Home | History | Annotate | Download | only in C
      1 /* LzmaEnc.c -- LZMA Encoder
      2 2018-12-29: Igor Pavlov : Public domain */
      3 
      4 #include "Precomp.h"
      5 
      6 #include <string.h>
      7 
      8 /* #define SHOW_STAT */
      9 /* #define SHOW_STAT2 */
     10 
     11 #if defined(SHOW_STAT) || defined(SHOW_STAT2)
     12 #include <stdio.h>
     13 #endif
     14 
     15 #include "LzmaEnc.h"
     16 
     17 #include "LzFind.h"
     18 #ifndef _7ZIP_ST
     19 #include "LzFindMt.h"
     20 #endif
     21 
     22 #ifdef SHOW_STAT
     23 static unsigned g_STAT_OFFSET = 0;
     24 #endif
     25 
     26 #define kLzmaMaxHistorySize ((UInt32)3 << 29)
     27 /* #define kLzmaMaxHistorySize ((UInt32)7 << 29) */
     28 
     29 #define kNumTopBits 24
     30 #define kTopValue ((UInt32)1 << kNumTopBits)
     31 
     32 #define kNumBitModelTotalBits 11
     33 #define kBitModelTotal (1 << kNumBitModelTotalBits)
     34 #define kNumMoveBits 5
     35 #define kProbInitValue (kBitModelTotal >> 1)
     36 
     37 #define kNumMoveReducingBits 4
     38 #define kNumBitPriceShiftBits 4
     39 #define kBitPrice (1 << kNumBitPriceShiftBits)
     40 
     41 #define REP_LEN_COUNT 64
     42 
     43 void LzmaEncProps_Init(CLzmaEncProps *p)
     44 {
     45   p->level = 5;
     46   p->dictSize = p->mc = 0;
     47   p->reduceSize = (UInt64)(Int64)-1;
     48   p->lc = p->lp = p->pb = p->algo = p->fb = p->btMode = p->numHashBytes = p->numThreads = -1;
     49   p->writeEndMark = 0;
     50 }
     51 
     52 void LzmaEncProps_Normalize(CLzmaEncProps *p)
     53 {
     54   int level = p->level;
     55   if (level < 0) level = 5;
     56   p->level = level;
     57 
     58   if (p->dictSize == 0) p->dictSize = (level <= 5 ? (1 << (level * 2 + 14)) : (level <= 7 ? (1 << 25) : (1 << 26)));
     59   if (p->dictSize > p->reduceSize)
     60   {
     61     unsigned i;
     62     UInt32 reduceSize = (UInt32)p->reduceSize;
     63     for (i = 11; i <= 30; i++)
     64     {
     65       if (reduceSize <= ((UInt32)2 << i)) { p->dictSize = ((UInt32)2 << i); break; }
     66       if (reduceSize <= ((UInt32)3 << i)) { p->dictSize = ((UInt32)3 << i); break; }
     67     }
     68   }
     69 
     70   if (p->lc < 0) p->lc = 3;
     71   if (p->lp < 0) p->lp = 0;
     72   if (p->pb < 0) p->pb = 2;
     73 
     74   if (p->algo < 0) p->algo = (level < 5 ? 0 : 1);
     75   if (p->fb < 0) p->fb = (level < 7 ? 32 : 64);
     76   if (p->btMode < 0) p->btMode = (p->algo == 0 ? 0 : 1);
     77   if (p->numHashBytes < 0) p->numHashBytes = 4;
     78   if (p->mc == 0) p->mc = (16 + (p->fb >> 1)) >> (p->btMode ? 0 : 1);
     79 
     80   if (p->numThreads < 0)
     81     p->numThreads =
     82       #ifndef _7ZIP_ST
     83       ((p->btMode && p->algo) ? 2 : 1);
     84       #else
     85       1;
     86       #endif
     87 }
     88 
     89 UInt32 LzmaEncProps_GetDictSize(const CLzmaEncProps *props2)
     90 {
     91   CLzmaEncProps props = *props2;
     92   LzmaEncProps_Normalize(&props);
     93   return props.dictSize;
     94 }
     95 
     96 #if (_MSC_VER >= 1400)
     97 /* BSR code is fast for some new CPUs */
     98 /* #define LZMA_LOG_BSR */
     99 #endif
    100 
    101 #ifdef LZMA_LOG_BSR
    102 
    103 #define kDicLogSizeMaxCompress 32
    104 
    105 #define BSR2_RET(pos, res) { unsigned long zz; _BitScanReverse(&zz, (pos)); res = (zz + zz) + ((pos >> (zz - 1)) & 1); }
    106 
    107 static unsigned GetPosSlot1(UInt32 pos)
    108 {
    109   unsigned res;
    110   BSR2_RET(pos, res);
    111   return res;
    112 }
    113 #define GetPosSlot2(pos, res) { BSR2_RET(pos, res); }
    114 #define GetPosSlot(pos, res) { if (pos < 2) res = pos; else BSR2_RET(pos, res); }
    115 
    116 #else
    117 
    118 #define kNumLogBits (9 + sizeof(size_t) / 2)
    119 /* #define kNumLogBits (11 + sizeof(size_t) / 8 * 3) */
    120 
    121 #define kDicLogSizeMaxCompress ((kNumLogBits - 1) * 2 + 7)
    122 
    123 static void LzmaEnc_FastPosInit(Byte *g_FastPos)
    124 {
    125   unsigned slot;
    126   g_FastPos[0] = 0;
    127   g_FastPos[1] = 1;
    128   g_FastPos += 2;
    129 
    130   for (slot = 2; slot < kNumLogBits * 2; slot++)
    131   {
    132     size_t k = ((size_t)1 << ((slot >> 1) - 1));
    133     size_t j;
    134     for (j = 0; j < k; j++)
    135       g_FastPos[j] = (Byte)slot;
    136     g_FastPos += k;
    137   }
    138 }
    139 
    140 /* we can use ((limit - pos) >> 31) only if (pos < ((UInt32)1 << 31)) */
    141 /*
    142 #define BSR2_RET(pos, res) { unsigned zz = 6 + ((kNumLogBits - 1) & \
    143   (0 - (((((UInt32)1 << (kNumLogBits + 6)) - 1) - pos) >> 31))); \
    144   res = p->g_FastPos[pos >> zz] + (zz * 2); }
    145 */
    146 
    147 /*
    148 #define BSR2_RET(pos, res) { unsigned zz = 6 + ((kNumLogBits - 1) & \
    149   (0 - (((((UInt32)1 << (kNumLogBits)) - 1) - (pos >> 6)) >> 31))); \
    150   res = p->g_FastPos[pos >> zz] + (zz * 2); }
    151 */
    152 
    153 #define BSR2_RET(pos, res) { unsigned zz = (pos < (1 << (kNumLogBits + 6))) ? 6 : 6 + kNumLogBits - 1; \
    154   res = p->g_FastPos[pos >> zz] + (zz * 2); }
    155 
    156 /*
    157 #define BSR2_RET(pos, res) { res = (pos < (1 << (kNumLogBits + 6))) ? \
    158   p->g_FastPos[pos >> 6] + 12 : \
    159   p->g_FastPos[pos >> (6 + kNumLogBits - 1)] + (6 + (kNumLogBits - 1)) * 2; }
    160 */
    161 
    162 #define GetPosSlot1(pos) p->g_FastPos[pos]
    163 #define GetPosSlot2(pos, res) { BSR2_RET(pos, res); }
    164 #define GetPosSlot(pos, res) { if (pos < kNumFullDistances) res = p->g_FastPos[pos & (kNumFullDistances - 1)]; else BSR2_RET(pos, res); }
    165 
    166 #endif
    167 
    168 
    169 #define LZMA_NUM_REPS 4
    170 
    171 typedef UInt16 CState;
    172 typedef UInt16 CExtra;
    173 
    174 typedef struct
    175 {
    176   UInt32 price;
    177   CState state;
    178   CExtra extra;
    179       // 0   : normal
    180       // 1   : LIT : MATCH
    181       // > 1 : MATCH (extra-1) : LIT : REP0 (len)
    182   UInt32 len;
    183   UInt32 dist;
    184   UInt32 reps[LZMA_NUM_REPS];
    185 } COptimal;
    186 
    187 
    188 // 18.06
    189 #define kNumOpts (1 << 11)
    190 #define kPackReserve (kNumOpts * 8)
    191 // #define kNumOpts (1 << 12)
    192 // #define kPackReserve (1 + kNumOpts * 2)
    193 
    194 #define kNumLenToPosStates 4
    195 #define kNumPosSlotBits 6
    196 #define kDicLogSizeMin 0
    197 #define kDicLogSizeMax 32
    198 #define kDistTableSizeMax (kDicLogSizeMax * 2)
    199 
    200 #define kNumAlignBits 4
    201 #define kAlignTableSize (1 << kNumAlignBits)
    202 #define kAlignMask (kAlignTableSize - 1)
    203 
    204 #define kStartPosModelIndex 4
    205 #define kEndPosModelIndex 14
    206 #define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
    207 
    208 typedef
    209 #ifdef _LZMA_PROB32
    210   UInt32
    211 #else
    212   UInt16
    213 #endif
    214   CLzmaProb;
    215 
    216 #define LZMA_PB_MAX 4
    217 #define LZMA_LC_MAX 8
    218 #define LZMA_LP_MAX 4
    219 
    220 #define LZMA_NUM_PB_STATES_MAX (1 << LZMA_PB_MAX)
    221 
    222 #define kLenNumLowBits 3
    223 #define kLenNumLowSymbols (1 << kLenNumLowBits)
    224 #define kLenNumHighBits 8
    225 #define kLenNumHighSymbols (1 << kLenNumHighBits)
    226 #define kLenNumSymbolsTotal (kLenNumLowSymbols * 2 + kLenNumHighSymbols)
    227 
    228 #define LZMA_MATCH_LEN_MIN 2
    229 #define LZMA_MATCH_LEN_MAX (LZMA_MATCH_LEN_MIN + kLenNumSymbolsTotal - 1)
    230 
    231 #define kNumStates 12
    232 
    233 
    234 typedef struct
    235 {
    236   CLzmaProb low[LZMA_NUM_PB_STATES_MAX << (kLenNumLowBits + 1)];
    237   CLzmaProb high[kLenNumHighSymbols];
    238 } CLenEnc;
    239 
    240 
    241 typedef struct
    242 {
    243   unsigned tableSize;
    244   UInt32 prices[LZMA_NUM_PB_STATES_MAX][kLenNumSymbolsTotal];
    245   // UInt32 prices1[LZMA_NUM_PB_STATES_MAX][kLenNumLowSymbols * 2];
    246   // UInt32 prices2[kLenNumSymbolsTotal];
    247 } CLenPriceEnc;
    248 
    249 #define GET_PRICE_LEN(p, posState, len) \
    250     ((p)->prices[posState][(size_t)(len) - LZMA_MATCH_LEN_MIN])
    251 
    252 /*
    253 #define GET_PRICE_LEN(p, posState, len) \
    254     ((p)->prices2[(size_t)(len) - 2] + ((p)->prices1[posState][((len) - 2) & (kLenNumLowSymbols * 2 - 1)] & (((len) - 2 - kLenNumLowSymbols * 2) >> 9)))
    255 */
    256 
    257 typedef struct
    258 {
    259   UInt32 range;
    260   unsigned cache;
    261   UInt64 low;
    262   UInt64 cacheSize;
    263   Byte *buf;
    264   Byte *bufLim;
    265   Byte *bufBase;
    266   ISeqOutStream *outStream;
    267   UInt64 processed;
    268   SRes res;
    269 } CRangeEnc;
    270 
    271 
    272 typedef struct
    273 {
    274   CLzmaProb *litProbs;
    275 
    276   unsigned state;
