Home | History | Annotate | Download | only in doc
      1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
      2 <HTML>
      3 <HEAD>
      4 <TITLE>Lua 5.3 Reference Manual</TITLE>
      5 <LINK REL="stylesheet" TYPE="text/css" HREF="lua.css">
      6 <LINK REL="stylesheet" TYPE="text/css" HREF="manual.css">
      7 <META HTTP-EQUIV="content-type" CONTENT="text/html; charset=iso-8859-1">
      8 </HEAD>
      9 
     10 <BODY>
     11 
     12 <H1>
     13 <A HREF="http://www.lua.org/"><IMG SRC="logo.gif" ALT="Lua"></A>
     14 Lua 5.3 Reference Manual
     15 </H1>
     16 
     17 <P>
     18 by Roberto Ierusalimschy, Luiz Henrique de Figueiredo, Waldemar Celes
     19 
     20 <P>
     21 <SMALL>
     22 Copyright &copy; 2015&ndash;2018 Lua.org, PUC-Rio.
     23 Freely available under the terms of the
     24 <a href="http://www.lua.org/license.html">Lua license</a>.
     25 </SMALL>
     26 
     27 <DIV CLASS="menubar">
     28 <A HREF="contents.html#contents">contents</A>
     29 &middot;
     30 <A HREF="contents.html#index">index</A>
     31 &middot;
     32 <A HREF="http://www.lua.org/manual/">other versions</A>
     33 </DIV>
     34 
     35 <!-- ====================================================================== -->
     36 <p>
     37 
     38 <!-- $Id: manual.of,v 1.167.1.2 2018/06/26 15:49:07 roberto Exp $ -->
     39 
     40 
     41 
     42 
     43 <h1>1 &ndash; <a name="1">Introduction</a></h1>
     44 
     45 <p>
     46 Lua is a powerful, efficient, lightweight, embeddable scripting language.
     47 It supports procedural programming,
     48 object-oriented programming, functional programming,
     49 data-driven programming, and data description.
     50 
     51 
     52 <p>
     53 Lua combines simple procedural syntax with powerful data description
     54 constructs based on associative arrays and extensible semantics.
     55 Lua is dynamically typed,
     56 runs by interpreting bytecode with a register-based
     57 virtual machine,
     58 and has automatic memory management with
     59 incremental garbage collection,
     60 making it ideal for configuration, scripting,
     61 and rapid prototyping.
     62 
     63 
     64 <p>
     65 Lua is implemented as a library, written in <em>clean C</em>,
     66 the common subset of Standard&nbsp;C and C++.
     67 The Lua distribution includes a host program called <code>lua</code>,
     68 which uses the Lua library to offer a complete,
     69 standalone Lua interpreter,
     70 for interactive or batch use.
     71 Lua is intended to be used both as a powerful, lightweight,
     72 embeddable scripting language for any program that needs one,
     73 and as a powerful but lightweight and efficient stand-alone language.
     74 
     75 
     76 <p>
     77 As an extension language, Lua has no notion of a "main" program:
     78 it works <em>embedded</em> in a host client,
     79 called the <em>embedding program</em> or simply the <em>host</em>.
     80 (Frequently, this host is the stand-alone <code>lua</code> program.)
     81 The host program can invoke functions to execute a piece of Lua code,
     82 can write and read Lua variables,
     83 and can register C&nbsp;functions to be called by Lua code.
     84 Through the use of C&nbsp;functions, Lua can be augmented to cope with
     85 a wide range of different domains,
     86 thus creating customized programming languages sharing a syntactical framework.
     87 
     88 
     89 <p>
     90 Lua is free software,
     91 and is provided as usual with no guarantees,
     92 as stated in its license.
     93 The implementation described in this manual is available
     94 at Lua's official web site, <code>www.lua.org</code>.
     95 
     96 
     97 <p>
     98 Like any other reference manual,
     99 this document is dry in places.
    100 For a discussion of the decisions behind the design of Lua,
    101 see the technical papers available at Lua's web site.
    102 For a detailed introduction to programming in Lua,
    103 see Roberto's book, <em>Programming in Lua</em>.
    104 
    105 
    106 
    107 <h1>2 &ndash; <a name="2">Basic Concepts</a></h1>
    108 
    109 <p>
    110 This section describes the basic concepts of the language.
    111 
    112 
    113 
    114 <h2>2.1 &ndash; <a name="2.1">Values and Types</a></h2>
    115 
    116 <p>
    117 Lua is a <em>dynamically typed language</em>.
    118 This means that
    119 variables do not have types; only values do.
    120 There are no type definitions in the language.
    121 All values carry their own type.
    122 
    123 
    124 <p>
    125 All values in Lua are <em>first-class values</em>.
    126 This means that all values can be stored in variables,
    127 passed as arguments to other functions, and returned as results.
    128 
    129 
    130 <p>
    131 There are eight basic types in Lua:
    132 <em>nil</em>, <em>boolean</em>, <em>number</em>,
    133 <em>string</em>, <em>function</em>, <em>userdata</em>,
    134 <em>thread</em>, and <em>table</em>.
    135 The type <em>nil</em> has one single value, <b>nil</b>,
    136 whose main property is to be different from any other value;
    137 it usually represents the absence of a useful value.
    138 The type <em>boolean</em> has two values, <b>false</b> and <b>true</b>.
    139 Both <b>nil</b> and <b>false</b> make a condition false;
    140 any other value makes it true.
    141 The type <em>number</em> represents both
    142 integer numbers and real (floating-point) numbers.
    143 The type <em>string</em> represents immutable sequences of bytes.
    144 
    145 Lua is 8-bit clean:
    146 strings can contain any 8-bit value,
    147 including embedded zeros ('<code>\0</code>').
    148 Lua is also encoding-agnostic;
    149 it makes no assumptions about the contents of a string.
    150 
    151 
    152 <p>
    153 The type <em>number</em> uses two internal representations,
    154 or two subtypes,
    155 one called <em>integer</em> and the other called <em>float</em>.
    156 Lua has explicit rules about when each representation is used,
    157 but it also converts between them automatically as needed (see <a href="#3.4.3">&sect;3.4.3</a>).
    158 Therefore,
    159 the programmer may choose to mostly ignore the difference
    160 between integers and floats
    161 or to assume complete control over the representation of each number.
    162 Standard Lua uses 64-bit integers and double-precision (64-bit) floats,
    163 but you can also compile Lua so that it
    164 uses 32-bit integers and/or single-precision (32-bit) floats.
    165 The option with 32 bits for both integers and floats
    166 is particularly attractive
    167 for small machines and embedded systems.
    168 (See macro <code>LUA_32BITS</code> in file <code>luaconf.h</code>.)
    169 
    170 
    171 <p>
    172 Lua can call (and manipulate) functions written in Lua and
    173 functions written in C (see <a href="#3.4.10">&sect;3.4.10</a>).
    174 Both are represented by the type <em>function</em>.
    175 
    176 
    177 <p>
    178 The type <em>userdata</em> is provided to allow arbitrary C&nbsp;data to
    179 be stored in Lua variables.
    180 A userdata value represents a block of raw memory.
    181 There are two kinds of userdata:
    182 <em>full userdata</em>,
    183 which is an object with a block of memory managed by Lua,
    184 and <em>light userdata</em>,
    185 which is simply a C&nbsp;pointer value.
    186 Userdata has no predefined operations in Lua,
    187 except assignment and identity test.
    188 By using <em>metatables</em>,
    189 the programmer can define operations for full userdata values
    190 (see <a href="#2.4">&sect;2.4</a>).
    191 Userdata values cannot be created or modified in Lua,
    192 only through the C&nbsp;API.
    193 This guarantees the integrity of data owned by the host program.
    194 
    195 
    196 <p>
    197 The type <em>thread</em> represents independent threads of execution
    198 and it is used to implement coroutines (see <a href="#2.6">&sect;2.6</a>).
    199 Lua threads are not related to operating-system threads.
    200 Lua supports coroutines on all systems,
    201 even those that do not support threads natively.
    202 
    203 
    204 <p>
    205 The type <em>table</em> implements associative arrays,
    206 that is, arrays that can have as indices not only numbers,
    207 but any Lua value except <b>nil</b> and NaN.
    208 (<em>Not a Number</em> is a special value used to represent
    209 undefined or unrepresentable numerical results, such as <code>0/0</code>.)
    210 Tables can be <em>heterogeneous</em>;
    211 that is, they can contain values of all types (except <b>nil</b>).
    212 Any key with value <b>nil</b> is not considered part of the table.
    213 Conversely, any key that is not part of a table has
    214 an associated value <b>nil</b>.
    215 
    216 
    217 <p>
    218 Tables are the sole data-structuring mechanism in Lua;
    219 they can be used to represent ordinary arrays, lists,
    220 symbol tables, sets, records, graphs, trees, etc.
    221 To represent records, Lua uses the field name as an index.
    222 The language supports this representation by
    223 providing <code>a.name</code> as syntactic sugar for <code>a["name"]</code>.
    224 There are several convenient ways to create tables in Lua
    225 (see <a href="#3.4.9">&sect;3.4.9</a>).
    226 
    227 
    228 <p>
    229 Like indices,
    230 the values of table fields can be of any type.
    231 In particular,
    232 because functions are first-class values,
    233 table fields can contain functions.
    234 Thus tables can also carry <em>methods</em> (see <a href="#3.4.11">&sect;3.4.11</a>).
    235 
    236 
    237 <p>
    238 The indexing of tables follows
    239 the definition of raw equality in the language.
    240 The expressions <code>a[i]</code> and <code>a[j]</code>
    241 denote the same table element
    242 if and only if <code>i</code> and <code>j</code> are raw equal
    243 (that is, equal without metamethods).
    244 In particular, floats with integral values
    245 are equal to their respective integers
    246 (e.g., <code>1.0 == 1</code>).
    247 To avoid ambiguities,
    248 any float with integral value used as a key
    249 is converted to its respective integer.
    250 For instance, if you write <code>a[2.0] = true</code>,
    251 the actual key inserted into the table will be the
    252 integer <code>2</code>.
    253 (On the other hand,
    254 2 and "<code>2</code>" are different Lua values and therefore
    255 denote different table entries.)
    256 
    257 
    258 <p>
    259 Tables, functions, threads, and (full) userdata values are <em>objects</em>:
    260 variables do not actually <em>contain</em> these values,
    261 only <em>references</em> to them.
    262 Assignment, parameter passing, and function returns
    263 always manipulate references to such values;
    264 these operations do not imply any kind of copy.
    265 
    266 
    267 <p>
    268 The library function <a href="#pdf-type"><code>type</code></a> returns a string describing the type
    269 of a given value (see <a href="#6.1">&sect;6.1</a>).
    270 
    271 
    272 
    273 
    274 
    275 <h2>2.2 &ndash; <a name="2.2">Environments and the Global Environment</a></h2>
    276 
    277 <p>
    278 As will be discussed in <a href="#3.2">&sect;3.2</a> and <a href="#3.3.3">&sect;3.3.3</a>,
    279 any reference to a free name
    280 (that is, a name not bound to any declaration) <code>var</code>
    281 is syntactically translated to <code>_ENV.var</code>.
    282 Moreover, every chunk is compiled in the scope of
    283 an external local variable named <code>_ENV</code> (see <a href="#3.3.2">&sect;3.3.2</a>),
    284 so <code>_ENV</code> itself is never a free name in a chunk.
    285 
    286 
    287 <p>
    288 Despite the existence of this external <code>_ENV</code> variable and
    289 the translation of free names,
    290 <code>_ENV</code> is a completely regular name.
    291 In particular,
    292 you can define new variables and parameters with that name.
    293 Each reference to a free name uses the <code>_ENV</code> that is
    294 visible at that point in the program,
    295 following the usual visibility rules of Lua (see <a href="#3.5">&sect;3.5</a>).
    296 
    297 
    298 <p>
    299 Any table used as the value of <code>_ENV</code> is called an <em>environment</em>.
    300 
    301 
    302 <p>
    303 Lua keeps a distinguished environment called the <em>global environment</em>.
    304 This value is kept at a special index in the C registry (see <a href="#4.5">&sect;4.5</a>).
    305 In Lua, the global variable <a href="#pdf-_G"><code>_G</code></a> is initialized with this same value.
    306 (<a href="#pdf-_G"><code>_G</code></a> is never used internally.)
    307 
    308 
    309 <p>
    310 When Lua loads a chunk,
    311 the default value for its <code>_ENV</code> upvalue
    312 is the global environment (see <a href="#pdf-load"><code>load</code></a>).
    313 Therefore, by default,
    314 free names in Lua code refer to entries in the global environment
    315 (and, therefore, they are also called <em>global variables</em>).
    316 Moreover, all standard libraries are loaded in the global environment
    317 and some functions there operate on that environment.
    318 You can use <a href="#pdf-load"><code>load</code></a> (or <a href="#pdf-loadfile"><code>loadfile</code></a>)
    319 to load a chunk with a different environment.
    320 (In C, you have to load the chunk and then change the value
    321 of its first upvalue.)
    322 
    323 
    324 
    325 
    326 
    327 <h2>2.3 &ndash; <a name="2.3">Error Handling</a></h2>
    328 
    329 <p>
    330 Because Lua is an embedded extension language,
    331 all Lua actions start from C&nbsp;code in the host program
    332 calling a function from the Lua library.
    333 (When you use Lua standalone,
    334 the <code>lua</code> application is the host program.)
    335 Whenever an error occurs during
    336 the compilation or execution of a Lua chunk,
    337 control returns to the host,
    338 which can take appropriate measures
    339 (such as printing an error message).
    340 
    341 
    342 <p>
    343 Lua code can explicitly generate an error by calling the
    344 <a href="#pdf-error"><code>error</code></a> function.
    345 If you need to catch errors in Lua,
    346 you can use <a href="#pdf-pcall"><code>pcall</code></a> or <a href="#pdf-xpcall"><code>xpcall</code></a>
    347 to call a given function in <em>protected mode</em>.
    348 
    349 
    350 <p>
    351 Whenever there is an error,
    352 an <em>error object</em> (also called an <em>error message</em>)
    353 is propagated with information about the error.
    354 Lua itself only generates errors whose error object is a string,
    355 but programs may generate errors with
    356 any value as the error object.
    357 It is up to the Lua program or its host to handle such error objects.
    358 
    359 
    360 <p>
    361 When you use <a href="#pdf-xpcall"><code>xpcall</code></a> or <a href="#lua_pcall"><code>lua_pcall</code></a>,
    362 you may give a <em>message handler</em>
    363 to be called in case of errors.
    364 This function is called with the original error object
    365 and returns a new error object.
    366 It is called before the error unwinds the stack,
    367 so that it can gather more information about the error,
    368 for instance by inspecting the stack and creating a stack traceback.
    369 This message handler is still protected by the protected call;
    370 so, an error inside the message handler
    371 will call the message handler again.
    372 If this loop goes on for too long,
    373 Lua breaks it and returns an appropriate message.
    374 (The message handler is called only for regular runtime errors.
    375 It is not called for memory-allocation errors
    376 nor for errors while running finalizers.)
    377 
    378 
    379 
    380 
    381 
    382 <h2>2.4 &ndash; <a name="2.4">Metatables and Metamethods</a></h2>
    383 
    384 <p>
    385 Every value in Lua can have a <em>metatable</em>.
    386 This <em>metatable</em> is an ordinary Lua table
    387 that defines the behavior of the original value
    388 under certain special operations.
    389 You can change several aspects of the behavior
    390 of operations over a value by setting specific fields in its metatable.
    391 For instance, when a non-numeric value is the operand of an addition,
    392 Lua checks for a function in the field "<code>__add</code>" of the value's metatable.
    393 If it finds one,
    394 Lua calls this function to perform the addition.
    395 
    396 
    397 <p>
    398 The key for each event in a metatable is a string
    399 with the event name prefixed by two underscores;
    400 the corresponding values are called <em>metamethods</em>.
    401 In the previous example, the key is "<code>__add</code>"
    402 and the metamethod is the function that performs the addition.
    403 Unless stated otherwise,
    404 metamethods should be function values.
    405 
    406 
    407 <p>
    408 You can query the metatable of any value
    409 using the <a href="#pdf-getmetatable"><code>getmetatable</code></a> function.
    410 Lua queries metamethods in metatables using a raw access (see <a href="#pdf-rawget"><code>rawget</code></a>).
    411 So, to retrieve the metamethod for event <code>ev</code> in object <code>o</code>,
    412 Lua does the equivalent to the following code:
    413 
    414 <pre>
    415      rawget(getmetatable(<em>o</em>) or {}, "__<em>ev</em>")
    416 </pre>
    417 
    418 <p>
    419 You can replace the metatable of tables
    420 using the <a href="#pdf-setmetatable"><code>setmetatable</code></a> function.
    421 You cannot change the metatable of other types from Lua code
    422 (except by using the debug library (<a href="#6.10">&sect;6.10</a>));
    423 you should use the C&nbsp;API for that.
    424 
    425 
    426 <p>
    427 Tables and full userdata have individual metatables
    428 (although multiple tables and userdata can share their metatables).
    429 Values of all other types share one single metatable per type;
    430 that is, there is one single metatable for all numbers,
    431 one for all strings, etc.
    432 By default, a value has no metatable,
    433 but the string library sets a metatable for the string type (see <a href="#6.4">&sect;6.4</a>).
    434 
    435 
    436 <p>
    437 A metatable controls how an object behaves in
    438 arithmetic operations, bitwise operations,
    439 order comparisons, concatenation, length operation, calls, and indexing.
    440 A metatable also can define a function to be called
    441 when a userdata or a table is garbage collected (<a href="#2.5">&sect;2.5</a>).
    442 
    443 
    444 <p>
    445 For the unary operators (negation, length, and bitwise NOT),
    446 the metamethod is computed and called with a dummy second operand,
    447 equal to the first one.
    448 This extra operand is only to simplify Lua's internals
    449 (by making these operators behave like a binary operation)
    450 and may be removed in future versions.
    451 (For most uses this extra operand is irrelevant.)
    452 
    453 
    454 <p>
    455 A detailed list of events controlled by metatables is given next.
    456 Each operation is identified by its corresponding key.
    457 
    458 
    459 
    460 <ul>
    461 
    462 <li><b><code>__add</code>: </b>
    463 the addition (<code>+</code>) operation.
    464 If any operand for an addition is not a number
    465 (nor a string coercible to a number),
    466 Lua will try to call a metamethod.
    467 First, Lua will check the first operand (even if it is valid).
    468 If that operand does not define a metamethod for <code>__add</code>,
    469 then Lua will check the second operand.
    470 If Lua can find a metamethod,
    471 it calls the metamethod with the two operands as arguments,
    472 and the result of the call
    473 (adjusted to one value)
    474 is the result of the operation.
    475 Otherwise,
    476 it raises an error.
    477 </li>
    478 
    479 <li><b><code>__sub</code>: </b>
    480 the subtraction (<code>-</code>) operation.
    481 Behavior similar to the addition operation.
    482 </li>
    483 
    484 <li><b><code>__mul</code>: </b>
    485 the multiplication (<code>*</code>) operation.
    486 Behavior similar to the addition operation.
    487 </li>
    488 
    489 <li><b><code>__div</code>: </b>
    490 the division (<code>/</code>) operation.
    491 Behavior similar to the addition operation.
    492 </li>
    493 
    494 <li><b><code>__mod</code>: </b>
    495 the modulo (<code>%</code>) operation.
    496 Behavior similar to the addition operation.
    497 </li>
    498 
    499 <li><b><code>__pow</code>: </b>
    500 the exponentiation (<code>^</code>) operation.
    501 Behavior similar to the addition operation.
    502 </li>
    503 
    504 <li><b><code>__unm</code>: </b>
    505 the negation (unary <code>-</code>) operation.
    506 Behavior similar to the addition operation.
    507 </li>
    508 
    509 <li><b><code>__idiv</code>: </b>
    510 the floor division (<code>//</code>) operation.
    511 Behavior similar to the addition operation.
    512 </li>
    513 
    514 <li><b><code>__band</code>: </b>
    515 the bitwise AND (<code>&amp;</code>) operation.
    516 Behavior similar to the addition operation,
    517 except that Lua will try a metamethod
    518 if any operand is neither an integer
    519 nor a value coercible to an integer (see <a href="#3.4.3">&sect;3.4.3</a>).
    520 </li>
    521 
    522 <li><b><code>__bor</code>: </b>
    523 the bitwise OR (<code>|</code>) operation.
    524 Behavior similar to the bitwise AND operation.
    525 </li>
    526 
    527 <li><b><code>__bxor</code>: </b>
    528 the bitwise exclusive OR (binary <code>~</code>) operation.
    529 Behavior similar to the bitwise AND operation.
    530 </li>
    531 
    532 <li><b><code>__bnot</code>: </b>
    533 the bitwise NOT (unary <code>~</code>) operation.
    534 Behavior similar to the bitwise AND operation.
    535 </li>
    536 
    537 <li><b><code>__shl</code>: </b>
    538 the bitwise left shift (<code>&lt;&lt;</code>) operation.
    539 Behavior similar to the bitwise AND operation.
    540 </li>
    541 
    542 <li><b><code>__shr</code>: </b>
    543 the bitwise right shift (<code>&gt;&gt;</code>) operation.
    544 Behavior similar to the bitwise AND operation.
    545 </li>
    546 
    547 <li><b><code>__concat</code>: </b>
    548 the concatenation (<code>..</code>) operation.
    549 Behavior similar to the addition operation,
    550 except that Lua will try a metamethod
    551 if any operand is neither a string nor a number
    552 (which is always coercible to a string).
    553 </li>
    554 
    555 <li><b><code>__len</code>: </b>
    556 the length (<code>#</code>) operation.
    557 If the object is not a string,
    558 Lua will try its metamethod.
    559 If there is a metamethod,
    560 Lua calls it with the object as argument,
    561 and the result of the call
    562 (always adjusted to one value)
    563 is the result of the operation.
    564 If there is no metamethod but the object is a table,
    565 then Lua uses the table length operation (see <a href="#3.4.7">&sect;3.4.7</a>).
    566 Otherwise, Lua raises an error.
    567 </li>
    568 
    569 <li><b><code>__eq</code>: </b>
    570 the equal (<code>==</code>) operation.
    571 Behavior similar to the addition operation,
    572 except that Lua will try a metamethod only when the values
    573 being compared are either both tables or both full userdata
    574 and they are not primitively equal.
    575 The result of the call is always converted to a boolean.
    576 </li>
    577 
    578 <li><b><code>__lt</code>: </b>
    579 the less than (<code>&lt;</code>) operation.
    580 Behavior similar to the addition operation,
    581 except that Lua will try a metamethod only when the values
    582 being compared are neither both numbers nor both strings.
    583 The result of the call is always converted to a boolean.
    584 </li>
    585 
    586 <li><b><code>__le</code>: </b>
    587 the less equal (<code>&lt;=</code>) operation.
    588 Unlike other operations,
    589 the less-equal operation can use two different events.
    590 First, Lua looks for the <code>__le</code> metamethod in both operands,
    591 like in the less than operation.
    592 If it cannot find such a metamethod,
    593 then it will try the <code>__lt</code> metamethod,
    594 assuming that <code>a &lt;= b</code> is equivalent to <code>not (b &lt; a)</code>.
    595 As with the other comparison operators,
    596 the result is always a boolean.
    597 (This use of the <code>__lt</code> event can be removed in future versions;
    598 it is also slower than a real <code>__le</code> metamethod.)
    599 </li>
    600 
    601 <li><b><code>__index</code>: </b>
    602 The indexing access operation <code>table[key]</code>.
    603 This event happens when <code>table</code> is not a table or
    604 when <code>key</code> is not present in <code>table</code>.
    605 The metamethod is looked up in <code>table</code>.
    606 
    607 
    608 <p>
    609 Despite the name,
    610 the metamethod for this event can be either a function or a table.
    611 If it is a function,
    612 it is called with <code>table</code> and <code>key</code> as arguments,
    613 and the result of the call
    614 (adjusted to one value)
    615 is the result of the operation.
    616 If it is a table,
    617 the final result is the result of indexing this table with <code>key</code>.
    618 (This indexing is regular, not raw,
    619 and therefore can trigger another metamethod.)
    620 </li>
    621 
    622 <li><b><code>__newindex</code>: </b>
    623 The indexing assignment <code>table[key] = value</code>.
    624 Like the index event,
    625 this event happens when <code>table</code> is not a table or
    626 when <code>key</code> is not present in <code>table</code>.
    627 The metamethod is looked up in <code>table</code>.
    628 
    629 
    630 <p>
    631 Like with indexing,
    632 the metamethod for this event can be either a function or a table.
    633 If it is a function,
    634 it is called with <code>table</code>, <code>key</code>, and <code>value</code> as arguments.
    635 If it is a table,
    636 Lua does an indexing assignment to this table with the same key and value.
    637 (This assignment is regular, not raw,
    638 and therefore can trigger another metamethod.)
    639 
    640 
    641 <p>
    642 Whenever there is a <code>__newindex</code> metamethod,
    643 Lua does not perform the primitive assignment.
    644 (If necessary,
    645 the metamethod itself can call <a href="#pdf-rawset"><code>rawset</code></a>
    646 to do the assignment.)
    647 </li>
    648 
    649 <li><b><code>__call</code>: </b>
    650 The call operation <code>func(args)</code>.
    651 This event happens when Lua tries to call a non-function value
    652 (that is, <code>func</code> is not a function).
    653 The metamethod is looked up in <code>func</code>.
    654 If present,
    655 the metamethod is called with <code>func</code> as its first argument,
    656 followed by the arguments of the original call (<code>args</code>).
    657 All results of the call
    658 are the result of the operation.
    659 (This is the only metamethod that allows multiple results.)
    660 </li>
    661 
    662 </ul>
    663 
    664 <p>
    665 It is a good practice to add all needed metamethods to a table
    666 before setting it as a metatable of some object.
    667 In particular, the <code>__gc</code> metamethod works only when this order
    668 is followed (see <a href="#2.5.1">&sect;2.5.1</a>).
    669 
    670 
    671 <p>
    672 Because metatables are regular tables,
    673 they can contain arbitrary fields,
    674 not only the event names defined above.
    675 Some functions in the standard library
    676 (e.g., <a href="#pdf-tostring"><code>tostring</code></a>)
    677 use other fields in metatables for their own purposes.
    678 
    679 
    680 
    681 
    682 
    683 <h2>2.5 &ndash; <a name="2.5">Garbage Collection</a></h2>
    684 
    685 <p>
    686 Lua performs automatic memory management.
    687 This means that
    688 you do not have to worry about allocating memory for new objects
    689 or freeing it when the objects are no longer needed.
    690 Lua manages memory automatically by running
    691 a <em>garbage collector</em> to collect all <em>dead objects</em>
    692 (that is, objects that are no longer accessible from Lua).
    693 All memory used by Lua is subject to automatic management:
    694 strings, tables, userdata, functions, threads, internal structures, etc.
    695 
    696 
    697 <p>
    698 Lua implements an incremental mark-and-sweep collector.
    699 It uses two numbers to control its garbage-collection cycles:
    700 the <em>garbage-collector pause</em> and
    701 the <em>garbage-collector step multiplier</em>.
    702 Both use percentage points as units
    703 (e.g., a value of 100 means an internal value of 1).
    704 
    705 
    706 <p>
    707 The garbage-collector pause
    708 controls how long the collector waits before starting a new cycle.
    709 Larger values make the collector less aggressive.
    710 Values smaller than 100 mean the collector will not wait to
    711 start a new cycle.
    712 A value of 200 means that the collector waits for the total memory in use
    713 to double before starting a new cycle.
    714 
    715 
    716 <p>
    717 The garbage-collector step multiplier
    718 controls the relative speed of the collector relative to
    719 memory allocation.
    720 Larger values make the collector more aggressive but also increase
    721 the size of each incremental step.
    722 You should not use values smaller than 100,
    723 because they make the collector too slow and
    724 can result in the collector never finishing a cycle.
    725 The default is 200,
    726 which means that the collector runs at "twice"
    727 the speed of memory allocation.
    728 
    729 
    730 <p>
    731 If you set the step multiplier to a very large number
    732 (larger than 10% of the maximum number of
    733 bytes that the program may use),
    734 the collector behaves like a stop-the-world collector.
    735 If you then set the pause to 200,
    736 the collector behaves as in old Lua versions,
    737 doing a complete collection every time Lua doubles its
    738 memory usage.
    739 
    740 
    741 <p>
    742 You can change these numbers by calling <a href="#lua_gc"><code>lua_gc</code></a> in C
    743 or <a href="#pdf-collectgarbage"><code>collectgarbage</code></a> in Lua.
    744 You can also use these functions to control
    745 the collector directly (e.g., stop and restart it).
    746 
    747 
    748 
    749 <h3>2.5.1 &ndash; <a name="2.5.1">Garbage-Collection Metamethods</a></h3>
    750 
    751 <p>
    752 You can set garbage-collector metamethods for tables
    753 and, using the C&nbsp;API,
    754 for full userdata (see <a href="#2.4">&sect;2.4</a>).
    755 These metamethods are also called <em>finalizers</em>.
    756 Finalizers allow you to coordinate Lua's garbage collection
    757 with external resource management
    758 (such as closing files, network or database connections,
    759 or freeing your own memory).
    760 
    761 
    762 <p>
    763 For an object (table or userdata) to be finalized when collected,
    764 you must <em>mark</em> it for finalization.
    765 
    766 You mark an object for finalization when you set its metatable
    767 and the metatable has a field indexed by the string "<code>__gc</code>".
    768 Note that if you set a metatable without a <code>__gc</code> field
    769 and later create that field in the metatable,
    770 the object will not be marked for finalization.
    771 
    772 
    773 <p>
    774 When a marked object becomes garbage,
    775 it is not collected immediately by the garbage collector.
    776 Instead, Lua puts it in a list.
    777 After the collection,
    778 Lua goes through that list.
    779 For each object in the list,
    780 it checks the object's <code>__gc</code> metamethod:
    781 If it is a function,
    782 Lua calls it with the object as its single argument;
    783 if the metamethod is not a function,
    784 Lua simply ignores it.
    785 
    786 
    787 <p>
    788 At the end of each garbage-collection cycle,
    789 the finalizers for objects are called in
    790 the reverse order that the objects were marked for finalization,
    791 among those collected in that cycle;
    792 that is, the first finalizer to be called is the one associated
    793 with the object marked last in the program.
    794 The execution of each finalizer may occur at any point during
    795 the execution of the regular code.
    796 
    797 
    798 <p>
    799 Because the object being collected must still be used by the finalizer,
    800 that object (and other objects accessible only through it)
    801 must be <em>resurrected</em> by Lua.
    802 Usually, this resurrection is transient,
    803 and the object memory is freed in the next garbage-collection cycle.
    804 However, if the finalizer stores the object in some global place
    805 (e.g., a global variable),
    806 then the resurrection is permanent.
    807 Moreover, if the finalizer marks a finalizing object for finalization again,
    808 its finalizer will be called again in the next cycle where the
    809 object is unreachable.
    810 In any case,
    811 the object memory is freed only in a GC cycle where
    812 the object is unreachable and not marked for finalization.
    813 
    814 
    815 <p>
    816 When you close a state (see <a href="#lua_close"><code>lua_close</code></a>),
    817 Lua calls the finalizers of all objects marked for finalization,
    818 following the reverse order that they were marked.
    819 If any finalizer marks objects for collection during that phase,
    820 these marks have no effect.
    821 
    822 
    823 
    824 
    825 
    826 <h3>2.5.2 &ndash; <a name="2.5.2">Weak Tables</a></h3>
    827 
    828 <p>
    829 A <em>weak table</em> is a table whose elements are
    830 <em>weak references</em>.
    831 A weak reference is ignored by the garbage collector.
    832 In other words,
    833 if the only references to an object are weak references,
    834 then the garbage collector will collect that object.
    835 
    836 
    837 <p>
    838 A weak table can have weak keys, weak values, or both.
    839 A table with weak values allows the collection of its values,
    840 but prevents the collection of its keys.
    841 A table with both weak keys and weak values allows the collection of
    842 both keys and values.
    843 In any case, if either the key or the value is collected,
    844 the whole pair is removed from the table.
    845 The weakness of a table is controlled by the
    846 <code>__mode</code> field of its metatable.
    847 If the <code>__mode</code> field is a string containing the character&nbsp;'<code>k</code>',
    848 the keys in the table are weak.
    849 If <code>__mode</code> contains '<code>v</code>',
    850 the values in the table are weak.
    851 
    852 
    853 <p>
    854 A table with weak keys and strong values
    855 is also called an <em>ephemeron table</em>.
    856 In an ephemeron table,
    857 a value is considered reachable only if its key is reachable.
    858 In particular,
    859 if the only reference to a key comes through its value,
    860 the pair is removed.
    861 
    862 
    863 <p>
    864 Any change in the weakness of a table may take effect only
    865 at the next collect cycle.
    866 In particular, if you change the weakness to a stronger mode,
    867 Lua may still collect some items from that table
    868 before the change takes effect.
    869 
    870 
    871 <p>
    872 Only objects that have an explicit construction
    873 are removed from weak tables.
    874 Values, such as numbers and light C&nbsp;functions,
    875 are not subject to garbage collection,
    876 and therefore are not removed from weak tables
    877 (unless their associated values are collected).
    878 Although strings are subject to garbage collection,
    879 they do not have an explicit construction,
    880 and therefore are not removed from weak tables.
    881 
    882 
    883 <p>
    884 Resurrected objects
    885 (that is, objects being finalized
    886 and objects accessible only through objects being finalized)
    887 have a special behavior in weak tables.
    888 They are removed from weak values before running their finalizers,
    889 but are removed from weak keys only in the next collection
    890 after running their finalizers, when such objects are actually freed.
    891 This behavior allows the finalizer to access properties
    892 associated with the object through weak tables.
    893 
    894 
    895 <p>
    896 If a weak table is among the resurrected objects in a collection cycle,
    897 it may not be properly cleared until the next cycle.
    898 
    899 
    900 
    901 
    902 
    903 
    904 
    905 <h2>2.6 &ndash; <a name="2.6">Coroutines</a></h2>
    906 
    907 <p>
    908 Lua supports coroutines,
    909 also called <em>collaborative multithreading</em>.
    910 A coroutine in Lua represents an independent thread of execution.
    911 Unlike threads in multithread systems, however,
    912 a coroutine only suspends its execution by explicitly calling
    913 a yield function.
    914 
    915 
    916 <p>
    917 You create a coroutine by calling <a href="#pdf-coroutine.create"><code>coroutine.create</code></a>.
    918 Its sole argument is a function
    919 that is the main function of the coroutine.
    920 The <code>create</code> function only creates a new coroutine and
    921 returns a handle to it (an object of type <em>thread</em>);
    922 it does not start the coroutine.
    923 
    924 
    925 <p>
    926 You execute a coroutine by calling <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>.
    927 When you first call <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>,
    928 passing as its first argument
    929 a thread returned by <a href="#pdf-coroutine.create"><code>coroutine.create</code></a>,
    930 the coroutine starts its execution by
    931 calling its main function.
    932 Extra arguments passed to <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> are passed
    933 as arguments to that function.
    934 After the coroutine starts running,
    935 it runs until it terminates or <em>yields</em>.
    936 
    937 
    938 <p>
    939 A coroutine can terminate its execution in two ways:
    940 normally, when its main function returns
    941 (explicitly or implicitly, after the last instruction);
    942 and abnormally, if there is an unprotected error.
    943 In case of normal termination,
    944 <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> returns <b>true</b>,
    945 plus any values returned by the coroutine main function.
    946 In case of errors, <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> returns <b>false</b>
    947 plus an error object.
    948 
    949 
    950 <p>
    951 A coroutine yields by calling <a href="#pdf-coroutine.yield"><code>coroutine.yield</code></a>.
    952 When a coroutine yields,
    953 the corresponding <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> returns immediately,
    954 even if the yield happens inside nested function calls
    955 (that is, not in the main function,
    956 but in a function directly or indirectly called by the main function).
    957 In the case of a yield, <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a> also returns <b>true</b>,
    958 plus any values passed to <a href="#pdf-coroutine.yield"><code>coroutine.yield</code></a>.
    959 The next time you resume the same coroutine,
    960 it continues its execution from the point where it yielded,
    961 with the call to <a href="#pdf-coroutine.yield"><code>coroutine.yield</code></a> returning any extra
    962 arguments passed to <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>.
    963 
    964 
    965 <p>
    966 Like <a href="#pdf-coroutine.create"><code>coroutine.create</code></a>,
    967 the <a href="#pdf-coroutine.wrap"><code>coroutine.wrap</code></a> function also creates a coroutine,
    968 but instead of returning the coroutine itself,
    969 it returns a function that, when called, resumes the coroutine.
    970 Any arguments passed to this function
    971 go as extra arguments to <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>.
    972 <a href="#pdf-coroutine.wrap"><code>coroutine.wrap</code></a> returns all the values returned by <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>,
    973 except the first one (the boolean error code).
    974 Unlike <a href="#pdf-coroutine.resume"><code>coroutine.resume</code></a>,
    975 <a href="#pdf-coroutine.wrap"><code>coroutine.wrap</code></a> does not catch errors;
    976 any error is propagated to the caller.
    977 
    978 
    979 <p>
    980 As an example of how coroutines work,
    981 consider the following code:
    982 
    983 <pre>
    984      function foo (a)
    985        print("foo", a)
    986        return coroutine.yield(2*a)
    987      end
    988      
    989      co = coroutine.create(function (a,b)
    990            print("co-body", a, b)
    991            local r = foo(a+1)
    992            print("co-body", r)
    993            local r, s = coroutine.yield(a+b, a-b)
    994            print("co-body", r, s)
    995            return b, "end"
    996      end)
    997      
    998      print("main", coroutine.resume(co, 1, 10))
    999      print("main", coroutine.resume(co, "r"))
   1000      print("main", coroutine.resume(co, "x", "y"))
   1001      print("main", coroutine.resume(co, "x", "y"))
   1002 </pre><p>
   1003 When you run it, it produces the following output:
   1004 
   1005 <pre>
   1006      co-body 1       10
   1007      foo     2
   1008      main    true    4
   1009      co-body r
   1010      main    true    11      -9
   1011      co-body x       y
   1012      main    true    10      end
   1013      main    false   cannot resume dead coroutine
   1014 </pre>
   1015 
   1016 <p>
   1017 You can also create and manipulate coroutines through the C API:
   1018 see functions <a href="#lua_newthread"><code>lua_newthread</code></a>, <a href="#lua_resume"><code>lua_resume</code></a>,
   1019 and <a href="#lua_yield"><code>lua_yield</code></a>.
   1020 
   1021 
   1022 
   1023 
   1024 
   1025 <h1>3 &ndash; <a name="3">The Language</a></h1>
   1026 
   1027 <p>
   1028 This section describes the lexis, the syntax, and the semantics of Lua.
   1029 In other words,
   1030 this section describes
   1031 which tokens are valid,
   1032 how they can be combined,
   1033 and what their combinations mean.
   1034 
   1035 
   1036 <p>
   1037 Language constructs will be explained using the usual extended BNF notation,
   1038 in which
   1039 {<em>a</em>}&nbsp;means&nbsp;0 or more <em>a</em>'s, and
   1040 [<em>a</em>]&nbsp;means an optional <em>a</em>.
   1041 Non-terminals are shown like non-terminal,
   1042 keywords are shown like <b>kword</b>,
   1043 and other terminal symbols are shown like &lsquo;<b>=</b>&rsquo;.
   1044 The complete syntax of Lua can be found in <a href="#9">&sect;9</a>
   1045 at the end of this manual.
   1046 
   1047 
   1048 
   1049 <h2>3.1 &ndash; <a name="3.1">Lexical Conventions</a></h2>
   1050 
   1051 <p>
   1052 Lua is a free-form language.
   1053 It ignores spaces (including new lines) and comments
   1054 between lexical elements (tokens),
   1055 except as delimiters between names and keywords.
   1056 
   1057 
   1058 <p>
   1059 <em>Names</em>
   1060 (also called <em>identifiers</em>)
   1061 in Lua can be any string of letters,
   1062 digits, and underscores,
   1063 not beginning with a digit and
   1064 not being a reserved word.
   1065 Identifiers are used to name variables, table fields, and labels.
   1066 
   1067 
   1068 <p>
   1069 The following <em>keywords</em> are reserved
   1070 and cannot be used as names:
   1071 
   1072 
   1073 <pre>
   1074      and       break     do        else      elseif    end
   1075      false     for       function  goto      if        in
   1076      local     nil       not       or        repeat    return
   1077      then      true      until     while
   1078 </pre>
   1079 
   1080 <p>
   1081 Lua is a case-sensitive language:
   1082 <code>and</code> is a reserved word, but <code>And</code> and <code>AND</code>
   1083 are two different, valid names.
   1084 As a convention,
   1085 programs should avoid creating
   1086 names that start with an underscore followed by
   1087 one or more uppercase letters (such as <a href="#pdf-_VERSION"><code>_VERSION</code></a>).
   1088 
   1089 
   1090 <p>
   1091 The following strings denote other tokens:
   1092 
   1093 <pre>
   1094      +     -     *     /     %     ^     #
   1095      &amp;     ~     |     &lt;&lt;    &gt;&gt;    //
   1096      ==    ~=    &lt;=    &gt;=    &lt;     &gt;     =
   1097      (     )     {     }     [     ]     ::
   1098      ;     :     ,     .     ..    ...
   1099 </pre>
   1100 
   1101 <p>
   1102 A <em>short literal string</em>
   1103 can be delimited by matching single or double quotes,
   1104 and can contain the following C-like escape sequences:
   1105 '<code>\a</code>' (bell),
   1106 '<code>\b</code>' (backspace),
   1107 '<code>\f</code>' (form feed),
   1108 '<code>\n</code>' (newline),
   1109 '<code>\r</code>' (carriage return),
   1110 '<code>\t</code>' (horizontal tab),
   1111 '<code>\v</code>' (vertical tab),
   1112 '<code>\\</code>' (backslash),
   1113 '<code>\"</code>' (quotation mark [double quote]),
   1114 and '<code>\'</code>' (apostrophe [single quote]).
   1115 A backslash followed by a line break
   1116 results in a newline in the string.
   1117 The escape sequence '<code>\z</code>' skips the following span
   1118 of white-space characters,
   1119 including line breaks;
   1120 it is particularly useful to break and indent a long literal string
   1121 into multiple lines without adding the newlines and spaces
   1122 into the string contents.
   1123 A short literal string cannot contain unescaped line breaks
   1124 nor escapes not forming a valid escape sequence.
   1125 
   1126 
   1127 <p>
   1128 We can specify any byte in a short literal string by its numeric value
   1129 (including embedded zeros).
   1130 This can be done
   1131 with the escape sequence <code>\x<em>XX</em></code>,
   1132 where <em>XX</em> is a sequence of exactly two hexadecimal digits,
   1133 or with the escape sequence <code>\<em>ddd</em></code>,
   1134 where <em>ddd</em> is a sequence of up to three decimal digits.
   1135 (Note that if a decimal escape sequence is to be followed by a digit,
   1136 it must be expressed using exactly three digits.)
   1137 
   1138 
   1139 <p>
   1140 The UTF-8 encoding of a Unicode character
   1141 can be inserted in a literal string with
   1142 the escape sequence <code>\u{<em>XXX</em>}</code>
   1143 (note the mandatory enclosing brackets),
   1144 where <em>XXX</em> is a sequence of one or more hexadecimal digits
   1145 representing the character code point.
   1146 
   1147 
   1148 <p>
   1149 Literal strings can also be defined using a long format
   1150 enclosed by <em>long brackets</em>.
   1151 We define an <em>opening long bracket of level <em>n</em></em> as an opening
   1152 square bracket followed by <em>n</em> equal signs followed by another
   1153 opening square bracket.
   1154 So, an opening long bracket of level&nbsp;0 is written as <code>[[</code>, 
   1155 an opening long bracket of level&nbsp;1 is written as <code>[=[</code>, 
   1156 and so on.
   1157 A <em>closing long bracket</em> is defined similarly;
   1158 for instance,
   1159 a closing long bracket of level&nbsp;4 is written as  <code>]====]</code>.
   1160 A <em>long literal</em> starts with an opening long bracket of any level and
   1161 ends at the first closing long bracket of the same level.
   1162 It can contain any text except a closing bracket of the same level.
   1163 Literals in this bracketed form can run for several lines,
   1164 do not interpret any escape sequences,
   1165 and ignore long brackets of any other level.
   1166 Any kind of end-of-line sequence
   1167 (carriage return, newline, carriage return followed by newline,
   1168 or newline followed by carriage return)
   1169 is converted to a simple newline.
   1170 
   1171 
   1172 <p>
   1173 For convenience,
   1174 when the opening long bracket is immediately followed by a newline,
   1175 the newline is not included in the string.
   1176 As an example, in a system using ASCII
   1177 (in which '<code>a</code>' is coded as&nbsp;97,
   1178 newline is coded as&nbsp;10, and '<code>1</code>' is coded as&nbsp;49),
   1179 the five literal strings below denote the same string:
   1180 
   1181 <pre>
   1182      a = 'alo\n123"'
   1183      a = "alo\n123\""
   1184      a = '\97lo\10\04923"'
   1185      a = [[alo
   1186      123"]]
   1187      a = [==[
   1188      alo
   1189      123"]==]
   1190 </pre>
   1191 
   1192 <p>
   1193 Any byte in a literal string not
   1194 explicitly affected by the previous rules represents itself.
   1195 However, Lua opens files for parsing in text mode,
   1196 and the system file functions may have problems with
   1197 some control characters.
   1198 So, it is safer to represent
   1199 non-text data as a quoted literal with
   1200 explicit escape sequences for the non-text characters.
   1201 
   1202 
   1203 <p>
   1204 A <em>numeric constant</em> (or <em>numeral</em>)
   1205 can be written with an optional fractional part
   1206 and an optional decimal exponent,
   1207 marked by a letter '<code>e</code>' or '<code>E</code>'.
   1208 Lua also accepts hexadecimal constants,
   1209 which start with <code>0x</code> or <code>0X</code>.
   1210 Hexadecimal constants also accept an optional fractional part
   1211 plus an optional binary exponent,
   1212 marked by a letter '<code>p</code>' or '<code>P</code>'.
   1213 A numeric constant with a radix point or an exponent
   1214 denotes a float;
   1215 otherwise,
   1216 if its value fits in an integer,
   1217 it denotes an integer.
   1218 Examples of valid integer constants are
   1219 
   1220 <pre>
   1221      3   345   0xff   0xBEBADA
   1222 </pre><p>
   1223 Examples of valid float constants are
   1224 
   1225 <pre>
   1226      3.0     3.1416     314.16e-2     0.31416E1     34e1
   1227      0x0.1E  0xA23p-4   0X1.921FB54442D18P+1
   1228 </pre>
   1229 
   1230 <p>
   1231 A <em>comment</em> starts with a double hyphen (<code>--</code>)
   1232 anywhere outside a string.
   1233 If the text immediately after <code>--</code> is not an opening long bracket,
   1234 the comment is a <em>short comment</em>,
   1235 which runs until the end of the line.
   1236 Otherwise, it is a <em>long comment</em>,
   1237 which runs until the corresponding closing long bracket.
   1238 Long comments are frequently used to disable code temporarily.
   1239 
   1240 
   1241 
   1242 
   1243 
   1244 <h2>3.2 &ndash; <a name="3.2">Variables</a></h2>
   1245 
   1246 <p>
   1247 Variables are places that store values.
   1248 There are three kinds of variables in Lua:
   1249 global variables, local variables, and table fields.
   1250 
   1251 
   1252 <p>
   1253 A single name can denote a global variable or a local variable
   1254 (or a function's formal parameter,
   1255 which is a particular kind of local variable):
   1256 
   1257 <pre>
   1258 	var ::= Name
   1259 </pre><p>
   1260 Name denotes identifiers, as defined in <a href="#3.1">&sect;3.1</a>.
   1261 
   1262 
   1263 <p>
   1264 Any variable name is assumed to be global unless explicitly declared
   1265 as a local (see <a href="#3.3.7">&sect;3.3.7</a>).
   1266 Local variables are <em>lexically scoped</em>:
   1267 local variables can be freely accessed by functions
   1268 defined inside their scope (see <a href="#3.5">&sect;3.5</a>).
   1269 
   1270 
   1271 <p>
   1272 Before the first assignment to a variable, its value is <b>nil</b>.
   1273 
   1274 
   1275 <p>
   1276 Square brackets are used to index a table:
   1277 
   1278 <pre>
   1279 	var ::= prefixexp &lsquo;<b>[</b>&rsquo; exp &lsquo;<b>]</b>&rsquo;
   1280 </pre><p>
   1281 The meaning of accesses to table fields can be changed via metatables
   1282 (see <a href="#2.4">&sect;2.4</a>).
   1283 
   1284 
   1285 <p>
   1286 The syntax <code>var.Name</code> is just syntactic sugar for
   1287 <code>var["Name"]</code>:
   1288 
   1289 <pre>
   1290 	var ::= prefixexp &lsquo;<b>.</b>&rsquo; Name
   1291 </pre>
   1292 
   1293 <p>
   1294 An access to a global variable <code>x</code>
   1295 is equivalent to <code>_ENV.x</code>.
   1296 Due to the way that chunks are compiled,
   1297 <code>_ENV</code> is never a global name (see <a href="#2.2">&sect;2.2</a>).
   1298 
   1299 
   1300 
   1301 
   1302 
   1303 <h2>3.3 &ndash; <a name="3.3">Statements</a></h2>
   1304 
   1305 <p>
   1306 Lua supports an almost conventional set of statements,
   1307 similar to those in Pascal or C.
   1308 This set includes
   1309 assignments, control structures, function calls,
   1310 and variable declarations.
   1311 
   1312 
   1313 
   1314 <h3>3.3.1 &ndash; <a name="3.3.1">Blocks</a></h3>
   1315 
   1316 <p>
   1317 A block is a list of statements,
   1318 which are executed sequentially:
   1319 
   1320 <pre>
   1321 	block ::= {stat}
   1322 </pre><p>
   1323 Lua has <em>empty statements</em>
   1324 that allow you to separate statements with semicolons,
   1325 start a block with a semicolon
   1326 or write two semicolons in sequence:
   1327 
   1328 <pre>
   1329 	stat ::= &lsquo;<b>;</b>&rsquo;
   1330 </pre>
   1331 
   1332 <p>
   1333 Function calls and assignments
   1334 can start with an open parenthesis.
   1335 This possibility leads to an ambiguity in Lua's grammar.
   1336 Consider the following fragment:
   1337 
   1338 <pre>
   1339      a = b + c
   1340      (print or io.write)('done')
   1341 </pre><p>
   1342 The grammar could see it in two ways:
   1343 
   1344 <pre>
   1345      a = b + c(print or io.write)('done')
   1346      
   1347      a = b + c; (print or io.write)('done')
   1348 </pre><p>
   1349 The current parser always sees such constructions
   1350 in the first way,
   1351 interpreting the open parenthesis
   1352 as the start of the arguments to a call.
   1353 To avoid this ambiguity,
   1354 it is a good practice to always precede with a semicolon
   1355 statements that start with a parenthesis:
   1356 
   1357 <pre>
   1358      ;(print or io.write)('done')
   1359 </pre>
   1360 
   1361 <p>
   1362 A block can be explicitly delimited to produce a single statement:
   1363 
   1364 <pre>
   1365 	stat ::= <b>do</b> block <b>end</b>
   1366 </pre><p>
   1367 Explicit blocks are useful
   1368 to control the scope of variable declarations.
   1369 Explicit blocks are also sometimes used to
   1370 add a <b>return</b> statement in the middle
   1371 of another block (see <a href="#3.3.4">&sect;3.3.4</a>).
   1372 
   1373 
   1374 
   1375 
   1376 
   1377 <h3>3.3.2 &ndash; <a name="3.3.2">Chunks</a></h3>
   1378 
   1379 <p>
   1380 The unit of compilation of Lua is called a <em>chunk</em>.
   1381 Syntactically,
   1382 a chunk is simply a block:
   1383 
   1384 <pre>
   1385 	chunk ::= block
   1386 </pre>
   1387 
   1388 <p>
   1389 Lua handles a chunk as the body of an anonymous function
   1390 with a variable number of arguments
   1391 (see <a href="#3.4.11">&sect;3.4.11</a>).
   1392 As such, chunks can define local variables,
   1393 receive arguments, and return values.
   1394 Moreover, such anonymous function is compiled as in the
   1395 scope of an external local variable called <code>_ENV</code> (see <a href="#2.2">&sect;2.2</a>).
   1396 The resulting function always has <code>_ENV</code> as its only upvalue,
   1397 even if it does not use that variable.
   1398 
   1399 
   1400 <p>
   1401 A chunk can be stored in a file or in a string inside the host program.
   1402 To execute a chunk,
   1403 Lua first <em>loads</em> it,
   1404 precompiling the chunk's code into instructions for a virtual machine,
   1405 and then Lua executes the compiled code
   1406 with an interpreter for the virtual machine.
   1407 
   1408 
   1409 <p>
   1410 Chunks can also be precompiled into binary form;
   1411 see program <code>luac</code> and function <a href="#pdf-string.dump"><code>string.dump</code></a> for details.
   1412 Programs in source and compiled forms are interchangeable;
   1413 Lua automatically detects the file type and acts accordingly (see <a href="#pdf-load"><code>load</code></a>).
   1414 
   1415 
   1416 
   1417 
   1418 
   1419 <h3>3.3.3 &ndash; <a name="3.3.3">Assignment</a></h3>
   1420 
   1421 <p>
   1422 Lua allows multiple assignments.
   1423 Therefore, the syntax for assignment
   1424 defines a list of variables on the left side
   1425 and a list of expressions on the right side.
   1426 The elements in both lists are separated by commas:
   1427 
   1428 <pre>
   1429 	stat ::= varlist &lsquo;<b>=</b>&rsquo; explist
   1430 	varlist ::= var {&lsquo;<b>,</b>&rsquo; var}
   1431 	explist ::= exp {&lsquo;<b>,</b>&rsquo; exp}
   1432 </pre><p>
   1433 Expressions are discussed in <a href="#3.4">&sect;3.4</a>.
   1434 
   1435 
   1436 <p>
   1437 Before the assignment,
   1438 the list of values is <em>adjusted</em> to the length of
   1439 the list of variables.
