 define <2 x i15> @shl_vector_zero(<2 x i15> %a, <2 x i15> %b) {
    117 ; CHECK-LABEL: @shl_vector_zero(
    118 ; CHECK-NEXT:    ret <2 x i15> %a
    119 ;
    120   %and = and <2 x i15> %b, <i15 1024, i15 1024>
    121   %shl = shl <2 x i15> %a, %and
    122   ret <2 x i15> %shl
    123 }
    124 
    125 define <2 x i32> @shl_vector_for_real(<2 x i32> %a, <2 x i32> %b) {
    126 ; CHECK-LABEL: @shl_vector_for_real(
    127 ; CHECK-NEXT:    [[AND:%.*]] = and <2 x i32> %b, <i32 3, i32 3>
    128 ; CHECK-NEXT:    [[SHL:%.*]] = shl <2 x i32> %a, [[AND]]
    129 ; CHECK-NEXT:    ret <2 x i32> [[SHL]]
    130 ;
    131   %and = and <2 x i32> %b, <i32 3, i32 3> ; a necessary mask op
    132   %shl = shl <2 x i32> %a, %and
    133   ret <2 x i32> %shl
    134 }
    135 
    136 
    137 ; We calculate the valid bits of the shift using log2, and log2 of 1 (the type width) is 0.
    138 ; That should be ok. Either the shift amount is 0 or invalid (1), so we can always return %a.
    139 
    140 define i1 @shl_i1(i1 %a, i1 %b) {
    141 ; CHECK-LABEL: @shl_i1(
    142 ; CHECK-NEXT:    ret i1 %a
    143 ;
    144   %shl = shl i1 %a, %b
    145   ret i1 %shl
    146 }
    147 
    148