    277   UInt32 reps[LZMA_NUM_REPS];
    278 
    279   CLzmaProb posAlignEncoder[1 << kNumAlignBits];
    280   CLzmaProb isRep[kNumStates];
    281   CLzmaProb isRepG0[kNumStates];
    282   CLzmaProb isRepG1[kNumStates];
    283   CLzmaProb isRepG2[kNumStates];
    284   CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
    285   CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
    286 
    287   CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
    288   CLzmaProb posEncoders[kNumFullDistances];
    289 
    290   CLenEnc lenProbs;
    291   CLenEnc repLenProbs;
    292 
    293 } CSaveState;
    294 
    295 
    296 typedef UInt32 CProbPrice;
    297 
    298 
    299 typedef struct
    300 {
    301   void *matchFinderObj;
    302   IMatchFinder matchFinder;
    303 
    304   unsigned optCur;
    305   unsigned optEnd;
    306 
    307   unsigned longestMatchLen;
    308   unsigned numPairs;
    309   UInt32 numAvail;
    310 
    311   unsigned state;
    312   unsigned numFastBytes;
    313   unsigned additionalOffset;
    314   UInt32 reps[LZMA_NUM_REPS];
    315   unsigned lpMask, pbMask;
    316   CLzmaProb *litProbs;
    317   CRangeEnc rc;
    318 
    319   UInt32 backRes;
    320 
    321   unsigned lc, lp, pb;
    322   unsigned lclp;
    323 
    324   BoolInt fastMode;
    325   BoolInt writeEndMark;
    326   BoolInt finished;
    327   BoolInt multiThread;
    328   BoolInt needInit;
    329   // BoolInt _maxMode;
    330 
    331   UInt64 nowPos64;
    332 
    333   unsigned matchPriceCount;
    334   // unsigned alignPriceCount;
    335   int repLenEncCounter;
    336 
    337   unsigned distTableSize;
    338 
    339   UInt32 dictSize;
    340   SRes result;
    341 
    342   #ifndef _7ZIP_ST
    343   BoolInt mtMode;
    344   // begin of CMatchFinderMt is used in LZ thread
    345   CMatchFinderMt matchFinderMt;
    346   // end of CMatchFinderMt is used in BT and HASH threads
    347   #endif
    348 
    349   CMatchFinder matchFinderBase;
    350 
    351   #ifndef _7ZIP_ST
    352   Byte pad[128];
    353   #endif
    354 
    355   // LZ thread
    356   CProbPrice ProbPrices[kBitModelTotal >> kNumMoveReducingBits];
    357 
    358   UInt32 matches[LZMA_MATCH_LEN_MAX * 2 + 2 + 1];
    359 
    360   UInt32 alignPrices[kAlignTableSize];
    361   UInt32 posSlotPrices[kNumLenToPosStates][kDistTableSizeMax];
    362   UInt32 distancesPrices[kNumLenToPosStates][kNumFullDistances];
    363 
    364   CLzmaProb posAlignEncoder[1 << kNumAlignBits];
    365   CLzmaProb isRep[kNumStates];
    366   CLzmaProb isRepG0[kNumStates];
    367   CLzmaProb isRepG1[kNumStates];
    368   CLzmaProb isRepG2[kNumStates];
    369   CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
    370   CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
    371   CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
    372   CLzmaProb posEncoders[kNumFullDistances];
    373 
    374   CLenEnc lenProbs;
    375   CLenEnc repLenProbs;
    376 
    377   #ifndef LZMA_LOG_BSR
    378   Byte g_FastPos[1 << kNumLogBits];
    379   #endif
    380 
    381   CLenPriceEnc lenEnc;
    382   CLenPriceEnc repLenEnc;
    383 
    384   COptimal opt[kNumOpts];
    385 
    386   CSaveState saveState;
    387 
    388   #ifndef _7ZIP_ST
    389   Byte pad2[128];
    390   #endif
    391 } CLzmaEnc;
    392 
    393 
    394 
    395 #define COPY_ARR(dest, src, arr) memcpy(dest->arr, src->arr, sizeof(src->arr));
    396 
    397 void LzmaEnc_SaveState(CLzmaEncHandle pp)
    398 {
    399   CLzmaEnc *p = (CLzmaEnc *)pp;
    400   CSaveState *dest = &p->saveState;
    401 
    402   dest->state = p->state;
    403 
    404   dest->lenProbs = p->lenProbs;
    405   dest->repLenProbs = p->repLenProbs;
    406 
    407   COPY_ARR(dest, p, reps);
    408 
    409   COPY_ARR(dest, p, posAlignEncoder);
    410   COPY_ARR(dest, p, isRep);
    411   COPY_ARR(dest, p, isRepG0);
    412   COPY_ARR(dest, p, isRepG1);
    413   COPY_ARR(dest, p, isRepG2);
    414   COPY_ARR(dest, p, isMatch);
    415   COPY_ARR(dest, p, isRep0Long);
    416   COPY_ARR(dest, p, posSlotEncoder);
    417   COPY_ARR(dest, p, posEncoders);
    418 
    419   memcpy(dest->litProbs, p->litProbs, ((UInt32)0x300 << p->lclp) * sizeof(CLzmaProb));
    420 }
    421 
    422 
    423 void LzmaEnc_RestoreState(CLzmaEncHandle pp)
    424 {
    425   CLzmaEnc *dest = (CLzmaEnc *)pp;
    426   const CSaveState *p = &dest->saveState;
    427 
    428   dest->state = p->state;
    429 
    430   dest->lenProbs = p->lenProbs;
    431   dest->repLenProbs = p->repLenProbs;
    432 
    433   COPY_ARR(dest, p, reps);
    434 
    435   COPY_ARR(dest, p, posAlignEncoder);
    436   COPY_ARR(dest, p, isRep);
    437   COPY_ARR(dest, p, isRepG0);
    438   COPY_ARR(dest, p, isRepG1);
    439   COPY_ARR(dest, p, isRepG2);
    440   COPY_ARR(dest, p, isMatch);
    441   COPY_ARR(dest, p, isRep0Long);
    442   COPY_ARR(dest, p, posSlotEncoder);
    443   COPY_ARR(dest, p, posEncoders);
    444 
    445   memcpy(dest->litProbs, p->litProbs, ((UInt32)0x300 << dest->lclp) * sizeof(CLzmaProb));
    446 }
    447 
    448 
    449 
    450 SRes LzmaEnc_SetProps(CLzmaEncHandle pp, const CLzmaEncProps *props2)
    451 {
    452   CLzmaEnc *p = (CLzmaEnc *)pp;
    453   CLzmaEncProps props = *props2;
    454   LzmaEncProps_Normalize(&props);
    455 
    456   if (props.lc > LZMA_LC_MAX
    457       || props.lp > LZMA_LP_MAX
    458       || props.pb > LZMA_PB_MAX
    459       || props.dictSize > ((UInt64)1 << kDicLogSizeMaxCompress)
    460       || props.dictSize > kLzmaMaxHistorySize)
    461     return SZ_ERROR_PARAM;
    462 
    463   p->dictSize = props.dictSize;
    464   {
    465     unsigned fb = props.fb;
    466     if (fb < 5)
    467       fb = 5;
    468     if (fb > LZMA_MATCH_LEN_MAX)
    469       fb = LZMA_MATCH_LEN_MAX;
    470     p->numFastBytes = fb;
    471   }
    472   p->lc = props.lc;
    473   p->lp = props.lp;
    474   p->pb = props.pb;
    475   p->fastMode = (props.algo == 0);
    476   // p->_maxMode = True;
    477   p->matchFinderBase.btMode = (Byte)(props.btMode ? 1 : 0);
    478   {
    479     unsigned numHashBytes = 4;
    480     if (props.btMode)
    481     {
    482       if (props.numHashBytes < 2)
    483         numHashBytes = 2;
    484       else if (props.numHashBytes < 4)
    485         numHashBytes = props.numHashBytes;
    486     }
    487     p->matchFinderBase.numHashBytes = numHashBytes;
    488   }
    489 
    490   p->matchFinderBase.cutValue = props.mc;
    491 
    492   p->writeEndMark = props.writeEndMark;
    493 
    494   #ifndef _7ZIP_ST
    495   /*
    496   if (newMultiThread != _multiThread)
    497   {
    498     ReleaseMatchFinder();
    499     _multiThread = newMultiThread;
    500   }
    501   */
    502   p->multiThread = (props.numThreads > 1);
    503   #endif
    504 
    505   return SZ_OK;
    506 }
    507 
    508 
    509 void LzmaEnc_SetDataSize(CLzmaEncHandle pp, UInt64 expectedDataSiize)
    510 {
    511   CLzmaEnc *p = (CLzmaEnc *)pp;
    512   p->matchFinderBase.expectedDataSize = expectedDataSiize;
    513 }
    514 
    515 
    516 #define kState_Start 0
    517 #define kState_LitAfterMatch 4
    518 #define kState_LitAfterRep   5
    519 #define kState_MatchAfterLit 7
    520 #define kState_RepAfterLit   8
    521 
    522 static const Byte kLiteralNextStates[kNumStates] = {0, 0, 0, 0, 1, 2, 3, 4,  5,  6,   4, 5};
    523 static const Byte kMatchNextStates[kNumStates]   = {7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10};
    524 static const Byte kRepNextStates[kNumStates]     = {8, 8, 8, 8, 8, 8, 8, 11, 11, 11, 11, 11};
    525 static const Byte kShortRepNextStates[kNumStates]= {9, 9, 9, 9, 9, 9, 9, 11, 11, 11, 11, 11};
    526 
    527 #define IsLitState(s) ((s) < 7)
    528 #define GetLenToPosState2(len) (((len) < kNumLenToPosStates - 1) ? (len) : kNumLenToPosStates - 1)
    529 #define GetLenToPosState(len) (((len) < kNumLenToPosStates + 1) ? (len) - 2 : kNumLenToPosStates - 1)
    530 
    531 #define kInfinityPrice (1 << 30)
    532 
    533 static void RangeEnc_Construct(CRangeEnc *p)
    534 {
    535   p->outStream = NULL;
    536   p->bufBase = NULL;
    537 }
    538 
    539 #define RangeEnc_GetProcessed(p)       ((p)->processed + ((p)->buf - (p)->bufBase) + (p)->cacheSize)
    540 #define RangeEnc_GetProcessed_sizet(p) ((size_t)(p)->processed + ((p)->buf - (p)->bufBase) + (size_t)(p)->cacheSize)
    541 
    542 #define RC_BUF_SIZE (1 << 16)
    543 
    544 static int RangeEnc_Alloc(CRangeEnc *p, ISzAllocPtr alloc)
    545 {
    546   if (!p->bufBase)
    547   {
    548     p->bufBase = (Byte *)ISzAlloc_Alloc(alloc, RC_BUF_SIZE);
    549     if (!p->bufBase)
    550       return 0;
    551     p->bufLim = p->bufBase + RC_BUF_SIZE;
    552   }
    553   return 1;
    554 }
    555 
    556 static void RangeEnc_Free(CRangeEnc *p, ISzAllocPtr alloc)