   1440 If there are more values than needed,
   1441 the excess values are thrown away.
   1442 If there are fewer values than needed,
   1443 the list is extended with as many  <b>nil</b>'s as needed.
   1444 If the list of expressions ends with a function call,
   1445 then all values returned by that call enter the list of values,
   1446 before the adjustment
   1447 (except when the call is enclosed in parentheses; see <a href="#3.4">&sect;3.4</a>).
   1448 
   1449 
   1450 <p>
   1451 The assignment statement first evaluates all its expressions
   1452 and only then the assignments are performed.
   1453 Thus the code
   1454 
   1455 <pre>
   1456      i = 3
   1457      i, a[i] = i+1, 20
   1458 </pre><p>
   1459 sets <code>a[3]</code> to 20, without affecting <code>a[4]</code>
   1460 because the <code>i</code> in <code>a[i]</code> is evaluated (to 3)
   1461 before it is assigned&nbsp;4.
   1462 Similarly, the line
   1463 
   1464 <pre>
   1465      x, y = y, x
   1466 </pre><p>
   1467 exchanges the values of <code>x</code> and <code>y</code>,
   1468 and
   1469 
   1470 <pre>
   1471      x, y, z = y, z, x
   1472 </pre><p>
   1473 cyclically permutes the values of <code>x</code>, <code>y</code>, and <code>z</code>.
   1474 
   1475 
   1476 <p>
   1477 An assignment to a global name <code>x = val</code>
   1478 is equivalent to the assignment
   1479 <code>_ENV.x = val</code> (see <a href="#2.2">&sect;2.2</a>).
   1480 
   1481 
   1482 <p>
   1483 The meaning of assignments to table fields and
   1484 global variables (which are actually table fields, too)
   1485 can be changed via metatables (see <a href="#2.4">&sect;2.4</a>).
   1486 
   1487 
   1488 
   1489 
   1490 
   1491 <h3>3.3.4 &ndash; <a name="3.3.4">Control Structures</a></h3><p>
   1492 The control structures
   1493 <b>if</b>, <b>while</b>, and <b>repeat</b> have the usual meaning and
   1494 familiar syntax:
   1495 
   1496 
   1497 
   1498 
   1499 <pre>
   1500 	stat ::= <b>while</b> exp <b>do</b> block <b>end</b>
   1501 	stat ::= <b>repeat</b> block <b>until</b> exp
   1502 	stat ::= <b>if</b> exp <b>then</b> block {<b>elseif</b> exp <b>then</b> block} [<b>else</b> block] <b>end</b>
   1503 </pre><p>
   1504 Lua also has a <b>for</b> statement, in two flavors (see <a href="#3.3.5">&sect;3.3.5</a>).
   1505 
   1506 
   1507 <p>
   1508 The condition expression of a
   1509 control structure can return any value.
   1510 Both <b>false</b> and <b>nil</b> are considered false.
   1511 All values different from <b>nil</b> and <b>false</b> are considered true
   1512 (in particular, the number 0 and the empty string are also true).
   1513 
   1514 
   1515 <p>
   1516 In the <b>repeat</b>&ndash;<b>until</b> loop,
   1517 the inner block does not end at the <b>until</b> keyword,
   1518 but only after the condition.
   1519 So, the condition can refer to local variables
   1520 declared inside the loop block.
   1521 
   1522 
   1523 <p>
   1524 The <b>goto</b> statement transfers the program control to a label.
   1525 For syntactical reasons,
   1526 labels in Lua are considered statements too:
   1527 
   1528 
   1529 
   1530 <pre>
   1531 	stat ::= <b>goto</b> Name
   1532 	stat ::= label
   1533 	label ::= &lsquo;<b>::</b>&rsquo; Name &lsquo;<b>::</b>&rsquo;
   1534 </pre>
   1535 
   1536 <p>
   1537 A label is visible in the entire block where it is defined,
   1538 except
   1539 inside nested blocks where a label with the same name is defined and
   1540 inside nested functions.
   1541 A goto may jump to any visible label as long as it does not
   1542 enter into the scope of a local variable.
   1543 
   1544 
   1545 <p>
   1546 Labels and empty statements are called <em>void statements</em>,
   1547 as they perform no actions.
   1548 
   1549 
   1550 <p>
   1551 The <b>break</b> statement terminates the execution of a
   1552 <b>while</b>, <b>repeat</b>, or <b>for</b> loop,
   1553 skipping to the next statement after the loop:
   1554 
   1555 
   1556 <pre>
   1557 	stat ::= <b>break</b>
   1558 </pre><p>
   1559 A <b>break</b> ends the innermost enclosing loop.
   1560 
   1561 
   1562 <p>
   1563 The <b>return</b> statement is used to return values
   1564 from a function or a chunk
   1565 (which is an anonymous function).
   1566 
   1567 Functions can return more than one value,
   1568 so the syntax for the <b>return</b> statement is
   1569 
   1570 <pre>
   1571 	stat ::= <b>return</b> [explist] [&lsquo;<b>;</b>&rsquo;]
   1572 </pre>
   1573 
   1574 <p>
   1575 The <b>return</b> statement can only be written
   1576 as the last statement of a block.
   1577 If it is really necessary to <b>return</b> in the middle of a block,
   1578 then an explicit inner block can be used,
   1579 as in the idiom <code>do return end</code>,
   1580 because now <b>return</b> is the last statement in its (inner) block.
   1581 
   1582 
   1583 
   1584 
   1585 
   1586 <h3>3.3.5 &ndash; <a name="3.3.5">For Statement</a></h3>
   1587 
   1588 <p>
   1589 
   1590 The <b>for</b> statement has two forms:
   1591 one numerical and one generic.
   1592 
   1593 
   1594 <p>
   1595 The numerical <b>for</b> loop repeats a block of code while a
   1596 control variable runs through an arithmetic progression.
   1597 It has the following syntax:
   1598 
   1599 <pre>
   1600 	stat ::= <b>for</b> Name &lsquo;<b>=</b>&rsquo; exp &lsquo;<b>,</b>&rsquo; exp [&lsquo;<b>,</b>&rsquo; exp] <b>do</b> block <b>end</b>
   1601 </pre><p>
   1602 The <em>block</em> is repeated for <em>name</em> starting at the value of
   1603 the first <em>exp</em>, until it passes the second <em>exp</em> by steps of the
   1604 third <em>exp</em>.
   1605 More precisely, a <b>for</b> statement like
   1606 
   1607 <pre>
   1608      for v = <em>e1</em>, <em>e2</em>, <em>e3</em> do <em>block</em> end
   1609 </pre><p>
   1610 is equivalent to the code:
   1611 
   1612 <pre>
   1613      do
   1614        local <em>var</em>, <em>limit</em>, <em>step</em> = tonumber(<em>e1</em>), tonumber(<em>e2</em>), tonumber(<em>e3</em>)
   1615        if not (<em>var</em> and <em>limit</em> and <em>step</em>) then error() end
   1616        <em>var</em> = <em>var</em> - <em>step</em>
   1617        while true do
   1618          <em>var</em> = <em>var</em> + <em>step</em>
   1619          if (<em>step</em> &gt;= 0 and <em>var</em> &gt; <em>limit</em>) or (<em>step</em> &lt; 0 and <em>var</em> &lt; <em>limit</em>) then
   1620            break
   1621          end
   1622          local v = <em>var</em>
   1623          <em>block</em>
   1624        end
   1625      end
   1626 </pre>
   1627 
   1628 <p>
   1629 Note the following:
   1630 
   1631 <ul>
   1632 
   1633 <li>
   1634 All three control expressions are evaluated only once,
   1635 before the loop starts.
   1636 They must all result in numbers.
   1637 </li>
   1638 
   1639 <li>
   1640 <code><em>var</em></code>, <code><em>limit</em></code>, and <code><em>step</em></code> are invisible variables.
   1641 The names shown here are for explanatory purposes only.
   1642 </li>
   1643 
   1644 <li>
   1645 If the third expression (the step) is absent,
   1646 then a step of&nbsp;1 is used.
   1647 </li>
   1648 
   1649 <li>
   1650 You can use <b>break</b> and <b>goto</b> to exit a <b>for</b> loop.
   1651 </li>
   1652 
   1653 <li>
   1654 The loop variable <code>v</code> is local to the loop body.
   1655 If you need its value after the loop,
   1656 assign it to another variable before exiting the loop.
   1657 </li>
   1658 
   1659 </ul>
   1660 
   1661 <p>
   1662 The generic <b>for</b> statement works over functions,
   1663 called <em>iterators</em>.
   1664 On each iteration, the iterator function is called to produce a new value,
   1665 stopping when this new value is <b>nil</b>.
   1666 The generic <b>for</b> loop has the following syntax:
   1667 
   1668 <pre>
   1669 	stat ::= <b>for</b> namelist <b>in</b> explist <b>do</b> block <b>end</b>
   1670 	namelist ::= Name {&lsquo;<b>,</b>&rsquo; Name}
   1671 </pre><p>
   1672 A <b>for</b> statement like
   1673 
   1674 <pre>
   1675      for <em>var_1</em>, &middot;&middot;&middot;, <em>var_n</em> in <em>explist</em> do <em>block</em> end
   1676 </pre><p>
   1677 is equivalent to the code:
   1678 
   1679 <pre>
   1680      do
   1681        local <em>f</em>, <em>s</em>, <em>var</em> = <em>explist</em>
   1682        while true do
   1683          local <em>var_1</em>, &middot;&middot;&middot;, <em>var_n</em> = <em>f</em>(<em>s</em>, <em>var</em>)
   1684          if <em>var_1</em> == nil then break end
   1685          <em>var</em> = <em>var_1</em>
   1686          <em>block</em>
   1687        end
   1688      end
   1689 </pre><p>
   1690 Note the following:
   1691 
   1692 <ul>
   1693 
   1694 <li>
   1695 <code><em>explist</em></code> is evaluated only once.
   1696 Its results are an <em>iterator</em> function,
   1697 a <em>state</em>,
   1698 and an initial value for the first <em>iterator variable</em>.
   1699 </li>
   1700 
   1701 <li>
   1702 <code><em>f</em></code>, <code><em>s</em></code>, and <code><em>var</em></code> are invisible variables.
   1703 The names are here for explanatory purposes only.
   1704 </li>
   1705 
   1706 <li>
   1707 You can use <b>break</b> to exit a <b>for</b> loop.
   1708 </li>
   1709 
   1710 <li>
   1711 The loop variables <code><em>var_i</em></code> are local to the loop;
   1712 you cannot use their values after the <b>for</b> ends.
   1713 If you need these values,
   1714 then assign them to other variables before breaking or exiting the loop.
   1715 </li>
   1716 
   1717 </ul>
   1718 
   1719 
   1720 
   1721 
   1722 <h3>3.3.6 &ndash; <a name="3.3.6">Function Calls as Statements</a></h3><p>
   1723 To allow possible side-effects,
   1724 function calls can be executed as statements:
   1725 
   1726 <pre>
   1727 	stat ::= functioncall
   1728 </pre><p>
   1729 In this case, all returned values are thrown away.
   1730 Function calls are explained in <a href="#3.4.10">&sect;3.4.10</a>.
   1731 
   1732 
   1733 
   1734 
   1735 
   1736 <h3>3.3.7 &ndash; <a name="3.3.7">Local Declarations</a></h3><p>
   1737 Local variables can be declared anywhere inside a block.
   1738 The declaration can include an initial assignment:
   1739 
   1740 <pre>
   1741 	stat ::= <b>local</b> namelist [&lsquo;<b>=</b>&rsquo; explist]
   1742 </pre><p>
   1743 If present, an initial assignment has the same semantics
   1744 of a multiple assignment (see <a href="#3.3.3">&sect;3.3.3</a>).
   1745 Otherwise, all variables are initialized with <b>nil</b>.
   1746 
   1747 
   1748 <p>
   1749 A chunk is also a block (see <a href="#3.3.2">&sect;3.3.2</a>),
   1750 and so local variables can be declared in a chunk outside any explicit block.
   1751 
   1752 
   1753 <p>
   1754 The visibility rules for local variables are explained in <a href="#3.5">&sect;3.5</a>.
   1755 
   1756 
   1757 
   1758 
   1759 
   1760 
   1761 
   1762 <h2>3.4 &ndash; <a name="3.4">Expressions</a></h2>
   1763 
   1764 <p>
   1765 The basic expressions in Lua are the following:
   1766 
   1767 <pre>
   1768 	exp ::= prefixexp
   1769 	exp ::= <b>nil</b> | <b>false</b> | <b>true</b>
   1770 	exp ::= Numeral
   1771 	exp ::= LiteralString
   1772 	exp ::= functiondef
   1773 	exp ::= tableconstructor
   1774 	exp ::= &lsquo;<b>...</b>&rsquo;
   1775 	exp ::= exp binop exp
   1776 	exp ::= unop exp
   1777 	prefixexp ::= var | functioncall | &lsquo;<b>(</b>&rsquo; exp &lsquo;<b>)</b>&rsquo;
   1778 </pre>
   1779 
   1780 <p>
   1781 Numerals and literal strings are explained in <a href="#3.1">&sect;3.1</a>;
   1782 variables are explained in <a href="#3.2">&sect;3.2</a>;
   1783 function definitions are explained in <a href="#3.4.11">&sect;3.4.11</a>;
   1784 function calls are explained in <a href="#3.4.10">&sect;3.4.10</a>;
   1785 table constructors are explained in <a href="#3.4.9">&sect;3.4.9</a>.
   1786 Vararg expressions,
   1787 denoted by three dots ('<code>...</code>'), can only be used when
   1788 directly inside a vararg function;
   1789 they are explained in <a href="#3.4.11">&sect;3.4.11</a>.
   1790 
   1791 
   1792 <p>
   1793 Binary operators comprise arithmetic operators (see <a href="#3.4.1">&sect;3.4.1</a>),
   1794 bitwise operators (see <a href="#3.4.2">&sect;3.4.2</a>),
   1795 relational operators (see <a href="#3.4.4">&sect;3.4.4</a>), logical operators (see <a href="#3.4.5">&sect;3.4.5</a>),
   1796 and the concatenation operator (see <a href="#3.4.6">&sect;3.4.6</a>).
   1797 Unary operators comprise the unary minus (see <a href="#3.4.1">&sect;3.4.1</a>),
   1798 the unary bitwise NOT (see <a href="#3.4.2">&sect;3.4.2</a>),
   1799 the unary logical <b>not</b> (see <a href="#3.4.5">&sect;3.4.5</a>),
   1800 and the unary <em>length operator</em> (see <a href="#3.4.7">&sect;3.4.7</a>).
   1801 
   1802 
   1803 <p>
   1804 Both function calls and vararg expressions can result in multiple values.
   1805 If a function call is used as a statement (see <a href="#3.3.6">&sect;3.3.6</a>),
   1806 then its return list is adjusted to zero elements,
   1807 thus discarding all returned values.
   1808 If an expression is used as the last (or the only) element
   1809 of a list of expressions,
   1810 then no adjustment is made
   1811 (unless the expression is enclosed in parentheses).
   1812 In all other contexts,
   1813 Lua adjusts the result list to one element,
   1814 either discarding all values except the first one
   1815 or adding a single <b>nil</b> if there are no values.
   1816 
   1817 
   1818 <p>
   1819 Here are some examples:
   1820 
   1821 <pre>
   1822      f()                -- adjusted to 0 results
   1823      g(f(), x)          -- f() is adjusted to 1 result
   1824      g(x, f())          -- g gets x plus all results from f()
   1825      a,b,c = f(), x     -- f() is adjusted to 1 result (c gets nil)
   1826      a,b = ...          -- a gets the first vararg argument, b gets
   1827                         -- the second (both a and b can get nil if there
   1828                         -- is no corresponding vararg argument)
   1829      
   1830      a,b,c = x, f()     -- f() is adjusted to 2 results
   1831      a,b,c = f()        -- f() is adjusted to 3 results
   1832      return f()         -- returns all results from f()
   1833      return ...         -- returns all received vararg arguments
   1834      return x,y,f()     -- returns x, y, and all results from f()
   1835      {f()}              -- creates a list with all results from f()
   1836      {...}              -- creates a list with all vararg arguments
   1837      {f(), nil}         -- f() is adjusted to 1 result
   1838 </pre>
   1839 
   1840 <p>
   1841 Any expression enclosed in parentheses always results in only one value.
   1842 Thus,
   1843 <code>(f(x,y,z))</code> is always a single value,
   1844 even if <code>f</code> returns several values.
   1845 (The value of <code>(f(x,y,z))</code> is the first value returned by <code>f</code>
   1846 or <b>nil</b> if <code>f</code> does not return any values.)
   1847 
   1848 
   1849 
   1850 <h3>3.4.1 &ndash; <a name="3.4.1">Arithmetic Operators</a></h3><p>
   1851 Lua supports the following arithmetic operators:
   1852 
   1853 <ul>
   1854 <li><b><code>+</code>: </b>addition</li>
   1855 <li><b><code>-</code>: </b>subtraction</li>
   1856 <li><b><code>*</code>: </b>multiplication</li>
   1857 <li><b><code>/</code>: </b>float division</li>
   1858 <li><b><code>//</code>: </b>floor division</li>
   1859 <li><b><code>%</code>: </b>modulo</li>
   1860 <li><b><code>^</code>: </b>exponentiation</li>
   1861 <li><b><code>-</code>: </b>unary minus</li>
   1862 </ul>
   1863 
   1864 <p>
   1865 With the exception of exponentiation and float division,
   1866 the arithmetic operators work as follows:
   1867 If both operands are integers,
   1868 the operation is performed over integers and the result is an integer.
   1869 Otherwise, if both operands are numbers
   1870 or strings that can be converted to
   1871 numbers (see <a href="#3.4.3">&sect;3.4.3</a>),
   1872 then they are converted to floats,
   1873 the operation is performed following the usual rules
   1874 for floating-point arithmetic
   1875 (usually the IEEE 754 standard),
   1876 and the result is a float.
   1877 
   1878 
   1879 <p>
   1880 Exponentiation and float division (<code>/</code>)
   1881 always convert their operands to floats
   1882 and the result is always a float.
   1883 Exponentiation uses the ISO&nbsp;C function <code>pow</code>,
   1884 so that it works for non-integer exponents too.
   1885 
   1886 
   1887 <p>
   1888 Floor division (<code>//</code>) is a division
   1889 that rounds the quotient towards minus infinity,
   1890 that is, the floor of the division of its operands.
   1891 
   1892 
   1893 <p>
   1894 Modulo is defined as the remainder of a division
   1895 that rounds the quotient towards minus infinity (floor division).
   1896 
   1897 
   1898 <p>
   1899 In case of overflows in integer arithmetic,
   1900 all operations <em>wrap around</em>,
   1901 according to the usual rules of two-complement arithmetic.
   1902 (In other words,
   1903 they return the unique representable integer
   1904 that is equal modulo <em>2<sup>64</sup></em> to the mathematical result.)
   1905 
   1906 
   1907 
   1908 <h3>3.4.2 &ndash; <a name="3.4.2">Bitwise Operators</a></h3><p>
   1909 Lua supports the following bitwise operators:
   1910 
   1911 <ul>
   1912 <li><b><code>&amp;</code>: </b>bitwise AND</li>
   1913 <li><b><code>&#124;</code>: </b>bitwise OR</li>
   1914 <li><b><code>~</code>: </b>bitwise exclusive OR</li>
   1915 <li><b><code>&gt;&gt;</code>: </b>right shift</li>
   1916 <li><b><code>&lt;&lt;</code>: </b>left shift</li>
   1917 <li><b><code>~</code>: </b>unary bitwise NOT</li>
   1918 </ul>
   1919 
   1920 <p>
   1921 All bitwise operations convert its operands to integers
   1922 (see <a href="#3.4.3">&sect;3.4.3</a>),
   1923 operate on all bits of those integers,
   1924 and result in an integer.
   1925 
   1926 
   1927 <p>
   1928 Both right and left shifts fill the vacant bits with zeros.
   1929 Negative displacements shift to the other direction;
   1930 displacements with absolute values equal to or higher than
   1931 the number of bits in an integer
   1932 result in zero (as all bits are shifted out).
   1933 
   1934 
   1935 
   1936 
   1937 
   1938 <h3>3.4.3 &ndash; <a name="3.4.3">Coercions and Conversions</a></h3><p>
   1939 Lua provides some automatic conversions between some
   1940 types and representations at run time.
   1941 Bitwise operators always convert float operands to integers.
   1942 Exponentiation and float division
   1943 always convert integer operands to floats.
   1944 All other arithmetic operations applied to mixed numbers
   1945 (integers and floats) convert the integer operand to a float;
   1946 this is called the <em>usual rule</em>.
   1947 The C API also converts both integers to floats and
   1948 floats to integers, as needed.
   1949 Moreover, string concatenation accepts numbers as arguments,
   1950 besides strings.
   1951 
   1952 
   1953 <p>
   1954 Lua also converts strings to numbers,
   1955 whenever a number is expected.
   1956 
   1957 
   1958 <p>
   1959 In a conversion from integer to float,
   1960 if the integer value has an exact representation as a float,
   1961 that is the result.
   1962 Otherwise,
   1963 the conversion gets the nearest higher or
   1964 the nearest lower representable value.
   1965 This kind of conversion never fails.
   1966 
   1967 
   1968 <p>
   1969 The conversion from float to integer
   1970 checks whether the float has an exact representation as an integer
   1971 (that is, the float has an integral value and
   1972 it is in the range of integer representation).
   1973 If it does, that representation is the result.
   1974 Otherwise, the conversion fails.
   1975 
   1976 
   1977 <p>
   1978 The conversion from strings to numbers goes as follows:
   1979 First, the string is converted to an integer or a float,
   1980 following its syntax and the rules of the Lua lexer.
   1981 (The string may have also leading and trailing spaces and a sign.)
   1982 Then, the resulting number (float or integer)
   1983 is converted to the type (float or integer) required by the context
   1984 (e.g., the operation that forced the conversion).
   1985 
   1986 
   1987 <p>
   1988 All conversions from strings to numbers
   1989 accept both a dot and the current locale mark
   1990 as the radix character.
   1991 (The Lua lexer, however, accepts only a dot.)
   1992 
   1993 
   1994 <p>
   1995 The conversion from numbers to strings uses a
   1996 non-specified human-readable format.
   1997 For complete control over how numbers are converted to strings,
   1998 use the <code>format</code> function from the string library
   1999 (see <a href="#pdf-string.format"><code>string.format</code></a>).
   2000 
   2001 
   2002 
   2003 
   2004 
   2005 <h3>3.4.4 &ndash; <a name="3.4.4">Relational Operators</a></h3><p>
   2006 Lua supports the following relational operators:
   2007 
   2008 <ul>
   2009 <li><b><code>==</code>: </b>equality</li>
   2010 <li><b><code>~=</code>: </b>inequality</li>
   2011 <li><b><code>&lt;</code>: </b>less than</li>
   2012 <li><b><code>&gt;</code>: </b>greater than</li>
   2013 <li><b><code>&lt;=</code>: </b>less or equal</li>
   2014 <li><b><code>&gt;=</code>: </b>greater or equal</li>
   2015 </ul><p>
   2016 These operators always result in <b>false</b> or <b>true</b>.
   2017 
   2018 
   2019 <p>
   2020 Equality (<code>==</code>) first compares the type of its operands.
   2021 If the types are different, then the result is <b>false</b>.
   2022 Otherwise, the values of the operands are compared.
   2023 Strings are compared in the obvious way.
   2024 Numbers are equal if they denote the same mathematical value.
   2025 
   2026 
   2027 <p>
   2028 Tables, userdata, and threads
   2029 are compared by reference:
   2030 two objects are considered equal only if they are the same object.
   2031 Every time you create a new object
   2032 (a table, userdata, or thread),
   2033 this new object is different from any previously existing object.
   2034 A closure is always equal to itself.
   2035 Closures with any detectable difference
   2036 (different behavior, different definition) are always different.
   2037 Closures created at different times but with no detectable differences
   2038 may be classified as equal or not
   2039 (depending on internal caching details).
   2040 
   2041 
   2042 <p>
   2043 You can change the way that Lua compares tables and userdata
   2044 by using the "eq" metamethod (see <a href="#2.4">&sect;2.4</a>).
   2045 
   2046 
   2047 <p>
   2048 Equality comparisons do not convert strings to numbers
   2049 or vice versa.
   2050 Thus, <code>"0"==0</code> evaluates to <b>false</b>,
   2051 and <code>t[0]</code> and <code>t["0"]</code> denote different
   2052 entries in a table.
   2053 
   2054 
   2055 <p>
   2056 The operator <code>~=</code> is exactly the negation of equality (<code>==</code>).
   2057 
   2058 
   2059 <p>
   2060 The order operators work as follows.
   2061 If both arguments are numbers,
   2062 then they are compared according to their mathematical values
   2063 (regardless of their subtypes).
   2064 Otherwise, if both arguments are strings,
   2065 then their values are compared according to the current locale.
   2066 Otherwise, Lua tries to call the "lt" or the "le"
   2067 metamethod (see <a href="#2.4">&sect;2.4</a>).
   2068 A comparison <code>a &gt; b</code> is translated to <code>b &lt; a</code>
   2069 and <code>a &gt;= b</code> is translated to <code>b &lt;= a</code>.
   2070 
   2071 
   2072 <p>
   2073 Following the IEEE 754 standard,
   2074 NaN is considered neither smaller than,
   2075 nor equal to, nor greater than any value (including itself).
   2076 
   2077 
   2078 
   2079 
   2080 
   2081 <h3>3.4.5 &ndash; <a name="3.4.5">Logical Operators</a></h3><p>
   2082 The logical operators in Lua are
   2083 <b>and</b>, <b>or</b>, and <b>not</b>.
   2084 Like the control structures (see <a href="#3.3.4">&sect;3.3.4</a>),
   2085 all logical operators consider both <b>false</b> and <b>nil</b> as false
   2086 and anything else as true.
   2087 
   2088 
   2089 <p>
   2090 The negation operator <b>not</b> always returns <b>false</b> or <b>true</b>.
   2091 The conjunction operator <b>and</b> returns its first argument
   2092 if this value is <b>false</b> or <b>nil</b>;
   2093 otherwise, <b>and</b> returns its second argument.
   2094 The disjunction operator <b>or</b> returns its first argument
   2095 if this value is different from <b>nil</b> and <b>false</b>;
   2096 otherwise, <b>or</b> returns its second argument.
   2097 Both <b>and</b> and <b>or</b> use short-circuit evaluation;
   2098 that is,
   2099 the second operand is evaluated only if necessary.
   2100 Here are some examples:
   2101 
   2102 <pre>
   2103      10 or 20            --&gt; 10
   2104      10 or error()       --&gt; 10
   2105      nil or "a"          --&gt; "a"
   2106      nil and 10          --&gt; nil
   2107      false and error()   --&gt; false
   2108      false and nil       --&gt; false
   2109      false or nil        --&gt; nil
   2110      10 and 20           --&gt; 20
   2111 </pre><p>
   2112 (In this manual,
   2113 <code>--&gt;</code> indicates the result of the preceding expression.)
   2114 
   2115 
   2116 
   2117 
   2118 
   2119 <h3>3.4.6 &ndash; <a name="3.4.6">Concatenation</a></h3><p>
   2120 The string concatenation operator in Lua is
   2121 denoted by two dots ('<code>..</code>').
   2122 If both operands are strings or numbers, then they are converted to
   2123 strings according to the rules described in <a href="#3.4.3">&sect;3.4.3</a>.
   2124 Otherwise, the <code>__concat</code> metamethod is called (see <a href="#2.4">&sect;2.4</a>).
   2125 
   2126 
   2127 
   2128 
   2129 
   2130 <h3>3.4.7 &ndash; <a name="3.4.7">The Length Operator</a></h3>
   2131 
   2132 <p>
   2133 The length operator is denoted by the unary prefix operator <code>#</code>.
   2134 
   2135 
   2136 <p>
   2137 The length of a string is its number of bytes
   2138 (that is, the usual meaning of string length when each
   2139 character is one byte).
   2140 
   2141 
   2142 <p>
   2143 The length operator applied on a table
   2144 returns a border in that table.
   2145 A <em>border</em> in a table <code>t</code> is any natural number
   2146 that satisfies the following condition:
   2147 
   2148 <pre>
   2149      (border == 0 or t[border] ~= nil) and t[border + 1] == nil
   2150 </pre><p>
   2151 In words,
   2152 a border is any (natural) index in a table
   2153 where a non-nil value is followed by a nil value
   2154 (or zero, when index 1 is nil).
   2155 
   2156 
   2157 <p>
   2158 A table with exactly one border is called a <em>sequence</em>.
   2159 For instance, the table <code>{10, 20, 30, 40, 50}</code> is a sequence,
   2160 as it has only one border (5).
   2161 The table <code>{10, 20, 30, nil, 50}</code> has two borders (3 and 5),
   2162 and therefore it is not a sequence.
   2163 The table <code>{nil, 20, 30, nil, nil, 60, nil}</code>
   2164 has three borders (0, 3, and 6),
   2165 so it is not a sequence, too.
   2166 The table <code>{}</code> is a sequence with border 0.
   2167 Note that non-natural keys do not interfere
   2168 with whether a table is a sequence.
   2169 
   2170 
   2171 <p>
   2172 When <code>t</code> is a sequence,
   2173 <code>#t</code> returns its only border,
   2174 which corresponds to the intuitive notion of the length of the sequence.
   2175 When <code>t</code> is not a sequence,
   2176 <code>#t</code> can return any of its borders.
   2177 (The exact one depends on details of
   2178 the internal representation of the table,
   2179 which in turn can depend on how the table was populated and
   2180 the memory addresses of its non-numeric keys.)
   2181 
   2182 
   2183 <p>
   2184 The computation of the length of a table
   2185 has a guaranteed worst time of <em>O(log n)</em>,
   2186 where <em>n</em> is the largest natural key in the table.
   2187 
   2188 
   2189 <p>
   2190 A program can modify the behavior of the length operator for
   2191 any value but strings through the <code>__len</code> metamethod (see <a href="#2.4">&sect;2.4</a>).
   2192 
   2193 
   2194 
   2195 
   2196 
   2197 <h3>3.4.8 &ndash; <a name="3.4.8">Precedence</a></h3><p>
   2198 Operator precedence in Lua follows the table below,
   2199 from lower to higher priority:
   2200 
   2201 <pre>
   2202      or
   2203      and
   2204      &lt;     &gt;     &lt;=    &gt;=    ~=    ==
   2205      |
   2206      ~
   2207      &amp;
   2208      &lt;&lt;    &gt;&gt;
   2209      ..
   2210      +     -
   2211      *     /     //    %
   2212      unary operators (not   #     -     ~)
   2213      ^
   2214 </pre><p>
   2215 As usual,
   2216 you can use parentheses to change the precedences of an expression.
   2217 The concatenation ('<code>..</code>') and exponentiation ('<code>^</code>')
   2218 operators are right associative.
   2219 All other binary operators are left associative.
   2220 
   2221 
   2222 
   2223 
   2224 
   2225 <h3>3.4.9 &ndash; <a name="3.4.9">Table Constructors</a></h3><p>
   2226 Table constructors are expressions that create tables.
   2227 Every time a constructor is evaluated, a new table is created.
   2228 A constructor can be used to create an empty table
   2229 or to create a table and initialize some of its fields.
   2230 The general syntax for constructors is
   2231 
   2232 <pre>
   2233 	tableconstructor ::= &lsquo;<b>{</b>&rsquo; [fieldlist] &lsquo;<b>}</b>&rsquo;
   2234 	fieldlist ::= field {fieldsep field} [fieldsep]
   2235 	field ::= &lsquo;<b>[</b>&rsquo; exp &lsquo;<b>]</b>&rsquo; &lsquo;<b>=</b>&rsquo; exp | Name &lsquo;<b>=</b>&rsquo; exp | exp
   2236 	fieldsep ::= &lsquo;<b>,</b>&rsquo; | &lsquo;<b>;</b>&rsquo;
   2237 </pre>
   2238 
   2239 <p>
   2240 Each field of the form <code>[exp1] = exp2</code> adds to the new table an entry
   2241 with key <code>exp1</code> and value <code>exp2</code>.
   2242 A field of the form <code>name = exp</code> is equivalent to
   2243 <code>["name"] = exp</code>.
   2244 Finally, fields of the form <code>exp</code> are equivalent to
   2245 <code>[i] = exp</code>, where <code>i</code> are consecutive integers
   2246 starting with 1.
   2247 Fields in the other formats do not affect this counting.
   2248 For example,
   2249 
   2250 <pre>
   2251      a = { [f(1)] = g; "x", "y"; x = 1, f(x), [30] = 23; 45 }
   2252 </pre><p>
   2253 is equivalent to
   2254 
   2255 <pre>
   2256      do
   2257        local t = {}
   2258        t[f(1)] = g
   2259        t[1] = "x"         -- 1st exp
   2260        t[2] = "y"         -- 2nd exp
   2261        t.x = 1            -- t["x"] = 1
   2262        t[3] = f(x)        -- 3rd exp
   2263        t[30] = 23
   2264        t[4] = 45          -- 4th exp
   2265        a = t
   2266      end
   2267 </pre>
   2268 
   2269 <p>
   2270 The order of the assignments in a constructor is undefined.
   2271 (This order would be relevant only when there are repeated keys.)
   2272 
   2273 
   2274 <p>
   2275 If the last field in the list has the form <code>exp</code>
   2276 and the expression is a function call or a vararg expression,
   2277 then all values returned by this expression enter the list consecutively
   2278 (see <a href="#3.4.10">&sect;3.4.10</a>).
   2279 
   2280 
   2281 <p>
   2282 The field list can have an optional trailing separator,
   2283 as a convenience for machine-generated code.
   2284 
   2285 
   2286 
   2287 
   2288 
   2289 <h3>3.4.10 &ndash; <a name="3.4.10">Function Calls</a></h3><p>
   2290 A function call in Lua has the following syntax:
   2291 
   2292 <pre>
   2293 	functioncall ::= prefixexp args
   2294 </pre><p>
   2295 In a function call,
   2296 first prefixexp and args are evaluated.
   2297 If the value of prefixexp has type <em>function</em>,
   2298 then this function is called
   2299 with the given arguments.
   2300 Otherwise, the prefixexp "call" metamethod is called,
   2301 having as first argument the value of prefixexp,
   2302 followed by the original call arguments
   2303 (see <a href="#2.4">&sect;2.4</a>).
   2304 
   2305 
   2306 <p>
   2307 The form
   2308 
   2309 <pre>
   2310 	functioncall ::= prefixexp &lsquo;<b>:</b>&rsquo; Name args
   2311 </pre><p>
   2312 can be used to call "methods".
   2313 A call <code>v:name(<em>args</em>)</code>
   2314 is syntactic sugar for <code>v.name(v,<em>args</em>)</code>,
   2315 except that <code>v</code> is evaluated only once.
   2316 
   2317 
   2318 <p>
   2319 Arguments have the following syntax:
   2320 
   2321 <pre>
   2322 	args ::= &lsquo;<b>(</b>&rsquo; [explist] &lsquo;<b>)</b>&rsquo;
   2323 	args ::= tableconstructor
   2324 	args ::= LiteralString
   2325 </pre><p>
   2326 All argument expressions are evaluated before the call.
   2327 A call of the form <code>f{<em>fields</em>}</code> is
   2328 syntactic sugar for <code>f({<em>fields</em>})</code>;
   2329 that is, the argument list is a single new table.
   2330 A call of the form <code>f'<em>string</em>'</code>
   2331 (or <code>f"<em>string</em>"</code> or <code>f[[<em>string</em>]]</code>)
   2332 is syntactic sugar for <code>f('<em>string</em>')</code>;
   2333 that is, the argument list is a single literal string.
   2334 
   2335 
   2336 <p>
   2337 A call of the form <code>return <em>functioncall</em></code> is called
   2338 a <em>tail call</em>.
   2339 Lua implements <em>proper tail calls</em>
   2340 (or <em>proper tail recursion</em>):
   2341 in a tail call,
   2342 the called function reuses the stack entry of the calling function.
   2343 Therefore, there is no limit on the number of nested tail calls that
   2344 a program can execute.
   2345 However, a tail call erases any debug information about the
   2346 calling function.
   2347 Note that a tail call only happens with a particular syntax,
   2348 where the <b>return</b> has one single function call as argument;
   2349 this syntax makes the calling function return exactly
   2350 the returns of the called function.
   2351 So, none of the following examples are tail calls:
   2352 
   2353 <pre>
   2354      return (f(x))        -- results adjusted to 1
   2355      return 2 * f(x)
   2356      return x, f(x)       -- additional results
   2357      f(x); return         -- results discarded
   2358      return x or f(x)     -- results adjusted to 1
   2359 </pre>
   2360 
   2361 
   2362 
   2363 
   2364 <h3>3.4.11 &ndash; <a name="3.4.11">Function Definitions</a></h3>
   2365 
   2366 <p>
   2367 The syntax for function definition is
   2368 
   2369 <pre>
   2370 	functiondef ::= <b>function</b> funcbody
   2371 	funcbody ::= &lsquo;<b>(</b>&rsquo; [parlist] &lsquo;<b>)</b>&rsquo; block <b>end</b>
   2372 </pre>
   2373 
   2374 <p>
   2375 The following syntactic sugar simplifies function definitions:
   2376 
   2377 <pre>
   2378 	stat ::= <b>function</b> funcname funcbody
   2379 	stat ::= <b>local</b> <b>function</b> Name funcbody
   2380 	funcname ::= Name {&lsquo;<b>.</b>&rsquo; Name} [&lsquo;<b>:</b>&rsquo; Name]
   2381 </pre><p>
   2382 The statement
   2383 
   2384 <pre>
   2385      function f () <em>body</em> end
   2386 </pre><p>
   2387 translates to
   2388 
   2389 <pre>
   2390      f = function () <em>body</em> end
   2391 </pre><p>
   2392 The statement
   2393 
   2394 <pre>
   2395      function t.a.b.c.f () <em>body</em> end
   2396 </pre><p>
   2397 translates to
   2398 
   2399 <pre>
   2400      t.a.b.c.f = function () <em>body</em> end
   2401 </pre><p>
   2402 The statement
   2403 
   2404 <pre>
   2405      local function f () <em>body</em> end
   2406 </pre><p>
   2407 translates to
   2408 
   2409 <pre>
   2410      local f; f = function () <em>body</em> end
   2411 </pre><p>
   2412 not to
   2413 
   2414 <pre>
   2415      local f = function () <em>body</em> end
   2416 </pre><p>
   2417 (This only makes a difference when the body of the function
   2418 contains references to <code>f</code>.)
   2419 
   2420 
   2421 <p>
   2422 A function definition is an executable expression,
   2423 whose value has type <em>function</em>.
   2424 When Lua precompiles a chunk,
   2425 all its function bodies are precompiled too.
   2426 Then, whenever Lua executes the function definition,
   2427 the function is <em>instantiated</em> (or <em>closed</em>).
   2428 This function instance (or <em>closure</em>)
   2429 is the final value of the expression.
   2430 
   2431 
   2432 <p>
   2433 Parameters act as local variables that are
   2434 initialized with the argument values:
   2435 
   2436 <pre>
   2437 	parlist ::= namelist [&lsquo;<b>,</b>&rsquo; &lsquo;<b>...</b>&rsquo;] | &lsquo;<b>...</b>&rsquo;
   2438 </pre><p>
   2439 When a function is called,
   2440 the list of arguments is adjusted to
   2441 the length of the list of parameters,
   2442 unless the function is a <em>vararg function</em>,
   2443 which is indicated by three dots ('<code>...</code>')
   2444 at the end of its parameter list.
   2445 A vararg function does not adjust its argument list;
   2446 instead, it collects all extra arguments and supplies them
   2447 to the function through a <em>vararg expression</em>,
   2448 which is also written as three dots.
   2449 The value of this expression is a list of all actual extra arguments,
   2450 similar to a function with multiple results.
   2451 If a vararg expression is used inside another expression
   2452 or in the middle of a list of expressions,
   2453 then its return list is adjusted to one element.
   2454 If the expression is used as the last element of a list of expressions,
   2455 then no adjustment is made
   2456 (unless that last expression is enclosed in parentheses).
   2457 
   2458 
   2459 <p>
   2460 As an example, consider the following definitions:
   2461 
   2462 <pre>
   2463      function f(a, b) end
   2464      function g(a, b, ...) end
   2465      function r() return 1,2,3 end
   2466 </pre><p>
   2467 Then, we have the following mapping from arguments to parameters and
   2468 to the vararg expression:
   2469 
   2470 <pre>
   2471      CALL            PARAMETERS
   2472      
   2473      f(3)             a=3, b=nil
   2474      f(3, 4)          a=3, b=4
   2475      f(3, 4, 5)       a=3, b=4
   2476      f(r(), 10)       a=1, b=10
   2477      f(r())           a=1, b=2
   2478      
   2479      g(3)             a=3, b=nil, ... --&gt;  (nothing)
   2480      g(3, 4)          a=3, b=4,   ... --&gt;  (nothing)
   2481      g(3, 4, 5, 8)    a=3, b=4,   ... --&gt;  5  8
   2482      g(5, r())        a=5, b=1,   ... --&gt;  2  3
   2483 </pre>
   2484 
   2485 <p>
   2486 Results are returned using the <b>return</b> statement (see <a href="#3.3.4">&sect;3.3.4</a>).
   2487 If control reaches the end of a function
   2488 without encountering a <b>return</b> statement,
   2489 then the function returns with no results.
   2490 
   2491 
   2492 <p>
   2493 
   2494 There is a system-dependent limit on the number of values
   2495 that a function may return.
   2496 This limit is guaranteed to be larger than 1000.
   2497 
   2498 
   2499 <p>
   2500 The <em>colon</em> syntax
   2501 is used for defining <em>methods</em>,
   2502 that is, functions that have an implicit extra parameter <code>self</code>.
   2503 Thus, the statement
   2504 
   2505 <pre>
   2506      function t.a.b.c:f (<em>params</em>) <em>body</em> end
   2507 </pre><p>
   2508 is syntactic sugar for
   2509 
   2510 <pre>
   2511      t.a.b.c.f = function (self, <em>params</em>) <em>body</em> end
   2512 </pre>
   2513 
   2514 
   2515 
   2516 
   2517 
   2518 
   2519 <h2>3.5 &ndash; <a name="3.5">Visibility Rules</a></h2>
   2520 
   2521 <p>
   2522 
   2523 Lua is a lexically scoped language.
   2524 The scope of a local variable begins at the first statement after
   2525 its declaration and lasts until the last non-void statement
   2526 of the innermost block that includes the declaration.
   2527 Consider the following example:
   2528 
   2529 <pre>
   2530      x = 10                -- global variable
   2531      do                    -- new block
   2532        local x = x         -- new 'x', with value 10
   2533        print(x)            --&gt; 10
   2534        x = x+1
   2535        do                  -- another block
   2536          local x = x+1     -- another 'x'
   2537          print(x)          --&gt; 12
   2538        end
   2539        print(x)            --&gt; 11
   2540      end
   2541      print(x)              --&gt; 10  (the global one)
   2542 </pre>
   2543 
   2544 <p>
   2545 Notice that, in a declaration like <code>local x = x</code>,
   2546 the new <code>x</code> being declared is not in scope yet,
   2547 and so the second <code>x</code> refers to the outside variable.
   2548 
   2549 
   2550 <p>
   2551 Because of the lexical scoping rules,
   2552 local variables can be freely accessed by functions
   2553 defined inside their scope.
   2554 A local variable used by an inner function is called
   2555 an <em>upvalue</em>, or <em>external local variable</em>,
   2556 inside the inner function.
   2557 
   2558 
   2559 <p>
   2560 Notice that each execution of a <b>local</b> statement
   2561 defines new local variables.
   2562 Consider the following example:
   2563 
   2564 <pre>
   2565      a = {}
   2566      local x = 20
   2567      for i=1,10 do
   2568        local y = 0
   2569        a[i] = function () y=y+1; return x+y end
   2570      end
   2571 </pre><p>
   2572 The loop creates ten closures
   2573 (that is, ten instances of the anonymous function).
   2574 Each of these closures uses a different <code>y</code> variable,
   2575 while all of them share the same <code>x</code>.
   2576 
   2577 
   2578 
   2579 
   2580 
   2581 <h1>4 &ndash; <a name="4">The Application Program Interface</a></h1>
   2582 
   2583 <p>
   2584 
   2585 This section describes the C&nbsp;API for Lua, that is,
   2586 the set of C&nbsp;functions available to the host program to communicate
   2587 with Lua.
   2588 All API functions and related types and constants
   2589 are declared in the header file <a name="pdf-lua.h"><code>lua.h</code></a>.
   2590 
   2591 
   2592 <p>
   2593 Even when we use the term "function",
   2594 any facility in the API may be provided as a macro instead.
   2595 Except where stated otherwise,
   2596 all such macros use each of their arguments exactly once
   2597 (except for the first argument, which is always a Lua state),
   2598 and so do not generate any hidden side-effects.
   2599 
   2600 
   2601 <p>
   2602 As in most C&nbsp;libraries,
   2603 the Lua API functions do not check their arguments for validity or consistency.
   2604 However, you can change this behavior by compiling Lua
   2605 with the macro <a name="pdf-LUA_USE_APICHECK"><code>LUA_USE_APICHECK</code></a> defined.
   2606 
   2607 
   2608 <p>
   2609 The Lua library is fully reentrant:
   2610 it has no global variables.
   2611 It keeps all information it needs in a dynamic structure,
   2612 called the <em>Lua state</em>.
   2613 
   2614 
   2615 <p>
   2616 Each Lua state has one or more threads,
   2617 which correspond to independent, cooperative lines of execution.
   2618 The type <a href="#lua_State"><code>lua_State</code></a> (despite its name) refers to a thread.
   2619 (Indirectly, through the thread, it also refers to the
   2620 Lua state associated to the thread.)
   2621 
   2622 
   2623 <p>
   2624 A pointer to a thread must be passed as the first argument to
   2625 every function in the library, except to <a href="#lua_newstate"><code>lua_newstate</code></a>,
   2626 which creates a Lua state from scratch and returns a pointer
   2627 to the <em>main thread</em> in the new state.
   2628 
   2629 
   2630 
   2631 <h2>4.1 &ndash; <a name="4.1">The Stack</a></h2>
   2632 
   2633 <p>
   2634 Lua uses a <em>virtual stack</em> to pass values to and from C.
   2635 Each element in this stack represents a Lua value
   2636 (<b>nil</b>, number, string, etc.).
   2637 Functions in the API can access this stack through the
   2638 Lua state parameter that they receive.
   2639 
   2640 
   2641 <p>
   2642 Whenever Lua calls C, the called function gets a new stack,
   2643 which is independent of previous stacks and of stacks of
   2644 C&nbsp;functions that are still active.
   2645 This stack initially contains any arguments to the C&nbsp;function
   2646 and it is where the C&nbsp;function can store temporary
   2647 Lua values and must push its results
   2648 to be returned to the caller (see <a href="#lua_CFunction"><code>lua_CFunction</code></a>).
   2649 
   2650 
   2651 <p>
   2652 For convenience,
   2653 most query operations in the API do not follow a strict stack discipline.
   2654 Instead, they can refer to any element in the stack
   2655 by using an <em>index</em>:
   2656 A positive index represents an absolute stack position
   2657 (starting at&nbsp;1);
   2658 a negative index represents an offset relative to the top of the stack.
   2659 More specifically, if the stack has <em>n</em> elements,
   2660 then index&nbsp;1 represents the first element
   2661 (that is, the element that was pushed onto the stack first)
   2662 and
   2663 index&nbsp;<em>n</em> represents the last element;
   2664 index&nbsp;-1 also represents the last element
   2665 (that is, the element at the&nbsp;top)
   2666 and index <em>-n</em> represents the first element.
   2667 
   2668 
   2669 
   2670 
   2671 
   2672 <h2>4.2 &ndash; <a name="4.2">Stack Size</a></h2>
   2673 
   2674 <p>
   2675 When you interact with the Lua API,
   2676 you are responsible for ensuring consistency.
   2677 In particular,
   2678 <em>you are responsible for controlling stack overflow</em>.
   2679 You can use the function <a href="#lua_checkstack"><code>lua_checkstack</code></a>
   2680 to ensure that the stack has enough space for pushing new elements.
   2681 
   2682 
   2683 <p>
   2684 Whenever Lua calls C,
   2685 it ensures that the stack has space for
   2686 at least <a name="pdf-LUA_MINSTACK"><code>LUA_MINSTACK</code></a> extra slots.
   2687 <code>LUA_MINSTACK</code> is defined as 20,
   2688 so that usually you do not have to worry about stack space
   2689 unless your code has loops pushing elements onto the stack.
   2690 
   2691 
   2692 <p>
   2693 When you call a Lua function
   2694 without a fixed number of results (see <a href="#lua_call"><code>lua_call</code></a>),
   2695 Lua ensures that the stack has enough space for all results,
   2696 but it does not ensure any extra space.
   2697 So, before pushing anything in the stack after such a call
   2698 you should use <a href="#lua_checkstack"><code>lua_checkstack</code></a>.
   2699 
   2700 
   2701 
   2702 
   2703 
   2704 <h2>4.3 &ndash; <a name="4.3">Valid and Acceptable Indices</a></h2>
   2705 
   2706 <p>
   2707 Any function in the API that receives stack indices
   2708 works only with <em>valid indices</em> or <em>acceptable indices</em>.
   2709 
   2710 
   2711 <p>
   2712 A <em>valid index</em> is an index that refers to a
   2713 position that stores a modifiable Lua value.
   2714 It comprises stack indices between&nbsp;1 and the stack top
   2715 (<code>1 &le; abs(index) &le; top</code>)
   2716 
   2717 plus <em>pseudo-indices</em>,
   2718 which represent some positions that are accessible to C&nbsp;code
   2719 but that are not in the stack.
   2720 Pseudo-indices are used to access the registry (see <a href="#4.5">&sect;4.5</a>)
   2721 and the upvalues of a C&nbsp;function (see <a href="#4.4">&sect;4.4</a>).
   2722 
   2723 
   2724 <p>
   2725 Functions that do not need a specific mutable position,
   2726 but only a value (e.g., query functions),
   2727 can be called with acceptable indices.
   2728 An <em>acceptable index</em> can be any valid index,
   2729 but it also can be any positive index after the stack top
   2730 within the space allocated for the stack,
   2731 that is, indices up to the stack size.
   2732 (Note that 0 is never an acceptable index.)
   2733 Except when noted otherwise,
   2734 functions in the API work with acceptable indices.
   2735 
   2736 
   2737 <p>
   2738 Acceptable indices serve to avoid extra tests
   2739 against the stack top when querying the stack.
   2740 For instance, a C&nbsp;function can query its third argument
   2741 without the need to first check whether there is a third argument,
   2742 that is, without the need to check whether 3 is a valid index.
   2743 
   2744 
   2745 <p>
   2746 For functions that can be called with acceptable indices,
   2747 any non-valid index is treated as if it
   2748 contains a value of a virtual type <a name="pdf-LUA_TNONE"><code>LUA_TNONE</code></a>,
   2749 which behaves like a nil value.
   2750 
   2751 
   2752 
   2753 
   2754 
   2755 <h2>4.4 &ndash; <a name="4.4">C Closures</a></h2>
   2756 
   2757 <p>
   2758 When a C&nbsp;function is created,
   2759 it is possible to associate some values with it,
   2760 thus creating a <em>C&nbsp;closure</em>
   2761 (see <a href="#lua_pushcclosure"><code>lua_pushcclosure</code></a>);
   2762 these values are called <em>upvalues</em> and are
   2763 accessible to the function whenever it is called.
   2764 
   2765 
   2766 <p>
   2767 Whenever a C&nbsp;function is called,
   2768 its upvalues are located at specific pseudo-indices.
   2769 These pseudo-indices are produced by the macro
   2770 <a href="#lua_upvalueindex"><code>lua_upvalueindex</code></a>.
   2771 The first upvalue associated with a function is at index
   2772 <code>lua_upvalueindex(1)</code>, and so on.
   2773 Any access to <code>lua_upvalueindex(<em>n</em>)</code>,
   2774 where <em>n</em> is greater than the number of upvalues of the
   2775 current function
   2776 (but not greater than 256,
   2777 which is one plus the maximum number of upvalues in a closure),
   2778 produces an acceptable but invalid index.
   2779 
   2780 
   2781 
   2782 
   2783 
   2784 <h2>4.5 &ndash; <a name="4.5">Registry</a></h2>
   2785 
   2786 <p>
   2787 Lua provides a <em>registry</em>,
   2788 a predefined table that can be used by any C&nbsp;code to
   2789 store whatever Lua values it needs to store.
   2790 The registry table is always located at pseudo-index
   2791 <a name="pdf-LUA_REGISTRYINDEX"><code>LUA_REGISTRYINDEX</code></a>.
   2792 Any C&nbsp;library can store data into this table,
   2793 but it must take care to choose keys
   2794 that are different from those used
   2795 by other libraries, to avoid collisions.
   2796 Typically, you should use as key a string containing your library name,
   2797 or a light userdata with the address of a C&nbsp;object in your code,
   2798 or any Lua object created by your code.
   2799 As with variable names,
   2800 string keys starting with an underscore followed by
   2801 uppercase letters are reserved for Lua.
   2802 
   2803 
   2804 <p>
   2805 The integer keys in the registry are used
   2806 by the reference mechanism (see <a href="#luaL_ref"><code>luaL_ref</code></a>)
   2807 and by some predefined values.
   2808 Therefore, integer keys must not be used for other purposes.
   2809 
   2810 
   2811 <p>
   2812 When you create a new Lua state,
   2813 its registry comes with some predefined values.
   2814 These predefined values are indexed with integer keys
   2815 defined as constants in <code>lua.h</code>.
   2816 The following constants are defined:
   2817 
   2818 <ul>
   2819 <li><b><a name="pdf-LUA_RIDX_MAINTHREAD"><code>LUA_RIDX_MAINTHREAD</code></a>: </b> At this index the registry has
   2820 the main thread of the state.
   2821 (The main thread is the one created together with the state.)