    557 {
    558   ISzAlloc_Free(alloc, p->bufBase);
    559   p->bufBase = 0;
    560 }
    561 
    562 static void RangeEnc_Init(CRangeEnc *p)
    563 {
    564   /* Stream.Init(); */
    565   p->range = 0xFFFFFFFF;
    566   p->cache = 0;
    567   p->low = 0;
    568   p->cacheSize = 0;
    569 
    570   p->buf = p->bufBase;
    571 
    572   p->processed = 0;
    573   p->res = SZ_OK;
    574 }
    575 
    576 MY_NO_INLINE static void RangeEnc_FlushStream(CRangeEnc *p)
    577 {
    578   size_t num;
    579   if (p->res != SZ_OK)
    580     return;
    581   num = p->buf - p->bufBase;
    582   if (num != ISeqOutStream_Write(p->outStream, p->bufBase, num))
    583     p->res = SZ_ERROR_WRITE;
    584   p->processed += num;
    585   p->buf = p->bufBase;
    586 }
    587 
    588 MY_NO_INLINE static void MY_FAST_CALL RangeEnc_ShiftLow(CRangeEnc *p)
    589 {
    590   UInt32 low = (UInt32)p->low;
    591   unsigned high = (unsigned)(p->low >> 32);
    592   p->low = (UInt32)(low << 8);
    593   if (low < (UInt32)0xFF000000 || high != 0)
    594   {
    595     {
    596       Byte *buf = p->buf;
    597       *buf++ = (Byte)(p->cache + high);
    598       p->cache = (unsigned)(low >> 24);
    599       p->buf = buf;
    600       if (buf == p->bufLim)
    601         RangeEnc_FlushStream(p);
    602       if (p->cacheSize == 0)
    603         return;
    604     }
    605     high += 0xFF;
    606     for (;;)
    607     {
    608       Byte *buf = p->buf;
    609       *buf++ = (Byte)(high);
    610       p->buf = buf;
    611       if (buf == p->bufLim)
    612         RangeEnc_FlushStream(p);
    613       if (--p->cacheSize == 0)
    614         return;
    615     }
    616   }
    617   p->cacheSize++;
    618 }
    619 
    620 static void RangeEnc_FlushData(CRangeEnc *p)
    621 {
    622   int i;
    623   for (i = 0; i < 5; i++)
    624     RangeEnc_ShiftLow(p);
    625 }
    626 
    627 #define RC_NORM(p) if (range < kTopValue) { range <<= 8; RangeEnc_ShiftLow(p); }
    628 
    629 #define RC_BIT_PRE(p, prob) \
    630   ttt = *(prob); \
    631   newBound = (range >> kNumBitModelTotalBits) * ttt;
    632 
    633 // #define _LZMA_ENC_USE_BRANCH
    634 
    635 #ifdef _LZMA_ENC_USE_BRANCH
    636 
    637 #define RC_BIT(p, prob, bit) { \
    638   RC_BIT_PRE(p, prob) \
    639   if (bit == 0) { range = newBound; ttt += (kBitModelTotal - ttt) >> kNumMoveBits; } \
    640   else { (p)->low += newBound; range -= newBound; ttt -= ttt >> kNumMoveBits; } \
    641   *(prob) = (CLzmaProb)ttt; \
    642   RC_NORM(p) \
    643   }
    644 
    645 #else
    646 
    647 #define RC_BIT(p, prob, bit) { \
    648   UInt32 mask; \
    649   RC_BIT_PRE(p, prob) \
    650   mask = 0 - (UInt32)bit; \
    651   range &= mask; \
    652   mask &= newBound; \
    653   range -= mask; \
    654   (p)->low += mask; \
    655   mask = (UInt32)bit - 1; \
    656   range += newBound & mask; \
    657   mask &= (kBitModelTotal - ((1 << kNumMoveBits) - 1)); \
    658   mask += ((1 << kNumMoveBits) - 1); \
    659   ttt += (Int32)(mask - ttt) >> kNumMoveBits; \
    660   *(prob) = (CLzmaProb)ttt; \
    661   RC_NORM(p) \
    662   }
    663 
    664 #endif
    665 
    666 
    667 
    668 
    669 #define RC_BIT_0_BASE(p, prob) \
    670   range = newBound; *(prob) = (CLzmaProb)(ttt + ((kBitModelTotal - ttt) >> kNumMoveBits));
    671 
    672 #define RC_BIT_1_BASE(p, prob) \
    673   range -= newBound; (p)->low += newBound; *(prob) = (CLzmaProb)(ttt - (ttt >> kNumMoveBits)); \
    674 
    675 #define RC_BIT_0(p, prob) \
    676   RC_BIT_0_BASE(p, prob) \
    677   RC_NORM(p)
    678 
    679 #define RC_BIT_1(p, prob) \
    680   RC_BIT_1_BASE(p, prob) \
    681   RC_NORM(p)
    682 
    683 static void RangeEnc_EncodeBit_0(CRangeEnc *p, CLzmaProb *prob)
    684 {
    685   UInt32 range, ttt, newBound;
    686   range = p->range;
    687   RC_BIT_PRE(p, prob)
    688   RC_BIT_0(p, prob)
    689   p->range = range;
    690 }
    691 
    692 static void LitEnc_Encode(CRangeEnc *p, CLzmaProb *probs, UInt32 sym)
    693 {
    694   UInt32 range = p->range;
    695   sym |= 0x100;
    696   do
    697   {
    698     UInt32 ttt, newBound;
    699     // RangeEnc_EncodeBit(p, probs + (sym >> 8), (sym >> 7) & 1);
    700     CLzmaProb *prob = probs + (sym >> 8);
    701     UInt32 bit = (sym >> 7) & 1;
    702     sym <<= 1;
    703     RC_BIT(p, prob, bit);
    704   }
    705   while (sym < 0x10000);
    706   p->range = range;
    707 }
    708 
    709 static void LitEnc_EncodeMatched(CRangeEnc *p, CLzmaProb *probs, UInt32 sym, UInt32 matchByte)
    710 {
    711   UInt32 range = p->range;
    712   UInt32 offs = 0x100;
    713   sym |= 0x100;
    714   do
    715   {
    716     UInt32 ttt, newBound;
    717     CLzmaProb *prob;
    718     UInt32 bit;
    719     matchByte <<= 1;
    720     // RangeEnc_EncodeBit(p, probs + (offs + (matchByte & offs) + (sym >> 8)), (sym >> 7) & 1);
    721     prob = probs + (offs + (matchByte & offs) + (sym >> 8));
    722     bit = (sym >> 7) & 1;
    723     sym <<= 1;
    724     offs &= ~(matchByte ^ sym);
    725     RC_BIT(p, prob, bit);
    726   }
    727   while (sym < 0x10000);
    728   p->range = range;
    729 }
    730 
    731 
    732 
    733 static void LzmaEnc_InitPriceTables(CProbPrice *ProbPrices)
    734 {
    735   UInt32 i;
    736   for (i = 0; i < (kBitModelTotal >> kNumMoveReducingBits); i++)
    737   {
    738     const unsigned kCyclesBits = kNumBitPriceShiftBits;
    739     UInt32 w = (i << kNumMoveReducingBits) + (1 << (kNumMoveReducingBits - 1));
    740     unsigned bitCount = 0;
    741     unsigned j;
    742     for (j = 0; j < kCyclesBits; j++)
    743     {
    744       w = w * w;
    745       bitCount <<= 1;
    746       while (w >= ((UInt32)1 << 16))
    747       {
    748         w >>= 1;
    749         bitCount++;
    750       }
    751     }
    752     ProbPrices[i] = (CProbPrice)((kNumBitModelTotalBits << kCyclesBits) - 15 - bitCount);
    753     // printf("\n%3d: %5d", i, ProbPrices[i]);
    754   }
    755 }
    756 
    757 
    758 #define GET_PRICE(prob, bit) \
    759   p->ProbPrices[((prob) ^ (unsigned)(((-(int)(bit))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
    760 
    761 #define GET_PRICEa(prob, bit) \
    762      ProbPrices[((prob) ^ (unsigned)((-((int)(bit))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
    763 
    764 #define GET_PRICE_0(prob) p->ProbPrices[(prob) >> kNumMoveReducingBits]
    765 #define GET_PRICE_1(prob) p->ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
    766 
    767 #define GET_PRICEa_0(prob) ProbPrices[(prob) >> kNumMoveReducingBits]
    768 #define GET_PRICEa_1(prob) ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
    769 
    770 
    771 static UInt32 LitEnc_GetPrice(const CLzmaProb *probs, UInt32 sym, const CProbPrice *ProbPrices)
    772 {
    773   UInt32 price = 0;
    774   sym |= 0x100;
    775   do
    776   {
    777     unsigned bit = sym & 1;
    778     sym >>= 1;
    779     price += GET_PRICEa(probs[sym], bit);
    780   }
    781   while (sym >= 2);
    782   return price;
    783 }
    784 
    785 
    786 static UInt32 LitEnc_Matched_GetPrice(const CLzmaProb *probs, UInt32 sym, UInt32 matchByte, const CProbPrice *ProbPrices)
    787 {
    788   UInt32 price = 0;
    789   UInt32 offs = 0x100;
    790   sym |= 0x100;
    791   do
    792   {
    793     matchByte <<= 1;
    794     price += GET_PRICEa(probs[offs + (matchByte & offs) + (sym >> 8)], (sym >> 7) & 1);
    795     sym <<= 1;
    796     offs &= ~(matchByte ^ sym);
    797   }
    798   while (sym < 0x10000);
    799   return price;
    800 }
    801 
    802 
    803 static void RcTree_ReverseEncode(CRangeEnc *rc, CLzmaProb *probs, unsigned numBits, unsigned sym)
    804 {
    805   UInt32 range = rc->range;
    806   unsigned m = 1;
    807   do
    808   {
    809     UInt32 ttt, newBound;
    810     unsigned bit = sym & 1;
    811     // RangeEnc_EncodeBit(rc, probs + m, bit);
    812     sym >>= 1;
    813     RC_BIT(rc, probs + m, bit);
    814     m = (m << 1) | bit;
    815   }
    816   while (--numBits);
    817   rc->range = range;
    818 }
    819 
    820 
    821 
    822 static void LenEnc_Init(CLenEnc *p)
    823 {
    824   unsigned i;
    825   for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << (kLenNumLowBits + 1)); i++)
    826     p->low[i] = kProbInitValue;
    827   for (i = 0; i < kLenNumHighSymbols; i++)
    828     p->high[i] = kProbInitValue;
    829 }
    830 
    831 static void LenEnc_Encode(CLenEnc *p, CRangeEnc *rc, unsigned sym, unsigned posState)
    832 {
    833   UInt32 range, ttt, newBound;
    834   CLzmaProb *probs = p->low;
    835   range = rc->range;
    836   RC_BIT_PRE(rc, probs);
    837   if (sym >= kLenNumLowSymbols)
    838   {
    839     RC_BIT_1(rc, probs);
    840     probs += kLenNumLowSymbols;
    841     RC_BIT_PRE(rc, probs);
    842     if (sym >= kLenNumLowSymbols * 2)
    843     {
    844       RC_BIT_1(rc, probs);
    845       rc->range = range;
    846       // RcTree_Encode(rc, p->high, kLenNumHighBits, sym - kLenNumLowSymbols * 2);
    847       LitEnc_Encode(rc, p->high, sym - kLenNumLowSymbols * 2);
    848       return;
    849     }
    850     sym -= kLenNumLowSymbols;
    851   }
    852 
    853   // RcTree_Encode(rc, probs + (posState << kLenNumLowBits), kLenNumLowBits, sym);
    854   {
    855     unsigned m;
    856     unsigned bit;
    857     RC_BIT_0(rc, probs);
    858     probs += (posState << (1 + kLenNumLowBits));
    859     bit = (sym >> 2)    ; RC_BIT(rc, probs + 1, bit); m = (1 << 1) + bit;
    860     bit = (sym >> 1) & 1; RC_BIT(rc, probs + m, bit); m = (m << 1) + bit;
    861     bit =  sym       & 1; RC_BIT(rc, probs + m, bit);
    862     rc->range = range;
    863   }
    864 }
    865 
    866 static void SetPrices_3(const CLzmaProb *probs, UInt32 startPrice, UInt32 *prices, const CProbPrice *ProbPrices)
    867 {
    868   unsigned i;
    869   for (i = 0; i < 8; i += 2)
    870   {
    871     UInt32 price = startPrice;
    872     UInt32 prob;
    873     price += GET_PRICEa(probs[1           ], (i >> 2));
    874     price += GET_PRICEa(probs[2 + (i >> 2)], (i >> 1) & 1);
    875     prob = probs[4 + (i >> 1)];
    876     prices[i    ] = price + GET_PRICEa_0(prob);
    877     prices[i + 1] = price + GET_PRICEa_1(prob);
    878   }
    879 }
    880 
    881 
    882 MY_NO_INLINE static void MY_FAST_CALL LenPriceEnc_UpdateTables(
    883     CLenPriceEnc *p,
    884     unsigned numPosStates,
    885     const CLenEnc *enc,
    886     const CProbPrice *ProbPrices)
    887 {
    888   UInt32 b;
    889 
    890   {
    891     unsigned prob = enc->low[0];
    892     UInt32 a, c;
    893     unsigned posState;
    894     b = GET_PRICEa_1(prob);
    895     a = GET_PRICEa_0(prob);
    896     c = b + GET_PRICEa_0(enc->low[kLenNumLowSymbols]);
    897     for (posState = 0; posState < numPosStates; posState++)
    898     {
    899       UInt32 *prices = p->prices[posState];
    900       const CLzmaProb *probs = enc->low + (posState << (1 + kLenNumLowBits));
    901       SetPrices_3(probs, a, prices, ProbPrices);
    902       SetPrices_3(probs + kLenNumLowSymbols, c, prices + kLenNumLowSymbols, ProbPrices);
    903     }
    904   }
    905 
    906   /*
    907   {
    908     unsigned i;
    909     UInt32 b;
    910     a = GET_PRICEa_0(enc->low[0]);
    911     for (i = 0; i < kLenNumLowSymbols; i++)
    912       p->prices2[i] = a;
    913     a = GET_PRICEa_1(enc->low[0]);
    914     b = a + GET_PRICEa_0(enc->low[kLenNumLowSymbols]);
    915     for (i = kLenNumLowSymbols; i < kLenNumLowSymbols * 2; i++)
    916       p->prices2[i] = b;
    917     a += GET_PRICEa_1(enc->low[kLenNumLowSymbols]);
    918   }
    919   */
    920 
    921   // p->counter = numSymbols;
    922   // p->counter = 64;
    923 
    924   {
    925     unsigned i = p->tableSize;
    926 
    927     if (i > kLenNumLowSymbols * 2)
    928     {
    929       const CLzmaProb *probs = enc->high;
    930       UInt32 *prices = p->prices[0] + kLenNumLowSymbols * 2;
    931       i -= kLenNumLowSymbols * 2 - 1;
    932       i >>= 1;
    933       b += GET_PRICEa_1(enc->low[kLenNumLowSymbols]);
    934       do
    935       {
    936         /*
    937         p->prices2[i] = a +
    938         // RcTree_GetPrice(enc->high, kLenNumHighBits, i - kLenNumLowSymbols * 2, ProbPrices);
    939         LitEnc_GetPrice(probs, i - kLenNumLowSymbols * 2, ProbPrices);
    940         */
    941         // UInt32 price = a + RcTree_GetPrice(probs, kLenNumHighBits - 1, sym, ProbPrices);
    942         unsigned sym = --i + (1 << (kLenNumHighBits - 1));
    943         UInt32 price = b;
    944         do
    945         {
    946           unsigned bit = sym & 1;
    947           sym >>= 1;
    948           price += GET_PRICEa(probs[sym], bit);
    949         }
    950         while (sym >= 2);
    951 
    952         {
    953           unsigned prob = probs[(size_t)i + (1 << (kLenNumHighBits - 1))];
    954           prices[(size_t)i * 2    ] = price + GET_PRICEa_0(prob);
    955           prices[(size_t)i * 2 + 1] = price + GET_PRICEa_1(prob);
    956         }
    957       }
    958       while (i);
    959 
    960       {
    961         unsigned posState;
    962         size_t num = (p->tableSize - kLenNumLowSymbols * 2) * sizeof(p->prices[0][0]);
    963         for (posState = 1; posState < numPosStates; posState++)
    964           memcpy(p->prices[posState] + kLenNumLowSymbols * 2, p->prices[0] + kLenNumLowSymbols * 2, num);
    965       }
    966     }
    967   }
    968 }
    969 
    970 /*
    971   #ifdef SHOW_STAT
    972   g_STAT_OFFSET += num;
    973   printf("\n MovePos %u", num);
    974   #endif
    975 */
    976 
    977 #define MOVE_POS(p, num) { \
    978     p->additionalOffset += (num); \
    979     p->matchFinder.Skip(p->matchFinderObj, (UInt32)(num)); }
    980 
    981 
    982 static unsigned ReadMatchDistances(CLzmaEnc *p, unsigned *numPairsRes)
    983 {
    984   unsigned numPairs;
    985 
    986   p->additionalOffset++;
    987   p->numAvail = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
    988   numPairs = p->matchFinder.GetMatches(p->matchFinderObj, p->matches);
    989   *numPairsRes = numPairs;
    990 
    991   #ifdef SHOW_STAT
    992   printf("\n i = %u numPairs = %u    ", g_STAT_OFFSET, numPairs / 2);
    993   g_STAT_OFFSET++;
    994   {
    995     unsigned i;
    996     for (i = 0; i < numPairs; i += 2)
    997       printf("%2u %6u   | ", p->matches[i], p->matches[i + 1]);
    998   }
    999   #endif
   1000 
   1001   if (numPairs == 0)
   1002     return 0;
   1003   {
   1004     unsigned len = p->matches[(size_t)numPairs - 2];
   1005     if (len != p->numFastBytes)
   1006       return len;
   1007     {
   1008       UInt32 numAvail = p->numAvail;
   1009       if (numAvail > LZMA_MATCH_LEN_MAX)
   1010         numAvail = LZMA_MATCH_LEN_MAX;
   1011       {
   1012         const Byte *p1 = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
   1013         const Byte *p2 = p1 + len;
   1014         ptrdiff_t dif = (ptrdiff_t)-1 - p->matches[(size_t)numPairs - 1];
   1015         const Byte *lim = p1 + numAvail;
   1016         for (; p2 != lim && *p2 == p2[dif]; p2++)
   1017         {}
   1018         return (unsigned)(p2 - p1);
   1019       }
   1020     }
   1021   }
   1022 }
   1023 
   1024 #define MARK_LIT ((UInt32)(Int32)-1)
   1025 
   1026 #define MakeAs_Lit(p)       { (p)->dist = MARK_LIT; (p)->extra = 0; }
   1027 #define MakeAs_ShortRep(p)  { (p)->dist = 0; (p)->extra = 0; }
   1028 #define IsShortRep(p)       ((p)->dist == 0)
   1029 
   1030 
   1031 #define GetPrice_ShortRep(p, state, posState) \
   1032   ( GET_PRICE_0(p->isRepG0[state]) + GET_PRICE_0(p->isRep0Long[state][posState]))
   1033 
   1034 #define GetPrice_Rep_0(p, state, posState) ( \
   1035     GET_PRICE_1(p->isMatch[state][posState]) \
   1036   + GET_PRICE_1(p->isRep0Long[state][posState])) \
   1037   + GET_PRICE_1(p->isRep[state]) \
   1038   + GET_PRICE_0(p->isRepG0[state])
   1039 
   1040 MY_FORCE_INLINE
   1041 static UInt32 GetPrice_PureRep(const CLzmaEnc *p, unsigned repIndex, size_t state, size_t posState)
   1042 {
   1043   UInt32 price;
   1044   UInt32 prob = p->isRepG0[state];
   1045   if (repIndex == 0)
   1046   {
   1047     price = GET_PRICE_0(prob);
   1048     price += GET_PRICE_1(p->isRep0Long[state][posState]);
   1049   }
   1050   else
   1051   {
   1052     price = GET_PRICE_1(prob);
   1053     prob = p->isRepG1[state];
   1054     if (repIndex == 1)
   1055       price += GET_PRICE_0(prob);
   1056     else
   1057     {
   1058       price += GET_PRICE_1(prob);
   1059       price += GET_PRICE(p->isRepG2[state], repIndex - 2);
   1060     }
   1061   }
   1062   return price;
   1063 }
   1064 
   1065 
   1066 static unsigned Backward(CLzmaEnc *p, unsigned cur)
   1067 {
   1068   unsigned wr = cur + 1;
   1069   p->optEnd = wr;
   1070 
   1071   for (;;)
   1072   {
   1073     UInt32 dist = p->opt[cur].dist;
   1074     unsigned len = (unsigned)p->opt[cur].len;
   1075     unsigned extra = (unsigned)p->opt[cur].extra;
   1076     cur -= len;
   1077 
   1078     if (extra)
   1079     {
   1080       wr--;
   1081       p->opt[wr].len = (UInt32)len;
   1082       cur -= extra;
   1083       len = extra;
   1084       if (extra == 1)
   1085       {
   1086         p->opt[wr].dist = dist;
   1087         dist = MARK_LIT;
   1088       }
   1089       else
   1090       {
   1091         p->opt[wr].dist = 0;
   1092         len--;
   1093         wr--;
   1094         p->opt[wr].dist = MARK_LIT;