   2822 </li>
   2823 
   2824 <li><b><a name="pdf-LUA_RIDX_GLOBALS"><code>LUA_RIDX_GLOBALS</code></a>: </b> At this index the registry has
   2825 the global environment.
   2826 </li>
   2827 </ul>
   2828 
   2829 
   2830 
   2831 
   2832 <h2>4.6 &ndash; <a name="4.6">Error Handling in C</a></h2>
   2833 
   2834 <p>
   2835 Internally, Lua uses the C <code>longjmp</code> facility to handle errors.
   2836 (Lua will use exceptions if you compile it as C++;
   2837 search for <code>LUAI_THROW</code> in the source code for details.)
   2838 When Lua faces any error
   2839 (such as a memory allocation error or a type error)
   2840 it <em>raises</em> an error;
   2841 that is, it does a long jump.
   2842 A <em>protected environment</em> uses <code>setjmp</code>
   2843 to set a recovery point;
   2844 any error jumps to the most recent active recovery point.
   2845 
   2846 
   2847 <p>
   2848 Inside a C&nbsp;function you can raise an error by calling <a href="#lua_error"><code>lua_error</code></a>.
   2849 
   2850 
   2851 <p>
   2852 Most functions in the API can raise an error,
   2853 for instance due to a memory allocation error.
   2854 The documentation for each function indicates whether
   2855 it can raise errors.
   2856 
   2857 
   2858 <p>
   2859 If an error happens outside any protected environment,
   2860 Lua calls a <em>panic function</em> (see <a href="#lua_atpanic"><code>lua_atpanic</code></a>)
   2861 and then calls <code>abort</code>,
   2862 thus exiting the host application.
   2863 Your panic function can avoid this exit by
   2864 never returning
   2865 (e.g., doing a long jump to your own recovery point outside Lua).
   2866 
   2867 
   2868 <p>
   2869 The panic function,
   2870 as its name implies,
   2871 is a mechanism of last resort.
   2872 Programs should avoid it.
   2873 As a general rule,
   2874 when a C&nbsp;function is called by Lua with a Lua state,
   2875 it can do whatever it wants on that Lua state,
   2876 as it should be already protected.
   2877 However,
   2878 when C code operates on other Lua states
   2879 (e.g., a Lua argument to the function,
   2880 a Lua state stored in the registry, or
   2881 the result of <a href="#lua_newthread"><code>lua_newthread</code></a>),
   2882 it should use them only in API calls that cannot raise errors.
   2883 
   2884 
   2885 <p>
   2886 The panic function runs as if it were a message handler (see <a href="#2.3">&sect;2.3</a>);
   2887 in particular, the error object is at the top of the stack.
   2888 However, there is no guarantee about stack space.
   2889 To push anything on the stack,
   2890 the panic function must first check the available space (see <a href="#4.2">&sect;4.2</a>).
   2891 
   2892 
   2893 
   2894 
   2895 
   2896 <h2>4.7 &ndash; <a name="4.7">Handling Yields in C</a></h2>
   2897 
   2898 <p>
   2899 Internally, Lua uses the C <code>longjmp</code> facility to yield a coroutine.
   2900 Therefore, if a C&nbsp;function <code>foo</code> calls an API function
   2901 and this API function yields
   2902 (directly or indirectly by calling another function that yields),
   2903 Lua cannot return to <code>foo</code> any more,
   2904 because the <code>longjmp</code> removes its frame from the C stack.
   2905 
   2906 
   2907 <p>
   2908 To avoid this kind of problem,
   2909 Lua raises an error whenever it tries to yield across an API call,
   2910 except for three functions:
   2911 <a href="#lua_yieldk"><code>lua_yieldk</code></a>, <a href="#lua_callk"><code>lua_callk</code></a>, and <a href="#lua_pcallk"><code>lua_pcallk</code></a>.
   2912 All those functions receive a <em>continuation function</em>
   2913 (as a parameter named <code>k</code>) to continue execution after a yield.
   2914 
   2915 
   2916 <p>
   2917 We need to set some terminology to explain continuations.
   2918 We have a C&nbsp;function called from Lua which we will call
   2919 the <em>original function</em>.
   2920 This original function then calls one of those three functions in the C API,
   2921 which we will call the <em>callee function</em>,
   2922 that then yields the current thread.
   2923 (This can happen when the callee function is <a href="#lua_yieldk"><code>lua_yieldk</code></a>,
   2924 or when the callee function is either <a href="#lua_callk"><code>lua_callk</code></a> or <a href="#lua_pcallk"><code>lua_pcallk</code></a>
   2925 and the function called by them yields.)
   2926 
   2927 
   2928 <p>
   2929 Suppose the running thread yields while executing the callee function.
   2930 After the thread resumes,
   2931 it eventually will finish running the callee function.
   2932 However,
   2933 the callee function cannot return to the original function,
   2934 because its frame in the C stack was destroyed by the yield.
   2935 Instead, Lua calls a <em>continuation function</em>,
   2936 which was given as an argument to the callee function.
   2937 As the name implies,
   2938 the continuation function should continue the task
   2939 of the original function.
   2940 
   2941 
   2942 <p>
   2943 As an illustration, consider the following function:
   2944 
   2945 <pre>
   2946      int original_function (lua_State *L) {
   2947        ...     /* code 1 */
   2948        status = lua_pcall(L, n, m, h);  /* calls Lua */
   2949        ...     /* code 2 */
   2950      }
   2951 </pre><p>
   2952 Now we want to allow
   2953 the Lua code being run by <a href="#lua_pcall"><code>lua_pcall</code></a> to yield.
   2954 First, we can rewrite our function like here:
   2955 
   2956 <pre>
   2957      int k (lua_State *L, int status, lua_KContext ctx) {
   2958        ...  /* code 2 */
   2959      }
   2960      
   2961      int original_function (lua_State *L) {
   2962        ...     /* code 1 */
   2963        return k(L, lua_pcall(L, n, m, h), ctx);
   2964      }
   2965 </pre><p>
   2966 In the above code,
   2967 the new function <code>k</code> is a
   2968 <em>continuation function</em> (with type <a href="#lua_KFunction"><code>lua_KFunction</code></a>),
   2969 which should do all the work that the original function
   2970 was doing after calling <a href="#lua_pcall"><code>lua_pcall</code></a>.
   2971 Now, we must inform Lua that it must call <code>k</code> if the Lua code
   2972 being executed by <a href="#lua_pcall"><code>lua_pcall</code></a> gets interrupted in some way
   2973 (errors or yielding),
   2974 so we rewrite the code as here,
   2975 replacing <a href="#lua_pcall"><code>lua_pcall</code></a> by <a href="#lua_pcallk"><code>lua_pcallk</code></a>:
   2976 
   2977 <pre>
   2978      int original_function (lua_State *L) {
   2979        ...     /* code 1 */
   2980        return k(L, lua_pcallk(L, n, m, h, ctx2, k), ctx1);
   2981      }
   2982 </pre><p>
   2983 Note the external, explicit call to the continuation:
   2984 Lua will call the continuation only if needed, that is,
   2985 in case of errors or resuming after a yield.
   2986 If the called function returns normally without ever yielding,
   2987 <a href="#lua_pcallk"><code>lua_pcallk</code></a> (and <a href="#lua_callk"><code>lua_callk</code></a>) will also return normally.
   2988 (Of course, instead of calling the continuation in that case,
   2989 you can do the equivalent work directly inside the original function.)
   2990 
   2991 
   2992 <p>
   2993 Besides the Lua state,
   2994 the continuation function has two other parameters:
   2995 the final status of the call plus the context value (<code>ctx</code>) that
   2996 was passed originally to <a href="#lua_pcallk"><code>lua_pcallk</code></a>.
   2997 (Lua does not use this context value;
   2998 it only passes this value from the original function to the
   2999 continuation function.)
   3000 For <a href="#lua_pcallk"><code>lua_pcallk</code></a>,
   3001 the status is the same value that would be returned by <a href="#lua_pcallk"><code>lua_pcallk</code></a>,
   3002 except that it is <a href="#pdf-LUA_YIELD"><code>LUA_YIELD</code></a> when being executed after a yield
   3003 (instead of <a href="#pdf-LUA_OK"><code>LUA_OK</code></a>).
   3004 For <a href="#lua_yieldk"><code>lua_yieldk</code></a> and <a href="#lua_callk"><code>lua_callk</code></a>,
   3005 the status is always <a href="#pdf-LUA_YIELD"><code>LUA_YIELD</code></a> when Lua calls the continuation.
   3006 (For these two functions,
   3007 Lua will not call the continuation in case of errors,
   3008 because they do not handle errors.)
   3009 Similarly, when using <a href="#lua_callk"><code>lua_callk</code></a>,
   3010 you should call the continuation function
   3011 with <a href="#pdf-LUA_OK"><code>LUA_OK</code></a> as the status.
   3012 (For <a href="#lua_yieldk"><code>lua_yieldk</code></a>, there is not much point in calling
   3013 directly the continuation function,
   3014 because <a href="#lua_yieldk"><code>lua_yieldk</code></a> usually does not return.)
   3015 
   3016 
   3017 <p>
   3018 Lua treats the continuation function as if it were the original function.
   3019 The continuation function receives the same Lua stack
   3020 from the original function,
   3021 in the same state it would be if the callee function had returned.
   3022 (For instance,
   3023 after a <a href="#lua_callk"><code>lua_callk</code></a> the function and its arguments are
   3024 removed from the stack and replaced by the results from the call.)
   3025 It also has the same upvalues.
   3026 Whatever it returns is handled by Lua as if it were the return
   3027 of the original function.
   3028 
   3029 
   3030 
   3031 
   3032 
   3033 <h2>4.8 &ndash; <a name="4.8">Functions and Types</a></h2>
   3034 
   3035 <p>
   3036 Here we list all functions and types from the C&nbsp;API in
   3037 alphabetical order.
   3038 Each function has an indicator like this:
   3039 <span class="apii">[-o, +p, <em>x</em>]</span>
   3040 
   3041 
   3042 <p>
   3043 The first field, <code>o</code>,
   3044 is how many elements the function pops from the stack.
   3045 The second field, <code>p</code>,
   3046 is how many elements the function pushes onto the stack.
   3047 (Any function always pushes its results after popping its arguments.)
   3048 A field in the form <code>x|y</code> means the function can push (or pop)
   3049 <code>x</code> or <code>y</code> elements,
   3050 depending on the situation;
   3051 an interrogation mark '<code>?</code>' means that
   3052 we cannot know how many elements the function pops/pushes
   3053 by looking only at its arguments
   3054 (e.g., they may depend on what is on the stack).
   3055 The third field, <code>x</code>,
   3056 tells whether the function may raise errors:
   3057 '<code>-</code>' means the function never raises any error;
   3058 '<code>m</code>' means the function may raise out-of-memory errors
   3059 and errors running a <code>__gc</code> metamethod;
   3060 '<code>e</code>' means the function may raise any errors
   3061 (it can run arbitrary Lua code,
   3062 either directly or through metamethods);
   3063 '<code>v</code>' means the function may raise an error on purpose.
   3064 
   3065 
   3066 
   3067 <hr><h3><a name="lua_absindex"><code>lua_absindex</code></a></h3><p>
   3068 <span class="apii">[-0, +0, &ndash;]</span>
   3069 <pre>int lua_absindex (lua_State *L, int idx);</pre>
   3070 
   3071 <p>
   3072 Converts the acceptable index <code>idx</code>
   3073 into an equivalent absolute index
   3074 (that is, one that does not depend on the stack top).
   3075 
   3076 
   3077 
   3078 
   3079 
   3080 <hr><h3><a name="lua_Alloc"><code>lua_Alloc</code></a></h3>
   3081 <pre>typedef void * (*lua_Alloc) (void *ud,
   3082                              void *ptr,
   3083                              size_t osize,
   3084                              size_t nsize);</pre>
   3085 
   3086 <p>
   3087 The type of the memory-allocation function used by Lua states.
   3088 The allocator function must provide a
   3089 functionality similar to <code>realloc</code>,
   3090 but not exactly the same.
   3091 Its arguments are
   3092 <code>ud</code>, an opaque pointer passed to <a href="#lua_newstate"><code>lua_newstate</code></a>;
   3093 <code>ptr</code>, a pointer to the block being allocated/reallocated/freed;
   3094 <code>osize</code>, the original size of the block or some code about what
   3095 is being allocated;
   3096 and <code>nsize</code>, the new size of the block.
   3097 
   3098 
   3099 <p>
   3100 When <code>ptr</code> is not <code>NULL</code>,
   3101 <code>osize</code> is the size of the block pointed by <code>ptr</code>,
   3102 that is, the size given when it was allocated or reallocated.
   3103 
   3104 
   3105 <p>
   3106 When <code>ptr</code> is <code>NULL</code>,
   3107 <code>osize</code> encodes the kind of object that Lua is allocating.
   3108 <code>osize</code> is any of
   3109 <a href="#pdf-LUA_TSTRING"><code>LUA_TSTRING</code></a>, <a href="#pdf-LUA_TTABLE"><code>LUA_TTABLE</code></a>, <a href="#pdf-LUA_TFUNCTION"><code>LUA_TFUNCTION</code></a>,
   3110 <a href="#pdf-LUA_TUSERDATA"><code>LUA_TUSERDATA</code></a>, or <a href="#pdf-LUA_TTHREAD"><code>LUA_TTHREAD</code></a> when (and only when)
   3111 Lua is creating a new object of that type.
   3112 When <code>osize</code> is some other value,
   3113 Lua is allocating memory for something else.
   3114 
   3115 
   3116 <p>
   3117 Lua assumes the following behavior from the allocator function:
   3118 
   3119 
   3120 <p>
   3121 When <code>nsize</code> is zero,
   3122 the allocator must behave like <code>free</code>
   3123 and return <code>NULL</code>.
   3124 
   3125 
   3126 <p>
   3127 When <code>nsize</code> is not zero,
   3128 the allocator must behave like <code>realloc</code>.
   3129 The allocator returns <code>NULL</code>
   3130 if and only if it cannot fulfill the request.
   3131 Lua assumes that the allocator never fails when
   3132 <code>osize &gt;= nsize</code>.
   3133 
   3134 
   3135 <p>
   3136 Here is a simple implementation for the allocator function.
   3137 It is used in the auxiliary library by <a href="#luaL_newstate"><code>luaL_newstate</code></a>.
   3138 
   3139 <pre>
   3140      static void *l_alloc (void *ud, void *ptr, size_t osize,
   3141                                                 size_t nsize) {
   3142        (void)ud;  (void)osize;  /* not used */
   3143        if (nsize == 0) {
   3144          free(ptr);
   3145          return NULL;
   3146        }
   3147        else
   3148          return realloc(ptr, nsize);
   3149      }
   3150 </pre><p>
   3151 Note that Standard&nbsp;C ensures
   3152 that <code>free(NULL)</code> has no effect and that
   3153 <code>realloc(NULL,size)</code> is equivalent to <code>malloc(size)</code>.
   3154 This code assumes that <code>realloc</code> does not fail when shrinking a block.
   3155 (Although Standard&nbsp;C does not ensure this behavior,
   3156 it seems to be a safe assumption.)
   3157 
   3158 
   3159 
   3160 
   3161 
   3162 <hr><h3><a name="lua_arith"><code>lua_arith</code></a></h3><p>
   3163 <span class="apii">[-(2|1), +1, <em>e</em>]</span>
   3164 <pre>void lua_arith (lua_State *L, int op);</pre>
   3165 
   3166 <p>
   3167 Performs an arithmetic or bitwise operation over the two values
   3168 (or one, in the case of negations)
   3169 at the top of the stack,
   3170 with the value at the top being the second operand,
   3171 pops these values, and pushes the result of the operation.
   3172 The function follows the semantics of the corresponding Lua operator
   3173 (that is, it may call metamethods).
   3174 
   3175 
   3176 <p>
   3177 The value of <code>op</code> must be one of the following constants:
   3178 
   3179 <ul>
   3180 
   3181 <li><b><a name="pdf-LUA_OPADD"><code>LUA_OPADD</code></a>: </b> performs addition (<code>+</code>)</li>
   3182 <li><b><a name="pdf-LUA_OPSUB"><code>LUA_OPSUB</code></a>: </b> performs subtraction (<code>-</code>)</li>
   3183 <li><b><a name="pdf-LUA_OPMUL"><code>LUA_OPMUL</code></a>: </b> performs multiplication (<code>*</code>)</li>
   3184 <li><b><a name="pdf-LUA_OPDIV"><code>LUA_OPDIV</code></a>: </b> performs float division (<code>/</code>)</li>
   3185 <li><b><a name="pdf-LUA_OPIDIV"><code>LUA_OPIDIV</code></a>: </b> performs floor division (<code>//</code>)</li>
   3186 <li><b><a name="pdf-LUA_OPMOD"><code>LUA_OPMOD</code></a>: </b> performs modulo (<code>%</code>)</li>
   3187 <li><b><a name="pdf-LUA_OPPOW"><code>LUA_OPPOW</code></a>: </b> performs exponentiation (<code>^</code>)</li>
   3188 <li><b><a name="pdf-LUA_OPUNM"><code>LUA_OPUNM</code></a>: </b> performs mathematical negation (unary <code>-</code>)</li>
   3189 <li><b><a name="pdf-LUA_OPBNOT"><code>LUA_OPBNOT</code></a>: </b> performs bitwise NOT (<code>~</code>)</li>
   3190 <li><b><a name="pdf-LUA_OPBAND"><code>LUA_OPBAND</code></a>: </b> performs bitwise AND (<code>&amp;</code>)</li>
   3191 <li><b><a name="pdf-LUA_OPBOR"><code>LUA_OPBOR</code></a>: </b> performs bitwise OR (<code>|</code>)</li>
   3192 <li><b><a name="pdf-LUA_OPBXOR"><code>LUA_OPBXOR</code></a>: </b> performs bitwise exclusive OR (<code>~</code>)</li>
   3193 <li><b><a name="pdf-LUA_OPSHL"><code>LUA_OPSHL</code></a>: </b> performs left shift (<code>&lt;&lt;</code>)</li>
   3194 <li><b><a name="pdf-LUA_OPSHR"><code>LUA_OPSHR</code></a>: </b> performs right shift (<code>&gt;&gt;</code>)</li>
   3195 
   3196 </ul>
   3197 
   3198 
   3199 
   3200 
   3201 <hr><h3><a name="lua_atpanic"><code>lua_atpanic</code></a></h3><p>
   3202 <span class="apii">[-0, +0, &ndash;]</span>
   3203 <pre>lua_CFunction lua_atpanic (lua_State *L, lua_CFunction panicf);</pre>
   3204 
   3205 <p>
   3206 Sets a new panic function and returns the old one (see <a href="#4.6">&sect;4.6</a>).
   3207 
   3208 
   3209 
   3210 
   3211 
   3212 <hr><h3><a name="lua_call"><code>lua_call</code></a></h3><p>
   3213 <span class="apii">[-(nargs+1), +nresults, <em>e</em>]</span>
   3214 <pre>void lua_call (lua_State *L, int nargs, int nresults);</pre>
   3215 
   3216 <p>
   3217 Calls a function.
   3218 
   3219 
   3220 <p>
   3221 To call a function you must use the following protocol:
   3222 first, the function to be called is pushed onto the stack;
   3223 then, the arguments to the function are pushed
   3224 in direct order;
   3225 that is, the first argument is pushed first.
   3226 Finally you call <a href="#lua_call"><code>lua_call</code></a>;
   3227 <code>nargs</code> is the number of arguments that you pushed onto the stack.
   3228 All arguments and the function value are popped from the stack
   3229 when the function is called.
   3230 The function results are pushed onto the stack when the function returns.
   3231 The number of results is adjusted to <code>nresults</code>,
   3232 unless <code>nresults</code> is <a name="pdf-LUA_MULTRET"><code>LUA_MULTRET</code></a>.
   3233 In this case, all results from the function are pushed;
   3234 Lua takes care that the returned values fit into the stack space,
   3235 but it does not ensure any extra space in the stack.
   3236 The function results are pushed onto the stack in direct order
   3237 (the first result is pushed first),
   3238 so that after the call the last result is on the top of the stack.
   3239 
   3240 
   3241 <p>
   3242 Any error inside the called function is propagated upwards
   3243 (with a <code>longjmp</code>).
   3244 
   3245 
   3246 <p>
   3247 The following example shows how the host program can do the
   3248 equivalent to this Lua code:
   3249 
   3250 <pre>
   3251      a = f("how", t.x, 14)
   3252 </pre><p>
   3253 Here it is in&nbsp;C:
   3254 
   3255 <pre>
   3256      lua_getglobal(L, "f");                  /* function to be called */
   3257      lua_pushliteral(L, "how");                       /* 1st argument */
   3258      lua_getglobal(L, "t");                    /* table to be indexed */
   3259      lua_getfield(L, -1, "x");        /* push result of t.x (2nd arg) */
   3260      lua_remove(L, -2);                  /* remove 't' from the stack */
   3261      lua_pushinteger(L, 14);                          /* 3rd argument */
   3262      lua_call(L, 3, 1);     /* call 'f' with 3 arguments and 1 result */
   3263      lua_setglobal(L, "a");                         /* set global 'a' */
   3264 </pre><p>
   3265 Note that the code above is <em>balanced</em>:
   3266 at its end, the stack is back to its original configuration.
   3267 This is considered good programming practice.
   3268 
   3269 
   3270 
   3271 
   3272 
   3273 <hr><h3><a name="lua_callk"><code>lua_callk</code></a></h3><p>
   3274 <span class="apii">[-(nargs + 1), +nresults, <em>e</em>]</span>
   3275 <pre>void lua_callk (lua_State *L,
   3276                 int nargs,
   3277                 int nresults,
   3278                 lua_KContext ctx,
   3279                 lua_KFunction k);</pre>
   3280 
   3281 <p>
   3282 This function behaves exactly like <a href="#lua_call"><code>lua_call</code></a>,
   3283 but allows the called function to yield (see <a href="#4.7">&sect;4.7</a>).
   3284 
   3285 
   3286 
   3287 
   3288 
   3289 <hr><h3><a name="lua_CFunction"><code>lua_CFunction</code></a></h3>
   3290 <pre>typedef int (*lua_CFunction) (lua_State *L);</pre>
   3291 
   3292 <p>
   3293 Type for C&nbsp;functions.
   3294 
   3295 
   3296 <p>
   3297 In order to communicate properly with Lua,
   3298 a C&nbsp;function must use the following protocol,
   3299 which defines the way parameters and results are passed:
   3300 a C&nbsp;function receives its arguments from Lua in its stack
   3301 in direct order (the first argument is pushed first).
   3302 So, when the function starts,
   3303 <code>lua_gettop(L)</code> returns the number of arguments received by the function.
   3304 The first argument (if any) is at index 1
   3305 and its last argument is at index <code>lua_gettop(L)</code>.
   3306 To return values to Lua, a C&nbsp;function just pushes them onto the stack,
   3307 in direct order (the first result is pushed first),
   3308 and returns the number of results.
   3309 Any other value in the stack below the results will be properly
   3310 discarded by Lua.
   3311 Like a Lua function, a C&nbsp;function called by Lua can also return
   3312 many results.
   3313 
   3314 
   3315 <p>
   3316 As an example, the following function receives a variable number
   3317 of numeric arguments and returns their average and their sum:
   3318 
   3319 <pre>
   3320      static int foo (lua_State *L) {
   3321        int n = lua_gettop(L);    /* number of arguments */
   3322        lua_Number sum = 0.0;
   3323        int i;
   3324        for (i = 1; i &lt;= n; i++) {
   3325          if (!lua_isnumber(L, i)) {
   3326            lua_pushliteral(L, "incorrect argument");
   3327            lua_error(L);
   3328          }
   3329          sum += lua_tonumber(L, i);
   3330        }
   3331        lua_pushnumber(L, sum/n);        /* first result */
   3332        lua_pushnumber(L, sum);         /* second result */
   3333        return 2;                   /* number of results */
   3334      }
   3335 </pre>
   3336 
   3337 
   3338 
   3339 
   3340 <hr><h3><a name="lua_checkstack"><code>lua_checkstack</code></a></h3><p>
   3341 <span class="apii">[-0, +0, &ndash;]</span>
   3342 <pre>int lua_checkstack (lua_State *L, int n);</pre>
   3343 
   3344 <p>
   3345 Ensures that the stack has space for at least <code>n</code> extra slots
   3346 (that is, that you can safely push up to <code>n</code> values into it).
   3347 It returns false if it cannot fulfill the request,
   3348 either because it would cause the stack
   3349 to be larger than a fixed maximum size
   3350 (typically at least several thousand elements) or
   3351 because it cannot allocate memory for the extra space.
   3352 This function never shrinks the stack;
   3353 if the stack already has space for the extra slots,
   3354 it is left unchanged.
   3355 
   3356 
   3357 
   3358 
   3359 
   3360 <hr><h3><a name="lua_close"><code>lua_close</code></a></h3><p>
   3361 <span class="apii">[-0, +0, &ndash;]</span>
   3362 <pre>void lua_close (lua_State *L);</pre>
   3363 
   3364 <p>
   3365 Destroys all objects in the given Lua state
   3366 (calling the corresponding garbage-collection metamethods, if any)
   3367 and frees all dynamic memory used by this state.
   3368 In several platforms, you may not need to call this function,
   3369 because all resources are naturally released when the host program ends.
   3370 On the other hand, long-running programs that create multiple states,
   3371 such as daemons or web servers,
   3372 will probably need to close states as soon as they are not needed.
   3373 
   3374 
   3375 
   3376 
   3377 
   3378 <hr><h3><a name="lua_compare"><code>lua_compare</code></a></h3><p>
   3379 <span class="apii">[-0, +0, <em>e</em>]</span>
   3380 <pre>int lua_compare (lua_State *L, int index1, int index2, int op);</pre>
   3381 
   3382 <p>
   3383 Compares two Lua values.
   3384 Returns 1 if the value at index <code>index1</code> satisfies <code>op</code>
   3385 when compared with the value at index <code>index2</code>,
   3386 following the semantics of the corresponding Lua operator
   3387 (that is, it may call metamethods).
   3388 Otherwise returns&nbsp;0.
   3389 Also returns&nbsp;0 if any of the indices is not valid.
   3390 
   3391 
   3392 <p>
   3393 The value of <code>op</code> must be one of the following constants:
   3394 
   3395 <ul>
   3396 
   3397 <li><b><a name="pdf-LUA_OPEQ"><code>LUA_OPEQ</code></a>: </b> compares for equality (<code>==</code>)</li>
   3398 <li><b><a name="pdf-LUA_OPLT"><code>LUA_OPLT</code></a>: </b> compares for less than (<code>&lt;</code>)</li>
   3399 <li><b><a name="pdf-LUA_OPLE"><code>LUA_OPLE</code></a>: </b> compares for less or equal (<code>&lt;=</code>)</li>
   3400 
   3401 </ul>
   3402 
   3403 
   3404 
   3405 
   3406 <hr><h3><a name="lua_concat"><code>lua_concat</code></a></h3><p>
   3407 <span class="apii">[-n, +1, <em>e</em>]</span>
   3408 <pre>void lua_concat (lua_State *L, int n);</pre>
   3409 
   3410 <p>
   3411 Concatenates the <code>n</code> values at the top of the stack,
   3412 pops them, and leaves the result at the top.
   3413 If <code>n</code>&nbsp;is&nbsp;1, the result is the single value on the stack
   3414 (that is, the function does nothing);
   3415 if <code>n</code> is 0, the result is the empty string.
   3416 Concatenation is performed following the usual semantics of Lua
   3417 (see <a href="#3.4.6">&sect;3.4.6</a>).
   3418 
   3419 
   3420 
   3421 
   3422 
   3423 <hr><h3><a name="lua_copy"><code>lua_copy</code></a></h3><p>
   3424 <span class="apii">[-0, +0, &ndash;]</span>
   3425 <pre>void lua_copy (lua_State *L, int fromidx, int toidx);</pre>
   3426 
   3427 <p>
   3428 Copies the element at index <code>fromidx</code>
   3429 into the valid index <code>toidx</code>,
   3430 replacing the value at that position.
   3431 Values at other positions are not affected.
   3432 
   3433 
   3434 
   3435 
   3436 
   3437 <hr><h3><a name="lua_createtable"><code>lua_createtable</code></a></h3><p>
   3438 <span class="apii">[-0, +1, <em>m</em>]</span>
   3439 <pre>void lua_createtable (lua_State *L, int narr, int nrec);</pre>
   3440 
   3441 <p>
   3442 Creates a new empty table and pushes it onto the stack.
   3443 Parameter <code>narr</code> is a hint for how many elements the table
   3444 will have as a sequence;
   3445 parameter <code>nrec</code> is a hint for how many other elements
   3446 the table will have.
   3447 Lua may use these hints to preallocate memory for the new table.
   3448 This preallocation is useful for performance when you know in advance
   3449 how many elements the table will have.
   3450 Otherwise you can use the function <a href="#lua_newtable"><code>lua_newtable</code></a>.
   3451 
   3452 
   3453 
   3454 
   3455 
   3456 <hr><h3><a name="lua_dump"><code>lua_dump</code></a></h3><p>
   3457 <span class="apii">[-0, +0, &ndash;]</span>
   3458 <pre>int lua_dump (lua_State *L,
   3459                         lua_Writer writer,
   3460                         void *data,
   3461                         int strip);</pre>
   3462 
   3463 <p>
   3464 Dumps a function as a binary chunk.
   3465 Receives a Lua function on the top of the stack
   3466 and produces a binary chunk that,
   3467 if loaded again,
   3468 results in a function equivalent to the one dumped.
   3469 As it produces parts of the chunk,
   3470 <a href="#lua_dump"><code>lua_dump</code></a> calls function <code>writer</code> (see <a href="#lua_Writer"><code>lua_Writer</code></a>)
   3471 with the given <code>data</code>
   3472 to write them.
   3473 
   3474 
   3475 <p>
   3476 If <code>strip</code> is true,
   3477 the binary representation may not include all debug information
   3478 about the function,
   3479 to save space.
   3480 
   3481 
   3482 <p>
   3483 The value returned is the error code returned by the last
   3484 call to the writer;
   3485 0&nbsp;means no errors.
   3486 
   3487 
   3488 <p>
   3489 This function does not pop the Lua function from the stack.
   3490 
   3491 
   3492 
   3493 
   3494 
   3495 <hr><h3><a name="lua_error"><code>lua_error</code></a></h3><p>
   3496 <span class="apii">[-1, +0, <em>v</em>]</span>
   3497 <pre>int lua_error (lua_State *L);</pre>
   3498 
   3499 <p>
   3500 Generates a Lua error,
   3501 using the value at the top of the stack as the error object.
   3502 This function does a long jump,
   3503 and therefore never returns
   3504 (see <a href="#luaL_error"><code>luaL_error</code></a>).
   3505 
   3506 
   3507 
   3508 
   3509 
   3510 <hr><h3><a name="lua_gc"><code>lua_gc</code></a></h3><p>
   3511 <span class="apii">[-0, +0, <em>m</em>]</span>
   3512 <pre>int lua_gc (lua_State *L, int what, int data);</pre>
   3513 
   3514 <p>
   3515 Controls the garbage collector.
   3516 
   3517 
   3518 <p>
   3519 This function performs several tasks,
   3520 according to the value of the parameter <code>what</code>:
   3521 
   3522 <ul>
   3523 
   3524 <li><b><code>LUA_GCSTOP</code>: </b>
   3525 stops the garbage collector.
   3526 </li>
   3527 
   3528 <li><b><code>LUA_GCRESTART</code>: </b>
   3529 restarts the garbage collector.
   3530 </li>
   3531 
   3532 <li><b><code>LUA_GCCOLLECT</code>: </b>
   3533 performs a full garbage-collection cycle.
   3534 </li>
   3535 
   3536 <li><b><code>LUA_GCCOUNT</code>: </b>
   3537 returns the current amount of memory (in Kbytes) in use by Lua.
   3538 </li>
   3539 
   3540 <li><b><code>LUA_GCCOUNTB</code>: </b>
   3541 returns the remainder of dividing the current amount of bytes of
   3542 memory in use by Lua by 1024.
   3543 </li>
   3544 
   3545 <li><b><code>LUA_GCSTEP</code>: </b>
   3546 performs an incremental step of garbage collection.
   3547 </li>
   3548 
   3549 <li><b><code>LUA_GCSETPAUSE</code>: </b>
   3550 sets <code>data</code> as the new value
   3551 for the <em>pause</em> of the collector (see <a href="#2.5">&sect;2.5</a>)
   3552 and returns the previous value of the pause.
   3553 </li>
   3554 
   3555 <li><b><code>LUA_GCSETSTEPMUL</code>: </b>
   3556 sets <code>data</code> as the new value for the <em>step multiplier</em> of
   3557 the collector (see <a href="#2.5">&sect;2.5</a>)
   3558 and returns the previous value of the step multiplier.
   3559 </li>
   3560 
   3561 <li><b><code>LUA_GCISRUNNING</code>: </b>
   3562 returns a boolean that tells whether the collector is running
   3563 (i.e., not stopped).
   3564 </li>
   3565 
   3566 </ul>
   3567 
   3568 <p>
   3569 For more details about these options,
   3570 see <a href="#pdf-collectgarbage"><code>collectgarbage</code></a>.
   3571 
   3572 
   3573 
   3574 
   3575 
   3576 <hr><h3><a name="lua_getallocf"><code>lua_getallocf</code></a></h3><p>
   3577 <span class="apii">[-0, +0, &ndash;]</span>
   3578 <pre>lua_Alloc lua_getallocf (lua_State *L, void **ud);</pre>
   3579 
   3580 <p>
   3581 Returns the memory-allocation function of a given state.
   3582 If <code>ud</code> is not <code>NULL</code>, Lua stores in <code>*ud</code> the
   3583 opaque pointer given when the memory-allocator function was set.
   3584 
   3585 
   3586 
   3587 
   3588 
   3589 <hr><h3><a name="lua_getfield"><code>lua_getfield</code></a></h3><p>
   3590 <span class="apii">[-0, +1, <em>e</em>]</span>
   3591 <pre>int lua_getfield (lua_State *L, int index, const char *k);</pre>
   3592 
   3593 <p>
   3594 Pushes onto the stack the value <code>t[k]</code>,
   3595 where <code>t</code> is the value at the given index.
   3596 As in Lua, this function may trigger a metamethod
   3597 for the "index" event (see <a href="#2.4">&sect;2.4</a>).
   3598 
   3599 
   3600 <p>
   3601 Returns the type of the pushed value.
   3602 
   3603 
   3604 
   3605 
   3606 
   3607 <hr><h3><a name="lua_getextraspace"><code>lua_getextraspace</code></a></h3><p>
   3608 <span class="apii">[-0, +0, &ndash;]</span>
   3609 <pre>void *lua_getextraspace (lua_State *L);</pre>
   3610 
   3611 <p>
   3612 Returns a pointer to a raw memory area associated with the
   3613 given Lua state.
   3614 The application can use this area for any purpose;
   3615 Lua does not use it for anything.
   3616 
   3617 
   3618 <p>
   3619 Each new thread has this area initialized with a copy
   3620 of the area of the main thread.
   3621 
   3622 
   3623 <p>
   3624 By default, this area has the size of a pointer to void,
   3625 but you can recompile Lua with a different size for this area.
   3626 (See <code>LUA_EXTRASPACE</code> in <code>luaconf.h</code>.)
   3627 
   3628 
   3629 
   3630 
   3631 
   3632 <hr><h3><a name="lua_getglobal"><code>lua_getglobal</code></a></h3><p>
   3633 <span class="apii">[-0, +1, <em>e</em>]</span>
   3634 <pre>int lua_getglobal (lua_State *L, const char *name);</pre>
   3635 
   3636 <p>
   3637 Pushes onto the stack the value of the global <code>name</code>.
   3638 Returns the type of that value.
   3639 
   3640 
   3641 
   3642 
   3643 
   3644 <hr><h3><a name="lua_geti"><code>lua_geti</code></a></h3><p>
   3645 <span class="apii">[-0, +1, <em>e</em>]</span>
   3646 <pre>int lua_geti (lua_State *L, int index, lua_Integer i);</pre>
   3647 
   3648 <p>
   3649 Pushes onto the stack the value <code>t[i]</code>,
   3650 where <code>t</code> is the value at the given index.
   3651 As in Lua, this function may trigger a metamethod
   3652 for the "index" event (see <a href="#2.4">&sect;2.4</a>).
   3653 
   3654 
   3655 <p>
   3656 Returns the type of the pushed value.
   3657 
   3658 
   3659 
   3660 
   3661 
   3662 <hr><h3><a name="lua_getmetatable"><code>lua_getmetatable</code></a></h3><p>
   3663 <span class="apii">[-0, +(0|1), &ndash;]</span>
   3664 <pre>int lua_getmetatable (lua_State *L, int index);</pre>
   3665 
   3666 <p>
   3667 If the value at the given index has a metatable,
   3668 the function pushes that metatable onto the stack and returns&nbsp;1.
   3669 Otherwise,
   3670 the function returns&nbsp;0 and pushes nothing on the stack.
   3671 
   3672 
   3673 
   3674 
   3675 
   3676 <hr><h3><a name="lua_gettable"><code>lua_gettable</code></a></h3><p>
   3677 <span class="apii">[-1, +1, <em>e</em>]</span>
   3678 <pre>int lua_gettable (lua_State *L, int index);</pre>
   3679 
   3680 <p>
   3681 Pushes onto the stack the value <code>t[k]</code>,
   3682 where <code>t</code> is the value at the given index
   3683 and <code>k</code> is the value at the top of the stack.
   3684 
   3685 
   3686 <p>
   3687 This function pops the key from the stack,
   3688 pushing the resulting value in its place.
   3689 As in Lua, this function may trigger a metamethod
   3690 for the "index" event (see <a href="#2.4">&sect;2.4</a>).
   3691 
   3692 
   3693 <p>
   3694 Returns the type of the pushed value.
   3695 
   3696 
   3697 
   3698 
   3699 
   3700 <hr><h3><a name="lua_gettop"><code>lua_gettop</code></a></h3><p>
   3701 <span class="apii">[-0, +0, &ndash;]</span>
   3702 <pre>int lua_gettop (lua_State *L);</pre>
   3703 
   3704 <p>
   3705 Returns the index of the top element in the stack.
   3706 Because indices start at&nbsp;1,
   3707 this result is equal to the number of elements in the stack;
   3708 in particular, 0&nbsp;means an empty stack.
   3709 
   3710 
   3711 
   3712 
   3713 
   3714 <hr><h3><a name="lua_getuservalue"><code>lua_getuservalue</code></a></h3><p>
   3715 <span class="apii">[-0, +1, &ndash;]</span>
   3716 <pre>int lua_getuservalue (lua_State *L, int index);</pre>
   3717 
   3718 <p>
   3719 Pushes onto the stack the Lua value associated with the full userdata
   3720 at the given index.
   3721 
   3722 
   3723 <p>
   3724 Returns the type of the pushed value.
   3725 
   3726 
   3727 
   3728 
   3729 
   3730 <hr><h3><a name="lua_insert"><code>lua_insert</code></a></h3><p>
   3731 <span class="apii">[-1, +1, &ndash;]</span>
   3732 <pre>void lua_insert (lua_State *L, int index);</pre>
   3733 
   3734 <p>
   3735 Moves the top element into the given valid index,
   3736 shifting up the elements above this index to open space.
   3737 This function cannot be called with a pseudo-index,
   3738 because a pseudo-index is not an actual stack position.
   3739 
   3740 
   3741 
   3742 
   3743 
   3744 <hr><h3><a name="lua_Integer"><code>lua_Integer</code></a></h3>
   3745 <pre>typedef ... lua_Integer;</pre>
   3746 
   3747 <p>
   3748 The type of integers in Lua.
   3749 
   3750 
   3751 <p>
   3752 By default this type is <code>long long</code>,
   3753 (usually a 64-bit two-complement integer),
   3754 but that can be changed to <code>long</code> or <code>int</code>
   3755 (usually a 32-bit two-complement integer).
   3756 (See <code>LUA_INT_TYPE</code> in <code>luaconf.h</code>.)
   3757 
   3758 
   3759 <p>
   3760 Lua also defines the constants
   3761 <a name="pdf-LUA_MININTEGER"><code>LUA_MININTEGER</code></a> and <a name="pdf-LUA_MAXINTEGER"><code>LUA_MAXINTEGER</code></a>,
   3762 with the minimum and the maximum values that fit in this type.
   3763 
   3764 
   3765 
   3766 
   3767 
   3768 <hr><h3><a name="lua_isboolean"><code>lua_isboolean</code></a></h3><p>
   3769 <span class="apii">[-0, +0, &ndash;]</span>
   3770 <pre>int lua_isboolean (lua_State *L, int index);</pre>
   3771 
   3772 <p>
   3773 Returns 1 if the value at the given index is a boolean,
   3774 and 0&nbsp;otherwise.
   3775 
   3776 
   3777 
   3778 
   3779 
   3780 <hr><h3><a name="lua_iscfunction"><code>lua_iscfunction</code></a></h3><p>
   3781 <span class="apii">[-0, +0, &ndash;]</span>
   3782 <pre>int lua_iscfunction (lua_State *L, int index);</pre>
   3783 
   3784 <p>
   3785 Returns 1 if the value at the given index is a C&nbsp;function,
   3786 and 0&nbsp;otherwise.
   3787 
   3788 
   3789 
   3790 
   3791 
   3792 <hr><h3><a name="lua_isfunction"><code>lua_isfunction</code></a></h3><p>
   3793 <span class="apii">[-0, +0, &ndash;]</span>
   3794 <pre>int lua_isfunction (lua_State *L, int index);</pre>
   3795 
   3796 <p>
   3797 Returns 1 if the value at the given index is a function
   3798 (either C or Lua), and 0&nbsp;otherwise.
   3799 
   3800 
   3801 
   3802 
   3803 
   3804 <hr><h3><a name="lua_isinteger"><code>lua_isinteger</code></a></h3><p>
   3805 <span class="apii">[-0, +0, &ndash;]</span>
   3806 <pre>int lua_isinteger (lua_State *L, int index);</pre>
   3807 
   3808 <p>
   3809 Returns 1 if the value at the given index is an integer
   3810 (that is, the value is a number and is represented as an integer),
   3811 and 0&nbsp;otherwise.
   3812 
   3813 
   3814 
   3815 
   3816 
   3817 <hr><h3><a name="lua_islightuserdata"><code>lua_islightuserdata</code></a></h3><p>
   3818 <span class="apii">[-0, +0, &ndash;]</span>
   3819 <pre>int lua_islightuserdata (lua_State *L, int index);</pre>
   3820 
   3821 <p>
   3822 Returns 1 if the value at the given index is a light userdata,
   3823 and 0&nbsp;otherwise.
   3824 
   3825 
   3826 
   3827 
   3828 
   3829 <hr><h3><a name="lua_isnil"><code>lua_isnil</code></a></h3><p>
   3830 <span class="apii">[-0, +0, &ndash;]</span>
   3831 <pre>int lua_isnil (lua_State *L, int index);</pre>
   3832 
   3833 <p>
   3834 Returns 1 if the value at the given index is <b>nil</b>,
   3835 and 0&nbsp;otherwise.
   3836 
   3837 
   3838 
   3839 
   3840 
   3841 <hr><h3><a name="lua_isnone"><code>lua_isnone</code></a></h3><p>
   3842 <span class="apii">[-0, +0, &ndash;]</span>
   3843 <pre>int lua_isnone (lua_State *L, int index);</pre>
   3844 
   3845 <p>
   3846 Returns 1 if the given index is not valid,
   3847 and 0&nbsp;otherwise.
   3848 
   3849 
   3850 
   3851 
   3852 
   3853 <hr><h3><a name="lua_isnoneornil"><code>lua_isnoneornil</code></a></h3><p>
   3854 <span class="apii">[-0, +0, &ndash;]</span>
   3855 <pre>int lua_isnoneornil (lua_State *L, int index);</pre>
   3856 
   3857 <p>
   3858 Returns 1 if the given index is not valid
   3859 or if the value at this index is <b>nil</b>,
   3860 and 0&nbsp;otherwise.
   3861 
   3862 
   3863 
   3864 
   3865 
   3866 <hr><h3><a name="lua_isnumber"><code>lua_isnumber</code></a></h3><p>
   3867 <span class="apii">[-0, +0, &ndash;]</span>
   3868 <pre>int lua_isnumber (lua_State *L, int index);</pre>
   3869 
   3870 <p>
   3871 Returns 1 if the value at the given index is a number
   3872 or a string convertible to a number,
   3873 and 0&nbsp;otherwise.
   3874 
   3875 
   3876 
   3877 
   3878 
   3879 <hr><h3><a name="lua_isstring"><code>lua_isstring</code></a></h3><p>
   3880 <span class="apii">[-0, +0, &ndash;]</span>
   3881 <pre>int lua_isstring (lua_State *L, int index);</pre>
   3882 
   3883 <p>
   3884 Returns 1 if the value at the given index is a string
   3885 or a number (which is always convertible to a string),
   3886 and 0&nbsp;otherwise.
   3887 
   3888 
   3889 
   3890 
   3891 
   3892 <hr><h3><a name="lua_istable"><code>lua_istable</code></a></h3><p>
   3893 <span class="apii">[-0, +0, &ndash;]</span>
   3894 <pre>int lua_istable (lua_State *L, int index);</pre>
   3895 
   3896 <p>
   3897 Returns 1 if the value at the given index is a table,
   3898 and 0&nbsp;otherwise.
   3899 
   3900 
   3901 
   3902 
   3903 
   3904 <hr><h3><a name="lua_isthread"><code>lua_isthread</code></a></h3><p>
   3905 <span class="apii">[-0, +0, &ndash;]</span>
   3906 <pre>int lua_isthread (lua_State *L, int index);</pre>
   3907 
   3908 <p>
   3909 Returns 1 if the value at the given index is a thread,
   3910 and 0&nbsp;otherwise.
   3911 
   3912 
   3913 
   3914 
   3915 
   3916 <hr><h3><a name="lua_isuserdata"><code>lua_isuserdata</code></a></h3><p>
   3917 <span class="apii">[-0, +0, &ndash;]</span>
   3918 <pre>int lua_isuserdata (lua_State *L, int index);</pre>
   3919 
   3920 <p>
   3921 Returns 1 if the value at the given index is a userdata
   3922 (either full or light), and 0&nbsp;otherwise.
   3923 
   3924 
   3925 
   3926 
   3927 
   3928 <hr><h3><a name="lua_isyieldable"><code>lua_isyieldable</code></a></h3><p>
   3929 <span class="apii">[-0, +0, &ndash;]</span>
   3930 <pre>int lua_isyieldable (lua_State *L);</pre>
   3931 
   3932 <p>
   3933 Returns 1 if the given coroutine can yield,
   3934 and 0&nbsp;otherwise.
   3935 
   3936 
   3937 
   3938 
   3939 
   3940 <hr><h3><a name="lua_KContext"><code>lua_KContext</code></a></h3>
   3941 <pre>typedef ... lua_KContext;</pre>
   3942 
   3943 <p>
   3944 The type for continuation-function contexts.
   3945 It must be a numeric type.
   3946 This type is defined as <code>intptr_t</code>
   3947 when <code>intptr_t</code> is available,
   3948 so that it can store pointers too.
   3949 Otherwise, it is defined as <code>ptrdiff_t</code>.
   3950 
   3951 
   3952 
   3953 
   3954 
   3955 <hr><h3><a name="lua_KFunction"><code>lua_KFunction</code></a></h3>
   3956 <pre>typedef int (*lua_KFunction) (lua_State *L, int status, lua_KContext ctx);</pre>
   3957 
   3958 <p>
   3959 Type for continuation functions (see <a href="#4.7">&sect;4.7</a>).
   3960 
   3961 
   3962 
   3963 
   3964 
   3965 <hr><h3><a name="lua_len"><code>lua_len</code></a></h3><p>
   3966 <span class="apii">[-0, +1, <em>e</em>]</span>
   3967 <pre>void lua_len (lua_State *L, int index);</pre>
   3968 
   3969 <p>
   3970 Returns the length of the value at the given index.
   3971 It is equivalent to the '<code>#</code>' operator in Lua (see <a href="#3.4.7">&sect;3.4.7</a>) and
   3972 may trigger a metamethod for the "length" event (see <a href="#2.4">&sect;2.4</a>).
   3973 The result is pushed on the stack.
   3974 
   3975 
   3976 
   3977 
   3978 
   3979 <hr><h3><a name="lua_load"><code>lua_load</code></a></h3><p>
   3980 <span class="apii">[-0, +1, &ndash;]</span>
   3981 <pre>int lua_load (lua_State *L,
   3982               lua_Reader reader,
   3983               void *data,
   3984               const char *chunkname,
   3985               const char *mode);</pre>
   3986 
   3987 <p>
   3988 Loads a Lua chunk without running it.
   3989 If there are no errors,
   3990 <code>lua_load</code> pushes the compiled chunk as a Lua
   3991 function on top of the stack.
   3992 Otherwise, it pushes an error message.
   3993 
   3994 
   3995 <p>
   3996 The return values of <code>lua_load</code> are:
   3997 
   3998 <ul>
   3999 
   4000 <li><b><a href="#pdf-LUA_OK"><code>LUA_OK</code></a>: </b> no errors;</li>
   4001 
   4002 <li><b><a name="pdf-LUA_ERRSYNTAX"><code>LUA_ERRSYNTAX</code></a>: </b>
   4003 syntax error during precompilation;</li>
   4004 
   4005 <li><b><a href="#pdf-LUA_ERRMEM"><code>LUA_ERRMEM</code></a>: </b>
   4006 memory allocation (out-of-memory) error;</li>
   4007 
   4008 <li><b><a href="#pdf-LUA_ERRGCMM"><code>LUA_ERRGCMM</code></a>: </b>
   4009 error while running a <code>__gc</code> metamethod.
   4010 (This error has no relation with the chunk being loaded.
   4011 It is generated by the garbage collector.)
   4012 </li>
   4013 
   4014 </ul>
   4015 
   4016 <p>
   4017 The <code>lua_load</code> function uses a user-supplied <code>reader</code> function
   4018 to read the chunk (see <a href="#lua_Reader"><code>lua_Reader</code></a>).
   4019 The <code>data</code> argument is an opaque value passed to the reader function.
   4020 
   4021 
   4022 <p>
   4023 The <code>chunkname</code> argument gives a name to the chunk,
   4024 which is used for error messages and in debug information (see <a href="#4.9">&sect;4.9</a>).
   4025 
   4026 
   4027 <p>
   4028 <code>lua_load</code> automatically detects whether the chunk is text or binary
   4029 and loads it accordingly (see program <code>luac</code>).
   4030 The string <code>mode</code> works as in function <a href="#pdf-load"><code>load</code></a>,
   4031 with the addition that
   4032 a <code>NULL</code> value is equivalent to the string "<code>bt</code>".
   4033 
   4034 
   4035 <p>
   4036 <code>lua_load</code> uses the stack internally,
   4037 so the reader function must always leave the stack
   4038 unmodified when returning.
   4039 
   4040 
   4041 <p>
   4042 If the resulting function has upvalues,
   4043 its first upvalue is set to the value of the global environment
   4044 stored at index <code>LUA_RIDX_GLOBALS</code> in the registry (see <a href="#4.5">&sect;4.5</a>).
   4045 When loading main chunks,
   4046 this upvalue will be the <code>_ENV</code> variable (see <a href="#2.2">&sect;2.2</a>).
   4047 Other upvalues are initialized with <b>nil</b>.
   4048 
   4049 
   4050 
   4051 
   4052 
   4053 <hr><h3><a name="lua_newstate"><code>lua_newstate</code></a></h3><p>
   4054 <span class="apii">[-0, +0, &ndash;]</span>
   4055 <pre>lua_State *lua_newstate (lua_Alloc f, void *ud);</pre>
   4056 
   4057 <p>
   4058 Creates a new thread running in a new, independent state.
   4059 Returns <code>NULL</code> if it cannot create the thread or the state
   4060 (due to lack of memory).
   4061 The argument <code>f</code> is the allocator function;
   4062 Lua does all memory allocation for this state
   4063 through this function (see <a href="#lua_Alloc"><code>lua_Alloc</code></a>).
   4064 The second argument, <code>ud</code>, is an opaque pointer that Lua
   4065 passes to the allocator in every call.
   4066 
   4067 
   4068 
   4069 
   4070 
   4071 <hr><h3><a name="lua_newtable"><code>lua_newtable</code></a></h3><p>
   4072 <span class="apii">[-0, +1, <em>m</em>]</span>
   4073 <pre>void lua_newtable (lua_State *L);</pre>
   4074 
   4075 <p>
   4076 Creates a new empty table and pushes it onto the stack.
   4077 It is equivalent to <code>lua_createtable(L, 0, 0)</code>.
   4078 
   4079 
   4080 
   4081 
   4082 
   4083 <hr><h3><a name="lua_newthread"><code>lua_newthread</code></a></h3><p>
   4084 <span class="apii">[-0, +1, <em>m</em>]</span>
   4085 <pre>lua_State *lua_newthread (lua_State *L);</pre>
   4086 
   4087 <p>
   4088 Creates a new thread, pushes it on the stack,
   4089 and returns a pointer to a <a href="#lua_State"><code>lua_State</code></a> that represents this new thread.
   4090 The new thread returned by this function shares with the original thread
   4091 its global environment,
   4092 but has an independent execution stack.
   4093 
   4094 
   4095 <p>
   4096 There is no explicit function to close or to destroy a thread.
   4097 Threads are subject to garbage collection,
   4098 like any Lua object.
   4099 
   4100 
   4101 
   4102 
   4103 
   4104 <hr><h3><a name="lua_newuserdata"><code>lua_newuserdata</code></a></h3><p>
   4105 <span class="apii">[-0, +1, <em>m</em>]</span>
   4106 <pre>void *lua_newuserdata (lua_State *L, size_t size);</pre>
   4107 
   4108 <p>
   4109 This function allocates a new block of memory with the given size,
   4110 pushes onto the stack a new full userdata with the block address,
   4111 and returns this address.