   1095         p->opt[wr].len = 1;
   1096       }
   1097     }
   1098 
   1099     if (cur == 0)
   1100     {
   1101       p->backRes = dist;
   1102       p->optCur = wr;
   1103       return len;
   1104     }
   1105 
   1106     wr--;
   1107     p->opt[wr].dist = dist;
   1108     p->opt[wr].len = (UInt32)len;
   1109   }
   1110 }
   1111 
   1112 
   1113 
   1114 #define LIT_PROBS(pos, prevByte) \
   1115   (p->litProbs + (UInt32)3 * (((((pos) << 8) + (prevByte)) & p->lpMask) << p->lc))
   1116 
   1117 
   1118 static unsigned GetOptimum(CLzmaEnc *p, UInt32 position)
   1119 {
   1120   unsigned last, cur;
   1121   UInt32 reps[LZMA_NUM_REPS];
   1122   unsigned repLens[LZMA_NUM_REPS];
   1123   UInt32 *matches;
   1124 
   1125   {
   1126     UInt32 numAvail;
   1127     unsigned numPairs, mainLen, repMaxIndex, i, posState;
   1128     UInt32 matchPrice, repMatchPrice;
   1129     const Byte *data;
   1130     Byte curByte, matchByte;
   1131 
   1132     p->optCur = p->optEnd = 0;
   1133 
   1134     if (p->additionalOffset == 0)
   1135       mainLen = ReadMatchDistances(p, &numPairs);
   1136     else
   1137     {
   1138       mainLen = p->longestMatchLen;
   1139       numPairs = p->numPairs;
   1140     }
   1141 
   1142     numAvail = p->numAvail;
   1143     if (numAvail < 2)
   1144     {
   1145       p->backRes = MARK_LIT;
   1146       return 1;
   1147     }
   1148     if (numAvail > LZMA_MATCH_LEN_MAX)
   1149       numAvail = LZMA_MATCH_LEN_MAX;
   1150 
   1151     data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
   1152     repMaxIndex = 0;
   1153 
   1154     for (i = 0; i < LZMA_NUM_REPS; i++)
   1155     {
   1156       unsigned len;
   1157       const Byte *data2;
   1158       reps[i] = p->reps[i];
   1159       data2 = data - reps[i];
   1160       if (data[0] != data2[0] || data[1] != data2[1])
   1161       {
   1162         repLens[i] = 0;
   1163         continue;
   1164       }
   1165       for (len = 2; len < numAvail && data[len] == data2[len]; len++)
   1166       {}
   1167       repLens[i] = len;
   1168       if (len > repLens[repMaxIndex])
   1169         repMaxIndex = i;
   1170     }
   1171 
   1172     if (repLens[repMaxIndex] >= p->numFastBytes)
   1173     {
   1174       unsigned len;
   1175       p->backRes = (UInt32)repMaxIndex;
   1176       len = repLens[repMaxIndex];
   1177       MOVE_POS(p, len - 1)
   1178       return len;
   1179     }
   1180 
   1181     matches = p->matches;
   1182 
   1183     if (mainLen >= p->numFastBytes)
   1184     {
   1185       p->backRes = matches[(size_t)numPairs - 1] + LZMA_NUM_REPS;
   1186       MOVE_POS(p, mainLen - 1)
   1187       return mainLen;
   1188     }
   1189 
   1190     curByte = *data;
   1191     matchByte = *(data - reps[0]);
   1192 
   1193     last = repLens[repMaxIndex];
   1194     if (last <= mainLen)
   1195       last = mainLen;
   1196 
   1197     if (last < 2 && curByte != matchByte)
   1198     {
   1199       p->backRes = MARK_LIT;
   1200       return 1;
   1201     }
   1202 
   1203     p->opt[0].state = (CState)p->state;
   1204 
   1205     posState = (position & p->pbMask);
   1206 
   1207     {
   1208       const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
   1209       p->opt[1].price = GET_PRICE_0(p->isMatch[p->state][posState]) +
   1210         (!IsLitState(p->state) ?
   1211           LitEnc_Matched_GetPrice(probs, curByte, matchByte, p->ProbPrices) :
   1212           LitEnc_GetPrice(probs, curByte, p->ProbPrices));
   1213     }
   1214 
   1215     MakeAs_Lit(&p->opt[1]);
   1216 
   1217     matchPrice = GET_PRICE_1(p->isMatch[p->state][posState]);
   1218     repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[p->state]);
   1219 
   1220     // 18.06
   1221     if (matchByte == curByte && repLens[0] == 0)
   1222     {
   1223       UInt32 shortRepPrice = repMatchPrice + GetPrice_ShortRep(p, p->state, posState);
   1224       if (shortRepPrice < p->opt[1].price)
   1225       {
   1226         p->opt[1].price = shortRepPrice;
   1227         MakeAs_ShortRep(&p->opt[1]);
   1228       }
   1229       if (last < 2)
   1230       {
   1231         p->backRes = p->opt[1].dist;
   1232         return 1;
   1233       }
   1234     }
   1235 
   1236     p->opt[1].len = 1;
   1237 
   1238     p->opt[0].reps[0] = reps[0];
   1239     p->opt[0].reps[1] = reps[1];
   1240     p->opt[0].reps[2] = reps[2];
   1241     p->opt[0].reps[3] = reps[3];
   1242 
   1243     // ---------- REP ----------
   1244 
   1245     for (i = 0; i < LZMA_NUM_REPS; i++)
   1246     {
   1247       unsigned repLen = repLens[i];
   1248       UInt32 price;
   1249       if (repLen < 2)
   1250         continue;
   1251       price = repMatchPrice + GetPrice_PureRep(p, i, p->state, posState);
   1252       do
   1253       {
   1254         UInt32 price2 = price + GET_PRICE_LEN(&p->repLenEnc, posState, repLen);
   1255         COptimal *opt = &p->opt[repLen];
   1256         if (price2 < opt->price)
   1257         {
   1258           opt->price = price2;
   1259           opt->len = (UInt32)repLen;
   1260           opt->dist = (UInt32)i;
   1261           opt->extra = 0;
   1262         }
   1263       }
   1264       while (--repLen >= 2);
   1265     }
   1266 
   1267 
   1268     // ---------- MATCH ----------
   1269     {
   1270       unsigned len = repLens[0] + 1;
   1271       if (len <= mainLen)
   1272       {
   1273         unsigned offs = 0;
   1274         UInt32 normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[p->state]);
   1275 
   1276         if (len < 2)
   1277           len = 2;
   1278         else
   1279           while (len > matches[offs])
   1280             offs += 2;
   1281 
   1282         for (; ; len++)
   1283         {
   1284           COptimal *opt;
   1285           UInt32 dist = matches[(size_t)offs + 1];
   1286           UInt32 price = normalMatchPrice + GET_PRICE_LEN(&p->lenEnc, posState, len);
   1287           unsigned lenToPosState = GetLenToPosState(len);
   1288 
   1289           if (dist < kNumFullDistances)
   1290             price += p->distancesPrices[lenToPosState][dist & (kNumFullDistances - 1)];
   1291           else
   1292           {
   1293             unsigned slot;
   1294             GetPosSlot2(dist, slot);
   1295             price += p->alignPrices[dist & kAlignMask];
   1296             price += p->posSlotPrices[lenToPosState][slot];
   1297           }
   1298 
   1299           opt = &p->opt[len];
   1300 
   1301           if (price < opt->price)
   1302           {
   1303             opt->price = price;
   1304             opt->len = (UInt32)len;
   1305             opt->dist = dist + LZMA_NUM_REPS;
   1306             opt->extra = 0;
   1307           }
   1308 
   1309           if (len == matches[offs])
   1310           {
   1311             offs += 2;
   1312             if (offs == numPairs)
   1313               break;
   1314           }
   1315         }
   1316       }
   1317     }
   1318 
   1319 
   1320     cur = 0;
   1321 
   1322     #ifdef SHOW_STAT2
   1323     /* if (position >= 0) */
   1324     {
   1325       unsigned i;
   1326       printf("\n pos = %4X", position);
   1327       for (i = cur; i <= last; i++)
   1328       printf("\nprice[%4X] = %u", position - cur + i, p->opt[i].price);
   1329     }
   1330     #endif
   1331   }
   1332 
   1333 
   1334 
   1335   // ---------- Optimal Parsing ----------
   1336 
   1337   for (;;)
   1338   {
   1339     unsigned numAvail;
   1340     UInt32 numAvailFull;
   1341     unsigned newLen, numPairs, prev, state, posState, startLen;
   1342     UInt32 litPrice, matchPrice, repMatchPrice;
   1343     BoolInt nextIsLit;
   1344     Byte curByte, matchByte;
   1345     const Byte *data;
   1346     COptimal *curOpt, *nextOpt;
   1347 
   1348     if (++cur == last)
   1349       break;
   1350 
   1351     // 18.06
   1352     if (cur >= kNumOpts - 64)
   1353     {
   1354       unsigned j, best;
   1355       UInt32 price = p->opt[cur].price;
   1356       best = cur;
   1357       for (j = cur + 1; j <= last; j++)
   1358       {
   1359         UInt32 price2 = p->opt[j].price;
   1360         if (price >= price2)
   1361         {
   1362           price = price2;
   1363           best = j;
   1364         }
   1365       }
   1366       {
   1367         unsigned delta = best - cur;
   1368         if (delta != 0)
   1369         {
   1370           MOVE_POS(p, delta);
   1371         }
   1372       }
   1373       cur = best;
   1374       break;
   1375     }
   1376 
   1377     newLen = ReadMatchDistances(p, &numPairs);
   1378 
   1379     if (newLen >= p->numFastBytes)
   1380     {
   1381       p->numPairs = numPairs;
   1382       p->longestMatchLen = newLen;
   1383       break;
   1384     }
   1385 
   1386     curOpt = &p->opt[cur];
   1387 
   1388     position++;
   1389 
   1390     // we need that check here, if skip_items in p->opt are possible
   1391     /*
   1392     if (curOpt->price >= kInfinityPrice)
   1393       continue;
   1394     */
   1395 
   1396     prev = cur - curOpt->len;
   1397 
   1398     if (curOpt->len == 1)
   1399     {
   1400       state = (unsigned)p->opt[prev].state;
   1401       if (IsShortRep(curOpt))
   1402         state = kShortRepNextStates[state];
   1403       else
   1404         state = kLiteralNextStates[state];
   1405     }
   1406     else
   1407     {
   1408       const COptimal *prevOpt;
   1409       UInt32 b0;
   1410       UInt32 dist = curOpt->dist;
   1411 
   1412       if (curOpt->extra)
   1413       {
   1414         prev -= (unsigned)curOpt->extra;
   1415         state = kState_RepAfterLit;
   1416         if (curOpt->extra == 1)
   1417           state = (dist < LZMA_NUM_REPS ? kState_RepAfterLit : kState_MatchAfterLit);
   1418       }
   1419       else
   1420       {
   1421         state = (unsigned)p->opt[prev].state;
   1422         if (dist < LZMA_NUM_REPS)
   1423           state = kRepNextStates[state];
   1424         else
   1425           state = kMatchNextStates[state];
   1426       }
   1427 
   1428       prevOpt = &p->opt[prev];
   1429       b0 = prevOpt->reps[0];
   1430 
   1431       if (dist < LZMA_NUM_REPS)
   1432       {
   1433         if (dist == 0)
   1434         {
   1435           reps[0] = b0;
   1436           reps[1] = prevOpt->reps[1];
   1437           reps[2] = prevOpt->reps[2];
   1438           reps[3] = prevOpt->reps[3];
   1439         }
   1440         else
   1441         {
   1442           reps[1] = b0;
   1443           b0 = prevOpt->reps[1];
   1444           if (dist == 1)
   1445           {
   1446             reps[0] = b0;
   1447             reps[2] = prevOpt->reps[2];
   1448             reps[3] = prevOpt->reps[3];
   1449           }
   1450           else
   1451           {
   1452             reps[2] = b0;
   1453             reps[0] = prevOpt->reps[dist];
   1454             reps[3] = prevOpt->reps[dist ^ 1];
   1455           }
   1456         }
   1457       }
   1458       else
   1459       {
   1460         reps[0] = (dist - LZMA_NUM_REPS + 1);
   1461         reps[1] = b0;
   1462         reps[2] = prevOpt->reps[1];
   1463         reps[3] = prevOpt->reps[2];
   1464       }
   1465     }
   1466 
   1467     curOpt->state = (CState)state;
   1468     curOpt->reps[0] = reps[0];
   1469     curOpt->reps[1] = reps[1];
   1470     curOpt->reps[2] = reps[2];
   1471     curOpt->reps[3] = reps[3];
   1472 
   1473     data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
   1474     curByte = *data;
   1475     matchByte = *(data - reps[0]);
   1476 
   1477     posState = (position & p->pbMask);
   1478 
   1479     /*
   1480     The order of Price checks:
   1481        <  LIT
   1482        <= SHORT_REP
   1483        <  LIT : REP_0
   1484        <  REP    [ : LIT : REP_0 ]
   1485        <  MATCH  [ : LIT : REP_0 ]
   1486     */
   1487 
   1488     {
   1489       UInt32 curPrice = curOpt->price;
   1490       unsigned prob = p->isMatch[state][posState];
   1491       matchPrice = curPrice + GET_PRICE_1(prob);
   1492       litPrice = curPrice + GET_PRICE_0(prob);
   1493     }
   1494 
   1495     nextOpt = &p->opt[(size_t)cur + 1];
   1496     nextIsLit = False;
   1497 
   1498     // here we can allow skip_items in p->opt, if we don't check (nextOpt->price < kInfinityPrice)
   1499     // 18.new.06
   1500     if (nextOpt->price < kInfinityPrice
   1501         // && !IsLitState(state)
   1502         && matchByte == curByte
   1503         || litPrice > nextOpt->price
   1504         )
   1505       litPrice = 0;
   1506     else
   1507     {
   1508       const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
   1509       litPrice += (!IsLitState(state) ?
   1510           LitEnc_Matched_GetPrice(probs, curByte, matchByte, p->ProbPrices) :
   1511           LitEnc_GetPrice(probs, curByte, p->ProbPrices));
   1512 
   1513       if (litPrice < nextOpt->price)
   1514       {
   1515         nextOpt->price = litPrice;
   1516         nextOpt->len = 1;
   1517         MakeAs_Lit(nextOpt);
   1518         nextIsLit = True;
   1519       }
   1520     }
   1521 
   1522     repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[state]);
   1523 
   1524     numAvailFull = p->numAvail;
   1525     {
   1526       unsigned temp = kNumOpts - 1 - cur;
   1527       if (numAvailFull > temp)
   1528         numAvailFull = (UInt32)temp;
   1529     }
   1530 
   1531     // 18.06
   1532     // ---------- SHORT_REP ----------
   1533     if (IsLitState(state)) // 18.new
   1534     if (matchByte == curByte)
   1535     if (repMatchPrice < nextOpt->price) // 18.new
   1536     // if (numAvailFull < 2 || data[1] != *(data - reps[0] + 1))
   1537     if (
   1538         // nextOpt->price >= kInfinityPrice ||
   1539         nextOpt->len < 2   // we can check nextOpt->len, if skip items are not allowed in p->opt
   1540         || (nextOpt->dist != 0
   1541             // && nextOpt->extra <= 1 // 17.old
   1542             )
   1543         )
   1544     {
   1545       UInt32 shortRepPrice = repMatchPrice + GetPrice_ShortRep(p, state, posState);
   1546       // if (shortRepPrice <= nextOpt->price) // 17.old
   1547       if (shortRepPrice < nextOpt->price)  // 18.new
   1548       {
   1549         nextOpt->price = shortRepPrice;
   1550         nextOpt->len = 1;
   1551         MakeAs_ShortRep(nextOpt);
   1552         nextIsLit = False;
   1553       }
   1554     }
   1555 
   1556     if (numAvailFull < 2)
   1557       continue;
   1558     numAvail = (numAvailFull <= p->numFastBytes ? numAvailFull : p->numFastBytes);
   1559 
   1560     // numAvail <= p->numFastBytes
   1561 
   1562     // ---------- LIT : REP_0 ----------
   1563 
   1564     if (!nextIsLit
   1565         && litPrice != 0 // 18.new
   1566         && matchByte != curByte
   1567         && numAvailFull > 2)
   1568     {
   1569       const Byte *data2 = data - reps[0];
   1570       if (data[1] == data2[1] && data[2] == data2[2])
   1571       {
   1572         unsigned len;
   1573         unsigned limit = p->numFastBytes + 1;
   1574         if (limit > numAvailFull)
   1575           limit = numAvailFull;
   1576         for (len = 3; len < limit && data[len] == data2[len]; len++)
   1577         {}
   1578 
   1579         {
   1580           unsigned state2 = kLiteralNextStates[state];
   1581           unsigned posState2 = (position + 1) & p->pbMask;
   1582           UInt32 price = litPrice + GetPrice_Rep_0(p, state2, posState2);
   1583           {
   1584             unsigned offset = cur + len;
   1585 
   1586             if (last < offset)
   1587               last = offset;
   1588 
   1589             // do
   1590             {
   1591               UInt32 price2;
   1592               COptimal *opt;
   1593               len--;
   1594               // price2 = price + GetPrice_Len_Rep_0(p, len, state2, posState2);
   1595               price2 = price + GET_PRICE_LEN(&p->repLenEnc, posState2, len);
   1596 
   1597               opt = &p->opt[offset];
   1598               // offset--;
   1599               if (price2 < opt->price)
   1600               {
   1601                 opt->price = price2;
   1602                 opt->len = (UInt32)len;
   1603                 opt->dist = 0;
   1604                 opt->extra = 1;
   1605               }
   1606             }
   1607             // while (len >= 3);
   1608           }
   1609         }
   1610       }
   1611     }
   1612 
   1613     startLen = 2; /* speed optimization */
   1614 
   1615     {
   1616       // ---------- REP ----------
   1617       unsigned repIndex = 0; // 17.old
   1618       // unsigned repIndex = IsLitState(state) ? 0 : 1; // 18.notused
   1619       for (; repIndex < LZMA_NUM_REPS; repIndex++)
   1620       {
   1621         unsigned len;
   1622         UInt32 price;
   1623         const Byte *data2 = data - reps[repIndex];
   1624         if (data[0] != data2[0] || data[1] != data2[1])
   1625           continue;
   1626 
   1627         for (len = 2; len < numAvail && data[len] == data2[len]; len++)
   1628         {}
   1629 
   1630         // if (len < startLen) continue; // 18.new: speed optimization
   1631 
   1632         {
   1633           unsigned offset = cur + len;
   1634           if (last < offset)
   1635             last = offset;
   1636         }
   1637         {
   1638           unsigned len2 = len;
   1639           price = repMatchPrice + GetPrice_PureRep(p, repIndex, state, posState);
   1640           do
   1641           {
   1642             UInt32 price2 = price + GET_PRICE_LEN(&p->repLenEnc, posState, len2);
   1643             COptimal *opt = &p->opt[cur + len2];