   4112 The host program can freely use this memory.
   4113 
   4114 
   4115 
   4116 
   4117 
   4118 <hr><h3><a name="lua_next"><code>lua_next</code></a></h3><p>
   4119 <span class="apii">[-1, +(2|0), <em>e</em>]</span>
   4120 <pre>int lua_next (lua_State *L, int index);</pre>
   4121 
   4122 <p>
   4123 Pops a key from the stack,
   4124 and pushes a key&ndash;value pair from the table at the given index
   4125 (the "next" pair after the given key).
   4126 If there are no more elements in the table,
   4127 then <a href="#lua_next"><code>lua_next</code></a> returns 0 (and pushes nothing).
   4128 
   4129 
   4130 <p>
   4131 A typical traversal looks like this:
   4132 
   4133 <pre>
   4134      /* table is in the stack at index 't' */
   4135      lua_pushnil(L);  /* first key */
   4136      while (lua_next(L, t) != 0) {
   4137        /* uses 'key' (at index -2) and 'value' (at index -1) */
   4138        printf("%s - %s\n",
   4139               lua_typename(L, lua_type(L, -2)),
   4140               lua_typename(L, lua_type(L, -1)));
   4141        /* removes 'value'; keeps 'key' for next iteration */
   4142        lua_pop(L, 1);
   4143      }
   4144 </pre>
   4145 
   4146 <p>
   4147 While traversing a table,
   4148 do not call <a href="#lua_tolstring"><code>lua_tolstring</code></a> directly on a key,
   4149 unless you know that the key is actually a string.
   4150 Recall that <a href="#lua_tolstring"><code>lua_tolstring</code></a> may change
   4151 the value at the given index;
   4152 this confuses the next call to <a href="#lua_next"><code>lua_next</code></a>.
   4153 
   4154 
   4155 <p>
   4156 See function <a href="#pdf-next"><code>next</code></a> for the caveats of modifying
   4157 the table during its traversal.
   4158 
   4159 
   4160 
   4161 
   4162 
   4163 <hr><h3><a name="lua_Number"><code>lua_Number</code></a></h3>
   4164 <pre>typedef ... lua_Number;</pre>
   4165 
   4166 <p>
   4167 The type of floats in Lua.
   4168 
   4169 
   4170 <p>
   4171 By default this type is double,
   4172 but that can be changed to a single float or a long double.
   4173 (See <code>LUA_FLOAT_TYPE</code> in <code>luaconf.h</code>.)
   4174 
   4175 
   4176 
   4177 
   4178 
   4179 <hr><h3><a name="lua_numbertointeger"><code>lua_numbertointeger</code></a></h3>
   4180 <pre>int lua_numbertointeger (lua_Number n, lua_Integer *p);</pre>
   4181 
   4182 <p>
   4183 Converts a Lua float to a Lua integer.
   4184 This macro assumes that <code>n</code> has an integral value.
   4185 If that value is within the range of Lua integers,
   4186 it is converted to an integer and assigned to <code>*p</code>.
   4187 The macro results in a boolean indicating whether the
   4188 conversion was successful.
   4189 (Note that this range test can be tricky to do
   4190 correctly without this macro,
   4191 due to roundings.)
   4192 
   4193 
   4194 <p>
   4195 This macro may evaluate its arguments more than once.
   4196 
   4197 
   4198 
   4199 
   4200 
   4201 <hr><h3><a name="lua_pcall"><code>lua_pcall</code></a></h3><p>
   4202 <span class="apii">[-(nargs + 1), +(nresults|1), &ndash;]</span>
   4203 <pre>int lua_pcall (lua_State *L, int nargs, int nresults, int msgh);</pre>
   4204 
   4205 <p>
   4206 Calls a function in protected mode.
   4207 
   4208 
   4209 <p>
   4210 Both <code>nargs</code> and <code>nresults</code> have the same meaning as
   4211 in <a href="#lua_call"><code>lua_call</code></a>.
   4212 If there are no errors during the call,
   4213 <a href="#lua_pcall"><code>lua_pcall</code></a> behaves exactly like <a href="#lua_call"><code>lua_call</code></a>.
   4214 However, if there is any error,
   4215 <a href="#lua_pcall"><code>lua_pcall</code></a> catches it,
   4216 pushes a single value on the stack (the error object),
   4217 and returns an error code.
   4218 Like <a href="#lua_call"><code>lua_call</code></a>,
   4219 <a href="#lua_pcall"><code>lua_pcall</code></a> always removes the function
   4220 and its arguments from the stack.
   4221 
   4222 
   4223 <p>
   4224 If <code>msgh</code> is 0,
   4225 then the error object returned on the stack
   4226 is exactly the original error object.
   4227 Otherwise, <code>msgh</code> is the stack index of a
   4228 <em>message handler</em>.
   4229 (This index cannot be a pseudo-index.)
   4230 In case of runtime errors,
   4231 this function will be called with the error object
   4232 and its return value will be the object
   4233 returned on the stack by <a href="#lua_pcall"><code>lua_pcall</code></a>.
   4234 
   4235 
   4236 <p>
   4237 Typically, the message handler is used to add more debug
   4238 information to the error object, such as a stack traceback.
   4239 Such information cannot be gathered after the return of <a href="#lua_pcall"><code>lua_pcall</code></a>,
   4240 since by then the stack has unwound.
   4241 
   4242 
   4243 <p>
   4244 The <a href="#lua_pcall"><code>lua_pcall</code></a> function returns one of the following constants
   4245 (defined in <code>lua.h</code>):
   4246 
   4247 <ul>
   4248 
   4249 <li><b><a name="pdf-LUA_OK"><code>LUA_OK</code></a> (0): </b>
   4250 success.</li>
   4251 
   4252 <li><b><a name="pdf-LUA_ERRRUN"><code>LUA_ERRRUN</code></a>: </b>
   4253 a runtime error.
   4254 </li>
   4255 
   4256 <li><b><a name="pdf-LUA_ERRMEM"><code>LUA_ERRMEM</code></a>: </b>
   4257 memory allocation error.
   4258 For such errors, Lua does not call the message handler.
   4259 </li>
   4260 
   4261 <li><b><a name="pdf-LUA_ERRERR"><code>LUA_ERRERR</code></a>: </b>
   4262 error while running the message handler.
   4263 </li>
   4264 
   4265 <li><b><a name="pdf-LUA_ERRGCMM"><code>LUA_ERRGCMM</code></a>: </b>
   4266 error while running a <code>__gc</code> metamethod.
   4267 For such errors, Lua does not call the message handler
   4268 (as this kind of error typically has no relation
   4269 with the function being called).
   4270 </li>
   4271 
   4272 </ul>
   4273 
   4274 
   4275 
   4276 
   4277 <hr><h3><a name="lua_pcallk"><code>lua_pcallk</code></a></h3><p>
   4278 <span class="apii">[-(nargs + 1), +(nresults|1), &ndash;]</span>
   4279 <pre>int lua_pcallk (lua_State *L,
   4280                 int nargs,
   4281                 int nresults,
   4282                 int msgh,
   4283                 lua_KContext ctx,
   4284                 lua_KFunction k);</pre>
   4285 
   4286 <p>
   4287 This function behaves exactly like <a href="#lua_pcall"><code>lua_pcall</code></a>,
   4288 but allows the called function to yield (see <a href="#4.7">&sect;4.7</a>).
   4289 
   4290 
   4291 
   4292 
   4293 
   4294 <hr><h3><a name="lua_pop"><code>lua_pop</code></a></h3><p>
   4295 <span class="apii">[-n, +0, &ndash;]</span>
   4296 <pre>void lua_pop (lua_State *L, int n);</pre>
   4297 
   4298 <p>
   4299 Pops <code>n</code> elements from the stack.
   4300 
   4301 
   4302 
   4303 
   4304 
   4305 <hr><h3><a name="lua_pushboolean"><code>lua_pushboolean</code></a></h3><p>
   4306 <span class="apii">[-0, +1, &ndash;]</span>
   4307 <pre>void lua_pushboolean (lua_State *L, int b);</pre>
   4308 
   4309 <p>
   4310 Pushes a boolean value with value <code>b</code> onto the stack.
   4311 
   4312 
   4313 
   4314 
   4315 
   4316 <hr><h3><a name="lua_pushcclosure"><code>lua_pushcclosure</code></a></h3><p>
   4317 <span class="apii">[-n, +1, <em>m</em>]</span>
   4318 <pre>void lua_pushcclosure (lua_State *L, lua_CFunction fn, int n);</pre>
   4319 
   4320 <p>
   4321 Pushes a new C&nbsp;closure onto the stack.
   4322 
   4323 
   4324 <p>
   4325 When a C&nbsp;function is created,
   4326 it is possible to associate some values with it,
   4327 thus creating a C&nbsp;closure (see <a href="#4.4">&sect;4.4</a>);
   4328 these values are then accessible to the function whenever it is called.
   4329 To associate values with a C&nbsp;function,
   4330 first these values must be pushed onto the stack
   4331 (when there are multiple values, the first value is pushed first).
   4332 Then <a href="#lua_pushcclosure"><code>lua_pushcclosure</code></a>
   4333 is called to create and push the C&nbsp;function onto the stack,
   4334 with the argument <code>n</code> telling how many values will be
   4335 associated with the function.
   4336 <a href="#lua_pushcclosure"><code>lua_pushcclosure</code></a> also pops these values from the stack.
   4337 
   4338 
   4339 <p>
   4340 The maximum value for <code>n</code> is 255.
   4341 
   4342 
   4343 <p>
   4344 When <code>n</code> is zero,
   4345 this function creates a <em>light C&nbsp;function</em>,
   4346 which is just a pointer to the C&nbsp;function.
   4347 In that case, it never raises a memory error.
   4348 
   4349 
   4350 
   4351 
   4352 
   4353 <hr><h3><a name="lua_pushcfunction"><code>lua_pushcfunction</code></a></h3><p>
   4354 <span class="apii">[-0, +1, &ndash;]</span>
   4355 <pre>void lua_pushcfunction (lua_State *L, lua_CFunction f);</pre>
   4356 
   4357 <p>
   4358 Pushes a C&nbsp;function onto the stack.
   4359 This function receives a pointer to a C&nbsp;function
   4360 and pushes onto the stack a Lua value of type <code>function</code> that,
   4361 when called, invokes the corresponding C&nbsp;function.
   4362 
   4363 
   4364 <p>
   4365 Any function to be callable by Lua must
   4366 follow the correct protocol to receive its parameters
   4367 and return its results (see <a href="#lua_CFunction"><code>lua_CFunction</code></a>).
   4368 
   4369 
   4370 
   4371 
   4372 
   4373 <hr><h3><a name="lua_pushfstring"><code>lua_pushfstring</code></a></h3><p>
   4374 <span class="apii">[-0, +1, <em>e</em>]</span>
   4375 <pre>const char *lua_pushfstring (lua_State *L, const char *fmt, ...);</pre>
   4376 
   4377 <p>
   4378 Pushes onto the stack a formatted string
   4379 and returns a pointer to this string.
   4380 It is similar to the ISO&nbsp;C function <code>sprintf</code>,
   4381 but has some important differences:
   4382 
   4383 <ul>
   4384 
   4385 <li>
   4386 You do not have to allocate space for the result:
   4387 the result is a Lua string and Lua takes care of memory allocation
   4388 (and deallocation, through garbage collection).
   4389 </li>
   4390 
   4391 <li>
   4392 The conversion specifiers are quite restricted.
   4393 There are no flags, widths, or precisions.
   4394 The conversion specifiers can only be
   4395 '<code>%%</code>' (inserts the character '<code>%</code>'),
   4396 '<code>%s</code>' (inserts a zero-terminated string, with no size restrictions),
   4397 '<code>%f</code>' (inserts a <a href="#lua_Number"><code>lua_Number</code></a>),
   4398 '<code>%I</code>' (inserts a <a href="#lua_Integer"><code>lua_Integer</code></a>),
   4399 '<code>%p</code>' (inserts a pointer as a hexadecimal numeral),
   4400 '<code>%d</code>' (inserts an <code>int</code>),
   4401 '<code>%c</code>' (inserts an <code>int</code> as a one-byte character), and
   4402 '<code>%U</code>' (inserts a <code>long int</code> as a UTF-8 byte sequence).
   4403 </li>
   4404 
   4405 </ul>
   4406 
   4407 <p>
   4408 Unlike other push functions,
   4409 this function checks for the stack space it needs,
   4410 including the slot for its result.
   4411 
   4412 
   4413 
   4414 
   4415 
   4416 <hr><h3><a name="lua_pushglobaltable"><code>lua_pushglobaltable</code></a></h3><p>
   4417 <span class="apii">[-0, +1, &ndash;]</span>
   4418 <pre>void lua_pushglobaltable (lua_State *L);</pre>
   4419 
   4420 <p>
   4421 Pushes the global environment onto the stack.
   4422 
   4423 
   4424 
   4425 
   4426 
   4427 <hr><h3><a name="lua_pushinteger"><code>lua_pushinteger</code></a></h3><p>
   4428 <span class="apii">[-0, +1, &ndash;]</span>
   4429 <pre>void lua_pushinteger (lua_State *L, lua_Integer n);</pre>
   4430 
   4431 <p>
   4432 Pushes an integer with value <code>n</code> onto the stack.
   4433 
   4434 
   4435 
   4436 
   4437 
   4438 <hr><h3><a name="lua_pushlightuserdata"><code>lua_pushlightuserdata</code></a></h3><p>
   4439 <span class="apii">[-0, +1, &ndash;]</span>
   4440 <pre>void lua_pushlightuserdata (lua_State *L, void *p);</pre>
   4441 
   4442 <p>
   4443 Pushes a light userdata onto the stack.
   4444 
   4445 
   4446 <p>
   4447 Userdata represent C&nbsp;values in Lua.
   4448 A <em>light userdata</em> represents a pointer, a <code>void*</code>.
   4449 It is a value (like a number):
   4450 you do not create it, it has no individual metatable,
   4451 and it is not collected (as it was never created).
   4452 A light userdata is equal to "any"
   4453 light userdata with the same C&nbsp;address.
   4454 
   4455 
   4456 
   4457 
   4458 
   4459 <hr><h3><a name="lua_pushliteral"><code>lua_pushliteral</code></a></h3><p>
   4460 <span class="apii">[-0, +1, <em>m</em>]</span>
   4461 <pre>const char *lua_pushliteral (lua_State *L, const char *s);</pre>
   4462 
   4463 <p>
   4464 This macro is equivalent to <a href="#lua_pushstring"><code>lua_pushstring</code></a>,
   4465 but should be used only when <code>s</code> is a literal string.
   4466 
   4467 
   4468 
   4469 
   4470 
   4471 <hr><h3><a name="lua_pushlstring"><code>lua_pushlstring</code></a></h3><p>
   4472 <span class="apii">[-0, +1, <em>m</em>]</span>
   4473 <pre>const char *lua_pushlstring (lua_State *L, const char *s, size_t len);</pre>
   4474 
   4475 <p>
   4476 Pushes the string pointed to by <code>s</code> with size <code>len</code>
   4477 onto the stack.
   4478 Lua makes (or reuses) an internal copy of the given string,
   4479 so the memory at <code>s</code> can be freed or reused immediately after
   4480 the function returns.
   4481 The string can contain any binary data,
   4482 including embedded zeros.
   4483 
   4484 
   4485 <p>
   4486 Returns a pointer to the internal copy of the string.
   4487 
   4488 
   4489 
   4490 
   4491 
   4492 <hr><h3><a name="lua_pushnil"><code>lua_pushnil</code></a></h3><p>
   4493 <span class="apii">[-0, +1, &ndash;]</span>
   4494 <pre>void lua_pushnil (lua_State *L);</pre>
   4495 
   4496 <p>
   4497 Pushes a nil value onto the stack.
   4498 
   4499 
   4500 
   4501 
   4502 
   4503 <hr><h3><a name="lua_pushnumber"><code>lua_pushnumber</code></a></h3><p>
   4504 <span class="apii">[-0, +1, &ndash;]</span>
   4505 <pre>void lua_pushnumber (lua_State *L, lua_Number n);</pre>
   4506 
   4507 <p>
   4508 Pushes a float with value <code>n</code> onto the stack.
   4509 
   4510 
   4511 
   4512 
   4513 
   4514 <hr><h3><a name="lua_pushstring"><code>lua_pushstring</code></a></h3><p>
   4515 <span class="apii">[-0, +1, <em>m</em>]</span>
   4516 <pre>const char *lua_pushstring (lua_State *L, const char *s);</pre>
   4517 
   4518 <p>
   4519 Pushes the zero-terminated string pointed to by <code>s</code>
   4520 onto the stack.
   4521 Lua makes (or reuses) an internal copy of the given string,
   4522 so the memory at <code>s</code> can be freed or reused immediately after
   4523 the function returns.
   4524 
   4525 
   4526 <p>
   4527 Returns a pointer to the internal copy of the string.
   4528 
   4529 
   4530 <p>
   4531 If <code>s</code> is <code>NULL</code>, pushes <b>nil</b> and returns <code>NULL</code>.
   4532 
   4533 
   4534 
   4535 
   4536 
   4537 <hr><h3><a name="lua_pushthread"><code>lua_pushthread</code></a></h3><p>
   4538 <span class="apii">[-0, +1, &ndash;]</span>
   4539 <pre>int lua_pushthread (lua_State *L);</pre>
   4540 
   4541 <p>
   4542 Pushes the thread represented by <code>L</code> onto the stack.
   4543 Returns 1 if this thread is the main thread of its state.
   4544 
   4545 
   4546 
   4547 
   4548 
   4549 <hr><h3><a name="lua_pushvalue"><code>lua_pushvalue</code></a></h3><p>
   4550 <span class="apii">[-0, +1, &ndash;]</span>
   4551 <pre>void lua_pushvalue (lua_State *L, int index);</pre>
   4552 
   4553 <p>
   4554 Pushes a copy of the element at the given index
   4555 onto the stack.
   4556 
   4557 
   4558 
   4559 
   4560 
   4561 <hr><h3><a name="lua_pushvfstring"><code>lua_pushvfstring</code></a></h3><p>
   4562 <span class="apii">[-0, +1, <em>m</em>]</span>
   4563 <pre>const char *lua_pushvfstring (lua_State *L,
   4564                               const char *fmt,
   4565                               va_list argp);</pre>
   4566 
   4567 <p>
   4568 Equivalent to <a href="#lua_pushfstring"><code>lua_pushfstring</code></a>, except that it receives a <code>va_list</code>
   4569 instead of a variable number of arguments.
   4570 
   4571 
   4572 
   4573 
   4574 
   4575 <hr><h3><a name="lua_rawequal"><code>lua_rawequal</code></a></h3><p>
   4576 <span class="apii">[-0, +0, &ndash;]</span>
   4577 <pre>int lua_rawequal (lua_State *L, int index1, int index2);</pre>
   4578 
   4579 <p>
   4580 Returns 1 if the two values in indices <code>index1</code> and
   4581 <code>index2</code> are primitively equal
   4582 (that is, without calling the <code>__eq</code> metamethod).
   4583 Otherwise returns&nbsp;0.
   4584 Also returns&nbsp;0 if any of the indices are not valid.
   4585 
   4586 
   4587 
   4588 
   4589 
   4590 <hr><h3><a name="lua_rawget"><code>lua_rawget</code></a></h3><p>
   4591 <span class="apii">[-1, +1, &ndash;]</span>
   4592 <pre>int lua_rawget (lua_State *L, int index);</pre>
   4593 
   4594 <p>
   4595 Similar to <a href="#lua_gettable"><code>lua_gettable</code></a>, but does a raw access
   4596 (i.e., without metamethods).
   4597 
   4598 
   4599 
   4600 
   4601 
   4602 <hr><h3><a name="lua_rawgeti"><code>lua_rawgeti</code></a></h3><p>
   4603 <span class="apii">[-0, +1, &ndash;]</span>
   4604 <pre>int lua_rawgeti (lua_State *L, int index, lua_Integer n);</pre>
   4605 
   4606 <p>
   4607 Pushes onto the stack the value <code>t[n]</code>,
   4608 where <code>t</code> is the table at the given index.
   4609 The access is raw,
   4610 that is, it does not invoke the <code>__index</code> metamethod.
   4611 
   4612 
   4613 <p>
   4614 Returns the type of the pushed value.
   4615 
   4616 
   4617 
   4618 
   4619 
   4620 <hr><h3><a name="lua_rawgetp"><code>lua_rawgetp</code></a></h3><p>
   4621 <span class="apii">[-0, +1, &ndash;]</span>
   4622 <pre>int lua_rawgetp (lua_State *L, int index, const void *p);</pre>
   4623 
   4624 <p>
   4625 Pushes onto the stack the value <code>t[k]</code>,
   4626 where <code>t</code> is the table at the given index and
   4627 <code>k</code> is the pointer <code>p</code> represented as a light userdata.
   4628 The access is raw;
   4629 that is, it does not invoke the <code>__index</code> metamethod.
   4630 
   4631 
   4632 <p>
   4633 Returns the type of the pushed value.
   4634 
   4635 
   4636 
   4637 
   4638 
   4639 <hr><h3><a name="lua_rawlen"><code>lua_rawlen</code></a></h3><p>
   4640 <span class="apii">[-0, +0, &ndash;]</span>
   4641 <pre>size_t lua_rawlen (lua_State *L, int index);</pre>
   4642 
   4643 <p>
   4644 Returns the raw "length" of the value at the given index:
   4645 for strings, this is the string length;
   4646 for tables, this is the result of the length operator ('<code>#</code>')
   4647 with no metamethods;
   4648 for userdata, this is the size of the block of memory allocated
   4649 for the userdata;
   4650 for other values, it is&nbsp;0.
   4651 
   4652 
   4653 
   4654 
   4655 
   4656 <hr><h3><a name="lua_rawset"><code>lua_rawset</code></a></h3><p>
   4657 <span class="apii">[-2, +0, <em>m</em>]</span>
   4658 <pre>void lua_rawset (lua_State *L, int index);</pre>
   4659 
   4660 <p>
   4661 Similar to <a href="#lua_settable"><code>lua_settable</code></a>, but does a raw assignment
   4662 (i.e., without metamethods).
   4663 
   4664 
   4665 
   4666 
   4667 
   4668 <hr><h3><a name="lua_rawseti"><code>lua_rawseti</code></a></h3><p>
   4669 <span class="apii">[-1, +0, <em>m</em>]</span>
   4670 <pre>void lua_rawseti (lua_State *L, int index, lua_Integer i);</pre>
   4671 
   4672 <p>
   4673 Does the equivalent of <code>t[i] = v</code>,
   4674 where <code>t</code> is the table at the given index
   4675 and <code>v</code> is the value at the top of the stack.
   4676 
   4677 
   4678 <p>
   4679 This function pops the value from the stack.
   4680 The assignment is raw,
   4681 that is, it does not invoke the <code>__newindex</code> metamethod.
   4682 
   4683 
   4684 
   4685 
   4686 
   4687 <hr><h3><a name="lua_rawsetp"><code>lua_rawsetp</code></a></h3><p>
   4688 <span class="apii">[-1, +0, <em>m</em>]</span>
   4689 <pre>void lua_rawsetp (lua_State *L, int index, const void *p);</pre>
   4690 
   4691 <p>
   4692 Does the equivalent of <code>t[p] = v</code>,
   4693 where <code>t</code> is the table at the given index,
   4694 <code>p</code> is encoded as a light userdata,
   4695 and <code>v</code> is the value at the top of the stack.
   4696 
   4697 
   4698 <p>
   4699 This function pops the value from the stack.
   4700 The assignment is raw,
   4701 that is, it does not invoke <code>__newindex</code> metamethod.
   4702 
   4703 
   4704 
   4705 
   4706 
   4707 <hr><h3><a name="lua_Reader"><code>lua_Reader</code></a></h3>
   4708 <pre>typedef const char * (*lua_Reader) (lua_State *L,
   4709                                     void *data,
   4710                                     size_t *size);</pre>
   4711 
   4712 <p>
   4713 The reader function used by <a href="#lua_load"><code>lua_load</code></a>.
   4714 Every time it needs another piece of the chunk,
   4715 <a href="#lua_load"><code>lua_load</code></a> calls the reader,
   4716 passing along its <code>data</code> parameter.
   4717 The reader must return a pointer to a block of memory
   4718 with a new piece of the chunk
   4719 and set <code>size</code> to the block size.
   4720 The block must exist until the reader function is called again.
   4721 To signal the end of the chunk,
   4722 the reader must return <code>NULL</code> or set <code>size</code> to zero.
   4723 The reader function may return pieces of any size greater than zero.
   4724 
   4725 
   4726 
   4727 
   4728 
   4729 <hr><h3><a name="lua_register"><code>lua_register</code></a></h3><p>
   4730 <span class="apii">[-0, +0, <em>e</em>]</span>
   4731 <pre>void lua_register (lua_State *L, const char *name, lua_CFunction f);</pre>
   4732 
   4733 <p>
   4734 Sets the C&nbsp;function <code>f</code> as the new value of global <code>name</code>.
   4735 It is defined as a macro:
   4736 
   4737 <pre>
   4738      #define lua_register(L,n,f) \
   4739             (lua_pushcfunction(L, f), lua_setglobal(L, n))
   4740 </pre>
   4741 
   4742 
   4743 
   4744 
   4745 <hr><h3><a name="lua_remove"><code>lua_remove</code></a></h3><p>
   4746 <span class="apii">[-1, +0, &ndash;]</span>
   4747 <pre>void lua_remove (lua_State *L, int index);</pre>
   4748 
   4749 <p>
   4750 Removes the element at the given valid index,
   4751 shifting down the elements above this index to fill the gap.
   4752 This function cannot be called with a pseudo-index,
   4753 because a pseudo-index is not an actual stack position.
   4754 
   4755 
   4756 
   4757 
   4758 
   4759 <hr><h3><a name="lua_replace"><code>lua_replace</code></a></h3><p>
   4760 <span class="apii">[-1, +0, &ndash;]</span>
   4761 <pre>void lua_replace (lua_State *L, int index);</pre>
   4762 
   4763 <p>
   4764 Moves the top element into the given valid index
   4765 without shifting any element
   4766 (therefore replacing the value at that given index),
   4767 and then pops the top element.
   4768 
   4769 
   4770 
   4771 
   4772 
   4773 <hr><h3><a name="lua_resume"><code>lua_resume</code></a></h3><p>
   4774 <span class="apii">[-?, +?, &ndash;]</span>
   4775 <pre>int lua_resume (lua_State *L, lua_State *from, int nargs);</pre>
   4776 
   4777 <p>
   4778 Starts and resumes a coroutine in the given thread <code>L</code>.
   4779 
   4780 
   4781 <p>
   4782 To start a coroutine,
   4783 you push onto the thread stack the main function plus any arguments;
   4784 then you call <a href="#lua_resume"><code>lua_resume</code></a>,
   4785 with <code>nargs</code> being the number of arguments.
   4786 This call returns when the coroutine suspends or finishes its execution.
   4787 When it returns, the stack contains all values passed to <a href="#lua_yield"><code>lua_yield</code></a>,
   4788 or all values returned by the body function.
   4789 <a href="#lua_resume"><code>lua_resume</code></a> returns
   4790 <a href="#pdf-LUA_YIELD"><code>LUA_YIELD</code></a> if the coroutine yields,
   4791 <a href="#pdf-LUA_OK"><code>LUA_OK</code></a> if the coroutine finishes its execution
   4792 without errors,
   4793 or an error code in case of errors (see <a href="#lua_pcall"><code>lua_pcall</code></a>).
   4794 
   4795 
   4796 <p>
   4797 In case of errors,
   4798 the stack is not unwound,
   4799 so you can use the debug API over it.
   4800 The error object is on the top of the stack.
   4801 
   4802 
   4803 <p>
   4804 To resume a coroutine,
   4805 you remove any results from the last <a href="#lua_yield"><code>lua_yield</code></a>,
   4806 put on its stack only the values to
   4807 be passed as results from <code>yield</code>,
   4808 and then call <a href="#lua_resume"><code>lua_resume</code></a>.
   4809 
   4810 
   4811 <p>
   4812 The parameter <code>from</code> represents the coroutine that is resuming <code>L</code>.
   4813 If there is no such coroutine,
   4814 this parameter can be <code>NULL</code>.
   4815 
   4816 
   4817 
   4818 
   4819 
   4820 <hr><h3><a name="lua_rotate"><code>lua_rotate</code></a></h3><p>
   4821 <span class="apii">[-0, +0, &ndash;]</span>
   4822 <pre>void lua_rotate (lua_State *L, int idx, int n);</pre>
   4823 
   4824 <p>
   4825 Rotates the stack elements between the valid index <code>idx</code>
   4826 and the top of the stack.
   4827 The elements are rotated <code>n</code> positions in the direction of the top,
   4828 for a positive <code>n</code>,
   4829 or <code>-n</code> positions in the direction of the bottom,
   4830 for a negative <code>n</code>.
   4831 The absolute value of <code>n</code> must not be greater than the size
   4832 of the slice being rotated.
   4833 This function cannot be called with a pseudo-index,
   4834 because a pseudo-index is not an actual stack position.
   4835 
   4836 
   4837 
   4838 
   4839 
   4840 <hr><h3><a name="lua_setallocf"><code>lua_setallocf</code></a></h3><p>
   4841 <span class="apii">[-0, +0, &ndash;]</span>
   4842 <pre>void lua_setallocf (lua_State *L, lua_Alloc f, void *ud);</pre>
   4843 
   4844 <p>
   4845 Changes the allocator function of a given state to <code>f</code>
   4846 with user data <code>ud</code>.
   4847 
   4848 
   4849 
   4850 
   4851 
   4852 <hr><h3><a name="lua_setfield"><code>lua_setfield</code></a></h3><p>
   4853 <span class="apii">[-1, +0, <em>e</em>]</span>
   4854 <pre>void lua_setfield (lua_State *L, int index, const char *k);</pre>
   4855 
   4856 <p>
   4857 Does the equivalent to <code>t[k] = v</code>,
   4858 where <code>t</code> is the value at the given index
   4859 and <code>v</code> is the value at the top of the stack.
   4860 
   4861 
   4862 <p>
   4863 This function pops the value from the stack.
   4864 As in Lua, this function may trigger a metamethod
   4865 for the "newindex" event (see <a href="#2.4">&sect;2.4</a>).
   4866 
   4867 
   4868 
   4869 
   4870 
   4871 <hr><h3><a name="lua_setglobal"><code>lua_setglobal</code></a></h3><p>
   4872 <span class="apii">[-1, +0, <em>e</em>]</span>
   4873 <pre>void lua_setglobal (lua_State *L, const char *name);</pre>
   4874 
   4875 <p>
   4876 Pops a value from the stack and
   4877 sets it as the new value of global <code>name</code>.
   4878 
   4879 
   4880 
   4881 
   4882 
   4883 <hr><h3><a name="lua_seti"><code>lua_seti</code></a></h3><p>
   4884 <span class="apii">[-1, +0, <em>e</em>]</span>
   4885 <pre>void lua_seti (lua_State *L, int index, lua_Integer n);</pre>
   4886 
   4887 <p>
   4888 Does the equivalent to <code>t[n] = v</code>,
   4889 where <code>t</code> is the value at the given index
   4890 and <code>v</code> is the value at the top of the stack.
   4891 
   4892 
   4893 <p>
   4894 This function pops the value from the stack.
   4895 As in Lua, this function may trigger a metamethod
   4896 for the "newindex" event (see <a href="#2.4">&sect;2.4</a>).
   4897 
   4898 
   4899 
   4900 
   4901 
   4902 <hr><h3><a name="lua_setmetatable"><code>lua_setmetatable</code></a></h3><p>
   4903 <span class="apii">[-1, +0, &ndash;]</span>
   4904 <pre>void lua_setmetatable (lua_State *L, int index);</pre>
   4905 
   4906 <p>
   4907 Pops a table from the stack and
   4908 sets it as the new metatable for the value at the given index.
   4909 
   4910 
   4911 
   4912 
   4913 
   4914 <hr><h3><a name="lua_settable"><code>lua_settable</code></a></h3><p>
   4915 <span class="apii">[-2, +0, <em>e</em>]</span>
   4916 <pre>void lua_settable (lua_State *L, int index);</pre>
   4917 
   4918 <p>
   4919 Does the equivalent to <code>t[k] = v</code>,
   4920 where <code>t</code> is the value at the given index,
   4921 <code>v</code> is the value at the top of the stack,
   4922 and <code>k</code> is the value just below the top.
   4923 
   4924 
   4925 <p>
   4926 This function pops both the key and the value from the stack.
   4927 As in Lua, this function may trigger a metamethod
   4928 for the "newindex" event (see <a href="#2.4">&sect;2.4</a>).
   4929 
   4930 
   4931 
   4932 
   4933 
   4934 <hr><h3><a name="lua_settop"><code>lua_settop</code></a></h3><p>
   4935 <span class="apii">[-?, +?, &ndash;]</span>
   4936 <pre>void lua_settop (lua_State *L, int index);</pre>
   4937 
   4938 <p>
   4939 Accepts any index, or&nbsp;0,
   4940 and sets the stack top to this index.
   4941 If the new top is larger than the old one,
   4942 then the new elements are filled with <b>nil</b>.
   4943 If <code>index</code> is&nbsp;0, then all stack elements are removed.
   4944 
   4945 
   4946 
   4947 
   4948 
   4949 <hr><h3><a name="lua_setuservalue"><code>lua_setuservalue</code></a></h3><p>
   4950 <span class="apii">[-1, +0, &ndash;]</span>
   4951 <pre>void lua_setuservalue (lua_State *L, int index);</pre>
   4952 
   4953 <p>
   4954 Pops a value from the stack and sets it as
   4955 the new value associated to the full userdata at the given index.
   4956 
   4957 
   4958 
   4959 
   4960 
   4961 <hr><h3><a name="lua_State"><code>lua_State</code></a></h3>
   4962 <pre>typedef struct lua_State lua_State;</pre>
   4963 
   4964 <p>
   4965 An opaque structure that points to a thread and indirectly
   4966 (through the thread) to the whole state of a Lua interpreter.
   4967 The Lua library is fully reentrant:
   4968 it has no global variables.
   4969 All information about a state is accessible through this structure.
   4970 
   4971 
   4972 <p>
   4973 A pointer to this structure must be passed as the first argument to
   4974 every function in the library, except to <a href="#lua_newstate"><code>lua_newstate</code></a>,
   4975 which creates a Lua state from scratch.
   4976 
   4977 
   4978 
   4979 
   4980 
   4981 <hr><h3><a name="lua_status"><code>lua_status</code></a></h3><p>
   4982 <span class="apii">[-0, +0, &ndash;]</span>
   4983 <pre>int lua_status (lua_State *L);</pre>
   4984 
   4985 <p>
   4986 Returns the status of the thread <code>L</code>.
   4987 
   4988 
   4989 <p>
   4990 The status can be 0 (<a href="#pdf-LUA_OK"><code>LUA_OK</code></a>) for a normal thread,
   4991 an error code if the thread finished the execution
   4992 of a <a href="#lua_resume"><code>lua_resume</code></a> with an error,
   4993 or <a name="pdf-LUA_YIELD"><code>LUA_YIELD</code></a> if the thread is suspended.
   4994 
   4995 
   4996 <p>
   4997 You can only call functions in threads with status <a href="#pdf-LUA_OK"><code>LUA_OK</code></a>.
   4998 You can resume threads with status <a href="#pdf-LUA_OK"><code>LUA_OK</code></a>
   4999 (to start a new coroutine) or <a href="#pdf-LUA_YIELD"><code>LUA_YIELD</code></a>
   5000 (to resume a coroutine).
   5001 
   5002 
   5003 
   5004 
   5005 
   5006 <hr><h3><a name="lua_stringtonumber"><code>lua_stringtonumber</code></a></h3><p>
   5007 <span class="apii">[-0, +1, &ndash;]</span>
   5008 <pre>size_t lua_stringtonumber (lua_State *L, const char *s);</pre>
   5009 
   5010 <p>
   5011 Converts the zero-terminated string <code>s</code> to a number,
   5012 pushes that number into the stack,
   5013 and returns the total size of the string,
   5014 that is, its length plus one.
   5015 The conversion can result in an integer or a float,
   5016 according to the lexical conventions of Lua (see <a href="#3.1">&sect;3.1</a>).
   5017 The string may have leading and trailing spaces and a sign.
   5018 If the string is not a valid numeral,
   5019 returns 0 and pushes nothing.
   5020 (Note that the result can be used as a boolean,
   5021 true if the conversion succeeds.)
   5022 
   5023 
   5024 
   5025 
   5026 
   5027 <hr><h3><a name="lua_toboolean"><code>lua_toboolean</code></a></h3><p>
   5028 <span class="apii">[-0, +0, &ndash;]</span>
   5029 <pre>int lua_toboolean (lua_State *L, int index);</pre>
   5030 
   5031 <p>
   5032 Converts the Lua value at the given index to a C&nbsp;boolean
   5033 value (0&nbsp;or&nbsp;1).
   5034 Like all tests in Lua,
   5035 <a href="#lua_toboolean"><code>lua_toboolean</code></a> returns true for any Lua value
   5036 different from <b>false</b> and <b>nil</b>;
   5037 otherwise it returns false.
   5038 (If you want to accept only actual boolean values,
   5039 use <a href="#lua_isboolean"><code>lua_isboolean</code></a> to test the value's type.)
   5040 
   5041 
   5042 
   5043 
   5044 
   5045 <hr><h3><a name="lua_tocfunction"><code>lua_tocfunction</code></a></h3><p>
   5046 <span class="apii">[-0, +0, &ndash;]</span>
   5047 <pre>lua_CFunction lua_tocfunction (lua_State *L, int index);</pre>
   5048 
   5049 <p>
   5050 Converts a value at the given index to a C&nbsp;function.
   5051 That value must be a C&nbsp;function;
   5052 otherwise, returns <code>NULL</code>.
   5053 
   5054 
   5055 
   5056 
   5057 
   5058 <hr><h3><a name="lua_tointeger"><code>lua_tointeger</code></a></h3><p>
   5059 <span class="apii">[-0, +0, &ndash;]</span>
   5060 <pre>lua_Integer lua_tointeger (lua_State *L, int index);</pre>
   5061 
   5062 <p>
   5063 Equivalent to <a href="#lua_tointegerx"><code>lua_tointegerx</code></a> with <code>isnum</code> equal to <code>NULL</code>.
   5064 
   5065 
   5066 
   5067 
   5068 
   5069 <hr><h3><a name="lua_tointegerx"><code>lua_tointegerx</code></a></h3><p>
   5070 <span class="apii">[-0, +0, &ndash;]</span>
   5071 <pre>lua_Integer lua_tointegerx (lua_State *L, int index, int *isnum);</pre>
   5072 
   5073 <p>
   5074 Converts the Lua value at the given index
   5075 to the signed integral type <a href="#lua_Integer"><code>lua_Integer</code></a>.
   5076 The Lua value must be an integer,
   5077 or a number or string convertible to an integer (see <a href="#3.4.3">&sect;3.4.3</a>);
   5078 otherwise, <code>lua_tointegerx</code> returns&nbsp;0.
   5079 
   5080 
   5081 <p>
   5082 If <code>isnum</code> is not <code>NULL</code>,
   5083 its referent is assigned a boolean value that
   5084 indicates whether the operation succeeded.
   5085 
   5086 
   5087 
   5088 
   5089 
   5090 <hr><h3><a name="lua_tolstring"><code>lua_tolstring</code></a></h3><p>
   5091 <span class="apii">[-0, +0, <em>m</em>]</span>
   5092 <pre>const char *lua_tolstring (lua_State *L, int index, size_t *len);</pre>
   5093 
   5094 <p>
   5095 Converts the Lua value at the given index to a C&nbsp;string.
   5096 If <code>len</code> is not <code>NULL</code>,
   5097 it sets <code>*len</code> with the string length.
   5098 The Lua value must be a string or a number;
   5099 otherwise, the function returns <code>NULL</code>.
   5100 If the value is a number,
   5101 then <code>lua_tolstring</code> also
   5102 <em>changes the actual value in the stack to a string</em>.
   5103 (This change confuses <a href="#lua_next"><code>lua_next</code></a>
   5104 when <code>lua_tolstring</code> is applied to keys during a table traversal.)
   5105 
   5106 
   5107 <p>
   5108 <code>lua_tolstring</code> returns a pointer
   5109 to a string inside the Lua state.
   5110 This string always has a zero ('<code>\0</code>')
   5111 after its last character (as in&nbsp;C),
   5112 but can contain other zeros in its body.
   5113 
   5114 
   5115 <p>
   5116 Because Lua has garbage collection,
   5117 there is no guarantee that the pointer returned by <code>lua_tolstring</code>
   5118 will be valid after the corresponding Lua value is removed from the stack.
   5119 
   5120 
   5121 
   5122 
   5123 
   5124 <hr><h3><a name="lua_tonumber"><code>lua_tonumber</code></a></h3><p>
   5125 <span class="apii">[-0, +0, &ndash;]</span>
   5126 <pre>lua_Number lua_tonumber (lua_State *L, int index);</pre>
   5127 
   5128 <p>
   5129 Equivalent to <a href="#lua_tonumberx"><code>lua_tonumberx</code></a> with <code>isnum</code> equal to <code>NULL</code>.
   5130 
   5131 
   5132 
   5133 
   5134 
   5135 <hr><h3><a name="lua_tonumberx"><code>lua_tonumberx</code></a></h3><p>
   5136 <span class="apii">[-0, +0, &ndash;]</span>
   5137 <pre>lua_Number lua_tonumberx (lua_State *L, int index, int *isnum);</pre>
   5138 
   5139 <p>
   5140 Converts the Lua value at the given index
   5141 to the C&nbsp;type <a href="#lua_Number"><code>lua_Number</code></a> (see <a href="#lua_Number"><code>lua_Number</code></a>).
   5142 The Lua value must be a number or a string convertible to a number
   5143 (see <a href="#3.4.3">&sect;3.4.3</a>);
   5144 otherwise, <a href="#lua_tonumberx"><code>lua_tonumberx</code></a> returns&nbsp;0.
   5145 
   5146 
   5147 <p>
   5148 If <code>isnum</code> is not <code>NULL</code>,
   5149 its referent is assigned a boolean value that
   5150 indicates whether the operation succeeded.
   5151 
   5152 
   5153 
   5154 
   5155 
   5156 <hr><h3><a name="lua_topointer"><code>lua_topointer</code></a></h3><p>
   5157 <span class="apii">[-0, +0, &ndash;]</span>
   5158 <pre>const void *lua_topointer (lua_State *L, int index);</pre>
   5159 
   5160 <p>
   5161 Converts the value at the given index to a generic
   5162 C&nbsp;pointer (<code>void*</code>).
   5163 The value can be a userdata, a table, a thread, or a function;
   5164 otherwise, <code>lua_topointer</code> returns <code>NULL</code>.
   5165 Different objects will give different pointers.
   5166 There is no way to convert the pointer back to its original value.
   5167 
   5168 
   5169 <p>
   5170 Typically this function is used only for hashing and debug information.
   5171 
   5172 
   5173 
   5174 
   5175 
   5176 <hr><h3><a name="lua_tostring"><code>lua_tostring</code></a></h3><p>
   5177 <span class="apii">[-0, +0, <em>m</em>]</span>
   5178 <pre>const char *lua_tostring (lua_State *L, int index);</pre>
   5179 
   5180 <p>
   5181 Equivalent to <a href="#lua_tolstring"><code>lua_tolstring</code></a> with <code>len</code> equal to <code>NULL</code>.
   5182 
   5183 
   5184 
   5185 
   5186 
   5187 <hr><h3><a name="lua_tothread"><code>lua_tothread</code></a></h3><p>
   5188 <span class="apii">[-0, +0, &ndash;]</span>
   5189 <pre>lua_State *lua_tothread (lua_State *L, int index);</pre>
   5190 
   5191 <p>
   5192 Converts the value at the given index to a Lua thread
   5193 (represented as <code>lua_State*</code>).
   5194 This value must be a thread;
   5195 otherwise, the function returns <code>NULL</code>.
   5196 
   5197 
   5198 
   5199 
   5200 
   5201 <hr><h3><a name="lua_touserdata"><code>lua_touserdata</code></a></h3><p>
   5202 <span class="apii">[-0, +0, &ndash;]</span>
   5203 <pre>void *lua_touserdata (lua_State *L, int index);</pre>
   5204 
   5205 <p>
   5206 If the value at the given index is a full userdata,
   5207 returns its block address.
   5208 If the value is a light userdata,
   5209 returns its pointer.
   5210 Otherwise, returns <code>NULL</code>.
   5211 
   5212 
   5213 
   5214 
   5215 
   5216 <hr><h3><a name="lua_type"><code>lua_type</code></a></h3><p>
   5217 <span class="apii">[-0, +0, &ndash;]</span>
   5218 <pre>int lua_type (lua_State *L, int index);</pre>
   5219 
   5220 <p>
   5221 Returns the type of the value in the given valid index,
   5222 or <code>LUA_TNONE</code> for a non-valid (but acceptable) index.
   5223 The types returned by <a href="#lua_type"><code>lua_type</code></a> are coded by the following constants
   5224 defined in <code>lua.h</code>:
   5225 <a name="pdf-LUA_TNIL"><code>LUA_TNIL</code></a> (0),
   5226 <a name="pdf-LUA_TNUMBER"><code>LUA_TNUMBER</code></a>,
   5227 <a name="pdf-LUA_TBOOLEAN"><code>LUA_TBOOLEAN</code></a>,
   5228 <a name="pdf-LUA_TSTRING"><code>LUA_TSTRING</code></a>,
   5229 <a name="pdf-LUA_TTABLE"><code>LUA_TTABLE</code></a>,
   5230 <a name="pdf-LUA_TFUNCTION"><code>LUA_TFUNCTION</code></a>,
   5231 <a name="pdf-LUA_TUSERDATA"><code>LUA_TUSERDATA</code></a>,
   5232 <a name="pdf-LUA_TTHREAD"><code>LUA_TTHREAD</code></a>,
   5233 and
   5234 <a name="pdf-LUA_TLIGHTUSERDATA"><code>LUA_TLIGHTUSERDATA</code></a>.
   5235 
   5236 
   5237 
   5238 
   5239 
   5240 <hr><h3><a name="lua_typename"><code>lua_typename</code></a></h3><p>
   5241 <span class="apii">[-0, +0, &ndash;]</span>
   5242 <pre>const char *lua_typename (lua_State *L, int tp);</pre>
   5243 
   5244 <p>
   5245 Returns the name of the type encoded by the value <code>tp</code>,
   5246 which must be one the values returned by <a href="#lua_type"><code>lua_type</code></a>.
   5247 
   5248 
   5249 
   5250 
   5251 
   5252 <hr><h3><a name="lua_Unsigned"><code>lua_Unsigned</code></a></h3>
   5253 <pre>typedef ... lua_Unsigned;</pre>
   5254 
   5255 <p>
   5256 The unsigned version of <a href="#lua_Integer"><code>lua_Integer</code></a>.
   5257 
   5258 
   5259 
   5260 
   5261 
   5262 <hr><h3><a name="lua_upvalueindex"><code>lua_upvalueindex</code></a></h3><p>
   5263 <span class="apii">[-0, +0, &ndash;]</span>
   5264 <pre>int lua_upvalueindex (int i);</pre>
   5265 
   5266 <p>
   5267 Returns the pseudo-index that represents the <code>i</code>-th upvalue of
   5268 the running function (see <a href="#4.4">&sect;4.4</a>).
   5269 
   5270 
   5271 
   5272 
   5273 
   5274 <hr><h3><a name="lua_version"><code>lua_version</code></a></h3><p>
   5275 <span class="apii">[-0, +0, &ndash;]</span>
   5276 <pre>const lua_Number *lua_version (lua_State *L);</pre>
   5277 
   5278 <p>
   5279 Returns the address of the version number
   5280 (a C static variable)
   5281 stored in the Lua core.
   5282 When called with a valid <a href="#lua_State"><code>lua_State</code></a>,
   5283 returns the address of the version used to create that state.
   5284 When called with <code>NULL</code>,
   5285 returns the address of the version running the call.
   5286 
   5287 
   5288 
   5289 
   5290 
   5291 <hr><h3><a name="lua_Writer"><code>lua_Writer</code></a></h3>
   5292 <pre>typedef int (*lua_Writer) (lua_State *L,
   5293                            const void* p,
   5294                            size_t sz,
   5295                            void* ud);</pre>
   5296 
   5297 <p>
   5298 The type of the writer function used by <a href="#lua_dump"><code>lua_dump</code></a>.
   5299 Every time it produces another piece of chunk,
   5300 <a href="#lua_dump"><code>lua_dump</code></a> calls the writer,
   5301 passing along the buffer to be written (<code>p</code>),
   5302 its size (<code>sz</code>),
   5303 and the <code>data</code> parameter supplied to <a href="#lua_dump"><code>lua_dump</code></a>.
   5304 
   5305 
   5306 <p>
   5307 The writer returns an error code:
   5308 0&nbsp;means no errors;
   5309 any other value means an error and stops <a href="#lua_dump"><code>lua_dump</code></a> from
   5310 calling the writer again.
   5311 
   5312 
   5313 
   5314 
   5315 
   5316 <hr><h3><a name="lua_xmove"><code>lua_xmove</code></a></h3><p>
   5317 <span class="apii">[-?, +?, &ndash;]</span>
   5318 <pre>void lua_xmove (lua_State *from, lua_State *to, int n);</pre>
   5319 
   5320 <p>
   5321 Exchange values between different threads of the same state.
   5322 
   5323 
   5324 <p>
   5325 This function pops <code>n</code> values from the stack <code>from</code>,
   5326 and pushes them onto the stack <code>to</code>.
   5327 
   5328 
   5329 
   5330 
   5331 
   5332 <hr><h3><a name="lua_yield"><code>lua_yield</code></a></h3><p>
   5333 <span class="apii">[-?, +?, <em>e</em>]</span>
   5334 <pre>int lua_yield (lua_State *L, int nresults);</pre>
   5335 
   5336 <p>
   5337 This function is equivalent to <a href="#lua_yieldk"><code>lua_yieldk</code></a>,
   5338 but it has no continuation (see <a href="#4.7">&sect;4.7</a>).
   5339 Therefore, when the thread resumes,
   5340 it continues the function that called
   5341 the function calling <code>lua_yield</code>.
   5342 
   5343 
   5344 
   5345 
   5346 
   5347 <hr><h3><a name="lua_yieldk"><code>lua_yieldk</code></a></h3><p>
   5348 <span class="apii">[-?, +?, <em>e</em>]</span>
   5349 <pre>int lua_yieldk (lua_State *L,
   5350                 int nresults,
   5351                 lua_KContext ctx,
   5352                 lua_KFunction k);</pre>
   5353 
   5354 <p>
   5355 Yields a coroutine (thread).
   5356 
   5357 
   5358 <p>
   5359 When a C&nbsp;function calls <a href="#lua_yieldk"><code>lua_yieldk</code></a>,
   5360 the running coroutine suspends its execution,
   5361 and the call to <a href="#lua_resume"><code>lua_resume</code></a> that started this coroutine returns.
   5362 The parameter <code>nresults</code> is the number of values from the stack
   5363 that will be passed as results to <a href="#lua_resume"><code>lua_resume</code></a>.
   5364 
   5365 
   5366 <p>
   5367 When the coroutine is resumed again,
   5368 Lua calls the given continuation function <code>k</code> to continue
   5369 the execution of the C&nbsp;function that yielded (see <a href="#4.7">&sect;4.7</a>).
   5370 This continuation function receives the same stack
   5371 from the previous function,
   5372 with the <code>n</code> results removed and
   5373 replaced by the arguments passed to <a href="#lua_resume"><code>lua_resume</code></a>.
   5374 Moreover,
   5375 the continuation function receives the value <code>ctx</code>
   5376 that was passed to <a href="#lua_yieldk"><code>lua_yieldk</code></a>.
   5377 
   5378 
   5379 <p>
   5380 Usually, this function does not return;
   5381 when the coroutine eventually resumes,
   5382 it continues executing the continuation function.
   5383 However, there is one special case,
   5384 which is when this function is called
   5385 from inside a line or a count hook (see <a href="#4.9">&sect;4.9</a>).
   5386 In that case, <code>lua_yieldk</code> should be called with no continuation
   5387 (probably in the form of <a href="#lua_yield"><code>lua_yield</code></a>) and no results,
   5388 and the hook should return immediately after the call.
   5389 Lua will yield and,
   5390 when the coroutine resumes again,
   5391 it will continue the normal execution
   5392 of the (Lua) function that triggered the hook.
   5393 
   5394 
   5395 <p>
   5396 This function can raise an error if it is called from a thread
   5397 with a pending C call with no continuation function,
   5398 or it is called from a thread that is not running inside a resume
   5399 (e.g., the main thread).
   5400 
   5401 
   5402 
   5403 
   5404 
   5405 
   5406 
   5407 <h2>4.9 &ndash; <a name="4.9">The Debug Interface</a></h2>
   5408 
   5409 <p>
   5410 Lua has no built-in debugging facilities.
   5411 Instead, it offers a special interface
   5412 by means of functions and <em>hooks</em>.
   5413 This interface allows the construction of different
   5414 kinds of debuggers, profilers, and other tools
   5415 that need "inside information" from the interpreter.
   5416 
   5417 
   5418 
   5419 <hr><h3><a name="lua_Debug"><code>lua_Debug</code></a></h3>
   5420 <pre>typedef struct lua_Debug {
   5421   int event;
   5422   const char *name;           /* (n) */
   5423   const char *namewhat;       /* (n) */
   5424   const char *what;           /* (S) */
   5425   const char *source;         /* (S) */
   5426   int currentline;            /* (l) */
   5427   int linedefined;            /* (S) */
   5428   int lastlinedefined;        /* (S) */
   5429   unsigned char nups;         /* (u) number of upvalues */
   5430   unsigned char nparams;      /* (u) number of parameters */
   5431   char isvararg;              /* (u) */
   5432   char istailcall;            /* (t) */
   5433   char short_src[LUA_IDSIZE]; /* (S) */
   5434   /* private part */
   5435   <em>other fields</em>
   5436 } lua_Debug;</pre>
   5437 
   5438 <p>
   5439 A structure used to carry different pieces of
   5440 information about a function or an activation record.