   1644             if (price2 < opt->price)
   1645             {
   1646               opt->price = price2;
   1647               opt->len = (UInt32)len2;
   1648               opt->dist = (UInt32)repIndex;
   1649               opt->extra = 0;
   1650             }
   1651           }
   1652           while (--len2 >= 2);
   1653         }
   1654 
   1655         if (repIndex == 0) startLen = len + 1;  // 17.old
   1656         // startLen = len + 1; // 18.new
   1657 
   1658         /* if (_maxMode) */
   1659         {
   1660           // ---------- REP : LIT : REP_0 ----------
   1661           // numFastBytes + 1 + numFastBytes
   1662 
   1663           unsigned len2 = len + 1;
   1664           unsigned limit = len2 + p->numFastBytes;
   1665           if (limit > numAvailFull)
   1666             limit = numAvailFull;
   1667 
   1668           len2 += 2;
   1669           if (len2 <= limit)
   1670           if (data[len2 - 2] == data2[len2 - 2])
   1671           if (data[len2 - 1] == data2[len2 - 1])
   1672           {
   1673             unsigned state2 = kRepNextStates[state];
   1674             unsigned posState2 = (position + len) & p->pbMask;
   1675             price += GET_PRICE_LEN(&p->repLenEnc, posState, len)
   1676                 + GET_PRICE_0(p->isMatch[state2][posState2])
   1677                 + LitEnc_Matched_GetPrice(LIT_PROBS(position + len, data[(size_t)len - 1]),
   1678                     data[len], data2[len], p->ProbPrices);
   1679 
   1680             // state2 = kLiteralNextStates[state2];
   1681             state2 = kState_LitAfterRep;
   1682             posState2 = (posState2 + 1) & p->pbMask;
   1683 
   1684 
   1685             price += GetPrice_Rep_0(p, state2, posState2);
   1686 
   1687           for (; len2 < limit && data[len2] == data2[len2]; len2++)
   1688           {}
   1689 
   1690           len2 -= len;
   1691           // if (len2 >= 3)
   1692           {
   1693             {
   1694               unsigned offset = cur + len + len2;
   1695 
   1696               if (last < offset)
   1697                 last = offset;
   1698               // do
   1699               {
   1700                 UInt32 price2;
   1701                 COptimal *opt;
   1702                 len2--;
   1703                 // price2 = price + GetPrice_Len_Rep_0(p, len2, state2, posState2);
   1704                 price2 = price + GET_PRICE_LEN(&p->repLenEnc, posState2, len2);
   1705 
   1706                 opt = &p->opt[offset];
   1707                 // offset--;
   1708                 if (price2 < opt->price)
   1709                 {
   1710                   opt->price = price2;
   1711                   opt->len = (UInt32)len2;
   1712                   opt->extra = (CExtra)(len + 1);
   1713                   opt->dist = (UInt32)repIndex;
   1714                 }
   1715               }
   1716               // while (len2 >= 3);
   1717             }
   1718           }
   1719           }
   1720         }
   1721       }
   1722     }
   1723 
   1724 
   1725     // ---------- MATCH ----------
   1726     /* for (unsigned len = 2; len <= newLen; len++) */
   1727     if (newLen > numAvail)
   1728     {
   1729       newLen = numAvail;
   1730       for (numPairs = 0; newLen > matches[numPairs]; numPairs += 2);
   1731       matches[numPairs] = (UInt32)newLen;
   1732       numPairs += 2;
   1733     }
   1734 
   1735     // startLen = 2; /* speed optimization */
   1736 
   1737     if (newLen >= startLen)
   1738     {
   1739       UInt32 normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[state]);
   1740       UInt32 dist;
   1741       unsigned offs, posSlot, len;
   1742 
   1743       {
   1744         unsigned offset = cur + newLen;
   1745         if (last < offset)
   1746           last = offset;
   1747       }
   1748 
   1749       offs = 0;
   1750       while (startLen > matches[offs])
   1751         offs += 2;
   1752       dist = matches[(size_t)offs + 1];
   1753 
   1754       // if (dist >= kNumFullDistances)
   1755       GetPosSlot2(dist, posSlot);
   1756 
   1757       for (len = /*2*/ startLen; ; len++)
   1758       {
   1759         UInt32 price = normalMatchPrice + GET_PRICE_LEN(&p->lenEnc, posState, len);
   1760         {
   1761           COptimal *opt;
   1762           unsigned lenNorm = len - 2;
   1763           lenNorm = GetLenToPosState2(lenNorm);
   1764           if (dist < kNumFullDistances)
   1765             price += p->distancesPrices[lenNorm][dist & (kNumFullDistances - 1)];
   1766           else
   1767             price += p->posSlotPrices[lenNorm][posSlot] + p->alignPrices[dist & kAlignMask];
   1768 
   1769           opt = &p->opt[cur + len];
   1770           if (price < opt->price)
   1771           {
   1772             opt->price = price;
   1773             opt->len = (UInt32)len;
   1774             opt->dist = dist + LZMA_NUM_REPS;
   1775             opt->extra = 0;
   1776           }
   1777         }
   1778 
   1779         if (len == matches[offs])
   1780         {
   1781           // if (p->_maxMode) {
   1782           // MATCH : LIT : REP_0
   1783 
   1784           const Byte *data2 = data - dist - 1;
   1785           unsigned len2 = len + 1;
   1786           unsigned limit = len2 + p->numFastBytes;
   1787           if (limit > numAvailFull)
   1788             limit = numAvailFull;
   1789 
   1790           len2 += 2;
   1791           if (len2 <= limit)
   1792           if (data[len2 - 2] == data2[len2 - 2])
   1793           if (data[len2 - 1] == data2[len2 - 1])
   1794           {
   1795           for (; len2 < limit && data[len2] == data2[len2]; len2++)
   1796           {}
   1797 
   1798           len2 -= len;
   1799 
   1800           // if (len2 >= 3)
   1801           {
   1802             unsigned state2 = kMatchNextStates[state];
   1803             unsigned posState2 = (position + len) & p->pbMask;
   1804             unsigned offset;
   1805             price += GET_PRICE_0(p->isMatch[state2][posState2]);
   1806             price += LitEnc_Matched_GetPrice(LIT_PROBS(position + len, data[(size_t)len - 1]),
   1807                     data[len], data2[len], p->ProbPrices);
   1808 
   1809             // state2 = kLiteralNextStates[state2];
   1810             state2 = kState_LitAfterMatch;
   1811 
   1812             posState2 = (posState2 + 1) & p->pbMask;
   1813             price += GetPrice_Rep_0(p, state2, posState2);
   1814 
   1815             offset = cur + len + len2;
   1816 
   1817             if (last < offset)
   1818               last = offset;
   1819             // do
   1820             {
   1821               UInt32 price2;
   1822               COptimal *opt;
   1823               len2--;
   1824               // price2 = price + GetPrice_Len_Rep_0(p, len2, state2, posState2);
   1825               price2 = price + GET_PRICE_LEN(&p->repLenEnc, posState2, len2);
   1826               opt = &p->opt[offset];
   1827               // offset--;
   1828               if (price2 < opt->price)
   1829               {
   1830                 opt->price = price2;
   1831                 opt->len = (UInt32)len2;
   1832                 opt->extra = (CExtra)(len + 1);
   1833                 opt->dist = dist + LZMA_NUM_REPS;
   1834               }
   1835             }
   1836             // while (len2 >= 3);
   1837           }
   1838 
   1839           }
   1840 
   1841           offs += 2;
   1842           if (offs == numPairs)
   1843             break;
   1844           dist = matches[(size_t)offs + 1];
   1845           // if (dist >= kNumFullDistances)
   1846             GetPosSlot2(dist, posSlot);
   1847         }
   1848       }
   1849     }
   1850   }
   1851 
   1852   do
   1853     p->opt[last].price = kInfinityPrice;
   1854   while (--last);
   1855 
   1856   return Backward(p, cur);
   1857 }
   1858 
   1859 
   1860 
   1861 #define ChangePair(smallDist, bigDist) (((bigDist) >> 7) > (smallDist))
   1862 
   1863 
   1864 
   1865 static unsigned GetOptimumFast(CLzmaEnc *p)
   1866 {
   1867   UInt32 numAvail, mainDist;
   1868   unsigned mainLen, numPairs, repIndex, repLen, i;
   1869   const Byte *data;
   1870 
   1871   if (p->additionalOffset == 0)
   1872     mainLen = ReadMatchDistances(p, &numPairs);
   1873   else
   1874   {
   1875     mainLen = p->longestMatchLen;
   1876     numPairs = p->numPairs;
   1877   }
   1878 
   1879   numAvail = p->numAvail;
   1880   p->backRes = MARK_LIT;
   1881   if (numAvail < 2)
   1882     return 1;
   1883   // if (mainLen < 2 && p->state == 0) return 1; // 18.06.notused
   1884   if (numAvail > LZMA_MATCH_LEN_MAX)
   1885     numAvail = LZMA_MATCH_LEN_MAX;
   1886   data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
   1887   repLen = repIndex = 0;
   1888 
   1889   for (i = 0; i < LZMA_NUM_REPS; i++)
   1890   {
   1891     unsigned len;