   5441 <a href="#lua_getstack"><code>lua_getstack</code></a> fills only the private part
   5442 of this structure, for later use.
   5443 To fill the other fields of <a href="#lua_Debug"><code>lua_Debug</code></a> with useful information,
   5444 call <a href="#lua_getinfo"><code>lua_getinfo</code></a>.
   5445 
   5446 
   5447 <p>
   5448 The fields of <a href="#lua_Debug"><code>lua_Debug</code></a> have the following meaning:
   5449 
   5450 <ul>
   5451 
   5452 <li><b><code>source</code>: </b>
   5453 the name of the chunk that created the function.
   5454 If <code>source</code> starts with a '<code>@</code>',
   5455 it means that the function was defined in a file where
   5456 the file name follows the '<code>@</code>'.
   5457 If <code>source</code> starts with a '<code>=</code>',
   5458 the remainder of its contents describe the source in a user-dependent manner.
   5459 Otherwise,
   5460 the function was defined in a string where
   5461 <code>source</code> is that string.
   5462 </li>
   5463 
   5464 <li><b><code>short_src</code>: </b>
   5465 a "printable" version of <code>source</code>, to be used in error messages.
   5466 </li>
   5467 
   5468 <li><b><code>linedefined</code>: </b>
   5469 the line number where the definition of the function starts.
   5470 </li>
   5471 
   5472 <li><b><code>lastlinedefined</code>: </b>
   5473 the line number where the definition of the function ends.
   5474 </li>
   5475 
   5476 <li><b><code>what</code>: </b>
   5477 the string <code>"Lua"</code> if the function is a Lua function,
   5478 <code>"C"</code> if it is a C&nbsp;function,
   5479 <code>"main"</code> if it is the main part of a chunk.
   5480 </li>
   5481 
   5482 <li><b><code>currentline</code>: </b>
   5483 the current line where the given function is executing.
   5484 When no line information is available,
   5485 <code>currentline</code> is set to -1.
   5486 </li>
   5487 
   5488 <li><b><code>name</code>: </b>
   5489 a reasonable name for the given function.
   5490 Because functions in Lua are first-class values,
   5491 they do not have a fixed name:
   5492 some functions can be the value of multiple global variables,
   5493 while others can be stored only in a table field.
   5494 The <code>lua_getinfo</code> function checks how the function was
   5495 called to find a suitable name.
   5496 If it cannot find a name,
   5497 then <code>name</code> is set to <code>NULL</code>.
   5498 </li>
   5499 
   5500 <li><b><code>namewhat</code>: </b>
   5501 explains the <code>name</code> field.
   5502 The value of <code>namewhat</code> can be
   5503 <code>"global"</code>, <code>"local"</code>, <code>"method"</code>,
   5504 <code>"field"</code>, <code>"upvalue"</code>, or <code>""</code> (the empty string),
   5505 according to how the function was called.
   5506 (Lua uses the empty string when no other option seems to apply.)
   5507 </li>
   5508 
   5509 <li><b><code>istailcall</code>: </b>
   5510 true if this function invocation was called by a tail call.
   5511 In this case, the caller of this level is not in the stack.
   5512 </li>
   5513 
   5514 <li><b><code>nups</code>: </b>
   5515 the number of upvalues of the function.
   5516 </li>
   5517 
   5518 <li><b><code>nparams</code>: </b>
   5519 the number of fixed parameters of the function
   5520 (always 0&nbsp;for C&nbsp;functions).
   5521 </li>
   5522 
   5523 <li><b><code>isvararg</code>: </b>
   5524 true if the function is a vararg function
   5525 (always true for C&nbsp;functions).
   5526 </li>
   5527 
   5528 </ul>
   5529 
   5530 
   5531 
   5532 
   5533 <hr><h3><a name="lua_gethook"><code>lua_gethook</code></a></h3><p>
   5534 <span class="apii">[-0, +0, &ndash;]</span>
   5535 <pre>lua_Hook lua_gethook (lua_State *L);</pre>
   5536 
   5537 <p>
   5538 Returns the current hook function.
   5539 
   5540 
   5541 
   5542 
   5543 
   5544 <hr><h3><a name="lua_gethookcount"><code>lua_gethookcount</code></a></h3><p>
   5545 <span class="apii">[-0, +0, &ndash;]</span>
   5546 <pre>int lua_gethookcount (lua_State *L);</pre>
   5547 
   5548 <p>
   5549 Returns the current hook count.
   5550 
   5551 
   5552 
   5553 
   5554 
   5555 <hr><h3><a name="lua_gethookmask"><code>lua_gethookmask</code></a></h3><p>
   5556 <span class="apii">[-0, +0, &ndash;]</span>
   5557 <pre>int lua_gethookmask (lua_State *L);</pre>
   5558 
   5559 <p>
   5560 Returns the current hook mask.
   5561 
   5562 
   5563 
   5564 
   5565 
   5566 <hr><h3><a name="lua_getinfo"><code>lua_getinfo</code></a></h3><p>
   5567 <span class="apii">[-(0|1), +(0|1|2), <em>e</em>]</span>
   5568 <pre>int lua_getinfo (lua_State *L, const char *what, lua_Debug *ar);</pre>
   5569 
   5570 <p>
   5571 Gets information about a specific function or function invocation.
   5572 
   5573 
   5574 <p>
   5575 To get information about a function invocation,
   5576 the parameter <code>ar</code> must be a valid activation record that was
   5577 filled by a previous call to <a href="#lua_getstack"><code>lua_getstack</code></a> or
   5578 given as argument to a hook (see <a href="#lua_Hook"><code>lua_Hook</code></a>).
   5579 
   5580 
   5581 <p>
   5582 To get information about a function, you push it onto the stack
   5583 and start the <code>what</code> string with the character '<code>&gt;</code>'.
   5584 (In that case,
   5585 <code>lua_getinfo</code> pops the function from the top of the stack.)
   5586 For instance, to know in which line a function <code>f</code> was defined,
   5587 you can write the following code:
   5588 
   5589 <pre>
   5590      lua_Debug ar;
   5591      lua_getglobal(L, "f");  /* get global 'f' */
   5592      lua_getinfo(L, "&gt;S", &amp;ar);
   5593      printf("%d\n", ar.linedefined);
   5594 </pre>
   5595 
   5596 <p>
   5597 Each character in the string <code>what</code>
   5598 selects some fields of the structure <code>ar</code> to be filled or
   5599 a value to be pushed on the stack:
   5600 
   5601 <ul>
   5602 
   5603 <li><b>'<code>n</code>': </b> fills in the field <code>name</code> and <code>namewhat</code>;
   5604 </li>
   5605 
   5606 <li><b>'<code>S</code>': </b>
   5607 fills in the fields <code>source</code>, <code>short_src</code>,
   5608 <code>linedefined</code>, <code>lastlinedefined</code>, and <code>what</code>;
   5609 </li>
   5610 
   5611 <li><b>'<code>l</code>': </b> fills in the field <code>currentline</code>;
   5612 </li>
   5613 
   5614 <li><b>'<code>t</code>': </b> fills in the field <code>istailcall</code>;
   5615 </li>
   5616 
   5617 <li><b>'<code>u</code>': </b> fills in the fields
   5618 <code>nups</code>, <code>nparams</code>, and <code>isvararg</code>;
   5619 </li>
   5620 
   5621 <li><b>'<code>f</code>': </b>
   5622 pushes onto the stack the function that is
   5623 running at the given level;
   5624 </li>
   5625 
   5626 <li><b>'<code>L</code>': </b>
   5627 pushes onto the stack a table whose indices are the
   5628 numbers of the lines that are valid on the function.
   5629 (A <em>valid line</em> is a line with some associated code,
   5630 that is, a line where you can put a break point.
   5631 Non-valid lines include empty lines and comments.)
   5632 
   5633 
   5634 <p>
   5635 If this option is given together with option '<code>f</code>',
   5636 its table is pushed after the function.
   5637 </li>
   5638 
   5639 </ul>
   5640 
   5641 <p>
   5642 This function returns 0 on error
   5643 (for instance, an invalid option in <code>what</code>).
   5644 
   5645 
   5646 
   5647 
   5648 
   5649 <hr><h3><a name="lua_getlocal"><code>lua_getlocal</code></a></h3><p>
   5650 <span class="apii">[-0, +(0|1), &ndash;]</span>
   5651 <pre>const char *lua_getlocal (lua_State *L, const lua_Debug *ar, int n);</pre>
   5652 
   5653 <p>
   5654 Gets information about a local variable of
   5655 a given activation record or a given function.
   5656 
   5657 
   5658 <p>
   5659 In the first case,
   5660 the parameter <code>ar</code> must be a valid activation record that was
   5661 filled by a previous call to <a href="#lua_getstack"><code>lua_getstack</code></a> or
   5662 given as argument to a hook (see <a href="#lua_Hook"><code>lua_Hook</code></a>).
   5663 The index <code>n</code> selects which local variable to inspect;
   5664 see <a href="#pdf-debug.getlocal"><code>debug.getlocal</code></a> for details about variable indices
   5665 and names.
   5666 
   5667 
   5668 <p>
   5669 <a href="#lua_getlocal"><code>lua_getlocal</code></a> pushes the variable's value onto the stack
   5670 and returns its name.
   5671 
   5672 
   5673 <p>
   5674 In the second case, <code>ar</code> must be <code>NULL</code> and the function
   5675 to be inspected must be at the top of the stack.
   5676 In this case, only parameters of Lua functions are visible
   5677 (as there is no information about what variables are active)
   5678 and no values are pushed onto the stack.
   5679 
   5680 
   5681 <p>
   5682 Returns <code>NULL</code> (and pushes nothing)
   5683 when the index is greater than
   5684 the number of active local variables.
   5685 
   5686 
   5687 
   5688 
   5689 
   5690 <hr><h3><a name="lua_getstack"><code>lua_getstack</code></a></h3><p>
   5691 <span class="apii">[-0, +0, &ndash;]</span>
   5692 <pre>int lua_getstack (lua_State *L, int level, lua_Debug *ar);</pre>
   5693 
   5694 <p>
   5695 Gets information about the interpreter runtime stack.
   5696 
   5697 
   5698 <p>
   5699 This function fills parts of a <a href="#lua_Debug"><code>lua_Debug</code></a> structure with
   5700 an identification of the <em>activation record</em>
   5701 of the function executing at a given level.
   5702 Level&nbsp;0 is the current running function,
   5703 whereas level <em>n+1</em> is the function that has called level <em>n</em>
   5704 (except for tail calls, which do not count on the stack).
   5705 When there are no errors, <a href="#lua_getstack"><code>lua_getstack</code></a> returns 1;
   5706 when called with a level greater than the stack depth,
   5707 it returns 0.
   5708 
   5709 
   5710 
   5711 
   5712 
   5713 <hr><h3><a name="lua_getupvalue"><code>lua_getupvalue</code></a></h3><p>
   5714 <span class="apii">[-0, +(0|1), &ndash;]</span>
   5715 <pre>const char *lua_getupvalue (lua_State *L, int funcindex, int n);</pre>
   5716 
   5717 <p>
   5718 Gets information about the <code>n</code>-th upvalue
   5719 of the closure at index <code>funcindex</code>.
   5720 It pushes the upvalue's value onto the stack
   5721 and returns its name.
   5722 Returns <code>NULL</code> (and pushes nothing)
   5723 when the index <code>n</code> is greater than the number of upvalues.
   5724 
   5725 
   5726 <p>
   5727 For C&nbsp;functions, this function uses the empty string <code>""</code>
   5728 as a name for all upvalues.
   5729 (For Lua functions,
   5730 upvalues are the external local variables that the function uses,
   5731 and that are consequently included in its closure.)
   5732 
   5733 
   5734 <p>
   5735 Upvalues have no particular order,
   5736 as they are active through the whole function.
   5737 They are numbered in an arbitrary order.
   5738 
   5739 
   5740 
   5741 
   5742 
   5743 <hr><h3><a name="lua_Hook"><code>lua_Hook</code></a></h3>
   5744 <pre>typedef void (*lua_Hook) (lua_State *L, lua_Debug *ar);</pre>
   5745 
   5746 <p>
   5747 Type for debugging hook functions.
   5748 
   5749 
   5750 <p>
   5751 Whenever a hook is called, its <code>ar</code> argument has its field
   5752 <code>event</code> set to the specific event that triggered the hook.
   5753 Lua identifies these events with the following constants:
   5754 <a name="pdf-LUA_HOOKCALL"><code>LUA_HOOKCALL</code></a>, <a name="pdf-LUA_HOOKRET"><code>LUA_HOOKRET</code></a>,
   5755 <a name="pdf-LUA_HOOKTAILCALL"><code>LUA_HOOKTAILCALL</code></a>, <a name="pdf-LUA_HOOKLINE"><code>LUA_HOOKLINE</code></a>,
   5756 and <a name="pdf-LUA_HOOKCOUNT"><code>LUA_HOOKCOUNT</code></a>.
   5757 Moreover, for line events, the field <code>currentline</code> is also set.
   5758 To get the value of any other field in <code>ar</code>,
   5759 the hook must call <a href="#lua_getinfo"><code>lua_getinfo</code></a>.
   5760 
   5761 
   5762 <p>
   5763 For call events, <code>event</code> can be <code>LUA_HOOKCALL</code>,
   5764 the normal value, or <code>LUA_HOOKTAILCALL</code>, for a tail call;
   5765 in this case, there will be no corresponding return event.
   5766 
   5767 
   5768 <p>
   5769 While Lua is running a hook, it disables other calls to hooks.
   5770 Therefore, if a hook calls back Lua to execute a function or a chunk,
   5771 this execution occurs without any calls to hooks.
   5772 
   5773 
   5774 <p>
   5775 Hook functions cannot have continuations,
   5776 that is, they cannot call <a href="#lua_yieldk"><code>lua_yieldk</code></a>,
   5777 <a href="#lua_pcallk"><code>lua_pcallk</code></a>, or <a href="#lua_callk"><code>lua_callk</code></a> with a non-null <code>k</code>.
   5778 
   5779 
   5780 <p>
   5781 Hook functions can yield under the following conditions:
   5782 Only count and line events can yield;
   5783 to yield, a hook function must finish its execution
   5784 calling <a href="#lua_yield"><code>lua_yield</code></a> with <code>nresults</code> equal to zero
   5785 (that is, with no values).
   5786 
   5787 
   5788 
   5789 
   5790 
   5791 <hr><h3><a name="lua_sethook"><code>lua_sethook</code></a></h3><p>
   5792 <span class="apii">[-0, +0, &ndash;]</span>
   5793 <pre>void lua_sethook (lua_State *L, lua_Hook f, int mask, int count);</pre>
   5794 
   5795 <p>
   5796 Sets the debugging hook function.
   5797 
   5798 
   5799 <p>
   5800 Argument <code>f</code> is the hook function.
   5801 <code>mask</code> specifies on which events the hook will be called:
   5802 it is formed by a bitwise OR of the constants
   5803 <a name="pdf-LUA_MASKCALL"><code>LUA_MASKCALL</code></a>,
   5804 <a name="pdf-LUA_MASKRET"><code>LUA_MASKRET</code></a>,
   5805 <a name="pdf-LUA_MASKLINE"><code>LUA_MASKLINE</code></a>,
   5806 and <a name="pdf-LUA_MASKCOUNT"><code>LUA_MASKCOUNT</code></a>.
   5807 The <code>count</code> argument is only meaningful when the mask
   5808 includes <code>LUA_MASKCOUNT</code>.
   5809 For each event, the hook is called as explained below:
   5810 
   5811 <ul>
   5812 
   5813 <li><b>The call hook: </b> is called when the interpreter calls a function.
   5814 The hook is called just after Lua enters the new function,
   5815 before the function gets its arguments.
   5816 </li>
   5817 
   5818 <li><b>The return hook: </b> is called when the interpreter returns from a function.
   5819 The hook is called just before Lua leaves the function.
   5820 There is no standard way to access the values
   5821 to be returned by the function.
   5822 </li>
   5823 
   5824 <li><b>The line hook: </b> is called when the interpreter is about to
   5825 start the execution of a new line of code,
   5826 or when it jumps back in the code (even to the same line).
   5827 (This event only happens while Lua is executing a Lua function.)
   5828 </li>
   5829 
   5830 <li><b>The count hook: </b> is called after the interpreter executes every
   5831 <code>count</code> instructions.
   5832 (This event only happens while Lua is executing a Lua function.)
   5833 </li>
   5834 
   5835 </ul>
   5836 
   5837 <p>
   5838 A hook is disabled by setting <code>mask</code> to zero.
   5839 
   5840 
   5841 
   5842 
   5843 
   5844 <hr><h3><a name="lua_setlocal"><code>lua_setlocal</code></a></h3><p>
   5845 <span class="apii">[-(0|1), +0, &ndash;]</span>
   5846 <pre>const char *lua_setlocal (lua_State *L, const lua_Debug *ar, int n);</pre>
   5847 
   5848 <p>
   5849 Sets the value of a local variable of a given activation record.
   5850 It assigns the value at the top of the stack
   5851 to the variable and returns its name.
   5852 It also pops the value from the stack.
   5853 
   5854 
   5855 <p>
   5856 Returns <code>NULL</code> (and pops nothing)
   5857 when the index is greater than
   5858 the number of active local variables.
   5859 
   5860 
   5861 <p>
   5862 Parameters <code>ar</code> and <code>n</code> are as in function <a href="#lua_getlocal"><code>lua_getlocal</code></a>.
   5863 
   5864 
   5865 
   5866 
   5867 
   5868 <hr><h3><a name="lua_setupvalue"><code>lua_setupvalue</code></a></h3><p>
   5869 <span class="apii">[-(0|1), +0, &ndash;]</span>
   5870 <pre>const char *lua_setupvalue (lua_State *L, int funcindex, int n);</pre>
   5871 
   5872 <p>
   5873 Sets the value of a closure's upvalue.
   5874 It assigns the value at the top of the stack
   5875 to the upvalue and returns its name.
   5876 It also pops the value from the stack.
   5877 
   5878 
   5879 <p>
   5880 Returns <code>NULL</code> (and pops nothing)
   5881 when the index <code>n</code> is greater than the number of upvalues.
   5882 
   5883 
   5884 <p>
   5885 Parameters <code>funcindex</code> and <code>n</code> are as in function <a href="#lua_getupvalue"><code>lua_getupvalue</code></a>.
   5886 
   5887 
   5888 
   5889 
   5890 
   5891 <hr><h3><a name="lua_upvalueid"><code>lua_upvalueid</code></a></h3><p>
   5892 <span class="apii">[-0, +0, &ndash;]</span>
   5893 <pre>void *lua_upvalueid (lua_State *L, int funcindex, int n);</pre>
   5894 
   5895 <p>
   5896 Returns a unique identifier for the upvalue numbered <code>n</code>
   5897 from the closure at index <code>funcindex</code>.
   5898 
   5899 
   5900 <p>
   5901 These unique identifiers allow a program to check whether different
   5902 closures share upvalues.
   5903 Lua closures that share an upvalue
   5904 (that is, that access a same external local variable)
   5905 will return identical ids for those upvalue indices.
   5906 
   5907 
   5908 <p>
   5909 Parameters <code>funcindex</code> and <code>n</code> are as in function <a href="#lua_getupvalue"><code>lua_getupvalue</code></a>,
   5910 but <code>n</code> cannot be greater than the number of upvalues.
   5911 
   5912 
   5913 
   5914 
   5915 
   5916 <hr><h3><a name="lua_upvaluejoin"><code>lua_upvaluejoin</code></a></h3><p>
   5917 <span class="apii">[-0, +0, &ndash;]</span>
   5918 <pre>void lua_upvaluejoin (lua_State *L, int funcindex1, int n1,
   5919                                     int funcindex2, int n2);</pre>
   5920 
   5921 <p>
   5922 Make the <code>n1</code>-th upvalue of the Lua closure at index <code>funcindex1</code>
   5923 refer to the <code>n2</code>-th upvalue of the Lua closure at index <code>funcindex2</code>.
   5924 
   5925 
   5926 
   5927 
   5928 
   5929 
   5930 
   5931 <h1>5 &ndash; <a name="5">The Auxiliary Library</a></h1>
   5932 
   5933 <p>
   5934 
   5935 The <em>auxiliary library</em> provides several convenient functions
   5936 to interface C with Lua.
   5937 While the basic API provides the primitive functions for all
   5938 interactions between C and Lua,
   5939 the auxiliary library provides higher-level functions for some
   5940 common tasks.
   5941 
   5942 
   5943 <p>
   5944 All functions and types from the auxiliary library
   5945 are defined in header file <code>lauxlib.h</code> and
   5946 have a prefix <code>luaL_</code>.
   5947 
   5948 
   5949 <p>
   5950 All functions in the auxiliary library are built on
   5951 top of the basic API,
   5952 and so they provide nothing that cannot be done with that API.
   5953 Nevertheless, the use of the auxiliary library ensures
   5954 more consistency to your code.
   5955 
   5956 
   5957 <p>
   5958 Several functions in the auxiliary library use internally some
   5959 extra stack slots.
   5960 When a function in the auxiliary library uses less than five slots,
   5961 it does not check the stack size;
   5962 it simply assumes that there are enough slots.
   5963 
   5964 
   5965 <p>
   5966 Several functions in the auxiliary library are used to
   5967 check C&nbsp;function arguments.
   5968 Because the error message is formatted for arguments
   5969 (e.g., "<code>bad argument #1</code>"),
   5970 you should not use these functions for other stack values.
   5971 
   5972 
   5973 <p>
   5974 Functions called <code>luaL_check*</code>
   5975 always raise an error if the check is not satisfied.
   5976 
   5977 
   5978 
   5979 <h2>5.1 &ndash; <a name="5.1">Functions and Types</a></h2>
   5980 
   5981 <p>
   5982 Here we list all functions and types from the auxiliary library
   5983 in alphabetical order.
   5984 
   5985 
   5986 
   5987 <hr><h3><a name="luaL_addchar"><code>luaL_addchar</code></a></h3><p>
   5988 <span class="apii">[-?, +?, <em>m</em>]</span>
   5989 <pre>void luaL_addchar (luaL_Buffer *B, char c);</pre>
   5990 
   5991 <p>
   5992 Adds the byte <code>c</code> to the buffer <code>B</code>
   5993 (see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).
   5994 
   5995 
   5996 
   5997 
   5998 
   5999 <hr><h3><a name="luaL_addlstring"><code>luaL_addlstring</code></a></h3><p>
   6000 <span class="apii">[-?, +?, <em>m</em>]</span>
   6001 <pre>void luaL_addlstring (luaL_Buffer *B, const char *s, size_t l);</pre>
   6002 
   6003 <p>
   6004 Adds the string pointed to by <code>s</code> with length <code>l</code> to
   6005 the buffer <code>B</code>
   6006 (see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).
   6007 The string can contain embedded zeros.
   6008 
   6009 
   6010 
   6011 
   6012 
   6013 <hr><h3><a name="luaL_addsize"><code>luaL_addsize</code></a></h3><p>
   6014 <span class="apii">[-?, +?, &ndash;]</span>
   6015 <pre>void luaL_addsize (luaL_Buffer *B, size_t n);</pre>
   6016 
   6017 <p>
   6018 Adds to the buffer <code>B</code> (see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>)
   6019 a string of length <code>n</code> previously copied to the
   6020 buffer area (see <a href="#luaL_prepbuffer"><code>luaL_prepbuffer</code></a>).
   6021 
   6022 
   6023 
   6024 
   6025 
   6026 <hr><h3><a name="luaL_addstring"><code>luaL_addstring</code></a></h3><p>
   6027 <span class="apii">[-?, +?, <em>m</em>]</span>
   6028 <pre>void luaL_addstring (luaL_Buffer *B, const char *s);</pre>
   6029 
   6030 <p>
   6031 Adds the zero-terminated string pointed to by <code>s</code>
   6032 to the buffer <code>B</code>
   6033 (see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).
   6034 
   6035 
   6036 
   6037 
   6038 
   6039 <hr><h3><a name="luaL_addvalue"><code>luaL_addvalue</code></a></h3><p>
   6040 <span class="apii">[-1, +?, <em>m</em>]</span>
   6041 <pre>void luaL_addvalue (luaL_Buffer *B);</pre>
   6042 
   6043 <p>
   6044 Adds the value at the top of the stack
   6045 to the buffer <code>B</code>
   6046 (see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).
   6047 Pops the value.
   6048 
   6049 
   6050 <p>
   6051 This is the only function on string buffers that can (and must)
   6052 be called with an extra element on the stack,
   6053 which is the value to be added to the buffer.
   6054 
   6055 
   6056 
   6057 
   6058 
   6059 <hr><h3><a name="luaL_argcheck"><code>luaL_argcheck</code></a></h3><p>
   6060 <span class="apii">[-0, +0, <em>v</em>]</span>
   6061 <pre>void luaL_argcheck (lua_State *L,
   6062                     int cond,
   6063                     int arg,
   6064                     const char *extramsg);</pre>
   6065 
   6066 <p>
   6067 Checks whether <code>cond</code> is true.
   6068 If it is not, raises an error with a standard message (see <a href="#luaL_argerror"><code>luaL_argerror</code></a>).
   6069 
   6070 
   6071 
   6072 
   6073 
   6074 <hr><h3><a name="luaL_argerror"><code>luaL_argerror</code></a></h3><p>
   6075 <span class="apii">[-0, +0, <em>v</em>]</span>
   6076 <pre>int luaL_argerror (lua_State *L, int arg, const char *extramsg);</pre>
   6077 
   6078 <p>
   6079 Raises an error reporting a problem with argument <code>arg</code>
   6080 of the C&nbsp;function that called it,
   6081 using a standard message
   6082 that includes <code>extramsg</code> as a comment:
   6083 
   6084 <pre>
   6085      bad argument #<em>arg</em> to '<em>funcname</em>' (<em>extramsg</em>)
   6086 </pre><p>
   6087 This function never returns.
   6088 
   6089 
   6090 
   6091 
   6092 
   6093 <hr><h3><a name="luaL_Buffer"><code>luaL_Buffer</code></a></h3>
   6094 <pre>typedef struct luaL_Buffer luaL_Buffer;</pre>
   6095 
   6096 <p>
   6097 Type for a <em>string buffer</em>.
   6098 
   6099 
   6100 <p>
   6101 A string buffer allows C&nbsp;code to build Lua strings piecemeal.
   6102 Its pattern of use is as follows:
   6103 
   6104 <ul>
   6105 
   6106 <li>First declare a variable <code>b</code> of type <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>.</li>
   6107 
   6108 <li>Then initialize it with a call <code>luaL_buffinit(L, &amp;b)</code>.</li>
   6109 
   6110 <li>
   6111 Then add string pieces to the buffer calling any of
   6112 the <code>luaL_add*</code> functions.
   6113 </li>
   6114 
   6115 <li>
   6116 Finish by calling <code>luaL_pushresult(&amp;b)</code>.
   6117 This call leaves the final string on the top of the stack.
   6118 </li>
   6119 
   6120 </ul>
   6121 
   6122 <p>
   6123 If you know beforehand the total size of the resulting string,
   6124 you can use the buffer like this:
   6125 
   6126 <ul>
   6127 
   6128 <li>First declare a variable <code>b</code> of type <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>.</li>
   6129 
   6130 <li>Then initialize it and preallocate a space of
   6131 size <code>sz</code> with a call <code>luaL_buffinitsize(L, &amp;b, sz)</code>.</li>
   6132 
   6133 <li>Then copy the string into that space.</li>
   6134 
   6135 <li>
   6136 Finish by calling <code>luaL_pushresultsize(&amp;b, sz)</code>,
   6137 where <code>sz</code> is the total size of the resulting string
   6138 copied into that space.
   6139 </li>
   6140 
   6141 </ul>
   6142 
   6143 <p>
   6144 During its normal operation,
   6145 a string buffer uses a variable number of stack slots.
   6146 So, while using a buffer, you cannot assume that you know where
   6147 the top of the stack is.
   6148 You can use the stack between successive calls to buffer operations
   6149 as long as that use is balanced;
   6150 that is,
   6151 when you call a buffer operation,
   6152 the stack is at the same level
   6153 it was immediately after the previous buffer operation.
   6154 (The only exception to this rule is <a href="#luaL_addvalue"><code>luaL_addvalue</code></a>.)
   6155 After calling <a href="#luaL_pushresult"><code>luaL_pushresult</code></a> the stack is back to its
   6156 level when the buffer was initialized,
   6157 plus the final string on its top.
   6158 
   6159 
   6160 
   6161 
   6162 
   6163 <hr><h3><a name="luaL_buffinit"><code>luaL_buffinit</code></a></h3><p>
   6164 <span class="apii">[-0, +0, &ndash;]</span>
   6165 <pre>void luaL_buffinit (lua_State *L, luaL_Buffer *B);</pre>
   6166 
   6167 <p>
   6168 Initializes a buffer <code>B</code>.
   6169 This function does not allocate any space;
   6170 the buffer must be declared as a variable
   6171 (see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).
   6172 
   6173 
   6174 
   6175 
   6176 
   6177 <hr><h3><a name="luaL_buffinitsize"><code>luaL_buffinitsize</code></a></h3><p>
   6178 <span class="apii">[-?, +?, <em>m</em>]</span>
   6179 <pre>char *luaL_buffinitsize (lua_State *L, luaL_Buffer *B, size_t sz);</pre>
   6180 
   6181 <p>
   6182 Equivalent to the sequence
   6183 <a href="#luaL_buffinit"><code>luaL_buffinit</code></a>, <a href="#luaL_prepbuffsize"><code>luaL_prepbuffsize</code></a>.
   6184 
   6185 
   6186 
   6187 
   6188 
   6189 <hr><h3><a name="luaL_callmeta"><code>luaL_callmeta</code></a></h3><p>
   6190 <span class="apii">[-0, +(0|1), <em>e</em>]</span>
   6191 <pre>int luaL_callmeta (lua_State *L, int obj, const char *e);</pre>
   6192 
   6193 <p>
   6194 Calls a metamethod.
   6195 
   6196 
   6197 <p>
   6198 If the object at index <code>obj</code> has a metatable and this
   6199 metatable has a field <code>e</code>,
   6200 this function calls this field passing the object as its only argument.
   6201 In this case this function returns true and pushes onto the
   6202 stack the value returned by the call.
   6203 If there is no metatable or no metamethod,
   6204 this function returns false (without pushing any value on the stack).
   6205 
   6206 
   6207 
   6208 
   6209 
   6210 <hr><h3><a name="luaL_checkany"><code>luaL_checkany</code></a></h3><p>
   6211 <span class="apii">[-0, +0, <em>v</em>]</span>
   6212 <pre>void luaL_checkany (lua_State *L, int arg);</pre>
   6213 
   6214 <p>
   6215 Checks whether the function has an argument
   6216 of any type (including <b>nil</b>) at position <code>arg</code>.
   6217 
   6218 
   6219 
   6220 
   6221 
   6222 <hr><h3><a name="luaL_checkinteger"><code>luaL_checkinteger</code></a></h3><p>
   6223 <span class="apii">[-0, +0, <em>v</em>]</span>
   6224 <pre>lua_Integer luaL_checkinteger (lua_State *L, int arg);</pre>
   6225 
   6226 <p>
   6227 Checks whether the function argument <code>arg</code> is an integer
   6228 (or can be converted to an integer)
   6229 and returns this integer cast to a <a href="#lua_Integer"><code>lua_Integer</code></a>.
   6230 
   6231 
   6232 
   6233 
   6234 
   6235 <hr><h3><a name="luaL_checklstring"><code>luaL_checklstring</code></a></h3><p>
   6236 <span class="apii">[-0, +0, <em>v</em>]</span>
   6237 <pre>const char *luaL_checklstring (lua_State *L, int arg, size_t *l);</pre>
   6238 
   6239 <p>
   6240 Checks whether the function argument <code>arg</code> is a string
   6241 and returns this string;
   6242 if <code>l</code> is not <code>NULL</code> fills <code>*l</code>
   6243 with the string's length.
   6244 
   6245 
   6246 <p>
   6247 This function uses <a href="#lua_tolstring"><code>lua_tolstring</code></a> to get its result,
   6248 so all conversions and caveats of that function apply here.
   6249 
   6250 
   6251 
   6252 
   6253 
   6254 <hr><h3><a name="luaL_checknumber"><code>luaL_checknumber</code></a></h3><p>
   6255 <span class="apii">[-0, +0, <em>v</em>]</span>
   6256 <pre>lua_Number luaL_checknumber (lua_State *L, int arg);</pre>
   6257 
   6258 <p>
   6259 Checks whether the function argument <code>arg</code> is a number
   6260 and returns this number.
   6261 
   6262 
   6263 
   6264 
   6265 
   6266 <hr><h3><a name="luaL_checkoption"><code>luaL_checkoption</code></a></h3><p>
   6267 <span class="apii">[-0, +0, <em>v</em>]</span>
   6268 <pre>int luaL_checkoption (lua_State *L,
   6269                       int arg,
   6270                       const char *def,
   6271                       const char *const lst[]);</pre>
   6272 
   6273 <p>
   6274 Checks whether the function argument <code>arg</code> is a string and
   6275 searches for this string in the array <code>lst</code>
   6276 (which must be NULL-terminated).
   6277 Returns the index in the array where the string was found.
   6278 Raises an error if the argument is not a string or
   6279 if the string cannot be found.
   6280 
   6281 
   6282 <p>
   6283 If <code>def</code> is not <code>NULL</code>,
   6284 the function uses <code>def</code> as a default value when
   6285 there is no argument <code>arg</code> or when this argument is <b>nil</b>.
   6286 
   6287 
   6288 <p>
   6289 This is a useful function for mapping strings to C&nbsp;enums.
   6290 (The usual convention in Lua libraries is
   6291 to use strings instead of numbers to select options.)
   6292 
   6293 
   6294 
   6295 
   6296 
   6297 <hr><h3><a name="luaL_checkstack"><code>luaL_checkstack</code></a></h3><p>
   6298 <span class="apii">[-0, +0, <em>v</em>]</span>
   6299 <pre>void luaL_checkstack (lua_State *L, int sz, const char *msg);</pre>
   6300 
   6301 <p>
   6302 Grows the stack size to <code>top + sz</code> elements,
   6303 raising an error if the stack cannot grow to that size.
   6304 <code>msg</code> is an additional text to go into the error message
   6305 (or <code>NULL</code> for no additional text).
   6306 
   6307 
   6308 
   6309 
   6310 
   6311 <hr><h3><a name="luaL_checkstring"><code>luaL_checkstring</code></a></h3><p>
   6312 <span class="apii">[-0, +0, <em>v</em>]</span>
   6313 <pre>const char *luaL_checkstring (lua_State *L, int arg);</pre>
   6314 
   6315 <p>
   6316 Checks whether the function argument <code>arg</code> is a string
   6317 and returns this string.
   6318 
   6319 
   6320 <p>
   6321 This function uses <a href="#lua_tolstring"><code>lua_tolstring</code></a> to get its result,
   6322 so all conversions and caveats of that function apply here.
   6323 
   6324 
   6325 
   6326 
   6327 
   6328 <hr><h3><a name="luaL_checktype"><code>luaL_checktype</code></a></h3><p>
   6329 <span class="apii">[-0, +0, <em>v</em>]</span>
   6330 <pre>void luaL_checktype (lua_State *L, int arg, int t);</pre>
   6331 
   6332 <p>
   6333 Checks whether the function argument <code>arg</code> has type <code>t</code>.
   6334 See <a href="#lua_type"><code>lua_type</code></a> for the encoding of types for <code>t</code>.
   6335 
   6336 
   6337 
   6338 
   6339 
   6340 <hr><h3><a name="luaL_checkudata"><code>luaL_checkudata</code></a></h3><p>
   6341 <span class="apii">[-0, +0, <em>v</em>]</span>
   6342 <pre>void *luaL_checkudata (lua_State *L, int arg, const char *tname);</pre>
   6343 
   6344 <p>
   6345 Checks whether the function argument <code>arg</code> is a userdata
   6346 of the type <code>tname</code> (see <a href="#luaL_newmetatable"><code>luaL_newmetatable</code></a>) and
   6347 returns the userdata address (see <a href="#lua_touserdata"><code>lua_touserdata</code></a>).
   6348 
   6349 
   6350 
   6351 
   6352 
   6353 <hr><h3><a name="luaL_checkversion"><code>luaL_checkversion</code></a></h3><p>
   6354 <span class="apii">[-0, +0, <em>v</em>]</span>
   6355 <pre>void luaL_checkversion (lua_State *L);</pre>
   6356 
   6357 <p>
   6358 Checks whether the core running the call,
   6359 the core that created the Lua state,
   6360 and the code making the call are all using the same version of Lua.
   6361 Also checks whether the core running the call
   6362 and the core that created the Lua state
   6363 are using the same address space.
   6364 
   6365 
   6366 
   6367 
   6368 
   6369 <hr><h3><a name="luaL_dofile"><code>luaL_dofile</code></a></h3><p>
   6370 <span class="apii">[-0, +?, <em>e</em>]</span>
   6371 <pre>int luaL_dofile (lua_State *L, const char *filename);</pre>
   6372 
   6373 <p>
   6374 Loads and runs the given file.
   6375 It is defined as the following macro:
   6376 
   6377 <pre>
   6378      (luaL_loadfile(L, filename) || lua_pcall(L, 0, LUA_MULTRET, 0))
   6379 </pre><p>
   6380 It returns false if there are no errors
   6381 or true in case of errors.
   6382 
   6383 
   6384 
   6385 
   6386 
   6387 <hr><h3><a name="luaL_dostring"><code>luaL_dostring</code></a></h3><p>
   6388 <span class="apii">[-0, +?, &ndash;]</span>
   6389 <pre>int luaL_dostring (lua_State *L, const char *str);</pre>
   6390 
   6391 <p>
   6392 Loads and runs the given string.
   6393 It is defined as the following macro:
   6394 
   6395 <pre>
   6396      (luaL_loadstring(L, str) || lua_pcall(L, 0, LUA_MULTRET, 0))
   6397 </pre><p>
   6398 It returns false if there are no errors
   6399 or true in case of errors.
   6400 
   6401 
   6402 
   6403 
   6404 
   6405 <hr><h3><a name="luaL_error"><code>luaL_error</code></a></h3><p>
   6406 <span class="apii">[-0, +0, <em>v</em>]</span>
   6407 <pre>int luaL_error (lua_State *L, const char *fmt, ...);</pre>
   6408 
   6409 <p>
   6410 Raises an error.
   6411 The error message format is given by <code>fmt</code>
   6412 plus any extra arguments,
   6413 following the same rules of <a href="#lua_pushfstring"><code>lua_pushfstring</code></a>.
   6414 It also adds at the beginning of the message the file name and
   6415 the line number where the error occurred,
   6416 if this information is available.
   6417 
   6418 
   6419 <p>
   6420 This function never returns,
   6421 but it is an idiom to use it in C&nbsp;functions
   6422 as <code>return luaL_error(<em>args</em>)</code>.
   6423 
   6424 
   6425 
   6426 
   6427 
   6428 <hr><h3><a name="luaL_execresult"><code>luaL_execresult</code></a></h3><p>
   6429 <span class="apii">[-0, +3, <em>m</em>]</span>
   6430 <pre>int luaL_execresult (lua_State *L, int stat);</pre>
   6431 
   6432 <p>
   6433 This function produces the return values for
   6434 process-related functions in the standard library
   6435 (<a href="#pdf-os.execute"><code>os.execute</code></a> and <a href="#pdf-io.close"><code>io.close</code></a>).
   6436 
   6437 
   6438 
   6439 
   6440 
   6441 <hr><h3><a name="luaL_fileresult"><code>luaL_fileresult</code></a></h3><p>
   6442 <span class="apii">[-0, +(1|3), <em>m</em>]</span>
   6443 <pre>int luaL_fileresult (lua_State *L, int stat, const char *fname);</pre>
   6444 
   6445 <p>
   6446 This function produces the return values for
   6447 file-related functions in the standard library
   6448 (<a href="#pdf-io.open"><code>io.open</code></a>, <a href="#pdf-os.rename"><code>os.rename</code></a>, <a href="#pdf-file:seek"><code>file:seek</code></a>, etc.).
   6449 
   6450 
   6451 
   6452 
   6453 
   6454 <hr><h3><a name="luaL_getmetafield"><code>luaL_getmetafield</code></a></h3><p>
   6455 <span class="apii">[-0, +(0|1), <em>m</em>]</span>
   6456 <pre>int luaL_getmetafield (lua_State *L, int obj, const char *e);</pre>
   6457 
   6458 <p>
   6459 Pushes onto the stack the field <code>e</code> from the metatable
   6460 of the object at index <code>obj</code> and returns the type of the pushed value.
   6461 If the object does not have a metatable,
   6462 or if the metatable does not have this field,
   6463 pushes nothing and returns <code>LUA_TNIL</code>.
   6464 
   6465 
   6466 
   6467 
   6468 
   6469 <hr><h3><a name="luaL_getmetatable"><code>luaL_getmetatable</code></a></h3><p>
   6470 <span class="apii">[-0, +1, <em>m</em>]</span>
   6471 <pre>int luaL_getmetatable (lua_State *L, const char *tname);</pre>
   6472 
   6473 <p>
   6474 Pushes onto the stack the metatable associated with name <code>tname</code>
   6475 in the registry (see <a href="#luaL_newmetatable"><code>luaL_newmetatable</code></a>)
   6476 (<b>nil</b> if there is no metatable associated with that name).
   6477 Returns the type of the pushed value.
   6478 
   6479 
   6480 
   6481 
   6482 
   6483 <hr><h3><a name="luaL_getsubtable"><code>luaL_getsubtable</code></a></h3><p>
   6484 <span class="apii">[-0, +1, <em>e</em>]</span>
   6485 <pre>int luaL_getsubtable (lua_State *L, int idx, const char *fname);</pre>
   6486 
   6487 <p>
   6488 Ensures that the value <code>t[fname]</code>,
   6489 where <code>t</code> is the value at index <code>idx</code>,
   6490 is a table,
   6491 and pushes that table onto the stack.
   6492 Returns true if it finds a previous table there
   6493 and false if it creates a new table.
   6494 
   6495 
   6496 
   6497 
   6498 
   6499 <hr><h3><a name="luaL_gsub"><code>luaL_gsub</code></a></h3><p>
   6500 <span class="apii">[-0, +1, <em>m</em>]</span>
   6501 <pre>const char *luaL_gsub (lua_State *L,
   6502                        const char *s,
   6503                        const char *p,
   6504                        const char *r);</pre>
   6505 
   6506 <p>
   6507 Creates a copy of string <code>s</code> by replacing
   6508 any occurrence of the string <code>p</code>
   6509 with the string <code>r</code>.
   6510 Pushes the resulting string on the stack and returns it.
   6511 
   6512 
   6513 
   6514 
   6515 
   6516 <hr><h3><a name="luaL_len"><code>luaL_len</code></a></h3><p>
   6517 <span class="apii">[-0, +0, <em>e</em>]</span>
   6518 <pre>lua_Integer luaL_len (lua_State *L, int index);</pre>
   6519 
   6520 <p>
   6521 Returns the "length" of the value at the given index
   6522 as a number;
   6523 it is equivalent to the '<code>#</code>' operator in Lua (see <a href="#3.4.7">&sect;3.4.7</a>).
   6524 Raises an error if the result of the operation is not an integer.
   6525 (This case only can happen through metamethods.)
   6526 
   6527 
   6528 
   6529 
   6530 
   6531 <hr><h3><a name="luaL_loadbuffer"><code>luaL_loadbuffer</code></a></h3><p>
   6532 <span class="apii">[-0, +1, &ndash;]</span>
   6533 <pre>int luaL_loadbuffer (lua_State *L,
   6534                      const char *buff,
   6535                      size_t sz,
   6536                      const char *name);</pre>
   6537 
   6538 <p>
   6539 Equivalent to <a href="#luaL_loadbufferx"><code>luaL_loadbufferx</code></a> with <code>mode</code> equal to <code>NULL</code>.
   6540 
   6541 
   6542 
   6543 
   6544 
   6545 <hr><h3><a name="luaL_loadbufferx"><code>luaL_loadbufferx</code></a></h3><p>
   6546 <span class="apii">[-0, +1, &ndash;]</span>
   6547 <pre>int luaL_loadbufferx (lua_State *L,
   6548                       const char *buff,
   6549                       size_t sz,
   6550                       const char *name,
   6551                       const char *mode);</pre>
   6552 
   6553 <p>
   6554 Loads a buffer as a Lua chunk.
   6555 This function uses <a href="#lua_load"><code>lua_load</code></a> to load the chunk in the
   6556 buffer pointed to by <code>buff</code> with size <code>sz</code>.
   6557 
   6558 
   6559 <p>
   6560 This function returns the same results as <a href="#lua_load"><code>lua_load</code></a>.
   6561 <code>name</code> is the chunk name,
   6562 used for debug information and error messages.
   6563 The string <code>mode</code> works as in function <a href="#lua_load"><code>lua_load</code></a>.
   6564 
   6565 
   6566 
   6567 
   6568 
   6569 <hr><h3><a name="luaL_loadfile"><code>luaL_loadfile</code></a></h3><p>
   6570 <span class="apii">[-0, +1, <em>m</em>]</span>
   6571 <pre>int luaL_loadfile (lua_State *L, const char *filename);</pre>
   6572 
   6573 <p>
   6574 Equivalent to <a href="#luaL_loadfilex"><code>luaL_loadfilex</code></a> with <code>mode</code> equal to <code>NULL</code>.
   6575 
   6576 
   6577 
   6578 
   6579 
   6580 <hr><h3><a name="luaL_loadfilex"><code>luaL_loadfilex</code></a></h3><p>
   6581 <span class="apii">[-0, +1, <em>m</em>]</span>
   6582 <pre>int luaL_loadfilex (lua_State *L, const char *filename,
   6583                                             const char *mode);</pre>
   6584 
   6585 <p>
   6586 Loads a file as a Lua chunk.
   6587 This function uses <a href="#lua_load"><code>lua_load</code></a> to load the chunk in the file
   6588 named <code>filename</code>.
   6589 If <code>filename</code> is <code>NULL</code>,
   6590 then it loads from the standard input.
   6591 The first line in the file is ignored if it starts with a <code>#</code>.
   6592 
   6593 
   6594 <p>
   6595 The string <code>mode</code> works as in function <a href="#lua_load"><code>lua_load</code></a>.
   6596 
   6597 
   6598 <p>
   6599 This function returns the same results as <a href="#lua_load"><code>lua_load</code></a>,
   6600 but it has an extra error code <a name="pdf-LUA_ERRFILE"><code>LUA_ERRFILE</code></a>
   6601 for file-related errors
   6602 (e.g., it cannot open or read the file).
   6603 
   6604 
   6605 <p>
   6606 As <a href="#lua_load"><code>lua_load</code></a>, this function only loads the chunk;
   6607 it does not run it.
   6608 
   6609 
   6610 
   6611 
   6612 
   6613 <hr><h3><a name="luaL_loadstring"><code>luaL_loadstring</code></a></h3><p>
   6614 <span class="apii">[-0, +1, &ndash;]</span>
   6615 <pre>int luaL_loadstring (lua_State *L, const char *s);</pre>
   6616 
   6617 <p>
   6618 Loads a string as a Lua chunk.
   6619 This function uses <a href="#lua_load"><code>lua_load</code></a> to load the chunk in
   6620 the zero-terminated string <code>s</code>.
   6621 
   6622 
   6623 <p>
   6624 This function returns the same results as <a href="#lua_load"><code>lua_load</code></a>.
   6625 
   6626 
   6627 <p>
   6628 Also as <a href="#lua_load"><code>lua_load</code></a>, this function only loads the chunk;
   6629 it does not run it.
   6630 
   6631 
   6632 
   6633 
   6634 
   6635 <hr><h3><a name="luaL_newlib"><code>luaL_newlib</code></a></h3><p>
   6636 <span class="apii">[-0, +1, <em>m</em>]</span>
   6637 <pre>void luaL_newlib (lua_State *L, const luaL_Reg l[]);</pre>
   6638 
   6639 <p>
   6640 Creates a new table and registers there
   6641 the functions in list <code>l</code>.
   6642 
   6643 
   6644 <p>
   6645 It is implemented as the following macro:
   6646 
   6647 <pre>
   6648      (luaL_newlibtable(L,l), luaL_setfuncs(L,l,0))
   6649 </pre><p>
   6650 The array <code>l</code> must be the actual array,
   6651 not a pointer to it.
   6652 
   6653 
   6654 
   6655 
   6656 
   6657 <hr><h3><a name="luaL_newlibtable"><code>luaL_newlibtable</code></a></h3><p>
   6658 <span class="apii">[-0, +1, <em>m</em>]</span>
   6659 <pre>void luaL_newlibtable (lua_State *L, const luaL_Reg l[]);</pre>
   6660 
   6661 <p>
   6662 Creates a new table with a size optimized
   6663 to store all entries in the array <code>l</code>
   6664 (but does not actually store them).
   6665 It is intended to be used in conjunction with <a href="#luaL_setfuncs"><code>luaL_setfuncs</code></a>
   6666 (see <a href="#luaL_newlib"><code>luaL_newlib</code></a>).
   6667 
   6668 
   6669 <p>
   6670 It is implemented as a macro.
   6671 The array <code>l</code> must be the actual array,
   6672 not a pointer to it.
   6673 
   6674 
   6675 
   6676 
   6677 
   6678 <hr><h3><a name="luaL_newmetatable"><code>luaL_newmetatable</code></a></h3><p>
   6679 <span class="apii">[-0, +1, <em>m</em>]</span>
   6680 <pre>int luaL_newmetatable (lua_State *L, const char *tname);</pre>
   6681 
   6682 <p>
   6683 If the registry already has the key <code>tname</code>,
   6684 returns 0.
   6685 Otherwise,
   6686 creates a new table to be used as a metatable for userdata,
   6687 adds to this new table the pair <code>__name = tname</code>,
   6688 adds to the registry the pair <code>[tname] = new table</code>,
   6689 and returns 1.
   6690 (The entry <code>__name</code> is used by some error-reporting functions.)
   6691 
   6692 
   6693 <p>
   6694 In both cases pushes onto the stack the final value associated
   6695 with <code>tname</code> in the registry.
   6696 
   6697 
   6698 
   6699 
   6700 
   6701 <hr><h3><a name="luaL_newstate"><code>luaL_newstate</code></a></h3><p>
   6702 <span class="apii">[-0, +0, &ndash;]</span>
   6703 <pre>lua_State *luaL_newstate (void);</pre>
   6704 
   6705 <p>
   6706 Creates a new Lua state.
   6707 It calls <a href="#lua_newstate"><code>lua_newstate</code></a> with an
   6708 allocator based on the standard&nbsp;C <code>realloc</code> function
   6709 and then sets a panic function (see <a href="#4.6">&sect;4.6</a>) that prints
   6710 an error message to the standard error output in case of fatal
   6711 errors.
   6712 
   6713 
   6714 <p>
   6715 Returns the new state,
   6716 or <code>NULL</code> if there is a memory allocation error.
   6717 
   6718 
   6719 
   6720 
   6721 
   6722 <hr><h3><a name="luaL_openlibs"><code>luaL_openlibs</code></a></h3><p>
   6723 <span class="apii">[-0, +0, <em>e</em>]</span>
   6724 <pre>void luaL_openlibs (lua_State *L);</pre>
   6725 
   6726 <p>
   6727 Opens all standard Lua libraries into the given state.
   6728 
   6729 
   6730 
   6731 
   6732 
   6733 <hr><h3><a name="luaL_opt"><code>luaL_opt</code></a></h3><p>
   6734 <span class="apii">[-0, +0, <em>e</em>]</span>
   6735 <pre>T luaL_opt (L, func, arg, dflt);</pre>
   6736 
   6737 <p>
   6738 This macro is defined as follows:
   6739 
   6740 <pre>
   6741      (lua_isnoneornil(L,(arg)) ? (dflt) : func(L,(arg)))
   6742 </pre><p>
   6743 In words, if the argument <code>arg</code> is nil or absent,
   6744 the macro results in the default <code>dflt</code>.
   6745 Otherwise, it results in the result of calling <code>func</code>
   6746 with the state <code>L</code> and the argument index <code>arg</code> as
   6747 arguments.
   6748 Note that it evaluates the expression <code>dflt</code> only if needed.
   6749 
   6750 
   6751 
   6752 
   6753 
   6754 <hr><h3><a name="luaL_optinteger"><code>luaL_optinteger</code></a></h3><p>
   6755 <span class="apii">[-0, +0, <em>v</em>]</span>
   6756 <pre>lua_Integer luaL_optinteger (lua_State *L,
   6757                              int arg,
   6758                              lua_Integer d);</pre>
   6759 
   6760 <p>
   6761 If the function argument <code>arg</code> is an integer
   6762 (or convertible to an integer),
   6763 returns this integer.
   6764 If this argument is absent or is <b>nil</b>,
   6765 returns <code>d</code>.
   6766 Otherwise, raises an error.
   6767 
   6768 
   6769 
   6770 
   6771 
   6772 <hr><h3><a name="luaL_optlstring"><code>luaL_optlstring</code></a></h3><p>
   6773 <span class="apii">[-0, +0, <em>v</em>]</span>
   6774 <pre>const char *luaL_optlstring (lua_State *L,
   6775                              int arg,
   6776                              const char *d,
   6777                              size_t *l);</pre>
   6778 
   6779 <p>
   6780 If the function argument <code>arg</code> is a string,
   6781 returns this string.
   6782 If this argument is absent or is <b>nil</b>,
   6783 returns <code>d</code>.
   6784 Otherwise, raises an error.
   6785 
   6786 
   6787 <p>
   6788 If <code>l</code> is not <code>NULL</code>,
   6789 fills the position <code>*l</code> with the result's length.
   6790 If the result is <code>NULL</code>
   6791 (only possible when returning <code>d</code> and <code>d == NULL</code>),
   6792 its length is considered zero.
   6793 
   6794 
   6795 <p>
   6796 This function uses <a href="#lua_tolstring"><code>lua_tolstring</code></a> to get its result,
   6797 so all conversions and caveats of that function apply here.
   6798 
   6799 
   6800 
   6801 
   6802 
   6803 <hr><h3><a name="luaL_optnumber"><code>luaL_optnumber</code></a></h3><p>
   6804 <span class="apii">[-0, +0, <em>v</em>]</span>
   6805 <pre>lua_Number luaL_optnumber (lua_State *L, int arg, lua_Number d);</pre>
   6806 
   6807 <p>
   6808 If the function argument <code>arg</code> is a number,
   6809 returns this number.
   6810 If this argument is absent or is <b>nil</b>,
   6811 returns <code>d</code>.
   6812 Otherwise, raises an error.
   6813 
   6814 
   6815 
   6816 
   6817 
   6818 <hr><h3><a name="luaL_optstring"><code>luaL_optstring</code></a></h3><p>
   6819 <span class="apii">[-0, +0, <em>v</em>]</span>
   6820 <pre>const char *luaL_optstring (lua_State *L,
   6821                             int arg,
   6822                             const char *d);</pre>
   6823 
   6824 <p>
   6825 If the function argument <code>arg</code> is a string,
   6826 returns this string.
   6827 If this argument is absent or is <b>nil</b>,
   6828 returns <code>d</code>.
   6829 Otherwise, raises an error.
   6830 
   6831 
   6832 
   6833 
   6834 
   6835 <hr><h3><a name="luaL_prepbuffer"><code>luaL_prepbuffer</code></a></h3><p>
   6836 <span class="apii">[-?, +?, <em>m</em>]</span>
   6837 <pre>char *luaL_prepbuffer (luaL_Buffer *B);</pre>
   6838 
   6839 <p>
   6840 Equivalent to <a href="#luaL_prepbuffsize"><code>luaL_prepbuffsize</code></a>
   6841 with the predefined size <a name="pdf-LUAL_BUFFERSIZE"><code>LUAL_BUFFERSIZE</code></a>.
   6842 
   6843 
   6844 
   6845 
   6846 
   6847 <hr><h3><a name="luaL_prepbuffsize"><code>luaL_prepbuffsize</code></a></h3><p>
   6848 <span class="apii">[-?, +?, <em>m</em>]</span>
   6849 <pre>char *luaL_prepbuffsize (luaL_Buffer *B, size_t sz);</pre>
   6850 
   6851 <p>
   6852 Returns an address to a space of size <code>sz</code>
   6853 where you can copy a string to be added to buffer <code>B</code>
   6854 (see <a href="#luaL_Buffer"><code>luaL_Buffer</code></a>).
   6855 After copying the string into this space you must call
   6856 <a href="#luaL_addsize"><code>luaL_addsize</code></a> with the size of the string to actually add
   6857 it to the buffer.
   6858 
   6859 
   6860 
   6861 
   6862 
   6863 <hr><h3><a name="luaL_pushresult"><code>luaL_pushresult</code></a></h3><p>
   6864 <span class="apii">[-?, +1, <em>m</em>]</span>
   6865 <pre>void luaL_pushresult (luaL_Buffer *B);</pre>
   6866 
   6867 <p>
   6868 Finishes the use of buffer <code>B</code> leaving the final string on
   6869 the top of the stack.
   6870 
   6871 
   6872 
   6873 
   6874 
   6875 <hr><h3><a name="luaL_pushresultsize"><code>luaL_pushresultsize</code></a></h3><p>
   6876 <span class="apii">[-?, +1, <em>m</em>]</span>
   6877 <pre>void luaL_pushresultsize (luaL_Buffer *B, size_t sz);</pre>
   6878 
   6879 <p>
   6880 Equivalent to the sequence <a href="#luaL_addsize"><code>luaL_addsize</code></a>, <a href="#luaL_pushresult"><code>luaL_pushresult</code></a>.
   6881 
   6882 
   6883 
   6884 
   6885 
   6886 <hr><h3><a name="luaL_ref"><code>luaL_ref</code></a></h3><p>
   6887 <span class="apii">[-1, +0, <em>m</em>]</span>
   6888 <pre>int luaL_ref (lua_State *L, int t);</pre>
   6889 
   6890 <p>
   6891 Creates and returns a <em>reference</em>,
   6892 in the table at index <code>t</code>,
   6893 for the object at the top of the stack (and pops the object).
   6894 
   6895 
   6896 <p>
   6897 A reference is a unique integer key.
   6898 As long as you do not manually add integer keys into table <code>t</code>,
   6899 <a href="#luaL_ref"><code>luaL_ref</code></a> ensures the uniqueness of the key it returns.
   6900 You can retrieve an object referred by reference <code>r</code>
   6901 by calling <code>lua_rawgeti(L, t, r)</code>.
   6902 Function <a href="#luaL_unref"><code>luaL_unref</code></a> frees a reference and its associated object.
   6903 
   6904 
   6905 <p>
   6906 If the object at the top of the stack is <b>nil</b>,
   6907 <a href="#luaL_ref"><code>luaL_ref</code></a> returns the constant <a name="pdf-LUA_REFNIL"><code>LUA_REFNIL</code></a>.
   6908 The constant <a name="pdf-LUA_NOREF"><code>LUA_NOREF</code></a> is guaranteed to be different
   6909 from any reference returned by <a href="#luaL_ref"><code>luaL_ref</code></a>.
   6910 
   6911 
   6912 
   6913 
   6914 
   6915 <hr><h3><a name="luaL_Reg"><code>luaL_Reg</code></a></h3>
   6916 <pre>typedef struct luaL_Reg {
   6917   const char *name;
   6918   lua_CFunction func;
   6919 } luaL_Reg;</pre>
   6920 
   6921 <p>
   6922 Type for arrays of functions to be registered by
   6923 <a href="#luaL_setfuncs"><code>luaL_setfuncs</code></a>.
   6924 <code>name</code> is the function name and <code>func</code> is a pointer to
   6925 the function.
   6926 Any array of <a href="#luaL_Reg"><code>luaL_Reg</code></a> must end with a sentinel entry
   6927 in which both <code>name</code> and <code>func</code> are <code>NULL</code>.
   6928 
   6929 
   6930 
   6931 
   6932 
   6933 <hr><h3><a name="luaL_requiref"><code>luaL_requiref</code></a></h3><p>
   6934 <span class="apii">[-0, +1, <em>e</em>]</span>
   6935 <pre>void luaL_requiref (lua_State *L, const char *modname,
   6936                     lua_CFunction openf, int glb);</pre>
   6937 
   6938 <p>
   6939 If <code>modname</code> is not already present in <a href="#pdf-package.loaded"><code>package.loaded</code></a>,
   6940 calls function <code>openf</code> with string <code>modname</code> as an argument
   6941 and sets the call result in <code>package.loaded[modname]</code>,
   6942 as if that function has been called through <a href="#pdf-require"><code>require</code></a>.
   6943 
   6944 
   6945 <p>
   6946 If <code>glb</code> is true,
   6947 also stores the module into global <code>modname</code>.
   6948 
   6949 
   6950 <p>
   6951 Leaves a copy of the module on the stack.
   6952 
   6953 
   6954 
   6955 
   6956 
   6957 <hr><h3><a name="luaL_setfuncs"><code>luaL_setfuncs</code></a></h3><p>
   6958 <span class="apii">[-nup, +0, <em>m</em>]</span>
   6959 <pre>void luaL_setfuncs (lua_State *L, const luaL_Reg *l, int nup);</pre>
   6960 
   6961 <p>
   6962 Registers all functions in the array <code>l</code>
   6963 (see <a href="#luaL_Reg"><code>luaL_Reg</code></a>) into the table on the top of the stack
   6964 (below optional upvalues, see next).
   6965 
   6966 
   6967 <p>
   6968 When <code>nup</code> is not zero,
   6969 all functions are created sharing <code>nup</code> upvalues,
   6970 which must be previously pushed on the stack
   6971 on top of the library table.
   6972 These values are popped from the stack after the registration.
   6973 
   6974 
   6975 
   6976 
   6977 
   6978 <hr><h3><a name="luaL_setmetatable"><code>luaL_setmetatable</code></a></h3><p>
   6979 <span class="apii">[-0, +0, &ndash;]</span>
   6980 <pre>void luaL_setmetatable (lua_State *L, const char *tname);</pre>
   6981 
   6982 <p>
   6983 Sets the metatable of the object at the top of the stack
   6984 as the metatable associated with name <code>tname</code>
   6985 in the registry (see <a href="#luaL_newmetatable"><code>luaL_newmetatable</code></a>).
   6986 
   6987 
   6988 
   6989 
   6990 
   6991 <hr><h3><a name="luaL_Stream"><code>luaL_Stream</code></a></h3>
   6992 <pre>typedef struct luaL_Stream {
   6993   FILE *f;
   6994   lua_CFunction closef;
   6995 } luaL_Stream;</pre>
   6996 
   6997 <p>
   6998 The standard representation for file handles,
   6999 which is used by the standard I/O library.
   7000 
   7001 
   7002 <p>
   7003 A file handle is implemented as a full userdata,
   7004 with a metatable called <code>LUA_FILEHANDLE</code>
   7005 (where <code>LUA_FILEHANDLE</code> is a macro with the actual metatable's name).
   7006 The metatable is created by the I/O library
   7007 (see <a href="#luaL_newmetatable"><code>luaL_newmetatable</code></a>).
   7008 
   7009 
   7010 <p>
   7011 This userdata must start with the structure <code>luaL_Stream</code>;
   7012 it can contain other data after this initial structure.
   7013 Field <code>f</code> points to the corresponding C stream
   7014 (or it can be <code>NULL</code> to indicate an incompletely created handle).
   7015 Field <code>closef</code> points to a Lua function
   7016 that will be called to close the stream
   7017 when the handle is closed or collected;
   7018 this function receives the file handle as its sole argument and
   7019 must return either <b>true</b> (in case of success)
   7020 or <b>nil</b> plus an error message (in case of error).
   7021 Once Lua calls this field,
   7022 it changes the field value to <code>NULL</code>
   7023 to signal that the handle is closed.
   7024 
   7025 
   7026 
   7027 
   7028 
   7029 <hr><h3><a name="luaL_testudata"><code>luaL_testudata</code></a></h3><p>
   7030 <span class="apii">[-0, +0, <em>m</em>]</span>
   7031 <pre>void *luaL_testudata (lua_State *L, int arg, const char *tname);</pre>
   7032 
   7033 <p>
   7034 This function works like <a href="#luaL_checkudata"><code>luaL_checkudata</code></a>,
   7035 except that, when the test fails,
   7036 it returns <code>NULL</code> instead of raising an error.
   7037 
   7038 
   7039 
   7040 
   7041 
   7042 <hr><h3><a name="luaL_tolstring"><code>luaL_tolstring</code></a></h3><p>
   7043 <span class="apii">[-0, +1, <em>e</em>]</span>
   7044 <pre>const char *luaL_tolstring (lua_State *L, int idx, size_t *len);</pre>
   7045 
   7046 <p>
   7047 Converts any Lua value at the given index to a C&nbsp;string
   7048 in a reasonable format.
   7049 The resulting string is pushed onto the stack and also
   7050 returned by the function.
   7051 If <code>len</code> is not <code>NULL</code>,
   7052 the function also sets <code>*len</code> with the string length.
   7053 
   7054 
   7055 <p>
   7056 If the value has a metatable with a <code>__tostring</code> field,
   7057 then <code>luaL_tolstring</code> calls the corresponding metamethod
   7058 with the value as argument,
   7059 and uses the result of the call as its result.
   7060 
   7061 
   7062 
   7063 
   7064 
   7065 <hr><h3><a name="luaL_traceback"><code>luaL_traceback</code></a></h3><p>
   7066 <span class="apii">[-0, +1, <em>m</em>]</span>
   7067 <pre>void luaL_traceback (lua_State *L, lua_State *L1, const char *msg,
   7068                      int level);</pre>
   7069 
   7070 <p>
   7071 Creates and pushes a traceback of the stack <code>L1</code>.
   7072 If <code>msg</code> is not <code>NULL</code> it is appended
   7073 at the beginning of the traceback.
   7074 The <code>level</code> parameter tells at which level
   7075 to start the traceback.
   7076 
   7077 
   7078 
   7079 
   7080 
   7081 <hr><h3><a name="luaL_typename"><code>luaL_typename</code></a></h3><p>
   7082 <span class="apii">[-0, +0, &ndash;]</span>
   7083 <pre>const char *luaL_typename (lua_State *L, int index);</pre>
   7084 
   7085 <p>
   7086 Returns the name of the type of the value at the given index.
   7087 
   7088 
   7089 
   7090 
   7091 
   7092 <hr><h3><a name="luaL_unref"><code>luaL_unref</code></a></h3><p>
   7093 <span class="apii">[-0, +0, &ndash;]</span>
   7094 <pre>void luaL_unref (lua_State *L, int t, int ref);</pre>
   7095 
   7096 <p>
   7097 Releases reference <code>ref</code> from the table at index <code>t</code>
   7098 (see <a href="#luaL_ref"><code>luaL_ref</code></a>).
   7099 The entry is removed from the table,
   7100 so that the referred object can be collected.
   7101 The reference <code>ref</code> is also freed to be used again.
   7102 
   7103 
   7104 <p>
   7105 If <code>ref</code> is <a href="#pdf-LUA_NOREF"><code>LUA_NOREF</code></a> or <a href="#pdf-LUA_REFNIL"><code>LUA_REFNIL</code></a>,
   7106 <a href="#luaL_unref"><code>luaL_unref</code></a> does nothing.
   7107 
   7108 
   7109 
   7110 
   7111 
   7112 <hr><h3><a name="luaL_where"><code>luaL_where</code></a></h3><p>
   7113 <span class="apii">[-0, +1, <em>m</em>]</span>
   7114 <pre>void luaL_where (lua_State *L, int lvl);</pre>
   7115 
   7116 <p>
   7117 Pushes onto the stack a string identifying the current position
   7118 of the control at level <code>lvl</code> in the call stack.
   7119 Typically this string has the following format:
   7120 
   7121 <pre>
   7122      <em>chunkname</em>:<em>currentline</em>:
   7123 </pre><p>
   7124 Level&nbsp;0 is the running function,
   7125 level&nbsp;1 is the function that called the running function,
   7126 etc.
   7127 
   7128 
   7129 <p>
   7130 This function is used to build a prefix for error messages.
   7131 
   7132 
   7133 
   7134 
   7135 
   7136 
   7137 
   7138 <h1>6 &ndash; <a name="6">Standard Libraries</a></h1>
   7139 
   7140 <p>
   7141 The standard Lua libraries provide useful functions
   7142 that are implemented directly through the C&nbsp;API.
   7143 Some of these functions provide essential services to the language
   7144 (e.g., <a href="#pdf-type"><code>type</code></a> and <a href="#pdf-getmetatable"><code>getmetatable</code></a>);
   7145 others provide access to "outside" services (e.g., I/O);
   7146 and others could be implemented in Lua itself,
   7147 but are quite useful or have critical performance requirements that
   7148 deserve an implementation in C (e.g., <a href="#pdf-table.sort"><code>table.sort</code></a>).
   7149 
   7150 
   7151 <p>
   7152 All libraries are implemented through the official C&nbsp;API
   7153 and are provided as separate C&nbsp;modules.
   7154 Currently, Lua has the following standard libraries:
   7155 
   7156 <ul>
   7157 
   7158 <li>basic library (<a href="#6.1">&sect;6.1</a>);</li>
   7159 
   7160 <li>coroutine library (<a href="#6.2">&sect;6.2</a>);</li>
   7161 
   7162 <li>package library (<a href="#6.3">&sect;6.3</a>);</li>
   7163 
   7164 <li>string manipulation (<a href="#6.4">&sect;6.4</a>);</li>
   7165 
   7166 <li>basic UTF-8 support (<a href="#6.5">&sect;6.5</a>);</li>
   7167 
   7168 <li>table manipulation (<a href="#6.6">&sect;6.6</a>);</li>
   7169 
   7170 <li>mathematical functions (<a href="#6.7">&sect;6.7</a>) (sin, log, etc.);</li>
   7171 
   7172 <li>input and output (<a href="#6.8">&sect;6.8</a>);</li>
   7173 
   7174 <li>operating system facilities (<a href="#6.9">&sect;6.9</a>);</li>
   7175 
   7176 <li>debug facilities (<a href="#6.10">&sect;6.10</a>).</li>
   7177 
   7178 </ul><p>
   7179 Except for the basic and the package libraries,
   7180 each library provides all its functions as fields of a global table
   7181 or as methods of its objects.
   7182 
   7183 
   7184 <p>
   7185 To have access to these libraries,
   7186 the C&nbsp;host program should call the <a href="#luaL_openlibs"><code>luaL_openlibs</code></a> function,
   7187 which opens all standard libraries.
   7188 Alternatively,
   7189 the host program can open them individually by using
   7190 <a href="#luaL_requiref"><code>luaL_requiref</code></a> to call
   7191 <a name="pdf-luaopen_base"><code>luaopen_base</code></a> (for the basic library),
   7192 <a name="pdf-luaopen_package"><code>luaopen_package</code></a> (for the package library),
   7193 <a name="pdf-luaopen_coroutine"><code>luaopen_coroutine</code></a> (for the coroutine library),
   7194 <a name="pdf-luaopen_string"><code>luaopen_string</code></a> (for the string library),
   7195 <a name="pdf-luaopen_utf8"><code>luaopen_utf8</code></a> (for the UTF8 library),
   7196 <a name="pdf-luaopen_table"><code>luaopen_table</code></a> (for the table library),
   7197 <a name="pdf-luaopen_math"><code>luaopen_math</code></a> (for the mathematical library),
   7198 <a name="pdf-luaopen_io"><code>luaopen_io</code></a> (for the I/O library),
   7199 <a name="pdf-luaopen_os"><code>luaopen_os</code></a> (for the operating system library),
   7200 and <a name="pdf-luaopen_debug"><code>luaopen_debug</code></a> (for the debug library).
   7201 These functions are declared in <a name="pdf-lualib.h"><code>lualib.h</code></a>.
   7202 
   7203 
   7204 
   7205 <h2>6.1 &ndash; <a name="6.1">Basic Functions</a></h2>
   7206 
   7207 <p>
   7208 The basic library provides core functions to Lua.
   7209 If you do not include this library in your application,
   7210 you should check carefully whether you need to provide
   7211 implementations for some of its facilities.
   7212 
   7213 
   7214 <p>
   7215 <hr><h3><a name="pdf-assert"><code>assert (v [, message])</code></a></h3>
   7216 
   7217 
   7218 <p>
   7219 Calls <a href="#pdf-error"><code>error</code></a> if
   7220 the value of its argument <code>v</code> is false (i.e., <b>nil</b> or <b>false</b>);
   7221 otherwise, returns all its arguments.
   7222 In case of error,
   7223 <code>message</code> is the error object;
   7224 when absent, it defaults to "<code>assertion failed!</code>"
   7225 
   7226 
   7227 
   7228 
   7229 <p>
   7230 <hr><h3><a name="pdf-collectgarbage"><code>collectgarbage ([opt [, arg]])</code></a></h3>
   7231 
   7232 
   7233 <p>
   7234 This function is a generic interface to the garbage collector.
   7235 It performs different functions according to its first argument, <code>opt</code>:
   7236 
   7237 <ul>
   7238 
   7239 <li><b>"<code>collect</code>": </b>
   7240 performs a full garbage-collection cycle.
   7241 This is the default option.
   7242 </li>
   7243 
   7244 <li><b>"<code>stop</code>": </b>
   7245 stops automatic execution of the garbage collector.
   7246 The collector will run only when explicitly invoked,
   7247 until a call to restart it.
   7248 </li>
   7249 
   7250 <li><b>"<code>restart</code>": </b>
   7251 restarts automatic execution of the garbage collector.
   7252 </li>
   7253 
   7254 <li><b>"<code>count</code>": </b>
   7255 returns the total memory in use by Lua in Kbytes.
   7256 The value has a fractional part,
   7257 so that it multiplied by 1024
   7258 gives the exact number of bytes in use by Lua
   7259 (except for overflows).
   7260 </li>
   7261 
   7262 <li><b>"<code>step</code>": </b>
   7263 performs a garbage-collection step.
   7264 The step "size" is controlled by <code>arg</code>.
   7265 With a zero value,
   7266 the collector will perform one basic (indivisible) step.
   7267 For non-zero values,
   7268 the collector will perform as if that amount of memory
   7269 (in KBytes) had been allocated by Lua.
   7270 Returns <b>true</b> if the step finished a collection cycle.
   7271 </li>
   7272 
   7273 <li><b>"<code>setpause</code>": </b>
   7274 sets <code>arg</code> as the new value for the <em>pause</em> of
   7275 the collector (see <a href="#2.5">&sect;2.5</a>).
   7276 Returns the previous value for <em>pause</em>.
   7277 </li>
   7278 
   7279 <li><b>"<code>setstepmul</code>": </b>
   7280 sets <code>arg</code> as the new value for the <em>step multiplier</em> of
   7281 the collector (see <a href="#2.5">&sect;2.5</a>).
   7282 Returns the previous value for <em>step</em>.
   7283 </li>
   7284 
   7285 <li><b>"<code>isrunning</code>": </b>
   7286 returns a boolean that tells whether the collector is running
   7287 (i.e., not stopped).
   7288 </li>
   7289 
   7290 </ul>
   7291 
   7292 
   7293 
   7294 <p>
   7295 <hr><h3><a name="pdf-dofile"><code>dofile ([filename])</code></a></h3>
   7296 Opens the named file and executes its contents as a Lua chunk.
   7297 When called without arguments,
   7298 <code>dofile</code> executes the contents of the standard input (<code>stdin</code>).
   7299 Returns all values returned by the chunk.
   7300 In case of errors, <code>dofile</code> propagates the error
   7301 to its caller (that is, <code>dofile</code> does not run in protected mode).
   7302 
   7303 
   7304 
   7305 
   7306 <p>
   7307 <hr><h3><a name="pdf-error"><code>error (message [, level])</code></a></h3>
   7308 Terminates the last protected function called
   7309 and returns <code>message</code> as the error object.
   7310 Function <code>error</code> never returns.
   7311 
   7312 
   7313 <p>
   7314 Usually, <code>error</code> adds some information about the error position
   7315 at the beginning of the message, if the message is a string.
   7316 The <code>level</code> argument specifies how to get the error position.
   7317 With level&nbsp;1 (the default), the error position is where the
   7318 <code>error</code> function was called.
   7319 Level&nbsp;2 points the error to where the function
   7320 that called <code>error</code> was called; and so on.
   7321 Passing a level&nbsp;0 avoids the addition of error position information
   7322 to the message.
   7323 
   7324 
   7325 
   7326 
   7327 <p>
   7328 <hr><h3><a name="pdf-_G"><code>_G</code></a></h3>
   7329 A global variable (not a function) that
   7330 holds the global environment (see <a href="#2.2">&sect;2.2</a>).
   7331 Lua itself does not use this variable;
   7332 changing its value does not affect any environment,
   7333 nor vice versa.
   7334 
   7335 
   7336 
   7337 
   7338 <p>
   7339 <hr><h3><a name="pdf-getmetatable"><code>getmetatable (object)</code></a></h3>
   7340 
   7341 
   7342 <p>
   7343 If <code>object</code> does not have a metatable, returns <b>nil</b>.
   7344 Otherwise,
   7345 if the object's metatable has a <code>__metatable</code> field,
   7346 returns the associated value.
   7347 Otherwise, returns the metatable of the given object.
   7348 
   7349 
   7350 
   7351 
   7352 <p>
   7353 <hr><h3><a name="pdf-ipairs"><code>ipairs (t)</code></a></h3>
   7354 
   7355 
   7356 <p>
   7357 Returns three values (an iterator function, the table <code>t</code>, and 0)
   7358 so that the construction
   7359 
   7360 <pre>
   7361      for i,v in ipairs(t) do <em>body</em> end
   7362 </pre><p>
   7363 will iterate over the key&ndash;value pairs
   7364 (<code>1,t[1]</code>), (<code>2,t[2]</code>), ...,
   7365 up to the first nil value.
   7366 
   7367 
   7368 
   7369 
   7370 <p>
   7371 <hr><h3><a name="pdf-load"><code>load (chunk [, chunkname [, mode [, env]]])</code></a></h3>
   7372 
   7373 
   7374 <p>
   7375 Loads a chunk.
   7376 
   7377 
   7378 <p>
   7379 If <code>chunk</code> is a string, the chunk is this string.
   7380 If <code>chunk</code> is a function,
   7381 <code>load</code> calls it repeatedly to get the chunk pieces.
   7382 Each call to <code>chunk</code> must return a string that concatenates
   7383 with previous results.
   7384 A return of an empty string, <b>nil</b>, or no value signals the end of the chunk.
   7385 
   7386 
   7387 <p>
   7388 If there are no syntactic errors,
   7389 returns the compiled chunk as a function;
   7390 otherwise, returns <b>nil</b> plus the error message.
   7391 
   7392 
   7393 <p>
   7394 If the resulting function has upvalues,
   7395 the first upvalue is set to the value of <code>env</code>,
   7396 if that parameter is given,
   7397 or to the value of the global environment.
   7398 Other upvalues are initialized with <b>nil</b>.
   7399 (When you load a main chunk,
   7400 the resulting function will always have exactly one upvalue,
   7401 the <code>_ENV</code> variable (see <a href="#2.2">&sect;2.2</a>).
   7402 However,
   7403 when you load a binary chunk created from a function (see <a href="#pdf-string.dump"><code>string.dump</code></a>),
   7404 the resulting function can have an arbitrary number of upvalues.)
   7405 All upvalues are fresh, that is,
   7406 they are not shared with any other function.
   7407 
   7408 
   7409 <p>
   7410 <code>chunkname</code> is used as the name of the chunk for error messages
   7411 and debug information (see <a href="#4.9">&sect;4.9</a>).
   7412 When absent,
   7413 it defaults to <code>chunk</code>, if <code>chunk</code> is a string,
   7414 or to "<code>=(load)</code>" otherwise.
   7415 
   7416 
   7417 <p>
   7418 The string <code>mode</code> controls whether the chunk can be text or binary
   7419 (that is, a precompiled chunk).
   7420 It may be the string "<code>b</code>" (only binary chunks),
   7421 "<code>t</code>" (only text chunks),
   7422 or "<code>bt</code>" (both binary and text).
   7423 The default is "<code>bt</code>".
   7424 
   7425 
   7426 <p>
   7427 Lua does not check the consistency of binary chunks.
   7428 Maliciously crafted binary chunks can crash
   7429 the interpreter.
   7430 
   7431 
   7432 
   7433 
   7434 <p>
   7435 <hr><h3><a name="pdf-loadfile"><code>loadfile ([filename [, mode [, env]]])</code></a></h3>
   7436 
   7437 
   7438 <p>
   7439 Similar to <a href="#pdf-load"><code>load</code></a>,
   7440 but gets the chunk from file <code>filename</code>
   7441 or from the standard input,
   7442 if no file name is given.
   7443 
   7444 
   7445 
   7446 
   7447 <p>
   7448 <hr><h3><a name="pdf-next"><code>next (table [, index])</code></a></h3>
   7449 
   7450 
   7451 <p>
   7452 Allows a program to traverse all fields of a table.
   7453 Its first argument is a table and its second argument
   7454 is an index in this table.
   7455 <code>next</code> returns the next index of the table
   7456 and its associated value.
   7457 When called with <b>nil</b> as its second argument,
   7458 <code>next</code> returns an initial index
   7459 and its associated value.
   7460 When called with the last index,
   7461 or with <b>nil</b> in an empty table,
   7462 <code>next</code> returns <b>nil</b>.
   7463 If the second argument is absent, then it is interpreted as <b>nil</b>.
   7464 In particular,
   7465 you can use <code>next(t)</code> to check whether a table is empty.
   7466 
   7467 
   7468 <p>
   7469 The order in which the indices are enumerated is not specified,
   7470 <em>even for numeric indices</em>.
   7471 (To traverse a table in numerical order,
   7472 use a numerical <b>for</b>.)
   7473 
   7474 
   7475 <p>
   7476 The behavior of <code>next</code> is undefined if,
   7477 during the traversal,
   7478 you assign any value to a non-existent field in the table.
   7479 You may however modify existing fields.
   7480 In particular, you may clear existing fields.
   7481 
   7482 
   7483 
   7484 
   7485 <p>
   7486 <hr><h3><a name="pdf-pairs"><code>pairs (t)</code></a></h3>
   7487 
   7488 
   7489 <p>
   7490 If <code>t</code> has a metamethod <code>__pairs</code>,
   7491 calls it with <code>t</code> as argument and returns the first three
   7492 results from the call.
   7493 
   7494 
   7495 <p>
   7496 Otherwise,
   7497 returns three values: the <a href="#pdf-next"><code>next</code></a> function, the table <code>t</code>, and <b>nil</b>,
   7498 so that the construction
   7499 
   7500 <pre>
   7501      for k,v in pairs(t) do <em>body</em> end
   7502 </pre><p>
   7503 will iterate over all key&ndash;value pairs of table <code>t</code>.
   7504 
   7505 
   7506 <p>
   7507 See function <a href="#pdf-next"><code>next</code></a> for the caveats of modifying
   7508 the table during its traversal.
   7509 
   7510 
   7511 
   7512 
   7513 <p>
   7514 <hr><h3><a name="pdf-pcall"><code>pcall (f [, arg1, &middot;&middot;&middot;])</code></a></h3>
   7515 
   7516 
   7517 <p>
   7518 Calls function <code>f</code> with
   7519 the given arguments in <em>protected mode</em>.
   7520 This means that any error inside&nbsp;<code>f</code> is not propagated;
   7521 instead, <code>pcall</code> catches the error
   7522 and returns a status code.
   7523 Its first result is the status code (a boolean),
   7524 which is true if the call succeeds without errors.
   7525 In such case, <code>pcall</code> also returns all results from the call,
   7526 after this first result.
   7527 In case of any error, <code>pcall</code> returns <b>false</b> plus the error message.
   7528 
   7529 
   7530 
   7531 
   7532 <p>
   7533 <hr><h3><a name="pdf-print"><code>print (&middot;&middot;&middot;)</code></a></h3>
   7534 Receives any number of arguments
   7535 and prints their values to <code>stdout</code>,
   7536 using the <a href="#pdf-tostring"><code>tostring</code></a> function to convert each argument to a string.
   7537 <code>print</code> is not intended for formatted output,
   7538 but only as a quick way to show a value,
   7539 for instance for debugging.
   7540 For complete control over the output,
   7541 use <a href="#pdf-string.format"><code>string.format</code></a> and <a href="#pdf-io.write"><code>io.write</code></a>.
   7542 
   7543 
   7544 
   7545 
   7546 <p>
   7547 <hr><h3><a name="pdf-rawequal"><code>rawequal (v1, v2)</code></a></h3>
   7548 Checks whether <code>v1</code> is equal to <code>v2</code>,
   7549 without invoking the <code>__eq</code> metamethod.
   7550 Returns a boolean.
   7551 
   7552 
   7553 
   7554 
   7555 <p>
   7556 <hr><h3><a name="pdf-rawget"><code>rawget (table, index)</code></a></h3>
   7557 Gets the real value of <code>table[index]</code>,
   7558 without invoking the <code>__index</code> metamethod.
   7559 <code>table</code> must be a table;
   7560 <code>index</code> may be any value.
   7561 
   7562 
   7563 
   7564 
   7565 <p>
   7566 <hr><h3><a name="pdf-rawlen"><code>rawlen (v)</code></a></h3>
   7567 Returns the length of the object <code>v</code>,
   7568 which must be a table or a string,
   7569 without invoking the <code>__len</code> metamethod.
   7570 Returns an integer.
   7571 
   7572 
   7573 
   7574 
   7575 <p>
   7576 <hr><h3><a name="pdf-rawset"><code>rawset (table, index, value)</code></a></h3>
   7577 Sets the real value of <code>table[index]</code> to <code>value</code>,
   7578 without invoking the <code>__newindex</code> metamethod.
   7579 <code>table</code> must be a table,
   7580 <code>index</code> any value different from <b>nil</b> and NaN,
   7581 and <code>value</code> any Lua value.
   7582 
   7583 
   7584 <p>
   7585 This function returns <code>table</code>.
   7586 
   7587 
   7588 
   7589 
   7590 <p>
   7591 <hr><h3><a name="pdf-select"><code>select (index, &middot;&middot;&middot;)</code></a></h3>
   7592 
   7593 
   7594 <p>
   7595 If <code>index</code> is a number,
   7596 returns all arguments after argument number <code>index</code>;
   7597 a negative number indexes from the end (-1 is the last argument).
   7598 Otherwise, <code>index</code> must be the string <code>"#"</code>,
   7599 and <code>select</code> returns the total number of extra arguments it received.
   7600 
   7601 
   7602 
   7603 
   7604 <p>
   7605 <hr><h3><a name="pdf-setmetatable"><code>setmetatable (table, metatable)</code></a></h3>
   7606 
   7607 
   7608 <p>
   7609 Sets the metatable for the given table.
   7610 (To change the metatable of other types from Lua code,
   7611 you must use the debug library (<a href="#6.10">&sect;6.10</a>).)
   7612 If <code>metatable</code> is <b>nil</b>,
   7613 removes the metatable of the given table.
   7614 If the original metatable has a <code>__metatable</code> field,
   7615 raises an error.
   7616 
   7617 
   7618 <p>
   7619 This function returns <code>table</code>.
   7620 
   7621 
   7622 
   7623 
   7624 <p>
   7625 <hr><h3><a name="pdf-tonumber"><code>tonumber (e [, base])</code></a></h3>
   7626 
   7627 
   7628 <p>
   7629 When called with no <code>base</code>,
   7630 <code>tonumber</code> tries to convert its argument to a number.
   7631 If the argument is already a number or
   7632 a string convertible to a number,
   7633 then <code>tonumber</code> returns this number;
   7634 otherwise, it returns <b>nil</b>.
   7635 
   7636 
   7637 <p>
   7638 The conversion of strings can result in integers or floats,
   7639 according to the lexical conventions of Lua (see <a href="#3.1">&sect;3.1</a>).
   7640 (The string may have leading and trailing spaces and a sign.)
   7641 
   7642 
   7643 <p>
   7644 When called with <code>base</code>,
   7645 then <code>e</code> must be a string to be interpreted as
   7646 an integer numeral in that base.
   7647 The base may be any integer between 2 and 36, inclusive.
   7648 In bases above&nbsp;10, the letter '<code>A</code>' (in either upper or lower case)
   7649 represents&nbsp;10, '<code>B</code>' represents&nbsp;11, and so forth,
   7650 with '<code>Z</code>' representing 35.
   7651 If the string <code>e</code> is not a valid numeral in the given base,
   7652 the function returns <b>nil</b>.
   7653 
   7654 
   7655 
   7656 
   7657 <p>
   7658 <hr><h3><a name="pdf-tostring"><code>tostring (v)</code></a></h3>
   7659 Receives a value of any type and
   7660 converts it to a string in a human-readable format.
   7661 (For complete control of how numbers are converted,
   7662 use <a href="#pdf-string.format"><code>string.format</code></a>.)
   7663 
   7664 
   7665 <p>
   7666 If the metatable of <code>v</code> has a <code>__tostring</code> field,
   7667 then <code>tostring</code> calls the corresponding value
   7668 with <code>v</code> as argument,
   7669 and uses the result of the call as its result.
   7670 
   7671 
   7672 
   7673 
   7674 <p>
   7675 <hr><h3><a name="pdf-type"><code>type (v)</code></a></h3>
   7676 Returns the type of its only argument, coded as a string.
   7677 The possible results of this function are
   7678 "<code>nil</code>" (a string, not the value <b>nil</b>),
   7679 "<code>number</code>",
   7680 "<code>string</code>",
   7681 "<code>boolean</code>",
   7682 "<code>table</code>",
   7683 "<code>function</code>",
   7684 "<code>thread</code>",
   7685 and "<code>userdata</code>".
   7686 
   7687 
   7688 
   7689 
   7690 <p>
   7691 <hr><h3><a name="pdf-_VERSION"><code>_VERSION</code></a></h3>
   7692 
   7693 
   7694 <p>
   7695 A global variable (not a function) that
   7696 holds a string containing the running Lua version.
   7697 The current value of this variable is "<code>Lua 5.3</code>".
   7698 
   7699 
   7700 
   7701 
   7702 <p>
   7703 <hr><h3><a name="pdf-xpcall"><code>xpcall (f, msgh [, arg1, &middot;&middot;&middot;])</code></a></h3>
   7704 
   7705 
   7706 <p>
   7707 This function is similar to <a href="#pdf-pcall"><code>pcall</code></a>,
   7708 except that it sets a new message handler <code>msgh</code>.
   7709 
   7710 
   7711 
   7712 
   7713 
   7714 
   7715 
   7716 <h2>6.2 &ndash; <a name="6.2">Coroutine Manipulation</a></h2>
   7717 
   7718 <p>
   7719 This library comprises the operations to manipulate coroutines,
   7720 which come inside the table <a name="pdf-coroutine"><code>coroutine</code></a>.
   7721 See <a href="#2.6">&sect;2.6</a> for a general description of coroutines.
   7722 
   7723 
   7724 <p>
   7725 <hr><h3><a name="pdf-coroutine.create"><code>coroutine.create (f)</code></a></h3>
   7726 
   7727 
   7728 <p>
   7729 Creates a new coroutine, with body <code>f</code>.
   7730 <code>f</code> must be a function.
   7731 Returns this new coroutine,
   7732 an object with type <code>"thread"</code>.
   7733 
   7734 
   7735 
   7736 
   7737 <p>
   7738 <hr><h3><a name="pdf-coroutine.isyieldable"><code>coroutine.isyieldable ()</code></a></h3>
   7739 
   7740 
   7741 <p>
   7742 Returns true when the running coroutine can yield.
   7743 
   7744 
   7745 <p>
   7746 A running coroutine is yieldable if it is not the main thread and
   7747 it is not inside a non-yieldable C&nbsp;function.
   7748 
   7749 
   7750 
   7751 
   7752 <p>
   7753 <hr><h3><a name="pdf-coroutine.resume"><code>coroutine.resume (co [, val1, &middot;&middot;&middot;])</code></a></h3>
   7754 
   7755 
   7756 <p>
   7757 Starts or continues the execution of coroutine <code>co</code>.
   7758 The first time you resume a coroutine,
   7759 it starts running its body.
   7760 The values <code>val1</code>, ... are passed
   7761 as the arguments to the body function.
   7762 If the coroutine has yielded,
   7763 <code>resume</code> restarts it;
   7764 the values <code>val1</code>, ... are passed
   7765 as the results from the yield.
   7766 
   7767 
   7768 <p>
   7769 If the coroutine runs without any errors,
   7770 <code>resume</code> returns <b>true</b> plus any values passed to <code>yield</code>
   7771 (when the coroutine yields) or any values returned by the body function
   7772 (when the coroutine terminates).
   7773 If there is any error,
   7774 <code>resume</code> returns <b>false</b> plus the error message.
   7775 
   7776 
   7777 
   7778 
   7779 <p>
   7780 <hr><h3><a name="pdf-coroutine.running"><code>coroutine.running ()</code></a></h3>
   7781 
   7782 
   7783 <p>
   7784 Returns the running coroutine plus a boolean,
   7785 true when the running coroutine is the main one.
   7786 
   7787 
   7788 
   7789 
   7790 <p>
   7791 <hr><h3><a name="pdf-coroutine.status"><code>coroutine.status (co)</code></a></h3>
   7792 
   7793 
   7794 <p>
   7795 Returns the status of coroutine <code>co</code>, as a string:
   7796 <code>"running"</code>,
   7797 if the coroutine is running (that is, it called <code>status</code>);
   7798 <code>"suspended"</code>, if the coroutine is suspended in a call to <code>yield</code>,
   7799 or if it has not started running yet;
   7800 <code>"normal"</code> if the coroutine is active but not running
   7801 (that is, it has resumed another coroutine);
   7802 and <code>"dead"</code> if the coroutine has finished its body function,
   7803 or if it has stopped with an error.
   7804 
   7805 
   7806 
   7807 
   7808 <p>
   7809 <hr><h3><a name="pdf-coroutine.wrap"><code>coroutine.wrap (f)</code></a></h3>
   7810 
   7811 
   7812 <p>
   7813 Creates a new coroutine, with body <code>f</code>.
   7814 <code>f</code> must be a function.
   7815 Returns a function that resumes the coroutine each time it is called.
   7816 Any arguments passed to the function behave as the
   7817 extra arguments to <code>resume</code>.
   7818 Returns the same values returned by <code>resume</code>,
   7819 except the first boolean.
   7820 In case of error, propagates the error.
   7821 
   7822 
   7823 
   7824 
   7825 <p>
   7826 <hr><h3><a name="pdf-coroutine.yield"><code>coroutine.yield (&middot;&middot;&middot;)</code></a></h3>
   7827 
   7828 
   7829 <p>
   7830 Suspends the execution of the calling coroutine.
   7831 Any arguments to <code>yield</code> are passed as extra results to <code>resume</code>.
   7832 
   7833 
   7834 
   7835 
   7836 
   7837 
   7838 
   7839 <h2>6.3 &ndash; <a name="6.3">Modules</a></h2>
   7840 
   7841 <p>
   7842 The package library provides basic
   7843 facilities for loading modules in Lua.
   7844 It exports one function directly in the global environment:
   7845 <a href="#pdf-require"><code>require</code></a>.
   7846 Everything else is exported in a table <a name="pdf-package"><code>package</code></a>.
   7847 
   7848 
   7849 <p>
   7850 <hr><h3><a name="pdf-require"><code>require (modname)</code></a></h3>
   7851 
   7852 
   7853 <p>
   7854 Loads the given module.
   7855 The function starts by looking into the <a href="#pdf-package.loaded"><code>package.loaded</code></a> table
   7856 to determine whether <code>modname</code> is already loaded.
   7857 If it is, then <code>require</code> returns the value stored
   7858 at <code>package.loaded[modname]</code>.
   7859 Otherwise, it tries to find a <em>loader</em> for the module.
   7860 
   7861 
   7862 <p>
   7863 To find a loader,
   7864 <code>require</code> is guided by the <a href="#pdf-package.searchers"><code>package.searchers</code></a> sequence.
   7865 By changing this sequence,
   7866 we can change how <code>require</code> looks for a module.
   7867 The following explanation is based on the default configuration
   7868 for <a href="#pdf-package.searchers"><code>package.searchers</code></a>.
   7869 
   7870 
   7871 <p>
   7872 First <code>require</code> queries <code>package.preload[modname]</code>.
   7873 If it has a value,
   7874 this value (which must be a function) is the loader.
   7875 Otherwise <code>require</code> searches for a Lua loader using the
   7876 path stored in <a href="#pdf-package.path"><code>package.path</code></a>.
   7877 If that also fails, it searches for a C&nbsp;loader using the
   7878 path stored in <a href="#pdf-package.cpath"><code>package.cpath</code></a>.
   7879 If that also fails,
   7880 it tries an <em>all-in-one</em> loader (see <a href="#pdf-package.searchers"><code>package.searchers</code></a>).
   7881 
   7882 
   7883 <p>
   7884 Once a loader is found,
   7885 <code>require</code> calls the loader with two arguments:
   7886 <code>modname</code> and an extra value dependent on how it got the loader.
   7887 (If the loader came from a file,
   7888 this extra value is the file name.)
   7889 If the loader returns any non-nil value,
   7890 <code>require</code> assigns the returned value to <code>package.loaded[modname]</code>.
   7891 If the loader does not return a non-nil value and
   7892 has not assigned any value to <code>package.loaded[modname]</code>,
   7893 then <code>require</code> assigns <b>true</b> to this entry.
   7894 In any case, <code>require</code> returns the
   7895 final value of <code>package.loaded[modname]</code>.
   7896 
   7897 
   7898 <p>
   7899 If there is any error loading or running the module,
   7900 or if it cannot find any loader for the module,
   7901 then <code>require</code> raises an error.
   7902 
   7903 
   7904 
   7905 
   7906 <p>
   7907 <hr><h3><a name="pdf-package.config"><code>package.config</code></a></h3>
   7908 
   7909 
   7910 <p>
   7911 A string describing some compile-time configurations for packages.
   7912 This string is a sequence of lines:
   7913 
   7914 <ul>
   7915 
   7916 <li>The first line is the directory separator string.
   7917 Default is '<code>\</code>' for Windows and '<code>/</code>' for all other systems.</li>
   7918 
   7919 <li>The second line is the character that separates templates in a path.
   7920 Default is '<code>;</code>'.</li>
   7921 
   7922 <li>The third line is the string that marks the
   7923 substitution points in a template.
   7924 Default is '<code>?</code>'.</li>
   7925 
   7926 <li>The fourth line is a string that, in a path in Windows,
   7927 is replaced by the executable's directory.
   7928 Default is '<code>!</code>'.</li>
   7929 
   7930 <li>The fifth line is a mark to ignore all text after it
   7931 when building the <code>luaopen_</code> function name.
   7932 Default is '<code>-</code>'.</li>
   7933 
   7934 </ul>
   7935 
   7936 
   7937 
   7938 <p>
   7939 <hr><h3><a name="pdf-package.cpath"><code>package.cpath</code></a></h3>
   7940 
   7941 
   7942 <p>
   7943 The path used by <a href="#pdf-require"><code>require</code></a> to search for a C&nbsp;loader.
   7944 
   7945 
   7946 <p>
   7947 Lua initializes the C&nbsp;path <a href="#pdf-package.cpath"><code>package.cpath</code></a> in the same way
   7948 it initializes the Lua path <a href="#pdf-package.path"><code>package.path</code></a>,
   7949 using the environment variable <a name="pdf-LUA_CPATH_5_3"><code>LUA_CPATH_5_3</code></a>,
   7950 or the environment variable <a name="pdf-LUA_CPATH"><code>LUA_CPATH</code></a>,
   7951 or a default path defined in <code>luaconf.h</code>.
   7952 
   7953 
   7954 
   7955 
   7956 <p>
   7957 <hr><h3><a name="pdf-package.loaded"><code>package.loaded</code></a></h3>
   7958 
   7959 
   7960 <p>
   7961 A table used by <a href="#pdf-require"><code>require</code></a> to control which
   7962 modules are already loaded.
   7963 When you require a module <code>modname</code> and
   7964 <code>package.loaded[modname]</code> is not false,
   7965 <a href="#pdf-require"><code>require</code></a> simply returns the value stored there.
   7966 
   7967 
   7968 <p>
   7969 This variable is only a reference to the real table;
   7970 assignments to this variable do not change the
   7971 table used by <a href="#pdf-require"><code>require</code></a>.
   7972 
   7973 
   7974 
   7975 
   7976 <p>
   7977 <hr><h3><a name="pdf-package.loadlib"><code>package.loadlib (libname, funcname)</code></a></h3>
   7978 
   7979 
   7980 <p>
   7981 Dynamically links the host program with the C&nbsp;library <code>libname</code>.
   7982 
   7983 
   7984 <p>
   7985 If <code>funcname</code> is "<code>*</code>",
   7986 then it only links with the library,
   7987 making the symbols exported by the library
   7988 available to other dynamically linked libraries.
   7989 Otherwise,
   7990 it looks for a function <code>funcname</code> inside the library
   7991 and returns this function as a C&nbsp;function.
   7992 So, <code>funcname</code> must follow the <a href="#lua_CFunction"><code>lua_CFunction</code></a> prototype
   7993 (see <a href="#lua_CFunction"><code>lua_CFunction</code></a>).
   7994 
   7995 
   7996 <p>
   7997 This is a low-level function.
   7998 It completely bypasses the package and module system.
   7999 Unlike <a href="#pdf-require"><code>require</code></a>,
   8000 it does not perform any path searching and
   8001 does not automatically adds extensions.
   8002 <code>libname</code> must be the complete file name of the C&nbsp;library,
   8003 including if necessary a path and an extension.
   8004 <code>funcname</code> must be the exact name exported by the C&nbsp;library
   8005 (which may depend on the C&nbsp;compiler and linker used).
   8006 
   8007 
   8008 <p>
   8009 This function is not supported by Standard&nbsp;C.
   8010 As such, it is only available on some platforms
   8011 (Windows, Linux, Mac OS X, Solaris, BSD,
   8012 plus other Unix systems that support the <code>dlfcn</code> standard).
   8013 
   8014 
   8015 
   8016 
   8017 <p>
   8018 <hr><h3><a name="pdf-package.path"><code>package.path</code></a></h3>
   8019 
   8020 
   8021 <p>
   8022 The path used by <a href="#pdf-require"><code>require</code></a> to search for a Lua loader.
   8023 
   8024 
   8025 <p>
   8026 At start-up, Lua initializes this variable with
   8027 the value of the environment variable <a name="pdf-LUA_PATH_5_3"><code>LUA_PATH_5_3</code></a> or
   8028 the environment variable <a name="pdf-LUA_PATH"><code>LUA_PATH</code></a> or
   8029 with a default path defined in <code>luaconf.h</code>,
   8030 if those environment variables are not defined.
   8031 Any "<code>;;</code>" in the value of the environment variable
   8032 is replaced by the default path.
   8033 
   8034 
   8035 
   8036 
   8037 <p>
   8038 <hr><h3><a name="pdf-package.preload"><code>package.preload</code></a></h3>
   8039 
   8040 
   8041 <p>
   8042 A table to store loaders for specific modules
   8043 (see <a href="#pdf-require"><code>require</code></a>).
   8044 
   8045 
   8046 <p>
   8047 This variable is only a reference to the real table;
   8048 assignments to this variable do not change the
   8049 table used by <a href="#pdf-require"><code>require</code></a>.
   8050 
   8051 
   8052 
   8053 
   8054 <p>
   8055 <hr><h3><a name="pdf-package.searchers"><code>package.searchers</code></a></h3>
   8056 
   8057 
   8058 <p>
   8059 A table used by <a href="#pdf-require"><code>require</code></a> to control how to load modules.
   8060 
   8061 
   8062 <p>
   8063 Each entry in this table is a <em>searcher function</em>.
   8064 When looking for a module,
   8065 <a href="#pdf-require"><code>require</code></a> calls each of these searchers in ascending order,
   8066 with the module name (the argument given to <a href="#pdf-require"><code>require</code></a>) as its
   8067 sole parameter.
   8068 The function can return another function (the module <em>loader</em>)
   8069 plus an extra value that will be passed to that loader,
   8070 or a string explaining why it did not find that module
   8071 (or <b>nil</b> if it has nothing to say).
   8072 
   8073 
   8074 <p>
   8075 Lua initializes this table with four searcher functions.
   8076 
   8077 
   8078 <p>
   8079 The first searcher simply looks for a loader in the
   8080 <a href="#pdf-package.preload"><code>package.preload</code></a> table.
   8081 
   8082 
   8083 <p>
   8084 The second searcher looks for a loader as a Lua library,
   8085 using the path stored at <a href="#pdf-package.path"><code>package.path</code></a>.
   8086 The search is done as described in function <a href="#pdf-package.searchpath"><code>package.searchpath</code></a>.
   8087 
   8088 
   8089 <p>
   8090 The third searcher looks for a loader as a C&nbsp;library,
   8091 using the path given by the variable <a href="#pdf-package.cpath"><code>package.cpath</code></a>.
   8092 Again,
   8093 the search is done as described in function <a href="#pdf-package.searchpath"><code>package.searchpath</code></a>.
   8094 For instance,
   8095 if the C&nbsp;path is the string
   8096 
   8097 <pre>
   8098      "./?.so;./?.dll;/usr/local/?/init.so"
   8099 </pre><p>
   8100 the searcher for module <code>foo</code>
   8101 will try to open the files <code>./foo.so</code>, <code>./foo.dll</code>,
   8102 and <code>/usr/local/foo/init.so</code>, in that order.
   8103 Once it finds a C&nbsp;library,
   8104 this searcher first uses a dynamic link facility to link the
   8105 application with the library.
   8106 Then it tries to find a C&nbsp;function inside the library to
   8107 be used as the loader.
   8108 The name of this C&nbsp;function is the string "<code>luaopen_</code>"
   8109 concatenated with a copy of the module name where each dot
   8110 is replaced by an underscore.
   8111 Moreover, if the module name has a hyphen,
   8112 its suffix after (and including) the first hyphen is removed.
   8113 For instance, if the module name is <code>a.b.c-v2.1</code>,
   8114 the function name will be <code>luaopen_a_b_c</code>.
   8115 
   8116 
   8117 <p>
   8118 The fourth searcher tries an <em>all-in-one loader</em>.
   8119 It searches the C&nbsp;path for a library for
   8120 the root name of the given module.
   8121 For instance, when requiring <code>a.b.c</code>,
   8122 it will search for a C&nbsp;library for <code>a</code>.
   8123 If found, it looks into it for an open function for
   8124 the submodule;
   8125 in our example, that would be <code>luaopen_a_b_c</code>.
   8126 With this facility, a package can pack several C&nbsp;submodules
   8127 into one single library,
   8128 with each submodule keeping its original open function.
   8129 
   8130 
   8131 <p>
   8132 All searchers except the first one (preload) return as the extra value
   8133 the file name where the module was found,
   8134 as returned by <a href="#pdf-package.searchpath"><code>package.searchpath</code></a>.
   8135 The first searcher returns no extra value.
   8136 
   8137 
   8138 
   8139 
   8140 <p>
   8141 <hr><h3><a name="pdf-package.searchpath"><code>package.searchpath (name, path [, sep [, rep]])</code></a></h3>
   8142 
   8143 
   8144 <p>
   8145 Searches for the given <code>name</code> in the given <code>path</code>.
   8146 
   8147 
   8148 <p>
   8149 A path is a string containing a sequence of
   8150 <em>templates</em> separated by semicolons.
   8151 For each template,
   8152 the function replaces each interrogation mark (if any)
   8153 in the template with a copy of <code>name</code>
   8154 wherein all occurrences of <code>sep</code>
   8155 (a dot, by default)
   8156 were replaced by <code>rep</code>
   8157 (the system's directory separator, by default),
   8158 and then tries to open the resulting file name.
   8159 
   8160 
   8161 <p>
   8162 For instance, if the path is the string
   8163 
   8164 <pre>
   8165      "./?.lua;./?.lc;/usr/local/?/init.lua"
   8166 </pre><p>
   8167 the search for the name <code>foo.a</code>
   8168 will try to open the files
   8169 <code>./foo/a.lua</code>, <code>./foo/a.lc</code>, and
   8170 <code>/usr/local/foo/a/init.lua</code>, in that order.
   8171 
   8172 
   8173 <p>
   8174 Returns the resulting name of the first file that it can
   8175 open in read mode (after closing the file),
   8176 or <b>nil</b> plus an error message if none succeeds.
   8177 (This error message lists all file names it tried to open.)
   8178 
   8179 
   8180 
   8181 
   8182 
   8183 
   8184 
   8185 <h2>6.4 &ndash; <a name="6.4">String Manipulation</a></h2>
   8186 
   8187 <p>
   8188 This library provides generic functions for string manipulation,
   8189 such as finding and extracting substrings, and pattern matching.
   8190 When indexing a string in Lua, the first character is at position&nbsp;1
   8191 (not at&nbsp;0, as in C).
   8192 Indices are allowed to be negative and are interpreted as indexing backwards,
   8193 from the end of the string.
   8194 Thus, the last character is at position -1, and so on.
   8195 
   8196 
   8197 <p>
   8198 The string library provides all its functions inside the table
   8199 <a name="pdf-string"><code>string</code></a>.
   8200 It also sets a metatable for strings
   8201 where the <code>__index</code> field points to the <code>string</code> table.
   8202 Therefore, you can use the string functions in object-oriented style.
   8203 For instance, <code>string.byte(s,i)</code>
   8204 can be written as <code>s:byte(i)</code>.
   8205 
   8206 
   8207 <p>
   8208 The string library assumes one-byte character encodings.
   8209 
   8210 
   8211 <p>
   8212 <hr><h3><a name="pdf-string.byte"><code>string.byte (s [, i [, j]])</code></a></h3>
   8213 Returns the internal numeric codes of the characters <code>s[i]</code>,
   8214 <code>s[i+1]</code>, ..., <code>s[j]</code>.
   8215 The default value for <code>i</code> is&nbsp;1;
   8216 the default value for <code>j</code> is&nbsp;<code>i</code>.
   8217 These indices are corrected
   8218 following the same rules of function <a href="#pdf-string.sub"><code>string.sub</code></a>.
   8219 
   8220 
   8221 <p>
   8222 Numeric codes are not necessarily portable across platforms.
   8223 
   8224 
   8225 
   8226 
   8227 <p>
   8228 <hr><h3><a name="pdf-string.char"><code>string.char (&middot;&middot;&middot;)</code></a></h3>
   8229 Receives zero or more integers.
   8230 Returns a string with length equal to the number of arguments,
   8231 in which each character has the internal numeric code equal
   8232 to its corresponding argument.
   8233 
   8234 
   8235 <p>
   8236 Numeric codes are not necessarily portable across platforms.
   8237 
   8238 
   8239 
   8240 
   8241 <p>
   8242 <hr><h3><a name="pdf-string.dump"><code>string.dump (function [, strip])</code></a></h3>
   8243 
   8244 
   8245 <p>
   8246 Returns a string containing a binary representation
   8247 (a <em>binary chunk</em>)
   8248 of the given function,
   8249 so that a later <a href="#pdf-load"><code>load</code></a> on this string returns
   8250 a copy of the function (but with new upvalues).
   8251 If <code>strip</code> is a true value,
   8252 the binary representation may not include all debug information
   8253 about the function,
   8254 to save space.
   8255 
   8256 
   8257 <p>
   8258 Functions with upvalues have only their number of upvalues saved.
   8259 When (re)loaded,
   8260 those upvalues receive fresh instances containing <b>nil</b>.
   8261 (You can use the debug library to serialize
   8262 and reload the upvalues of a function
   8263 in a way adequate to your needs.)
   8264 
   8265 
   8266 
   8267 
   8268 <p>
   8269 <hr><h3><a name="pdf-string.find"><code>string.find (s, pattern [, init [, plain]])</code></a></h3>
   8270 
   8271 
   8272 <p>
   8273 Looks for the first match of
   8274 <code>pattern</code> (see <a href="#6.4.1">&sect;6.4.1</a>) in the string <code>s</code>.
   8275 If it finds a match, then <code>find</code> returns the indices of&nbsp;<code>s</code>
   8276 where this occurrence starts and ends;
   8277 otherwise, it returns <b>nil</b>.
   8278 A third, optional numeric argument <code>init</code> specifies
   8279 where to start the search;
   8280 its default value is&nbsp;1 and can be negative.
   8281 A value of <b>true</b> as a fourth, optional argument <code>plain</code>
   8282 turns off the pattern matching facilities,
   8283 so the function does a plain "find substring" operation,
   8284 with no characters in <code>pattern</code> being considered magic.
   8285 Note that if <code>plain</code> is given, then <code>init</code> must be given as well.
   8286 
   8287 
   8288 <p>
   8289 If the pattern has captures,
   8290 then in a successful match
   8291 the captured values are also returned,
   8292 after the two indices.
   8293 
   8294 
   8295 
   8296 
   8297 <p>
   8298 <hr><h3><a name="pdf-string.format"><code>string.format (formatstring, &middot;&middot;&middot;)</code></a></h3>
   8299 
   8300 
   8301 <p>
   8302 Returns a formatted version of its variable number of arguments
   8303 following the description given in its first argument (which must be a string).
   8304 The format string follows the same rules as the ISO&nbsp;C function <code>sprintf</code>.
   8305 The only differences are that the options/modifiers
   8306 <code>*</code>, <code>h</code>, <code>L</code>, <code>l</code>, <code>n</code>,
   8307 and <code>p</code> are not supported
   8308 and that there is an extra option, <code>q</code>.
   8309 
   8310 
   8311 <p>
   8312 The <code>q</code> option formats a string between double quotes,
   8313 using escape sequences when necessary to ensure that
   8314 it can safely be read back by the Lua interpreter.
   8315 For instance, the call
   8316 
   8317 <pre>
   8318      string.format('%q', 'a string with "quotes" and \n new line')
   8319 </pre><p>
   8320 may produce the string:
   8321 
   8322 <pre>
   8323      "a string with \"quotes\" and \
   8324       new line"
   8325 </pre>
   8326 
   8327 <p>
   8328 Options
   8329 <code>A</code>, <code>a</code>, <code>E</code>, <code>e</code>, <code>f</code>,
   8330 <code>G</code>, and <code>g</code> all expect a number as argument.
   8331 Options <code>c</code>, <code>d</code>,
   8332 <code>i</code>, <code>o</code>, <code>u</code>, <code>X</code>, and <code>x</code>
   8333 expect an integer.
   8334 When Lua is compiled with a C89 compiler,
   8335 options <code>A</code> and <code>a</code> (hexadecimal floats)
   8336 do not support any modifier (flags, width, length).
   8337 
   8338 
   8339 <p>
   8340 Option <code>s</code> expects a string;
   8341 if its argument is not a string,
   8342 it is converted to one following the same rules of <a href="#pdf-tostring"><code>tostring</code></a>.
   8343 If the option has any modifier (flags, width, length),
   8344 the string argument should not contain embedded zeros.
   8345 
   8346 
   8347 
   8348 
   8349 <p>
   8350 <hr><h3><a name="pdf-string.gmatch"><code>string.gmatch (s, pattern)</code></a></h3>
   8351 Returns an iterator function that,
   8352 each time it is called,
   8353 returns the next captures from <code>pattern</code> (see <a href="#6.4.1">&sect;6.4.1</a>)
   8354 over the string <code>s</code>.
   8355 If <code>pattern</code> specifies no captures,
   8356 then the whole match is produced in each call.
   8357 
   8358 
   8359 <p>
   8360 As an example, the following loop
   8361 will iterate over all the words from string <code>s</code>,
   8362 printing one per line:
   8363 
   8364 <pre>
   8365      s = "hello world from Lua"
   8366      for w in string.gmatch(s, "%a+") do
   8367        print(w)
   8368      end
   8369 </pre><p>
   8370 The next example collects all pairs <code>key=value</code> from the
   8371 given string into a table:
   8372 
   8373 <pre>
   8374      t = {}
   8375      s = "from=world, to=Lua"
   8376      for k, v in string.gmatch(s, "(%w+)=(%w+)") do
   8377        t[k] = v
   8378      end
   8379 </pre>
   8380 
   8381 <p>
   8382 For this function, a caret '<code>^</code>' at the start of a pattern does not
   8383 work as an anchor, as this would prevent the iteration.
   8384 
   8385 
   8386 
   8387 
   8388 <p>
   8389 <hr><h3><a name="pdf-string.gsub"><code>string.gsub (s, pattern, repl [, n])</code></a></h3>
   8390 Returns a copy of <code>s</code>
   8391 in which all (or the first <code>n</code>, if given)
   8392 occurrences of the <code>pattern</code> (see <a href="#6.4.1">&sect;6.4.1</a>) have been
   8393 replaced by a replacement string specified by <code>repl</code>,
   8394 which can be a string, a table, or a function.
   8395 <code>gsub</code> also returns, as its second value,
   8396 the total number of matches that occurred.
   8397 The name <code>gsub</code> comes from <em>Global SUBstitution</em>.
   8398 
   8399 
   8400 <p>
   8401 If <code>repl</code> is a string, then its value is used for replacement.
   8402 The character&nbsp;<code>%</code> works as an escape character:
   8403 any sequence in <code>repl</code> of the form <code>%<em>d</em></code>,
   8404 with <em>d</em> between 1 and 9,
   8405 stands for the value of the <em>d</em>-th captured substring.
   8406 The sequence <code>%0</code> stands for the whole match.
   8407 The sequence <code>%%</code> stands for a single&nbsp;<code>%</code>.
   8408 
   8409 
   8410 <p>
   8411 If <code>repl</code> is a table, then the table is queried for every match,
   8412 using the first capture as the key.
   8413 
   8414 
   8415 <p>
   8416 If <code>repl</code> is a function, then this function is called every time a
   8417 match occurs, with all captured substrings passed as arguments,
   8418 in order.
   8419 
   8420 
   8421 <p>
   8422 In any case,
   8423 if the pattern specifies no captures,
   8424 then it behaves as if the whole pattern was inside a capture.
   8425 
   8426 
   8427 <p>
   8428 If the value returned by the table query or by the function call
   8429 is a string or a number,
   8430 then it is used as the replacement string;
   8431 otherwise, if it is <b>false</b> or <b>nil</b>,
   8432 then there is no replacement
   8433 (that is, the original match is kept in the string).
   8434 
   8435 
   8436 <p>
   8437 Here are some examples:
   8438 
   8439 <pre>
   8440      x = string.gsub("hello world", "(%w+)", "%1 %1")
   8441      --&gt; x="hello hello world world"
   8442      
   8443      x = string.gsub("hello world", "%w+", "%0 %0", 1)
   8444      --&gt; x="hello hello world"
   8445      
   8446      x = string.gsub("hello world from Lua", "(%w+)%s*(%w+)", "%2 %1")
   8447      --&gt; x="world hello Lua from"
   8448      
   8449      x = string.gsub("home = $HOME, user = $USER", "%$(%w+)", os.getenv)
   8450      --&gt; x="home = /home/roberto, user = roberto"
   8451      
   8452      x = string.gsub("4+5 = $return 4+5$", "%$(.-)%$", function (s)
   8453            return load(s)()
   8454          end)
   8455      --&gt; x="4+5 = 9"
   8456      
   8457      local t = {name="lua", version="5.3"}
   8458      x = string.gsub("$name-$version.tar.gz", "%$(%w+)", t)
   8459      --&gt; x="lua-5.3.tar.gz"
   8460 </pre>
   8461 
   8462 
   8463 
   8464 <p>
   8465 <hr><h3><a name="pdf-string.len"><code>string.len (s)</code></a></h3>
   8466 Receives a string and returns its length.
   8467 The empty string <code>""</code> has length 0.
   8468 Embedded zeros are counted,
   8469 so <code>"a\000bc\000"</code> has length 5.
   8470 
   8471 
   8472 
   8473 
   8474 <p>
   8475 <hr><h3><a name="pdf-string.lower"><code>string.lower (s)</code></a></h3>
   8476 Receives a string and returns a copy of this string with all
   8477 uppercase letters changed to lowercase.
   8478 All other characters are left unchanged.
   8479 The definition of what an uppercase letter is depends on the current locale.
   8480 
   8481 
   8482 
   8483 
   8484 <p>
   8485 <hr><h3><a name="pdf-string.match"><code>string.match (s, pattern [, init])</code></a></h3>
   8486 Looks for the first <em>match</em> of
   8487 <code>pattern</code> (see <a href="#6.4.1">&sect;6.4.1</a>) in the string <code>s</code>.
   8488 If it finds one, then <code>match</code> returns
   8489 the captures from the pattern;
   8490 otherwise it returns <b>nil</b>.
   8491 If <code>pattern</code> specifies no captures,
   8492 then the whole match is returned.
   8493 A third, optional numeric argument <code>init</code> specifies
   8494 where to start the search;
   8495 its default value is&nbsp;1 and can be negative.
   8496 
   8497 
   8498 
   8499 
   8500 <p>
   8501 <hr><h3><a name="pdf-string.pack"><code>string.pack (fmt, v1, v2, &middot;&middot;&middot;)</code></a></h3>
   8502 
   8503 
   8504 <p>
   8505 Returns a binary string containing the values <code>v1</code>, <code>v2</code>, etc.
   8506 packed (that is, serialized in binary form)
   8507 according to the format string <code>fmt</code> (see <a href="#6.4.2">&sect;6.4.2</a>).
   8508 
   8509 
   8510 
   8511 
   8512 <p>
   8513 <hr><h3><a name="pdf-string.packsize"><code>string.packsize (fmt)</code></a></h3>
   8514 
   8515 
   8516 <p>
   8517 Returns the size of a string resulting from <a href="#pdf-string.pack"><code>string.pack</code></a>
   8518 with the given format.
   8519 The format string cannot have the variable-length options
   8520 '<code>s</code>' or '<code>z</code>' (see <a href="#6.4.2">&sect;6.4.2</a>).
   8521 
   8522 
   8523 
   8524 
   8525 <p>
   8526 <hr><h3><a name="pdf-string.rep"><code>string.rep (s, n [, sep])</code></a></h3>
   8527 Returns a string that is the concatenation of <code>n</code> copies of
   8528 the string <code>s</code> separated by the string <code>sep</code>.
   8529 The default value for <code>sep</code> is the empty string
   8530 (that is, no separator).
   8531 Returns the empty string if <code>n</code> is not positive.
   8532 
   8533 
   8534 <p>
   8535 (Note that it is very easy to exhaust the memory of your machine
   8536 with a single call to this function.)
   8537 
   8538 
   8539 
   8540 
   8541 <p>
   8542 <hr><h3><a name="pdf-string.reverse"><code>string.reverse (s)</code></a></h3>
   8543 Returns a string that is the string <code>s</code> reversed.
   8544 
   8545 
   8546 
   8547 
   8548 <p>
   8549 <hr><h3><a name="pdf-string.sub"><code>string.sub (s, i [, j])</code></a></h3>
   8550 Returns the substring of <code>s</code> that
   8551 starts at <code>i</code>  and continues until <code>j</code>;
   8552 <code>i</code> and <code>j</code> can be negative.
   8553 If <code>j</code> is absent, then it is assumed to be equal to -1
   8554 (which is the same as the string length).
   8555 In particular,
   8556 the call <code>string.sub(s,1,j)</code> returns a prefix of <code>s</code>
   8557 with length <code>j</code>,
   8558 and <code>string.sub(s, -i)</code> (for a positive <code>i</code>)
   8559 returns a suffix of <code>s</code>
   8560 with length <code>i</code>.
   8561 
   8562 
   8563 <p>
   8564 If, after the translation of negative indices,
   8565 <code>i</code> is less than 1,
   8566 it is corrected to 1.
   8567 If <code>j</code> is greater than the string length,
   8568 it is corrected to that length.
   8569 If, after these corrections,
   8570 <code>i</code> is greater than <code>j</code>,
   8571 the function returns the empty string.
   8572 
   8573 
   8574 
   8575 
   8576 <p>
   8577 <hr><h3><a name="pdf-string.unpack"><code>string.unpack (fmt, s [, pos])</code></a></h3>
   8578 
   8579 
   8580 <p>
   8581 Returns the values packed in string <code>s</code> (see <a href="#pdf-string.pack"><code>string.pack</code></a>)
   8582 according to the format string <code>fmt</code> (see <a href="#6.4.2">&sect;6.4.2</a>).
   8583 An optional <code>pos</code> marks where
   8584 to start reading in <code>s</code> (default is 1).
   8585 After the read values,
   8586 this function also returns the index of the first unread byte in <code>s</code>.
   8587 
   8588 
   8589 
   8590 
   8591 <p>
   8592 <hr><h3><a name="pdf-string.upper"><code>string.upper (s)</code></a></h3>
   8593 Receives a string and returns a copy of this string with all
   8594 lowercase letters changed to uppercase.
   8595 All other characters are left unchanged.
   8596 The definition of what a lowercase letter is depends on the current locale.
   8597 
   8598 
   8599 
   8600 
   8601 
   8602 <h3>6.4.1 &ndash; <a name="6.4.1">Patterns</a></h3>
   8603 
   8604 <p>
   8605 Patterns in Lua are described by regular strings,
   8606 which are interpreted as patterns by the pattern-matching functions
   8607 <a href="#pdf-string.find"><code>string.find</code></a>,
   8608 <a href="#pdf-string.gmatch"><code>string.gmatch</code></a>,
   8609 <a href="#pdf-string.gsub"><code>string.gsub</code></a>,
   8610 and <a href="#pdf-string.match"><code>string.match</code></a>.
   8611 This section describes the syntax and the meaning
   8612 (that is, what they match) of these strings.
   8613 
   8614 
   8615 
   8616 <h4>Character Class:</h4><p>
   8617 A <em>character class</em> is used to represent a set of characters.
   8618 The following combinations are allowed in describing a character class:
   8619 
   8620 <ul>
   8621 
   8622 <li><b><em>x</em>: </b>
   8623 (where <em>x</em> is not one of the <em>magic characters</em>
   8624 <code>^$()%.[]*+-?</code>)
   8625 represents the character <em>x</em> itself.
   8626 </li>
   8627 
   8628 <li><b><code>.</code>: </b> (a dot) represents all characters.</li>
   8629 
   8630 <li><b><code>%a</code>: </b> represents all letters.</li>
   8631 
   8632 <li><b><code>%c</code>: </b> represents all control characters.</li>
   8633 
   8634 <li><b><code>%d</code>: </b> represents all digits.</li>
   8635 
   8636 <li><b><code>%g</code>: </b> represents all printable characters except space.</li>
   8637 
   8638 <li><b><code>%l</code>: </b> represents all lowercase letters.</li>
   8639 
   8640 <li><b><code>%p</code>: </b> represents all punctuation characters.</li>
   8641 
   8642 <li><b><code>%s</code>: </b> represents all space characters.</li>
   8643 
   8644 <li><b><code>%u</code>: </b> represents all uppercase letters.</li>
   8645 
   8646 <li><b><code>%w</code>: </b> represents all alphanumeric characters.</li>
   8647 
   8648 <li><b><code>%x</code>: </b> represents all hexadecimal digits.</li>
   8649 
   8650 <li><b><code>%<em>x</em></code>: </b> (where <em>x</em> is any non-alphanumeric character)
   8651 represents the character <em>x</em>.
   8652 This is the standard way to escape the magic characters.
   8653 Any non-alphanumeric character
   8654 (including all punctuation characters, even the non-magical)
   8655 can be preceded by a '<code>%</code>'
   8656 when used to represent itself in a pattern.
   8657 </li>
   8658 
   8659 <li><b><code>[<em>set</em>]</code>: </b>
   8660 represents the class which is the union of all
   8661 characters in <em>set</em>.
   8662 A range of characters can be specified by
   8663 separating the end characters of the range,
   8664 in ascending order, with a '<code>-</code>'.
   8665 All classes <code>%</code><em>x</em> described above can also be used as
   8666 components in <em>set</em>.
   8667 All other characters in <em>set</em> represent themselves.
   8668 For example, <code>[%w_]</code> (or <code>[_%w]</code>)
   8669 represents all alphanumeric characters plus the underscore,
   8670 <code>[0-7]</code> represents the octal digits,
   8671 and <code>[0-7%l%-]</code> represents the octal digits plus
   8672 the lowercase letters plus the '<code>-</code>' character.
   8673 
   8674 
   8675 <p>
   8676 You can put a closing square bracket in a set
   8677 by positioning it as the first character in the set.
   8678 You can put a hyphen in a set
   8679 by positioning it as the first or the last character in the set.
   8680 (You can also use an escape for both cases.)
   8681 
   8682 
   8683 <p>
   8684 The interaction between ranges and classes is not defined.
   8685 Therefore, patterns like <code>[%a-z]</code> or <code>[a-%%]</code>
   8686 have no meaning.
   8687 </li>
   8688 
   8689 <li><b><code>[^<em>set</em>]</code>: </b>
   8690 represents the complement of <em>set</em>,
   8691 where <em>set</em> is interpreted as above.
   8692 </li>
   8693 
   8694 </ul><p>
   8695 For all classes represented by single letters (<code>%a</code>, <code>%c</code>, etc.),
   8696 the corresponding uppercase letter represents the complement of the class.
   8697 For instance, <code>%S</code> represents all non-space characters.
   8698 
   8699 
   8700 <p>
   8701 The definitions of letter, space, and other character groups
   8702 depend on the current locale.
   8703 In particular, the class <code>[a-z]</code> may not be equivalent to <code>%l</code>.
   8704 
   8705 
   8706 
   8707 
   8708 
   8709 <h4>Pattern Item:</h4><p>
   8710 A <em>pattern item</em> can be
   8711 
   8712 <ul>
   8713 
   8714 <li>
   8715 a single character class,
   8716 which matches any single character in the class;
   8717 </li>
   8718 
   8719 <li>
   8720 a single character class followed by '<code>*</code>',
   8721 which matches zero or more repetitions of characters in the class.
   8722 These repetition items will always match the longest possible sequence;
   8723 </li>
   8724 
   8725 <li>
   8726 a single character class followed by '<code>+</code>',
   8727 which matches one or more repetitions of characters in the class.
   8728 These repetition items will always match the longest possible sequence;
   8729 </li>
   8730 
   8731 <li>
   8732 a single character class followed by '<code>-</code>',
   8733 which also matches zero or more repetitions of characters in the class.
   8734 Unlike '<code>*</code>',
   8735 these repetition items will always match the shortest possible sequence;
   8736 </li>
   8737 
   8738 <li>
   8739 a single character class followed by '<code>?</code>',
   8740 which matches zero or one occurrence of a character in the class.
   8741 It always matches one occurrence if possible;
   8742 </li>
   8743 
   8744 <li>
   8745 <code>%<em>n</em></code>, for <em>n</em> between 1 and 9;
   8746 such item matches a substring equal to the <em>n</em>-th captured string
   8747 (see below);
   8748 </li>
   8749 
   8750 <li>
   8751 <code>%b<em>xy</em></code>, where <em>x</em> and <em>y</em> are two distinct characters;
   8752 such item matches strings that start with&nbsp;<em>x</em>, end with&nbsp;<em>y</em>,
   8753 and where the <em>x</em> and <em>y</em> are <em>balanced</em>.
   8754 This means that, if one reads the string from left to right,
   8755 counting <em>+1</em> for an <em>x</em> and <em>-1</em> for a <em>y</em>,
   8756 the ending <em>y</em> is the first <em>y</em> where the count reaches 0.
   8757 For instance, the item <code>%b()</code> matches expressions with
   8758 balanced parentheses.
   8759 </li>
   8760 
   8761 <li>
   8762 <code>%f[<em>set</em>]</code>, a <em>frontier pattern</em>;
   8763 such item matches an empty string at any position such that
   8764 the next character belongs to <em>set</em>
   8765 and the previous character does not belong to <em>set</em>.
   8766 The set <em>set</em> is interpreted as previously described.
   8767 The beginning and the end of the subject are handled as if
   8768 they were the character '<code>\0</code>'.
   8769 </li>
   8770 
   8771 </ul>
   8772 
   8773 
   8774 
   8775 
   8776 <h4>Pattern:</h4><p>
   8777 A <em>pattern</em> is a sequence of pattern items.
   8778 A caret '<code>^</code>' at the beginning of a pattern anchors the match at the
   8779 beginning of the subject string.
   8780 A '<code>$</code>' at the end of a pattern anchors the match at the
   8781 end of the subject string.
   8782 At other positions,
   8783 '<code>^</code>' and '<code>$</code>' have no special meaning and represent themselves.
   8784 
   8785 
   8786 
   8787 
   8788 
   8789 <h4>Captures:</h4><p>
   8790 A pattern can contain sub-patterns enclosed in parentheses;
   8791 they describe <em>captures</em>.
   8792 When a match succeeds, the substrings of the subject string
   8793 that match captures are stored (<em>captured</em>) for future use.
   8794 Captures are numbered according to their left parentheses.
   8795 For instance, in the pattern <code>"(a*(.)%w(%s*))"</code>,
   8796 the part of the string matching <code>"a*(.)%w(%s*)"</code> is
   8797 stored as the first capture (and therefore has number&nbsp;1);
   8798 the character matching "<code>.</code>" is captured with number&nbsp;2,
   8799 and the part matching "<code>%s*</code>" has number&nbsp;3.
   8800 
   8801 
   8802 <p>
   8803 As a special case, the empty capture <code>()</code> captures
   8804 the current string position (a number).
   8805 For instance, if we apply the pattern <code>"()aa()"</code> on the
   8806 string <code>"flaaap"</code>, there will be two captures: 3&nbsp;and&nbsp;5.
   8807 
   8808 
   8809 
   8810 
   8811 
   8812 
   8813 
   8814 <h3>6.4.2 &ndash; <a name="6.4.2">Format Strings for Pack and Unpack</a></h3>
   8815 
   8816 <p>
   8817 The first argument to <a href="#pdf-string.pack"><code>string.pack</code></a>,
   8818 <a href="#pdf-string.packsize"><code>string.packsize</code></a>, and <a href="#pdf-string.unpack"><code>string.unpack</code></a>
   8819 is a format string,
   8820 which describes the layout of the structure being created or read.
   8821 
   8822 
   8823 <p>
   8824 A format string is a sequence of conversion options.
   8825 The conversion options are as follows:
   8826 
   8827 <ul>
   8828 <li><b><code>&lt;</code>: </b>sets little endian</li>
   8829 <li><b><code>&gt;</code>: </b>sets big endian</li>
   8830 <li><b><code>=</code>: </b>sets native endian</li>
   8831 <li><b><code>![<em>n</em>]</code>: </b>sets maximum alignment to <code>n</code>
   8832 (default is native alignment)</li>
   8833 <li><b><code>b</code>: </b>a signed byte (<code>char</code>)</li>
   8834 <li><b><code>B</code>: </b>an unsigned byte (<code>char</code>)</li>
   8835 <li><b><code>h</code>: </b>a signed <code>short</code> (native size)</li>
   8836 <li><b><code>H</code>: </b>an unsigned <code>short</code> (native size)</li>
   8837 <li><b><code>l</code>: </b>a signed <code>long</code> (native size)</li>
   8838 <li><b><code>L</code>: </b>an unsigned <code>long</code> (native size)</li>
   8839 <li><b><code>j</code>: </b>a <code>lua_Integer</code></li>
   8840 <li><b><code>J</code>: </b>a <code>lua_Unsigned</code></li>
   8841 <li><b><code>T</code>: </b>a <code>size_t</code> (native size)</li>
   8842 <li><b><code>i[<em>n</em>]</code>: </b>a signed <code>int</code> with <code>n</code> bytes
   8843 (default is native size)</li>
   8844 <li><b><code>I[<em>n</em>]</code>: </b>an unsigned <code>int</code> with <code>n</code> bytes
   8845 (default is native size)</li>
   8846 <li><b><code>f</code>: </b>a <code>float</code> (native size)</li>
   8847 <li><b><code>d</code>: </b>a <code>double</code> (native size)</li>
   8848 <li><b><code>n</code>: </b>a <code>lua_Number</code></li>
   8849 <li><b><code>c<em>n</em></code>: </b>a fixed-sized string with <code>n</code> bytes</li>
   8850 <li><b><code>z</code>: </b>a zero-terminated string</li>
   8851 <li><b><code>s[<em>n</em>]</code>: </b>a string preceded by its length
   8852 coded as an unsigned integer with <code>n</code> bytes
   8853 (default is a <code>size_t</code>)</li>
   8854 <li><b><code>x</code>: </b>one byte of padding</li>
   8855 <li><b><code>X<em>op</em></code>: </b>an empty item that aligns
   8856 according to option <code>op</code>
   8857 (which is otherwise ignored)</li>
   8858 <li><b>'<code> </code>': </b>(empty space) ignored</li>
   8859 </ul><p>
   8860 (A "<code>[<em>n</em>]</code>" means an optional integral numeral.)
   8861 Except for padding, spaces, and configurations
   8862 (options "<code>xX &lt;=&gt;!</code>"),
   8863 each option corresponds to an argument (in <a href="#pdf-string.pack"><code>string.pack</code></a>)
   8864 or a result (in <a href="#pdf-string.unpack"><code>string.unpack</code></a>).
   8865 
   8866 
   8867 <p>
   8868 For options "<code>!<em>n</em></code>", "<code>s<em>n</em></code>", "<code>i<em>n</em></code>", and "<code>I<em>n</em></code>",
   8869 <code>n</code> can be any integer between 1 and 16.
   8870 All integral options check overflows;
   8871 <a href="#pdf-string.pack"><code>string.pack</code></a> checks whether the given value fits in the given size;
   8872 <a href="#pdf-string.unpack"><code>string.unpack</code></a> checks whether the read value fits in a Lua integer.
   8873 
   8874 
   8875 <p>
   8876 Any format string starts as if prefixed by "<code>!1=</code>",
   8877 that is,
   8878 with maximum alignment of 1 (no alignment)
   8879 and native endianness.
   8880 
   8881 
   8882 <p>
   8883 Alignment works as follows:
   8884 For each option,
   8885 the format gets extra padding until the data starts
   8886 at an offset that is a multiple of the minimum between the
   8887 option size and the maximum alignment;
   8888 this minimum must be a power of 2.
   8889 Options "<code>c</code>" and "<code>z</code>" are not aligned;
   8890 option "<code>s</code>" follows the alignment of its starting integer.
   8891 
   8892 
   8893 <p>
   8894 All padding is filled with zeros by <a href="#pdf-string.pack"><code>string.pack</code></a>
   8895 (and ignored by <a href="#pdf-string.unpack"><code>string.unpack</code></a>).
   8896 
   8897 
   8898 
   8899 
   8900 
   8901 
   8902 
   8903 <h2>6.5 &ndash; <a name="6.5">UTF-8 Support</a></h2>
   8904 
   8905 <p>
   8906 This library provides basic support for UTF-8 encoding.
   8907 It provides all its functions inside the table <a name="pdf-utf8"><code>utf8</code></a>.
   8908 This library does not provide any support for Unicode other
   8909 than the handling of the encoding.
   8910 Any operation that needs the meaning of a character,
   8911 such as character classification, is outside its scope.
   8912 
   8913 
   8914 <p>
   8915 Unless stated otherwise,
   8916 all functions that expect a byte position as a parameter
   8917 assume that the given position is either the start of a byte sequence
   8918 or one plus the length of the subject string.
   8919 As in the string library,
   8920 negative indices count from the end of the string.
   8921 
   8922 
   8923 <p>
   8924 <hr><h3><a name="pdf-utf8.char"><code>utf8.char (&middot;&middot;&middot;)</code></a></h3>
   8925 Receives zero or more integers,
   8926 converts each one to its corresponding UTF-8 byte sequence
   8927 and returns a string with the concatenation of all these sequences.
   8928 
   8929 
   8930 
   8931 
   8932 <p>
   8933 <hr><h3><a name="pdf-utf8.charpattern"><code>utf8.charpattern</code></a></h3>
   8934 The pattern (a string, not a function) "<code>[\0-\x7F\xC2-\xF4][\x80-\xBF]*</code>"
   8935 (see <a href="#6.4.1">&sect;6.4.1</a>),
   8936 which matches exactly one UTF-8 byte sequence,
   8937 assuming that the subject is a valid UTF-8 string.
   8938 
   8939 
   8940 
   8941 
   8942 <p>
   8943 <hr><h3><a name="pdf-utf8.codes"><code>utf8.codes (s)</code></a></h3>
   8944 
   8945 
   8946 <p>
   8947 Returns values so that the construction
   8948 
   8949 <pre>
   8950      for p, c in utf8.codes(s) do <em>body</em> end
   8951 </pre><p>
   8952 will iterate over all characters in string <code>s</code>,
   8953 with <code>p</code> being the position (in bytes) and <code>c</code> the code point
   8954 of each character.
   8955 It raises an error if it meets any invalid byte sequence.
   8956 
   8957 
   8958 
   8959 
   8960 <p>
   8961 <hr><h3><a name="pdf-utf8.codepoint"><code>utf8.codepoint (s [, i [, j]])</code></a></h3>
   8962 Returns the codepoints (as integers) from all characters in <code>s</code>
   8963 that start between byte position <code>i</code> and <code>j</code> (both included).
   8964 The default for <code>i</code> is 1 and for <code>j</code> is <code>i</code>.
   8965 It raises an error if it meets any invalid byte sequence.
   8966 
   8967 
   8968 
   8969 
   8970 <p>
   8971 <hr><h3><a name="pdf-utf8.len"><code>utf8.len (s [, i [, j]])</code></a></h3>
   8972 Returns the number of UTF-8 characters in string <code>s</code>
   8973 that start between positions <code>i</code> and <code>j</code> (both inclusive).
   8974 The default for <code>i</code> is 1 and for <code>j</code> is -1.
   8975 If it finds any invalid byte sequence,
   8976 returns a false value plus the position of the first invalid byte.
   8977 
   8978 
   8979 
   8980 
   8981 <p>
   8982 <hr><h3><a name="pdf-utf8.offset"><code>utf8.offset (s, n [, i])</code></a></h3>
   8983 Returns the position (in bytes) where the encoding of the
   8984 <code>n</code>-th character of <code>s</code>
   8985 (counting from position <code>i</code>) starts.
   8986 A negative <code>n</code> gets characters before position <code>i</code>.
   8987 The default for <code>i</code> is 1 when <code>n</code> is non-negative
   8988 and <code>#s + 1</code> otherwise,
   8989 so that <code>utf8.offset(s, -n)</code> gets the offset of the
   8990 <code>n</code>-th character from the end of the string.
   8991 If the specified character is neither in the subject
   8992 nor right after its end,
   8993 the function returns <b>nil</b>.
   8994 
   8995 
   8996 <p>
   8997 As a special case,
   8998 when <code>n</code> is 0 the function returns the start of the encoding
   8999 of the character that contains the <code>i</code>-th byte of <code>s</code>.
   9000 
   9001 
   9002 <p>
   9003 This function assumes that <code>s</code> is a valid UTF-8 string.
   9004 
   9005 
   9006 
   9007 
   9008 
   9009 
   9010 
   9011 <h2>6.6 &ndash; <a name="6.6">Table Manipulation</a></h2>
   9012 
   9013 <p>
   9014 This library provides generic functions for table manipulation.
   9015 It provides all its functions inside the table <a name="pdf-table"><code>table</code></a>.
   9016 
   9017 
   9018 <p>
   9019 Remember that, whenever an operation needs the length of a table,
   9020 all caveats about the length operator apply (see <a href="#3.4.7">&sect;3.4.7</a>).
   9021 All functions ignore non-numeric keys
   9022 in the tables given as arguments.
   9023 
   9024 
   9025 <p>
   9026 <hr><h3><a name="pdf-table.concat"><code>table.concat (list [, sep [, i [, j]]])</code></a></h3>
   9027 
   9028 
   9029 <p>
   9030 Given a list where all elements are strings or numbers,
   9031 returns the string <code>list[i]..sep..list[i+1] &middot;&middot;&middot; sep..list[j]</code>.
   9032 The default value for <code>sep</code> is the empty string,
   9033 the default for <code>i</code> is 1,
   9034 and the default for <code>j</code> is <code>#list</code>.
   9035 If <code>i</code> is greater than <code>j</code>, returns the empty string.
   9036 
   9037 
   9038 
   9039 
   9040 <p>
   9041 <hr><h3><a name="pdf-table.insert"><code>table.insert (list, [pos,] value)</code></a></h3>
   9042 
   9043 
   9044 <p>
   9045 Inserts element <code>value</code> at position <code>pos</code> in <code>list</code>,
   9046 shifting up the elements
   9047 <code>list[pos], list[pos+1], &middot;&middot;&middot;, list[#list]</code>.
   9048 The default value for <code>pos</code> is <code>#list+1</code>,
   9049 so that a call <code>table.insert(t,x)</code> inserts <code>x</code> at the end
   9050 of list <code>t</code>.
   9051 
   9052 
   9053 
   9054 
   9055 <p>
   9056 <hr><h3><a name="pdf-table.move"><code>table.move (a1, f, e, t [,a2])</code></a></h3>
   9057 
   9058 
   9059 <p>
   9060 Moves elements from table <code>a1</code> to table <code>a2</code>,
   9061 performing the equivalent to the following
   9062 multiple assignment:
   9063 <code>a2[t],&middot;&middot;&middot; = a1[f],&middot;&middot;&middot;,a1[e]</code>.
   9064 The default for <code>a2</code> is <code>a1</code>.
   9065 The destination range can overlap with the source range.
   9066 The number of elements to be moved must fit in a Lua integer.
   9067 
   9068 
   9069 <p>
   9070 Returns the destination table <code>a2</code>.
   9071 
   9072 
   9073 
   9074 
   9075 <p>
   9076 <hr><h3><a name="pdf-table.pack"><code>table.pack (&middot;&middot;&middot;)</code></a></h3>
   9077 
   9078 
   9079 <p>
   9080 Returns a new table with all arguments stored into keys 1, 2, etc.
   9081 and with a field "<code>n</code>" with the total number of arguments.
   9082 Note that the resulting table may not be a sequence.
   9083 
   9084 
   9085 
   9086 
   9087 <p>
   9088 <hr><h3><a name="pdf-table.remove"><code>table.remove (list [, pos])</code></a></h3>
   9089 
   9090 
   9091 <p>
   9092 Removes from <code>list</code> the element at position <code>pos</code>,
   9093 returning the value of the removed element.
   9094 When <code>pos</code> is an integer between 1 and <code>#list</code>,
   9095 it shifts down the elements
   9096 <code>list[pos+1], list[pos+2], &middot;&middot;&middot;, list[#list]</code>
   9097 and erases element <code>list[#list]</code>;
   9098 The index <code>pos</code> can also be 0 when <code>#list</code> is 0,
   9099 or <code>#list + 1</code>;
   9100 in those cases, the function erases the element <code>list[pos]</code>.
   9101 
   9102 
   9103 <p>
   9104 The default value for <code>pos</code> is <code>#list</code>,
   9105 so that a call <code>table.remove(l)</code> removes the last element
   9106 of list <code>l</code>.
   9107 
   9108 
   9109 
   9110 
   9111 <p>
   9112 <hr><h3><a name="pdf-table.sort"><code>table.sort (list [, comp])</code></a></h3>
   9113 
   9114 
   9115 <p>
   9116 Sorts list elements in a given order, <em>in-place</em>,
   9117 from <code>list[1]</code> to <code>list[#list]</code>.
   9118 If <code>comp</code> is given,
   9119 then it must be a function that receives two list elements
   9120 and returns true when the first element must come
   9121 before the second in the final order
   9122 (so that, after the sort,
   9123 <code>i &lt; j</code> implies <code>not comp(list[j],list[i])</code>).
   9124 If <code>comp</code> is not given,
   9125 then the standard Lua operator <code>&lt;</code> is used instead.
   9126 
   9127 
   9128 <p>
   9129 Note that the <code>comp</code> function must define
   9130 a strict partial order over the elements in the list;
   9131 that is, it must be asymmetric and transitive.
   9132 Otherwise, no valid sort may be possible.
   9133 
   9134 
   9135 <p>
   9136 The sort algorithm is not stable:
   9137 elements considered equal by the given order
   9138 may have their relative positions changed by the sort.
   9139 
   9140 
   9141 
   9142 
   9143 <p>
   9144 <hr><h3><a name="pdf-table.unpack"><code>table.unpack (list [, i [, j]])</code></a></h3>
   9145 
   9146 
   9147 <p>
   9148 Returns the elements from the given list.
   9149 This function is equivalent to
   9150 
   9151 <pre>
   9152      return list[i], list[i+1], &middot;&middot;&middot;, list[j]
   9153 </pre><p>
   9154 By default, <code>i</code> is&nbsp;1 and <code>j</code> is <code>#list</code>.
   9155 
   9156 
   9157 
   9158 
   9159 
   9160 
   9161 
   9162 <h2>6.7 &ndash; <a name="6.7">Mathematical Functions</a></h2>
   9163 
   9164 <p>
   9165 This library provides basic mathematical functions.
   9166 It provides all its functions and constants inside the table <a name="pdf-math"><code>math</code></a>.
   9167 Functions with the annotation "<code>integer/float</code>" give
   9168 integer results for integer arguments
   9169 and float results for float (or mixed) arguments.
   9170 Rounding functions
   9171 (<a href="#pdf-math.ceil"><code>math.ceil</code></a>, <a href="#pdf-math.floor"><code>math.floor</code></a>, and <a href="#pdf-math.modf"><code>math.modf</code></a>)
   9172 return an integer when the result fits in the range of an integer,
   9173 or a float otherwise.
   9174 
   9175 
   9176 <p>
   9177 <hr><h3><a name="pdf-math.abs"><code>math.abs (x)</code></a></h3>
   9178 
   9179 
   9180 <p>
   9181 Returns the absolute value of <code>x</code>. (integer/float)
   9182 
   9183 
   9184 
   9185 
   9186 <p>
   9187 <hr><h3><a name="pdf-math.acos"><code>math.acos (x)</code></a></h3>
   9188 
   9189 
   9190 <p>
   9191 Returns the arc cosine of <code>x</code> (in radians).
   9192 
   9193 
   9194 
   9195 
   9196 <p>
   9197 <hr><h3><a name="pdf-math.asin"><code>math.asin (x)</code></a></h3>
   9198 
   9199 
   9200 <p>
   9201 Returns the arc sine of <code>x</code> (in radians).
   9202 
   9203 
   9204 
   9205 
   9206 <p>
   9207 <hr><h3><a name="pdf-math.atan"><code>math.atan (y [, x])</code></a></h3>
   9208 
   9209 
   9210 <p>
   9211 
   9212 Returns the arc tangent of <code>y/x</code> (in radians),
   9213 but uses the signs of both arguments to find the
   9214 quadrant of the result.
   9215 (It also handles correctly the case of <code>x</code> being zero.)
   9216 
   9217 
   9218 <p>
   9219 The default value for <code>x</code> is 1,
   9220 so that the call <code>math.atan(y)</code>
   9221 returns the arc tangent of <code>y</code>.
   9222 
   9223 
   9224 
   9225 
   9226 <p>
   9227 <hr><h3><a name="pdf-math.ceil"><code>math.ceil (x)</code></a></h3>
   9228 
   9229 
   9230 <p>
   9231 Returns the smallest integral value larger than or equal to <code>x</code>.
   9232 
   9233 
   9234 
   9235 
   9236 <p>
   9237 <hr><h3><a name="pdf-math.cos"><code>math.cos (x)</code></a></h3>
   9238 
   9239 
   9240 <p>
   9241 Returns the cosine of <code>x</code> (assumed to be in radians).
   9242 
   9243 
   9244 
   9245 
   9246 <p>
   9247 <hr><h3><a name="pdf-math.deg"><code>math.deg (x)</code></a></h3>
   9248 
   9249 
   9250 <p>
   9251 Converts the angle <code>x</code> from radians to degrees.
   9252 
   9253 
   9254 
   9255 
   9256 <p>
   9257 <hr><h3><a name="pdf-math.exp"><code>math.exp (x)</code></a></h3>
   9258 
   9259 
   9260 <p>
   9261 Returns the value <em>e<sup>x</sup></em>
   9262 (where <code>e</code> is the base of natural logarithms).
   9263 
   9264 
   9265 
   9266 
   9267 <p>
   9268 <hr><h3><a name="pdf-math.floor"><code>math.floor (x)</code></a></h3>
   9269 
   9270 
   9271 <p>
   9272 Returns the largest integral value smaller than or equal to <code>x</code>.
   9273 
   9274 
   9275 
   9276 
   9277 <p>
   9278 <hr><h3><a name="pdf-math.fmod"><code>math.fmod (x, y)</code></a></h3>
   9279 
   9280 
   9281 <p>
   9282 Returns the remainder of the division of <code>x</code> by <code>y</code>
   9283 that rounds the quotient towards zero. (integer/float)
   9284 
   9285 
   9286 
   9287 
   9288 <p>
   9289 <hr><h3><a name="pdf-math.huge"><code>math.huge</code></a></h3>
   9290 
   9291 
   9292 <p>
   9293 The float value <code>HUGE_VAL</code>,
   9294 a value larger than any other numeric value.
   9295 
   9296 
   9297 
   9298 
   9299 <p>
   9300 <hr><h3><a name="pdf-math.log"><code>math.log (x [, base])</code></a></h3>
   9301 
   9302 
   9303 <p>
   9304 Returns the logarithm of <code>x</code> in the given base.
   9305 The default for <code>base</code> is <em>e</em>
   9306 (so that the function returns the natural logarithm of <code>x</code>).
   9307 
   9308 
   9309 
   9310 
   9311 <p>
   9312 <hr><h3><a name="pdf-math.max"><code>math.max (x, &middot;&middot;&middot;)</code></a></h3>
   9313 
   9314 
   9315 <p>
   9316 Returns the argument with the maximum value,
   9317 according to the Lua operator <code>&lt;</code>. (integer/float)
   9318 
   9319 
   9320 
   9321 
   9322 <p>
   9323 <hr><h3><a name="pdf-math.maxinteger"><code>math.maxinteger</code></a></h3>
   9324 An integer with the maximum value for an integer.
   9325 
   9326 
   9327 
   9328 
   9329 <p>
   9330 <hr><h3><a name="pdf-math.min"><code>math.min (x, &middot;&middot;&middot;)</code></a></h3>
   9331 
   9332 
   9333 <p>
   9334 Returns the argument with the minimum value,
   9335 according to the Lua operator <code>&lt;</code>. (integer/float)
   9336 
   9337 
   9338 
   9339 
   9340 <p>
   9341 <hr><h3><a name="pdf-math.mininteger"><code>math.mininteger</code></a></h3>
   9342 An integer with the minimum value for an integer.
   9343 
   9344 
   9345 
   9346 
   9347 <p>
   9348 <hr><h3><a name="pdf-math.modf"><code>math.modf (x)</code></a></h3>
   9349 
   9350 
   9351 <p>
   9352 Returns the integral part of <code>x</code> and the fractional part of <code>x</code>.
   9353 Its second result is always a float.
   9354 
   9355 
   9356 
   9357 
   9358 <p>
   9359 <hr><h3><a name="pdf-math.pi"><code>math.pi</code></a></h3>
   9360 
   9361 
   9362 <p>
   9363 The value of <em>&pi;</em>.
   9364 
   9365 
   9366 
   9367 
   9368 <p>
   9369 <hr><h3><a name="pdf-math.rad"><code>math.rad (x)</code></a></h3>
   9370 
   9371 
   9372 <p>
   9373 Converts the angle <code>x</code> from degrees to radians.
   9374 
   9375 
   9376 
   9377 
   9378 <p>
   9379 <hr><h3><a name="pdf-math.random"><code>math.random ([m [, n]])</code></a></h3>
   9380 
   9381 
   9382 <p>
   9383 When called without arguments,
   9384 returns a pseudo-random float with uniform distribution
   9385 in the range  <em>[0,1)</em>.  
   9386 When called with two integers <code>m</code> and <code>n</code>,
   9387 <code>math.random</code> returns a pseudo-random integer
   9388 with uniform distribution in the range <em>[m, n]</em>.
   9389 (The value <em>n-m</em> cannot be negative and must fit in a Lua integer.)
   9390 The call <code>math.random(n)</code> is equivalent to <code>math.random(1,n)</code>.
   9391 
   9392 
   9393 <p>
   9394 This function is an interface to the underling
   9395 pseudo-random generator function provided by C.
   9396 
   9397 
   9398 
   9399 
   9400 <p>
   9401 <hr><h3><a name="pdf-math.randomseed"><code>math.randomseed (x)</code></a></h3>
   9402 
   9403 
   9404 <p>
   9405 Sets <code>x</code> as the "seed"
   9406 for the pseudo-random generator:
   9407 equal seeds produce equal sequences of numbers.
   9408 
   9409 
   9410 
   9411 
   9412 <p>
   9413 <hr><h3><a name="pdf-math.sin"><code>math.sin (x)</code></a></h3>
   9414 
   9415 
   9416 <p>
   9417 Returns the sine of <code>x</code> (assumed to be in radians).
   9418 
   9419 
   9420 
   9421 
   9422 <p>
   9423 <hr><h3><a name="pdf-math.sqrt"><code>math.sqrt (x)</code></a></h3>
   9424 
   9425 
   9426 <p>
   9427 Returns the square root of <code>x</code>.
   9428 (You can also use the expression <code>x^0.5</code> to compute this value.)
   9429 
   9430 
   9431 
   9432 
   9433 <p>
   9434 <hr><h3><a name="pdf-math.tan"><code>math.tan (x)</code></a></h3>
   9435 
   9436 
   9437 <p>
   9438 Returns the tangent of <code>x</code> (assumed to be in radians).
   9439 
   9440 
   9441 
   9442 
   9443 <p>
   9444 <hr><h3><a name="pdf-math.tointeger"><code>math.tointeger (x)</code></a></h3>
   9445 
   9446 
   9447 <p>
   9448 If the value <code>x</code> is convertible to an integer,
   9449 returns that integer.
   9450 Otherwise, returns <b>nil</b>.
   9451 
   9452 
   9453 
   9454 
   9455 <p>
   9456 <hr><h3><a name="pdf-math.type"><code>math.type (x)</code></a></h3>
   9457 
   9458 
   9459 <p>
   9460 Returns "<code>integer</code>" if <code>x</code> is an integer,
   9461 "<code>float</code>" if it is a float,
   9462 or <b>nil</b> if <code>x</code> is not a number.
   9463 
   9464 
   9465 
   9466 
   9467 <p>
   9468 <hr><h3><a name="pdf-math.ult"><code>math.ult (m, n)</code></a></h3>
   9469 
   9470 
   9471 <p>
   9472 Returns a boolean,
   9473 true if and only if integer <code>m</code> is below integer <code>n</code> when
   9474 they are compared as unsigned integers.
   9475 
   9476 
   9477 
   9478 
   9479 
   9480 
   9481 
   9482 <h2>6.8 &ndash; <a name="6.8">Input and Output Facilities</a></h2>
   9483 
   9484 <p>
   9485 The I/O library provides two different styles for file manipulation.
   9486 The first one uses implicit file handles;
   9487 that is, there are operations to set a default input file and a
   9488 default output file,
   9489 and all input/output operations are over these default files.
   9490 The second style uses explicit file handles.
   9491 
   9492 
   9493 <p>
   9494 When using implicit file handles,
   9495 all operations are supplied by table <a name="pdf-io"><code>io</code></a>.
   9496 When using explicit file handles,
   9497 the operation <a href="#pdf-io.open"><code>io.open</code></a> returns a file handle
   9498 and then all operations are supplied as methods of the file handle.
   9499 
   9500 
   9501 <p>
   9502 The table <code>io</code> also provides
   9503 three predefined file handles with their usual meanings from C:
   9504 <a name="pdf-io.stdin"><code>io.stdin</code></a>, <a name="pdf-io.stdout"><code>io.stdout</code></a>, and <a name="pdf-io.stderr"><code>io.stderr</code></a>.
   9505 The I/O library never closes these files.
   9506 
   9507 
   9508 <p>
   9509 Unless otherwise stated,
   9510 all I/O functions return <b>nil</b> on failure
   9511 (plus an error message as a second result and
   9512 a system-dependent error code as a third result)
   9513 and some value different from <b>nil</b> on success.
   9514 In non-POSIX systems,
   9515 the computation of the error message and error code
   9516 in case of errors
   9517 may be not thread safe,
   9518 because they rely on the global C variable <code>errno</code>.
   9519 
   9520 
   9521 <p>
   9522 <hr><h3><a name="pdf-io.close"><code>io.close ([file])</code></a></h3>
   9523 
   9524 
   9525 <p>
   9526 Equivalent to <code>file:close()</code>.
   9527 Without a <code>file</code>, closes the default output file.
   9528 
   9529 
   9530 
   9531 
   9532 <p>
   9533 <hr><h3><a name="pdf-io.flush"><code>io.flush ()</code></a></h3>
   9534 
   9535 
   9536 <p>
   9537 Equivalent to <code>io.output():flush()</code>.
   9538 
   9539 
   9540 
   9541 
   9542 <p>
   9543 <hr><h3><a name="pdf-io.input"><code>io.input ([file])</code></a></h3>
   9544 
   9545 
   9546 <p>
   9547 When called with a file name, it opens the named file (in text mode),
   9548 and sets its handle as the default input file.
   9549 When called with a file handle,
   9550 it simply sets this file handle as the default input file.
   9551 When called without arguments,
   9552 it returns the current default input file.
   9553 
   9554 
   9555 <p>
   9556 In case of errors this function raises the error,
   9557 instead of returning an error code.
   9558 
   9559 
   9560 
   9561 
   9562 <p>
   9563 <hr><h3><a name="pdf-io.lines"><code>io.lines ([filename, &middot;&middot;&middot;])</code></a></h3>
   9564 
   9565 
   9566 <p>
   9567 Opens the given file name in read mode
   9568 and returns an iterator function that
   9569 works like <code>file:lines(&middot;&middot;&middot;)</code> over the opened file.
   9570 When the iterator function detects the end of file,
   9571 it returns no values (to finish the loop) and automatically closes the file.
   9572 
   9573 
   9574 <p>
   9575 The call <code>io.lines()</code> (with no file name) is equivalent
   9576 to <code>io.input():lines("*l")</code>;
   9577 that is, it iterates over the lines of the default input file.
   9578 In this case, the iterator does not close the file when the loop ends.
   9579 
   9580 
   9581 <p>
   9582 In case of errors this function raises the error,
   9583 instead of returning an error code.
   9584 
   9585 
   9586 
   9587 
   9588 <p>
   9589 <hr><h3><a name="pdf-io.open"><code>io.open (filename [, mode])</code></a></h3>
   9590 
   9591 
   9592 <p>
   9593 This function opens a file,
   9594 in the mode specified in the string <code>mode</code>.
   9595 In case of success,
   9596 it returns a new file handle.
   9597 
   9598 
   9599 <p>
   9600 The <code>mode</code> string can be any of the following:
   9601 
   9602 <ul>
   9603 <li><b>"<code>r</code>": </b> read mode (the default);</li>
   9604 <li><b>"<code>w</code>": </b> write mode;</li>
   9605 <li><b>"<code>a</code>": </b> append mode;</li>
   9606 <li><b>"<code>r+</code>": </b> update mode, all previous data is preserved;</li>
   9607 <li><b>"<code>w+</code>": </b> update mode, all previous data is erased;</li>
   9608 <li><b>"<code>a+</code>": </b> append update mode, previous data is preserved,
   9609   writing is only allowed at the end of file.</li>
   9610 </ul><p>
   9611 The <code>mode</code> string can also have a '<code>b</code>' at the end,
   9612 which is needed in some systems to open the file in binary mode.
   9613 
   9614 
   9615 
   9616 
   9617 <p>
   9618 <hr><h3><a name="pdf-io.output"><code>io.output ([file])</code></a></h3>
   9619 
   9620 
   9621 <p>
   9622 Similar to <a href="#pdf-io.input"><code>io.input</code></a>, but operates over the default output file.
   9623 
   9624 
   9625 
   9626 
   9627 <p>
   9628 <hr><h3><a name="pdf-io.popen"><code>io.popen (prog [, mode])</code></a></h3>
   9629 
   9630 
   9631 <p>
   9632 This function is system dependent and is not available
   9633 on all platforms.
   9634 
   9635 
   9636 <p>
   9637 Starts program <code>prog</code> in a separated process and returns
   9638 a file handle that you can use to read data from this program
   9639 (if <code>mode</code> is <code>"r"</code>, the default)
   9640 or to write data to this program
   9641 (if <code>mode</code> is <code>"w"</code>).
   9642 
   9643 
   9644 
   9645 
   9646 <p>
   9647 <hr><h3><a name="pdf-io.read"><code>io.read (&middot;&middot;&middot;)</code></a></h3>
   9648 
   9649 
   9650 <p>
   9651 Equivalent to <code>io.input():read(&middot;&middot;&middot;)</code>.
   9652 
   9653 
   9654 
   9655 
   9656 <p>
   9657 <hr><h3><a name="pdf-io.tmpfile"><code>io.tmpfile ()</code></a></h3>
   9658 
   9659 
   9660 <p>
   9661 In case of success,
   9662 returns a handle for a temporary file.
   9663 This file is opened in update mode
   9664 and it is automatically removed when the program ends.
   9665 
   9666 
   9667 
   9668 
   9669 <p>
   9670 <hr><h3><a name="pdf-io.type"><code>io.type (obj)</code></a></h3>
   9671 
   9672 
   9673 <p>
   9674 Checks whether <code>obj</code> is a valid file handle.
   9675 Returns the string <code>"file"</code> if <code>obj</code> is an open file handle,
   9676 <code>"closed file"</code> if <code>obj</code> is a closed file handle,
   9677 or <b>nil</b> if <code>obj</code> is not a file handle.
   9678 
   9679 
   9680 
   9681 
   9682 <p>
   9683 <hr><h3><a name="pdf-io.write"><code>io.write (&middot;&middot;&middot;)</code></a></h3>
   9684 
   9685 
   9686 <p>
   9687 Equivalent to <code>io.output():write(&middot;&middot;&middot;)</code>.
   9688 
   9689 
   9690 
   9691 
   9692 <p>
   9693 <hr><h3><a name="pdf-file:close"><code>file:close ()</code></a></h3>
   9694 
   9695 
   9696 <p>
   9697 Closes <code>file</code>.
   9698 Note that files are automatically closed when
   9699 their handles are garbage collected,
   9700 but that takes an unpredictable amount of time to happen.
   9701 
   9702 
   9703 <p>
   9704 When closing a file handle created with <a href="#pdf-io.popen"><code>io.popen</code></a>,
   9705 <a href="#pdf-file:close"><code>file:close</code></a> returns the same values
   9706 returned by <a href="#pdf-os.execute"><code>os.execute</code></a>.
   9707 
   9708 
   9709 
   9710 
   9711 <p>
   9712 <hr><h3><a name="pdf-file:flush"><code>file:flush ()</code></a></h3>
   9713 
   9714 
   9715 <p>
   9716 Saves any written data to <code>file</code>.
   9717 
   9718 
   9719 
   9720 
   9721 <p>
   9722 <hr><h3><a name="pdf-file:lines"><code>file:lines (&middot;&middot;&middot;)</code></a></h3>
   9723 
   9724 
   9725 <p>
   9726 Returns an iterator function that,
   9727 each time it is called,
   9728 reads the file according to the given formats.
   9729 When no format is given,
   9730 uses "<code>l</code>" as a default.
   9731 As an example, the construction
   9732 
   9733 <pre>
   9734      for c in file:lines(1) do <em>body</em> end
   9735 </pre><p>
   9736 will iterate over all characters of the file,
   9737 starting at the current position.
   9738 Unlike <a href="#pdf-io.lines"><code>io.lines</code></a>, this function does not close the file
   9739 when the loop ends.
   9740 
   9741 
   9742 <p>
   9743 In case of errors this function raises the error,
   9744 instead of returning an error code.
   9745 
   9746 
   9747 
   9748 
   9749 <p>
   9750 <hr><h3><a name="pdf-file:read"><code>file:read (&middot;&middot;&middot;)</code></a></h3>
   9751 
   9752 
   9753 <p>
   9754 Reads the file <code>file</code>,
   9755 according to the given formats, which specify what to read.
   9756 For each format,
   9757 the function returns a string or a number with the characters read,
   9758 or <b>nil</b> if it cannot read data with the specified format.
   9759 (In this latter case,
   9760 the function does not read subsequent formats.)
   9761 When called without formats,
   9762 it uses a default format that reads the next line
   9763 (see below).
   9764 
   9765 
   9766 <p>
   9767 The available formats are
   9768 
   9769 <ul>
   9770 
   9771 <li><b>"<code>n</code>": </b>
   9772 reads a numeral and returns it as a float or an integer,
   9773 following the lexical conventions of Lua.
   9774 (The numeral may have leading spaces and a sign.)
   9775 This format always reads the longest input sequence that
   9776 is a valid prefix for a numeral;
   9777 if that prefix does not form a valid numeral
   9778 (e.g., an empty string, "<code>0x</code>", or "<code>3.4e-</code>"),
   9779 it is discarded and the function returns <b>nil</b>.
   9780 </li>
   9781 
   9782 <li><b>"<code>a</code>": </b>
   9783 reads the whole file, starting at the current position.
   9784 On end of file, it returns the empty string.
   9785 </li>
   9786 
   9787 <li><b>"<code>l</code>": </b>
   9788 reads the next line skipping the end of line,
   9789 returning <b>nil</b> on end of file.
   9790 This is the default format.
   9791 </li>
   9792 
   9793 <li><b>"<code>L</code>": </b>
   9794 reads the next line keeping the end-of-line character (if present),
   9795 returning <b>nil</b> on end of file.
   9796 </li>
   9797 
   9798 <li><b><em>number</em>: </b>
   9799 reads a string with up to this number of bytes,
   9800 returning <b>nil</b> on end of file.
   9801 If <code>number</code> is zero,
   9802 it reads nothing and returns an empty string,
   9803 or <b>nil</b> on end of file.
   9804 </li>
   9805 
   9806 </ul><p>
   9807 The formats "<code>l</code>" and "<code>L</code>" should be used only for text files.
   9808 
   9809 
   9810 
   9811 
   9812 <p>
   9813 <hr><h3><a name="pdf-file:seek"><code>file:seek ([whence [, offset]])</code></a></h3>
   9814 
   9815 
   9816 <p>
   9817 Sets and gets the file position,
   9818 measured from the beginning of the file,
   9819 to the position given by <code>offset</code> plus a base
   9820 specified by the string <code>whence</code>, as follows:
   9821 
   9822 <ul>
   9823 <li><b>"<code>set</code>": </b> base is position 0 (beginning of the file);</li>
   9824 <li><b>"<code>cur</code>": </b> base is current position;</li>
   9825 <li><b>"<code>end</code>": </b> base is end of file;</li>
   9826 </ul><p>
   9827 In case of success, <code>seek</code> returns the final file position,
   9828 measured in bytes from the beginning of the file.
   9829 If <code>seek</code> fails, it returns <b>nil</b>,
   9830 plus a string describing the error.
   9831 
   9832 
   9833 <p>
   9834 The default value for <code>whence</code> is <code>"cur"</code>,
   9835 and for <code>offset</code> is 0.
   9836 Therefore, the call <code>file:seek()</code> returns the current
   9837 file position, without changing it;
   9838 the call <code>file:seek("set")</code> sets the position to the
   9839 beginning of the file (and returns 0);
   9840 and the call <code>file:seek("end")</code> sets the position to the
   9841 end of the file, and returns its size.
   9842 
   9843 
   9844 
   9845 
   9846 <p>
   9847 <hr><h3><a name="pdf-file:setvbuf"><code>file:setvbuf (mode [, size])</code></a></h3>
   9848 
   9849 
   9850 <p>
   9851 Sets the buffering mode for an output file.
   9852 There are three available modes:
   9853 
   9854 <ul>
   9855 
   9856 <li><b>"<code>no</code>": </b>
   9857 no buffering; the result of any output operation appears immediately.
   9858 </li>
   9859 
   9860 <li><b>"<code>full</code>": </b>
   9861 full buffering; output operation is performed only
   9862 when the buffer is full or when
   9863 you explicitly <code>flush</code> the file (see <a href="#pdf-io.flush"><code>io.flush</code></a>).
   9864 </li>
   9865 
   9866 <li><b>"<code>line</code>": </b>
   9867 line buffering; output is buffered until a newline is output
   9868 or there is any input from some special files
   9869 (such as a terminal device).
   9870 </li>
   9871 
   9872 </ul><p>
   9873 For the last two cases, <code>size</code>
   9874 specifies the size of the buffer, in bytes.
   9875 The default is an appropriate size.
   9876 
   9877 
   9878 
   9879 
   9880 <p>
   9881 <hr><h3><a name="pdf-file:write"><code>file:write (&middot;&middot;&middot;)</code></a></h3>
   9882 
   9883 
   9884 <p>
   9885 Writes the value of each of its arguments to <code>file</code>.
   9886 The arguments must be strings or numbers.
   9887 
   9888 
   9889 <p>
   9890 In case of success, this function returns <code>file</code>.
   9891 Otherwise it returns <b>nil</b> plus a string describing the error.
   9892 
   9893 
   9894 
   9895 
   9896 
   9897 
   9898 
   9899 <h2>6.9 &ndash; <a name="6.9">Operating System Facilities</a></h2>
   9900 
   9901 <p>
   9902 This library is implemented through table <a name="pdf-os"><code>os</code></a>.
   9903 
   9904 
   9905 <p>
   9906 <hr><h3><a name="pdf-os.clock"><code>os.clock ()</code></a></h3>
   9907 
   9908 
   9909 <p>
   9910 Returns an approximation of the amount in seconds of CPU time
   9911 used by the program.
   9912 
   9913 
   9914 
   9915 
   9916 <p>
   9917 <hr><h3><a name="pdf-os.date"><code>os.date ([format [, time]])</code></a></h3>
   9918 
   9919 
   9920 <p>
   9921 Returns a string or a table containing date and time,
   9922 formatted according to the given string <code>format</code>.
   9923 
   9924 
   9925 <p>
   9926 If the <code>time</code> argument is present,
   9927 this is the time to be formatted
   9928 (see the <a href="#pdf-os.time"><code>os.time</code></a> function for a description of this value).
   9929 Otherwise, <code>date</code> formats the current time.
   9930 
   9931 
   9932 <p>
   9933 If <code>format</code> starts with '<code>!</code>',
   9934 then the date is formatted in Coordinated Universal Time.
   9935 After this optional character,
   9936 if <code>format</code> is the string "<code>*t</code>",
   9937 then <code>date</code> returns a table with the following fields:
   9938 <code>year</code>, <code>month</code> (1&ndash;12), <code>day</code> (1&ndash;31),
   9939 <code>hour</code> (0&ndash;23), <code>min</code> (0&ndash;59), <code>sec</code> (0&ndash;61),
   9940 <code>wday</code> (weekday, 1&ndash;7, Sunday is&nbsp;1),
   9941 <code>yday</code> (day of the year, 1&ndash;366),
   9942 and <code>isdst</code> (daylight saving flag, a boolean).
   9943 This last field may be absent
   9944 if the information is not available.
   9945 
   9946 
   9947 <p>
   9948 If <code>format</code> is not "<code>*t</code>",
   9949 then <code>date</code> returns the date as a string,
   9950 formatted according to the same rules as the ISO&nbsp;C function <code>strftime</code>.
   9951 
   9952 
   9953 <p>
   9954 When called without arguments,
   9955 <code>date</code> returns a reasonable date and time representation that depends on
   9956 the host system and on the current locale.
   9957 (More specifically, <code>os.date()</code> is equivalent to <code>os.date("%c")</code>.)
   9958 
   9959 
   9960 <p>
   9961 In non-POSIX systems,
   9962 this function may be not thread safe
   9963 because of its reliance on C&nbsp;function <code>gmtime</code> and C&nbsp;function <code>localtime</code>.
   9964 
   9965 
   9966 
   9967 
   9968 <p>
   9969 <hr><h3><a name="pdf-os.difftime"><code>os.difftime (t2, t1)</code></a></h3>
   9970 
   9971 
   9972 <p>
   9973 Returns the difference, in seconds,
   9974 from time <code>t1</code> to time <code>t2</code>
   9975 (where the times are values returned by <a href="#pdf-os.time"><code>os.time</code></a>).
   9976 In POSIX, Windows, and some other systems,
   9977 this value is exactly <code>t2</code><em>-</em><code>t1</code>.
   9978 
   9979 
   9980 
   9981 
   9982 <p>
   9983 <hr><h3><a name="pdf-os.execute"><code>os.execute ([command])</code></a></h3>
   9984 
   9985 
   9986 <p>
   9987 This function is equivalent to the ISO&nbsp;C function <code>system</code>.
   9988 It passes <code>command</code> to be executed by an operating system shell.
   9989 Its first result is <b>true</b>
   9990 if the command terminated successfully,
   9991 or <b>nil</b> otherwise.
   9992 After this first result
   9993 the function returns a string plus a number,
   9994 as follows:
   9995 
   9996 <ul>
   9997 
   9998 <li><b>"<code>exit</code>": </b>
   9999 the command terminated normally;
   10000 the following number is the exit status of the command.
   10001 </li>
   10002 
   10003 <li><b>"<code>signal</code>": </b>
   10004 the command was terminated by a signal;
   10005 the following number is the signal that terminated the command.
   10006 </li>
   10007 
   10008 </ul>
   10009 
   10010 <p>
   10011 When called without a <code>command</code>,
   10012 <code>os.execute</code> returns a boolean that is true if a shell is available.
   10013 
   10014 
   10015 
   10016 
   10017 <p>
   10018 <hr><h3><a name="pdf-os.exit"><code>os.exit ([code [, close]])</code></a></h3>
   10019 
   10020 
   10021 <p>
   10022 Calls the ISO&nbsp;C function <code>exit</code> to terminate the host program.
   10023 If <code>code</code> is <b>true</b>,
   10024 the returned status is <code>EXIT_SUCCESS</code>;
   10025 if <code>code</code> is <b>false</b>,
   10026 the returned status is <code>EXIT_FAILURE</code>;
   10027 if <code>code</code> is a number,
   10028 the returned status is this number.
   10029 The default value for <code>code</code> is <b>true</b>.
   10030 
   10031 
   10032 <p>
   10033 If the optional second argument <code>close</code> is true,
   10034 closes the Lua state before exiting.
   10035 
   10036 
   10037 
   10038 
   10039 <p>
   10040 <hr><h3><a name="pdf-os.getenv"><code>os.getenv (varname)</code></a></h3>
   10041 
   10042 
   10043 <p>
   10044 Returns the value of the process environment variable <code>varname</code>,
   10045 or <b>nil</b> if the variable is not defined.
   10046 
   10047 
   10048 
   10049 
   10050 <p>
   10051 <hr><h3><a name="pdf-os.remove"><code>os.remove (filename)</code></a></h3>
   10052 
   10053 
   10054 <p>
   10055 Deletes the file (or empty directory, on POSIX systems)
   10056 with the given name.
   10057 If this function fails, it returns <b>nil</b>,
   10058 plus a string describing the error and the error code.
   10059 Otherwise, it returns true.
   10060 
   10061 
   10062 
   10063 
   10064 <p>
   10065 <hr><h3><a name="pdf-os.rename"><code>os.rename (oldname, newname)</code></a></h3>
   10066 
   10067 
   10068 <p>
   10069 Renames the file or directory named <code>oldname</code> to <code>newname</code>.
   10070 If this function fails, it returns <b>nil</b>,
   10071 plus a string describing the error and the error code.
   10072 Otherwise, it returns true.
   10073 
   10074 
   10075 
   10076 
   10077 <p>
   10078 <hr><h3><a name="pdf-os.setlocale"><code>os.setlocale (locale [, category])</code></a></h3>
   10079 
   10080 
   10081 <p>
   10082 Sets the current locale of the program.
   10083 <code>locale</code> is a system-dependent string specifying a locale;
   10084 <code>category</code> is an optional string describing which category to change:
   10085 <code>"all"</code>, <code>"collate"</code>, <code>"ctype"</code>,
   10086 <code>"monetary"</code>, <code>"numeric"</code>, or <code>"time"</code>;
   10087 the default category is <code>"all"</code>.
   10088 The function returns the name of the new locale,
   10089 or <b>nil</b> if the request cannot be honored.
   10090 
   10091 
   10092 <p>
   10093 If <code>locale</code> is the empty string,
   10094 the current locale is set to an implementation-defined native locale.
   10095 If <code>locale</code> is the string "<code>C</code>",
   10096 the current locale is set to the standard C locale.
   10097 
   10098 
   10099 <p>
   10100 When called with <b>nil</b> as the first argument,
   10101 this function only returns the name of the current locale
   10102 for the given category.
   10103 
   10104 
   10105 <p>
   10106 This function may be not thread safe
   10107 because of its reliance on C&nbsp;function <code>setlocale</code>.
   10108 
   10109 
   10110 
   10111 
   10112 <p>
   10113 <hr><h3><a name="pdf-os.time"><code>os.time ([table])</code></a></h3>
   10114 
   10115 
   10116 <p>
   10117 Returns the current time when called without arguments,
   10118 or a time representing the local date and time specified by the given table.
   10119 This table must have fields <code>year</code>, <code>month</code>, and <code>day</code>,
   10120 and may have fields
   10121 <code>hour</code> (default is 12),
   10122 <code>min</code> (default is 0),
   10123 <code>sec</code> (default is 0),
   10124 and <code>isdst</code> (default is <b>nil</b>).
   10125 Other fields are ignored.
   10126 For a description of these fields, see the <a href="#pdf-os.date"><code>os.date</code></a> function.
   10127 
   10128 
   10129 <p>
   10130 The values in these fields do not need to be inside their valid ranges.
   10131 For instance, if <code>sec</code> is -10,
   10132 it means -10 seconds from the time specified by the other fields;
   10133 if <code>hour</code> is 1000,
   10134 it means +1000 hours from the time specified by the other fields.
   10135 
   10136 
   10137 <p>
   10138 The returned value is a number, whose meaning depends on your system.
   10139 In POSIX, Windows, and some other systems,
   10140 this number counts the number
   10141 of seconds since some given start time (the "epoch").
   10142 In other systems, the meaning is not specified,
   10143 and the number returned by <code>time</code> can be used only as an argument to
   10144 <a href="#pdf-os.date"><code>os.date</code></a> and <a href="#pdf-os.difftime"><code>os.difftime</code></a>.
   10145 
   10146 
   10147 
   10148 
   10149 <p>
   10150 <hr><h3><a name="pdf-os.tmpname"><code>os.tmpname ()</code></a></h3>
   10151 
   10152 
   10153 <p>
   10154 Returns a string with a file name that can
   10155 be used for a temporary file.
   10156 The file must be explicitly opened before its use
   10157 and explicitly removed when no longer needed.
   10158 
   10159 
   10160 <p>
   10161 In POSIX systems,
   10162 this function also creates a file with that name,
   10163 to avoid security risks.
   10164 (Someone else might create the file with wrong permissions
   10165 in the time between getting the name and creating the file.)
   10166 You still have to open the file to use it
   10167 and to remove it (even if you do not use it).
   10168 
   10169 
   10170 <p>
   10171 When possible,
   10172 you may prefer to use <a href="#pdf-io.tmpfile"><code>io.tmpfile</code></a>,
   10173 which automatically removes the file when the program ends.
   10174 
   10175 
   10176 
   10177 
   10178 
   10179 
   10180 
   10181 <h2>6.10 &ndash; <a name="6.10">The Debug Library</a></h2>
   10182 
   10183 <p>
   10184 This library provides
   10185 the functionality of the debug interface (<a href="#4.9">&sect;4.9</a>) to Lua programs.
   10186 You should exert care when using this library.
   10187 Several of its functions
   10188 violate basic assumptions about Lua code
   10189 (e.g., that variables local to a function
   10190 cannot be accessed from outside;
   10191 that userdata metatables cannot be changed by Lua code;
   10192 that Lua programs do not crash)
   10193 and therefore can compromise otherwise secure code.
   10194 Moreover, some functions in this library may be slow.
   10195 
   10196 
   10197 <p>
   10198 All functions in this library are provided
   10199 inside the <a name="pdf-debug"><code>debug</code></a> table.
   10200 All functions that operate over a thread
   10201 have an optional first argument which is the
   10202 thread to operate over.
   10203 The default is always the current thread.
   10204 
   10205 
   10206 <p>
   10207 <hr><h3><a name="pdf-debug.debug"><code>debug.debug ()</code></a></h3>
   10208 
   10209 
   10210 <p>
   10211 Enters an interactive mode with the user,
   10212 running each string that the user enters.
   10213 Using simple commands and other debug facilities,
   10214 the user can inspect global and local variables,
   10215 change their values, evaluate expressions, and so on.
   10216 A line containing only the word <code>cont</code> finishes this function,
   10217 so that the caller continues its execution.
   10218 
   10219 
   10220 <p>
   10221 Note that commands for <code>debug.debug</code> are not lexically nested
   10222 within any function and so have no direct access to local variables.
   10223 
   10224 
   10225 
   10226 
   10227 <p>
   10228 <hr><h3><a name="pdf-debug.gethook"><code>debug.gethook ([thread])</code></a></h3>
   10229 
   10230 
   10231 <p>
   10232 Returns the current hook settings of the thread, as three values:
   10233 the current hook function, the current hook mask,
   10234 and the current hook count
   10235 (as set by the <a href="#pdf-debug.sethook"><code>debug.sethook</code></a> function).
   10236 
   10237 
   10238 
   10239 
   10240 <p>
   10241 <hr><h3><a name="pdf-debug.getinfo"><code>debug.getinfo ([thread,] f [, what])</code></a></h3>
   10242 
   10243 
   10244 <p>
   10245 Returns a table with information about a function.
   10246 You can give the function directly
   10247 or you can give a number as the value of <code>f</code>,
   10248 which means the function running at level <code>f</code> of the call stack
   10249 of the given thread:
   10250 level&nbsp;0 is the current function (<code>getinfo</code> itself);
   10251 level&nbsp;1 is the function that called <code>getinfo</code>
   10252 (except for tail calls, which do not count on the stack);
   10253 and so on.
   10254 If <code>f</code> is a number larger than the number of active functions,
   10255 then <code>getinfo</code> returns <b>nil</b>.
   10256 
   10257 
   10258 <p>
   10259 The returned table can contain all the fields returned by <a href="#lua_getinfo"><code>lua_getinfo</code></a>,
   10260 with the string <code>what</code> describing which fields to fill in.
   10261 The default for <code>what</code> is to get all information available,
   10262 except the table of valid lines.
   10263 If present,
   10264 the option '<code>f</code>'
   10265 adds a field named <code>func</code> with the function itself.
   10266 If present,
   10267 the option '<code>L</code>'
   10268 adds a field named <code>activelines</code> with the table of
   10269 valid lines.
   10270 
   10271 
   10272 <p>
   10273 For instance, the expression <code>debug.getinfo(1,"n").name</code> returns
   10274 a name for the current function,
   10275 if a reasonable name can be found,
   10276 and the expression <code>debug.getinfo(print)</code>
   10277 returns a table with all available information
   10278 about the <a href="#pdf-print"><code>print</code></a> function.
   10279 
   10280 
   10281 
   10282 
   10283 <p>
   10284 <hr><h3><a name="pdf-debug.getlocal"><code>debug.getlocal ([thread,] f, local)</code></a></h3>
   10285 
   10286 
   10287 <p>
   10288 This function returns the name and the value of the local variable
   10289 with index <code>local</code> of the function at level <code>f</code> of the stack.
   10290 This function accesses not only explicit local variables,
   10291 but also parameters, temporaries, etc.
   10292 
   10293 
   10294 <p>
   10295 The first parameter or local variable has index&nbsp;1, and so on,
   10296 following the order that they are declared in the code,
   10297 counting only the variables that are active
   10298 in the current scope of the function.
   10299 Negative indices refer to vararg arguments;
   10300 -1 is the first vararg argument.
   10301 The function returns <b>nil</b> if there is no variable with the given index,
   10302 and raises an error when called with a level out of range.
   10303 (You can call <a href="#pdf-debug.getinfo"><code>debug.getinfo</code></a> to check whether the level is valid.)
   10304 
   10305 
   10306 <p>
   10307 Variable names starting with '<code>(</code>' (open parenthesis) 
   10308 represent variables with no known names
   10309 (internal variables such as loop control variables,
   10310 and variables from chunks saved without debug information).
   10311 
   10312 
   10313 <p>
   10314 The parameter <code>f</code> may also be a function.
   10315 In that case, <code>getlocal</code> returns only the name of function parameters.
   10316 
   10317 
   10318 
   10319 
   10320 <p>
   10321 <hr><h3><a name="pdf-debug.getmetatable"><code>debug.getmetatable (value)</code></a></h3>
   10322 
   10323 
   10324 <p>
   10325 Returns the metatable of the given <code>value</code>
   10326 or <b>nil</b> if it does not have a metatable.
   10327 
   10328 
   10329 
   10330 
   10331 <p>
   10332 <hr><h3><a name="pdf-debug.getregistry"><code>debug.getregistry ()</code></a></h3>
   10333 
   10334 
   10335 <p>
   10336 Returns the registry table (see <a href="#4.5">&sect;4.5</a>).
   10337 
   10338 
   10339 
   10340 
   10341 <p>
   10342 <hr><h3><a name="pdf-debug.getupvalue"><code>debug.getupvalue (f, up)</code></a></h3>
   10343 
   10344 
   10345 <p>
   10346 This function returns the name and the value of the upvalue
   10347 with index <code>up</code> of the function <code>f</code>.
   10348 The function returns <b>nil</b> if there is no upvalue with the given index.
   10349 
   10350 
   10351 <p>
   10352 Variable names starting with '<code>(</code>' (open parenthesis) 
   10353 represent variables with no known names
   10354 (variables from chunks saved without debug information).
   10355 
   10356 
   10357 
   10358 
   10359 <p>
   10360 <hr><h3><a name="pdf-debug.getuservalue"><code>debug.getuservalue (u)</code></a></h3>
   10361 
   10362 
   10363 <p>
   10364 Returns the Lua value associated to <code>u</code>.
   10365 If <code>u</code> is not a full userdata,
   10366 returns <b>nil</b>.
   10367 
   10368 
   10369 
   10370 
   10371 <p>
   10372 <hr><h3><a name="pdf-debug.sethook"><code>debug.sethook ([thread,] hook, mask [, count])</code></a></h3>
   10373 
   10374 
   10375 <p>
   10376 Sets the given function as a hook.
   10377 The string <code>mask</code> and the number <code>count</code> describe
   10378 when the hook will be called.
   10379 The string mask may have any combination of the following characters,
   10380 with the given meaning:
   10381 
   10382 <ul>
   10383 <li><b>'<code>c</code>': </b> the hook is called every time Lua calls a function;</li>
   10384 <li><b>'<code>r</code>': </b> the hook is called every time Lua returns from a function;</li>
   10385 <li><b>'<code>l</code>': </b> the hook is called every time Lua enters a new line of code.</li>
   10386 </ul><p>
   10387 Moreover,
   10388 with a <code>count</code> different from zero,
   10389 the hook is called also after every <code>count</code> instructions.
   10390 
   10391 
   10392 <p>
   10393 When called without arguments,
   10394 <a href="#pdf-debug.sethook"><code>debug.sethook</code></a> turns off the hook.
   10395 
   10396 
   10397 <p>
   10398 When the hook is called, its first argument is a string
   10399 describing the event that has triggered its call:
   10400 <code>"call"</code> (or <code>"tail call"</code>),
   10401 <code>"return"</code>,
   10402 <code>"line"</code>, and <code>"count"</code>.
   10403 For line events,
   10404 the hook also gets the new line number as its second parameter.
   10405 Inside a hook,
   10406 you can call <code>getinfo</code> with level&nbsp;2 to get more information about
   10407 the running function
   10408 (level&nbsp;0 is the <code>getinfo</code> function,
   10409 and level&nbsp;1 is the hook function).
   10410 
   10411 
   10412 
   10413 
   10414 <p>
   10415 <hr><h3><a name="pdf-debug.setlocal"><code>debug.setlocal ([thread,] level, local, value)</code></a></h3>
   10416 
   10417 
   10418 <p>
   10419 This function assigns the value <code>value</code> to the local variable
   10420 with index <code>local</code> of the function at level <code>level</code> of the stack.
   10421 The function returns <b>nil</b> if there is no local
   10422 variable with the given index,
   10423 and raises an error when called with a <code>level</code> out of range.
   10424 (You can call <code>getinfo</code> to check whether the level is valid.)
   10425 Otherwise, it returns the name of the local variable.
   10426 
   10427 
   10428 <p>
   10429 See <a href="#pdf-debug.getlocal"><code>debug.getlocal</code></a> for more information about
   10430 variable indices and names.
   10431 
   10432 
   10433 
   10434 
   10435 <p>
   10436 <hr><h3><a name="pdf-debug.setmetatable"><code>debug.setmetatable (value, table)</code></a></h3>
   10437 
   10438 
   10439 <p>
   10440 Sets the metatable for the given <code>value</code> to the given <code>table</code>
   10441 (which can be <b>nil</b>).
   10442 Returns <code>value</code>.
   10443 
   10444 
   10445 
   10446 
   10447 <p>
   10448 <hr><h3><a name="pdf-debug.setupvalue"><code>debug.setupvalue (f, up, value)</code></a></h3>
   10449 
   10450 
   10451 <p>
   10452 This function assigns the value <code>value</code> to the upvalue
   10453 with index <code>up</code> of the function <code>f</code>.
   10454 The function returns <b>nil</b> if there is no upvalue
   10455 with the given index.
   10456 Otherwise, it returns the name of the upvalue.
   10457 
   10458 
   10459 
   10460 
   10461 <p>
   10462 <hr><h3><a name="pdf-debug.setuservalue"><code>debug.setuservalue (udata, value)</code></a></h3>
   10463 
   10464 
   10465 <p>
   10466 Sets the given <code>value</code> as
   10467 the Lua value associated to the given <code>udata</code>.
   10468 <code>udata</code> must be a full userdata.
   10469 
   10470 
   10471 <p>
   10472 Returns <code>udata</code>.
   10473 
   10474 
   10475 
   10476 
   10477 <p>
   10478 <hr><h3><a name="pdf-debug.traceback"><code>debug.traceback ([thread,] [message [, level]])</code></a></h3>
   10479 
   10480 
   10481 <p>
   10482 If <code>message</code> is present but is neither a string nor <b>nil</b>,
   10483 this function returns <code>message</code> without further processing.
   10484 Otherwise,
   10485 it returns a string with a traceback of the call stack.
   10486 The optional <code>message</code> string is appended
   10487 at the beginning of the traceback.
   10488 An optional <code>level</code> number tells at which level
   10489 to start the traceback
   10490 (default is 1, the function calling <code>traceback</code>).
   10491 
   10492 
   10493 
   10494 
   10495 <p>
   10496 <hr><h3><a name="pdf-debug.upvalueid"><code>debug.upvalueid (f, n)</code></a></h3>
   10497 
   10498 
   10499 <p>
   10500 Returns a unique identifier (as a light userdata)
   10501 for the upvalue numbered <code>n</code>
   10502 from the given function.
   10503 
   10504 
   10505 <p>
   10506 These unique identifiers allow a program to check whether different
   10507 closures share upvalues.
   10508 Lua closures that share an upvalue
   10509 (that is, that access a same external local variable)
   10510 will return identical ids for those upvalue indices.
   10511 
   10512 
   10513 
   10514 
   10515 <p>
   10516 <hr><h3><a name="pdf-debug.upvaluejoin"><code>debug.upvaluejoin (f1, n1, f2, n2)</code></a></h3>
   10517 
   10518 
   10519 <p>
   10520 Make the <code>n1</code>-th upvalue of the Lua closure <code>f1</code>
   10521 refer to the <code>n2</code>-th upvalue of the Lua closure <code>f2</code>.
   10522 
   10523 
   10524 
   10525 
   10526 
   10527 
   10528 
   10529 <h1>7 &ndash; <a name="7">Lua Standalone</a></h1>
   10530 
   10531 <p>
   10532 Although Lua has been designed as an extension language,
   10533 to be embedded in a host C&nbsp;program,
   10534 it is also frequently used as a standalone language.
   10535 An interpreter for Lua as a standalone language,
   10536 called simply <code>lua</code>,
   10537 is provided with the standard distribution.
   10538 The standalone interpreter includes
   10539 all standard libraries, including the debug library.
   10540 Its usage is:
   10541 
   10542 <pre>
   10543      lua [options] [script [args]]
   10544 </pre><p>
   10545 The options are:
   10546 
   10547 <ul>
   10548 <li><b><code>-e <em>stat</em></code>: </b> executes string <em>stat</em>;</li>
   10549 <li><b><code>-l <em>mod</em></code>: </b> "requires" <em>mod</em> and assigns the
   10550   result to global @<em>mod</em>;</li>
   10551 <li><b><code>-i</code>: </b> enters interactive mode after running <em>script</em>;</li>
   10552 <li><b><code>-v</code>: </b> prints version information;</li>
   10553 <li><b><code>-E</code>: </b> ignores environment variables;</li>
   10554 <li><b><code>--</code>: </b> stops handling options;</li>
   10555 <li><b><code>-</code>: </b> executes <code>stdin</code> as a file and stops handling options.</li>
   10556 </ul><p>
   10557 After handling its options, <code>lua</code> runs the given <em>script</em>.
   10558 When called without arguments,
   10559 <code>lua</code> behaves as <code>lua -v -i</code>
   10560 when the standard input (<code>stdin</code>) is a terminal,
   10561 and as <code>lua -</code> otherwise.
   10562 
   10563 
   10564 <p>
   10565 When called without option <code>-E</code>,
   10566 the interpreter checks for an environment variable <a name="pdf-LUA_INIT_5_3"><code>LUA_INIT_5_3</code></a>
   10567 (or <a name="pdf-LUA_INIT"><code>LUA_INIT</code></a> if the versioned name is not defined)
   10568 before running any argument.
   10569 If the variable content has the format <code>@<em>filename</em></code>,
   10570 then <code>lua</code> executes the file.
   10571 Otherwise, <code>lua</code> executes the string itself.
   10572 
   10573 
   10574 <p>
   10575 When called with option <code>-E</code>,
   10576 besides ignoring <code>LUA_INIT</code>,
   10577 Lua also ignores
   10578 the values of <code>LUA_PATH</code> and <code>LUA_CPATH</code>,
   10579 setting the values of
   10580 <a href="#pdf-package.path"><code>package.path</code></a> and <a href="#pdf-package.cpath"><code>package.cpath</code></a>
   10581 with the default paths defined in <code>luaconf.h</code>.
   10582 
   10583 
   10584 <p>
   10585 All options are handled in order, except <code>-i</code> and <code>-E</code>.
   10586 For instance, an invocation like
   10587 
   10588 <pre>
   10589      $ lua -e'a=1' -e 'print(a)' script.lua
   10590 </pre><p>
   10591 will first set <code>a</code> to 1, then print the value of <code>a</code>,
   10592 and finally run the file <code>script.lua</code> with no arguments.
   10593 (Here <code>$</code> is the shell prompt. Your prompt may be different.)
   10594 
   10595 
   10596 <p>
   10597 Before running any code,
   10598 <code>lua</code> collects all command-line arguments
   10599 in a global table called <code>arg</code>.
   10600 The script name goes to index 0,
   10601 the first argument after the script name goes to index 1,
   10602 and so on.
   10603 Any arguments before the script name
   10604 (that is, the interpreter name plus its options)
   10605 go to negative indices.
   10606 For instance, in the call
   10607 
   10608 <pre>
   10609      $ lua -la b.lua t1 t2
   10610 </pre><p>
   10611 the table is like this:
   10612 
   10613 <pre>
   10614      arg = { [-2] = "lua", [-1] = "-la",
   10615              [0] = "b.lua",
   10616              [1] = "t1", [2] = "t2" }
   10617 </pre><p>
   10618 If there is no script in the call,
   10619 the interpreter name goes to index 0,
   10620 followed by the other arguments.
   10621 For instance, the call
   10622 
   10623 <pre>
   10624      $ lua -e "print(arg[1])"
   10625 </pre><p>
   10626 will print "<code>-e</code>".
   10627 If there is a script,
   10628 the script is called with arguments
   10629 <code>arg[1]</code>, &middot;&middot;&middot;, <code>arg[#arg]</code>.
   10630 (Like all chunks in Lua,
   10631 the script is compiled as a vararg function.)
   10632 
   10633 
   10634 <p>
   10635 In interactive mode,
   10636 Lua repeatedly prompts and waits for a line.
   10637 After reading a line,
   10638 Lua first try to interpret the line as an expression.
   10639 If it succeeds, it prints its value.
   10640 Otherwise, it interprets the line as a statement.
   10641 If you write an incomplete statement,
   10642 the interpreter waits for its completion
   10643 by issuing a different prompt.
   10644 
   10645 
   10646 <p>
   10647 If the global variable <a name="pdf-_PROMPT"><code>_PROMPT</code></a> contains a string,
   10648 then its value is used as the prompt.
   10649 Similarly, if the global variable <a name="pdf-_PROMPT2"><code>_PROMPT2</code></a> contains a string,
   10650 its value is used as the secondary prompt
   10651 (issued during incomplete statements).
   10652 
   10653 
   10654 <p>
   10655 In case of unprotected errors in the script,
   10656 the interpreter reports the error to the standard error stream.
   10657 If the error object is not a string but
   10658 has a metamethod <code>__tostring</code>,
   10659 the interpreter calls this metamethod to produce the final message.
   10660 Otherwise, the interpreter converts the error object to a string
   10661 and adds a stack traceback to it.
   10662 
   10663 
   10664 <p>
   10665 When finishing normally,
   10666 the interpreter closes its main Lua state
   10667 (see <a href="#lua_close"><code>lua_close</code></a>).
   10668 The script can avoid this step by
   10669 calling <a href="#pdf-os.exit"><code>os.exit</code></a> to terminate.
   10670 
   10671 
   10672 <p>
   10673 To allow the use of Lua as a
   10674 script interpreter in Unix systems,
   10675 the standalone interpreter skips
   10676 the first line of a chunk if it starts with <code>#</code>.
   10677 Therefore, Lua scripts can be made into executable programs
   10678 by using <code>chmod +x</code> and the&nbsp;<code>#!</code> form,
   10679 as in
   10680 
   10681 <pre>
   10682      #!/usr/local/bin/lua
   10683 </pre><p>
   10684 (Of course,
   10685 the location of the Lua interpreter may be different in your machine.
   10686 If <code>lua</code> is in your <code>PATH</code>,
   10687 then
   10688 
   10689 <pre>
   10690      #!/usr/bin/env lua
   10691 </pre><p>
   10692 is a more portable solution.)
   10693 
   10694 
   10695 
   10696 <h1>8 &ndash; <a name="8">Incompatibilities with the Previous Version</a></h1>
   10697 
   10698 <p>
   10699 Here we list the incompatibilities that you may find when moving a program
   10700 from Lua&nbsp;5.2 to Lua&nbsp;5.3.
   10701 You can avoid some incompatibilities by compiling Lua with
   10702 appropriate options (see file <code>luaconf.h</code>).
   10703 However,
   10704 all these compatibility options will be removed in the future.
   10705 
   10706 
   10707 <p>
   10708 Lua versions can always change the C API in ways that
   10709 do not imply source-code changes in a program,
   10710 such as the numeric values for constants
   10711 or the implementation of functions as macros.
   10712 Therefore,
   10713 you should not assume that binaries are compatible between
   10714 different Lua versions.
   10715 Always recompile clients of the Lua API when
   10716 using a new version.
   10717 
   10718 
   10719 <p>
   10720 Similarly, Lua versions can always change the internal representation
   10721 of precompiled chunks;
   10722 precompiled chunks are not compatible between different Lua versions.
   10723 
   10724 
   10725 <p>
   10726 The standard paths in the official distribution may
   10727 change between versions.
   10728 
   10729 
   10730 
   10731 <h2>8.1 &ndash; <a name="8.1">Changes in the Language</a></h2>
   10732 <ul>
   10733 
   10734 <li>
   10735 The main difference between Lua&nbsp;5.2 and Lua&nbsp;5.3 is the
   10736 introduction of an integer subtype for numbers.
   10737 Although this change should not affect "normal" computations,
   10738 some computations
   10739 (mainly those that involve some kind of overflow)
   10740 can give different results.
   10741 
   10742 
   10743 <p>
   10744 You can fix these differences by forcing a number to be a float
   10745 (in Lua&nbsp;5.2 all numbers were float),
   10746 in particular writing constants with an ending <code>.0</code>
   10747 or using <code>x = x + 0.0</code> to convert a variable.
   10748 (This recommendation is only for a quick fix
   10749 for an occasional incompatibility;
   10750 it is not a general guideline for good programming.
   10751 For good programming,
   10752 use floats where you need floats
   10753 and integers where you need integers.)
   10754 </li>
   10755 
   10756 <li>
   10757 The conversion of a float to a string now adds a <code>.0</code> suffix
   10758 to the result if it looks like an integer.
   10759 (For instance, the float 2.0 will be printed as <code>2.0</code>,
   10760 not as <code>2</code>.)
   10761 You should always use an explicit format
   10762 when you need a specific format for numbers.
   10763 
   10764 
   10765 <p>
   10766 (Formally this is not an incompatibility,
   10767 because Lua does not specify how numbers are formatted as strings,
   10768 but some programs assumed a specific format.)
   10769 </li>
   10770 
   10771 <li>
   10772 The generational mode for the garbage collector was removed.
   10773 (It was an experimental feature in Lua&nbsp;5.2.)
   10774 </li>
   10775 
   10776 </ul>
   10777 
   10778 
   10779 
   10780 
   10781 <h2>8.2 &ndash; <a name="8.2">Changes in the Libraries</a></h2>
   10782 <ul>
   10783 
   10784 <li>
   10785 The <code>bit32</code> library has been deprecated.
   10786 It is easy to require a compatible external library or,
   10787 better yet, to replace its functions with appropriate bitwise operations.
   10788 (Keep in mind that <code>bit32</code> operates on 32-bit integers,
   10789 while the bitwise operators in Lua&nbsp;5.3 operate on Lua integers,
   10790 which by default have 64&nbsp;bits.)
   10791 </li>
   10792 
   10793 <li>
   10794 The Table library now respects metamethods
   10795 for setting and getting elements.
   10796 </li>
   10797 
   10798 <li>
   10799 The <a href="#pdf-ipairs"><code>ipairs</code></a> iterator now respects metamethods and
   10800 its <code>__ipairs</code> metamethod has been deprecated.
   10801 </li>
   10802 
   10803 <li>
   10804 Option names in <a href="#pdf-io.read"><code>io.read</code></a> do not have a starting '<code>*</code>' anymore.
   10805 For compatibility, Lua will continue to accept (and ignore) this character.
   10806 </li>
   10807 
   10808 <li>
   10809 The following functions were deprecated in the mathematical library:
   10810 <code>atan2</code>, <code>cosh</code>, <code>sinh</code>, <code>tanh</code>, <code>pow</code>,
   10811 <code>frexp</code>, and <code>ldexp</code>.
   10812 You can replace <code>math.pow(x,y)</code> with <code>x^y</code>;
   10813 you can replace <code>math.atan2</code> with <code>math.atan</code>,
   10814 which now accepts one or two arguments;
   10815 you can replace <code>math.ldexp(x,exp)</code> with <code>x * 2.0^exp</code>.
   10816 For the other operations,
   10817 you can either use an external library or
   10818 implement them in Lua.
   10819 </li>
   10820 
   10821 <li>
   10822 The searcher for C loaders used by <a href="#pdf-require"><code>require</code></a>
   10823 changed the way it handles versioned names.
   10824 Now, the version should come after the module name
   10825 (as is usual in most other tools).
   10826 For compatibility, that searcher still tries the old format
   10827 if it cannot find an open function according to the new style.
   10828 (Lua&nbsp;5.2 already worked that way,
   10829 but it did not document the change.)
   10830 </li>
   10831 
   10832 <li>
   10833 The call <code>collectgarbage("count")</code> now returns only one result.
   10834 (You can compute that second result from the fractional part
   10835 of the first result.)
   10836 </li>
   10837 
   10838 </ul>
   10839 
   10840 
   10841 
   10842 
   10843 <h2>8.3 &ndash; <a name="8.3">Changes in the API</a></h2>
   10844 
   10845 
   10846 <ul>
   10847 
   10848 <li>
   10849 Continuation functions now receive as arguments what they needed
   10850 to get through <code>lua_getctx</code>,
   10851 so <code>lua_getctx</code> has been removed.
   10852 Adapt your code accordingly.
   10853 </li>
   10854 
   10855 <li>
   10856 Function <a href="#lua_dump"><code>lua_dump</code></a> has an extra parameter, <code>strip</code>.
   10857 Use 0 as the value of this parameter to get the old behavior.
   10858 </li>
   10859 
   10860 <li>
   10861 Functions to inject/project unsigned integers
   10862 (<code>lua_pushunsigned</code>, <code>lua_tounsigned</code>, <code>lua_tounsignedx</code>,
   10863 <code>luaL_checkunsigned</code>, <code>luaL_optunsigned</code>)
   10864 were deprecated.
   10865 Use their signed equivalents with a type cast.
   10866 </li>
   10867 
   10868 <li>
   10869 Macros to project non-default integer types
   10870 (<code>luaL_checkint</code>, <code>luaL_optint</code>, <code>luaL_checklong</code>, <code>luaL_optlong</code>)
   10871 were deprecated.
   10872 Use their equivalent over <a href="#lua_Integer"><code>lua_Integer</code></a> with a type cast
   10873 (or, when possible, use <a href="#lua_Integer"><code>lua_Integer</code></a> in your code).
   10874 </li>
   10875 
   10876 </ul>
   10877 
   10878 
   10879 
   10880 
   10881 <h1>9 &ndash; <a name="9">The Complete Syntax of Lua</a></h1>
   10882 
   10883 <p>
   10884 Here is the complete syntax of Lua in extended BNF.
   10885 As usual in extended BNF,
   10886 {A} means 0 or more As,
   10887 and [A] means an optional A.
   10888 (For operator precedences, see <a href="#3.4.8">&sect;3.4.8</a>;
   10889 for a description of the terminals
   10890 Name, Numeral,
   10891 and LiteralString, see <a href="#3.1">&sect;3.1</a>.)
   10892 
   10893 
   10894 
   10895 
   10896 <pre>
   10897 
   10898 	chunk ::= block
   10899 
   10900 	block ::= {stat} [retstat]
   10901 
   10902 	stat ::=  &lsquo;<b>;</b>&rsquo; | 
   10903 		 varlist &lsquo;<b>=</b>&rsquo; explist | 
   10904 		 functioncall | 
   10905 		 label | 
   10906 		 <b>break</b> | 
   10907 		 <b>goto</b> Name | 
   10908 		 <b>do</b> block <b>end</b> | 
   10909 		 <b>while</b> exp <b>do</b> block <b>end</b> | 
   10910 		 <b>repeat</b> block <b>until</b> exp | 
   10911 		 <b>if</b> exp <b>then</b> block {<b>elseif</b> exp <b>then</b> block} [<b>else</b> block] <b>end</b> | 
   10912 		 <b>for</b> Name &lsquo;<b>=</b>&rsquo; exp &lsquo;<b>,</b>&rsquo; exp [&lsquo;<b>,</b>&rsquo; exp] <b>do</b> block <b>end</b> | 
   10913 		 <b>for</b> namelist <b>in</b> explist <b>do</b> block <b>end</b> | 
   10914 		 <b>function</b> funcname funcbody | 
   10915 		 <b>local</b> <b>function</b> Name funcbody | 
   10916 		 <b>local</b> namelist [&lsquo;<b>=</b>&rsquo; explist] 
   10917 
   10918 	retstat ::= <b>return</b> [explist] [&lsquo;<b>;</b>&rsquo;]
   10919 
   10920 	label ::= &lsquo;<b>::</b>&rsquo; Name &lsquo;<b>::</b>&rsquo;
   10921 
   10922 	funcname ::= Name {&lsquo;<b>.</b>&rsquo; Name} [&lsquo;<b>:</b>&rsquo; Name]
   10923 
   10924 	varlist ::= var {&lsquo;<b>,</b>&rsquo; var}
   10925 
   10926 	var ::=  Name | prefixexp &lsquo;<b>[</b>&rsquo; exp &lsquo;<b>]</b>&rsquo; | prefixexp &lsquo;<b>.</b>&rsquo; Name 
   10927 
   10928 	namelist ::= Name {&lsquo;<b>,</b>&rsquo; Name}
   10929 
   10930 	explist ::= exp {&lsquo;<b>,</b>&rsquo; exp}
   10931 
   10932 	exp ::=  <b>nil</b> | <b>false</b> | <b>true</b> | Numeral | LiteralString | &lsquo;<b>...</b>&rsquo; | functiondef | 
   10933 		 prefixexp | tableconstructor | exp binop exp | unop exp 
   10934 
   10935 	prefixexp ::= var | functioncall | &lsquo;<b>(</b>&rsquo; exp &lsquo;<b>)</b>&rsquo;
   10936 
   10937 	functioncall ::=  prefixexp args | prefixexp &lsquo;<b>:</b>&rsquo; Name args 
   10938 
   10939 	args ::=  &lsquo;<b>(</b>&rsquo; [explist] &lsquo;<b>)</b>&rsquo; | tableconstructor | LiteralString 
   10940 
   10941 	functiondef ::= <b>function</b> funcbody
   10942 
   10943 	funcbody ::= &lsquo;<b>(</b>&rsquo; [parlist] &lsquo;<b>)</b>&rsquo; block <b>end</b>
   10944 
   10945 	parlist ::= namelist [&lsquo;<b>,</b>&rsquo; &lsquo;<b>...</b>&rsquo;] | &lsquo;<b>...</b>&rsquo;
   10946 
   10947 	tableconstructor ::= &lsquo;<b>{</b>&rsquo; [fieldlist] &lsquo;<b>}</b>&rsquo;
   10948 
   10949 	fieldlist ::= field {fieldsep field} [fieldsep]
   10950 
   10951 	field ::= &lsquo;<b>[</b>&rsquo; exp &lsquo;<b>]</b>&rsquo; &lsquo;<b>=</b>&rsquo; exp | Name &lsquo;<b>=</b>&rsquo; exp | exp
   10952 
   10953 	fieldsep ::= &lsquo;<b>,</b>&rsquo; | &lsquo;<b>;</b>&rsquo;
   10954 
   10955 	binop ::=  &lsquo;<b>+</b>&rsquo; | &lsquo;<b>-</b>&rsquo; | &lsquo;<b>*</b>&rsquo; | &lsquo;<b>/</b>&rsquo; | &lsquo;<b>//</b>&rsquo; | &lsquo;<b>^</b>&rsquo; | &lsquo;<b>%</b>&rsquo; | 
   10956 		 &lsquo;<b>&amp;</b>&rsquo; | &lsquo;<b>~</b>&rsquo; | &lsquo;<b>|</b>&rsquo; | &lsquo;<b>&gt;&gt;</b>&rsquo; | &lsquo;<b>&lt;&lt;</b>&rsquo; | &lsquo;<b>..</b>&rsquo; | 
   10957 		 &lsquo;<b>&lt;</b>&rsquo; | &lsquo;<b>&lt;=</b>&rsquo; | &lsquo;<b>&gt;</b>&rsquo; | &lsquo;<b>&gt;=</b>&rsquo; | &lsquo;<b>==</b>&rsquo; | &lsquo;<b>~=</b>&rsquo; | 
   10958 		 <b>and</b> | <b>or</b>
   10959 
   10960 	unop ::= &lsquo;<b>-</b>&rsquo; | <b>not</b> | &lsquo;<b>#</b>&rsquo; | &lsquo;<b>~</b>&rsquo;
   10961 
   10962 </pre>
   10963 
   10964 <p>
   10965 
   10966 
   10967 
   10968 
   10969 
   10970 
   10971 
   10972 
   10973 <P CLASS="footer">
   10974 Last update:
   10975 Tue Jun 26 13:16:37 -03 2018
   10976 </P>
   10977 <!--
   10978 Last change: revised for Lua 5.3.5
   10979 -->
   10980 
   10981 </body></html>
   10982 
   10983