   1892     const Byte *data2 = data - p->reps[i];
   1893     if (data[0] != data2[0] || data[1] != data2[1])
   1894       continue;
   1895     for (len = 2; len < numAvail && data[len] == data2[len]; len++)
   1896     {}
   1897     if (len >= p->numFastBytes)
   1898     {
   1899       p->backRes = (UInt32)i;
   1900       MOVE_POS(p, len - 1)
   1901       return len;
   1902     }
   1903     if (len > repLen)
   1904     {
   1905       repIndex = i;
   1906       repLen = len;
   1907     }
   1908   }
   1909 
   1910   if (mainLen >= p->numFastBytes)
   1911   {
   1912     p->backRes = p->matches[(size_t)numPairs - 1] + LZMA_NUM_REPS;
   1913     MOVE_POS(p, mainLen - 1)
   1914     return mainLen;
   1915   }
   1916 
   1917   mainDist = 0; /* for GCC */
   1918 
   1919   if (mainLen >= 2)
   1920   {
   1921     mainDist = p->matches[(size_t)numPairs - 1];
   1922     while (numPairs > 2)
   1923     {
   1924       UInt32 dist2;
   1925       if (mainLen != p->matches[(size_t)numPairs - 4] + 1)
   1926         break;
   1927       dist2 = p->matches[(size_t)numPairs - 3];
   1928       if (!ChangePair(dist2, mainDist))
   1929         break;
   1930       numPairs -= 2;
   1931       mainLen--;
   1932       mainDist = dist2;
   1933     }
   1934     if (mainLen == 2 && mainDist >= 0x80)
   1935       mainLen = 1;
   1936   }
   1937 
   1938   if (repLen >= 2)
   1939     if (    repLen + 1 >= mainLen
   1940         || (repLen + 2 >= mainLen && mainDist >= (1 << 9))
   1941         || (repLen + 3 >= mainLen && mainDist >= (1 << 15)))
   1942   {
   1943     p->backRes = (UInt32)repIndex;
   1944     MOVE_POS(p, repLen - 1)
   1945     return repLen;
   1946   }
   1947 
   1948   if (mainLen < 2 || numAvail <= 2)
   1949     return 1;
   1950 
   1951   {
   1952     unsigned len1 = ReadMatchDistances(p, &p->numPairs);
   1953     p->longestMatchLen = len1;
   1954 
   1955     if (len1 >= 2)
   1956     {
   1957       UInt32 newDist = p->matches[(size_t)p->numPairs - 1];
   1958       if (   (len1 >= mainLen && newDist < mainDist)
   1959           || (len1 == mainLen + 1 && !ChangePair(mainDist, newDist))
   1960           || (len1 >  mainLen + 1)
   1961           || (len1 + 1 >= mainLen && mainLen >= 3 && ChangePair(newDist, mainDist)))
   1962         return 1;
   1963     }
   1964   }
   1965 
   1966   data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
   1967 
   1968   for (i = 0; i < LZMA_NUM_REPS; i++)
   1969   {
   1970     unsigned len, limit;
   1971     const Byte *data2 = data - p->reps[i];
   1972     if (data[0] != data2[0] || data[1] != data2[1])
   1973       continue;
   1974     limit = mainLen - 1;
   1975     for (len = 2;; len++)
   1976     {
   1977       if (len >= limit)
   1978         return 1;
   1979       if (data[len] != data2[len])
   1980         break;
   1981     }
   1982   }
   1983 
   1984   p->backRes = mainDist + LZMA_NUM_REPS;
   1985   if (mainLen != 2)
   1986   {
   1987     MOVE_POS(p, mainLen - 2)
   1988   }
   1989   return mainLen;
   1990 }
   1991 
   1992 
   1993 
   1994 
   1995 static void WriteEndMarker(CLzmaEnc *p, unsigned posState)
   1996 {
   1997   UInt32 range;
   1998   range = p->rc.range;
   1999   {
   2000     UInt32 ttt, newBound;
   2001     CLzmaProb *prob = &p->isMatch[p->state][posState];
   2002     RC_BIT_PRE(&p->rc, prob)
   2003     RC_BIT_1(&p->rc, prob)
   2004     prob = &p->isRep[p->state];
   2005     RC_BIT_PRE(&p->rc, prob)
   2006     RC_BIT_0(&p->rc, prob)
   2007   }
   2008   p->state = kMatchNextStates[p->state];
   2009 
   2010   p->rc.range = range;
   2011   LenEnc_Encode(&p->lenProbs, &p->rc, 0, posState);
   2012   range = p->rc.range;
   2013 
   2014   {
   2015     // RcTree_Encode_PosSlot(&p->rc, p->posSlotEncoder[0], (1 << kNumPosSlotBits) - 1);
   2016     CLzmaProb *probs = p->posSlotEncoder[0];
   2017     unsigned m = 1;
   2018     do
   2019     {
   2020       UInt32 ttt, newBound;
   2021       RC_BIT_PRE(p, probs + m)
   2022       RC_BIT_1(&p->rc, probs + m);
   2023       m = (m << 1) + 1;
   2024     }
   2025     while (m < (1 << kNumPosSlotBits));
   2026   }
   2027   {
   2028     // RangeEnc_EncodeDirectBits(&p->rc, ((UInt32)1 << (30 - kNumAlignBits)) - 1, 30 - kNumAlignBits);    UInt32 range = p->range;
   2029     unsigned numBits = 30 - kNumAlignBits;
   2030     do
   2031     {
   2032       range >>= 1;
   2033       p->rc.low += range;
   2034       RC_NORM(&p->rc)
   2035     }
   2036     while (--numBits);
   2037   }
   2038 
   2039   {
   2040     // RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, kAlignMask);
   2041     CLzmaProb *probs = p->posAlignEncoder;
   2042     unsigned m = 1;
   2043     do
   2044     {
   2045       UInt32 ttt, newBound;
   2046       RC_BIT_PRE(p, probs + m)
   2047       RC_BIT_1(&p->rc, probs + m);
   2048       m = (m << 1) + 1;
   2049     }
   2050     while (m < kAlignTableSize);
   2051   }
   2052   p->rc.range = range;
   2053 }
   2054 
   2055 
   2056 static SRes CheckErrors(CLzmaEnc *p)
   2057 {
   2058   if (p->result != SZ_OK)
   2059     return p->result;
   2060   if (p->rc.res != SZ_OK)
   2061     p->result = SZ_ERROR_WRITE;
   2062   if (p->matchFinderBase.result != SZ_OK)
   2063     p->result = SZ_ERROR_READ;
   2064   if (p->result != SZ_OK)
   2065     p->finished = True;
   2066   return p->result;
   2067 }
   2068 
   2069 
   2070 MY_NO_INLINE static SRes Flush(CLzmaEnc *p, UInt32 nowPos)
   2071 {
   2072   /* ReleaseMFStream(); */
   2073   p->finished = True;
   2074   if (p->writeEndMark)
   2075     WriteEndMarker(p, nowPos & p->pbMask);
   2076   RangeEnc_FlushData(&p->rc);
   2077   RangeEnc_FlushStream(&p->rc);
   2078   return CheckErrors(p);
   2079 }
   2080 
   2081 
   2082 MY_NO_INLINE static void FillAlignPrices(CLzmaEnc *p)
   2083 {
   2084   unsigned i;
   2085   const CProbPrice *ProbPrices = p->ProbPrices;
   2086   const CLzmaProb *probs = p->posAlignEncoder;
   2087   // p->alignPriceCount = 0;
   2088   for (i = 0; i < kAlignTableSize / 2; i++)
   2089   {
   2090     UInt32 price = 0;
   2091     unsigned sym = i;
   2092     unsigned m = 1;
   2093     unsigned bit;
   2094     UInt32 prob;
   2095     bit = sym & 1; sym >>= 1; price += GET_PRICEa(probs[m], bit); m = (m << 1) + bit;
   2096     bit = sym & 1; sym >>= 1; price += GET_PRICEa(probs[m], bit); m = (m << 1) + bit;
   2097     bit = sym & 1; sym >>= 1; price += GET_PRICEa(probs[m], bit); m = (m << 1) + bit;
   2098     prob = probs[m];
   2099     p->alignPrices[i    ] = price + GET_PRICEa_0(prob);
   2100     p->alignPrices[i + 8] = price + GET_PRICEa_1(prob);
   2101     // p->alignPrices[i] = RcTree_ReverseGetPrice(p->posAlignEncoder, kNumAlignBits, i, p->ProbPrices);
   2102   }
   2103 }
   2104 
   2105 
   2106 MY_NO_INLINE static void FillDistancesPrices(CLzmaEnc *p)
   2107 {
   2108   // int y; for (y = 0; y < 100; y++) {
   2109 
   2110   UInt32 tempPrices[kNumFullDistances];
   2111   unsigned i, lps;
   2112 
   2113   const CProbPrice *ProbPrices = p->ProbPrices;
   2114   p->matchPriceCount = 0;
   2115 
   2116   for (i = kStartPosModelIndex / 2; i < kNumFullDistances / 2; i++)
   2117   {
   2118     unsigned posSlot = GetPosSlot1(i);
   2119     unsigned footerBits = (posSlot >> 1) - 1;
   2120     unsigned base = ((2 | (posSlot & 1)) << footerBits);
   2121     const CLzmaProb *probs = p->posEncoders + (size_t)base * 2;
   2122     // tempPrices[i] = RcTree_ReverseGetPrice(p->posEncoders + base, footerBits, i - base, p->ProbPrices);
   2123     UInt32 price = 0;
   2124     unsigned m = 1;
   2125     unsigned sym = i;
   2126     unsigned offset = (unsigned)1 << footerBits;
   2127     base += i;
   2128 
   2129     if (footerBits)
   2130     do
   2131     {
   2132       unsigned bit = sym & 1;
   2133       sym >>= 1;
   2134       price += GET_PRICEa(probs[m], bit);
   2135       m = (m << 1) + bit;
   2136     }
   2137     while (--footerBits);
   2138 
   2139     {
   2140       unsigned prob = probs[m];
   2141       tempPrices[base         ] = price + GET_PRICEa_0(prob);
   2142       tempPrices[base + offset] = price + GET_PRICEa_1(prob);
   2143     }
   2144   }
   2145 
   2146   for (lps = 0; lps < kNumLenToPosStates; lps++)
   2147   {
   2148     unsigned slot;
   2149     unsigned distTableSize2 = (p->distTableSize + 1) >> 1;
   2150     UInt32 *posSlotPrices = p->posSlotPrices[lps];
   2151     const CLzmaProb *probs = p->posSlotEncoder[lps];
   2152 
   2153     for (slot = 0; slot < distTableSize2; slot++)
   2154     {
   2155       // posSlotPrices[slot] = RcTree_GetPrice(encoder, kNumPosSlotBits, slot, p->ProbPrices);
   2156       UInt32 price;
   2157       unsigned bit;
   2158       unsigned sym = slot + (1 << (kNumPosSlotBits - 1));
   2159       unsigned prob;
   2160       bit = sym & 1; sym >>= 1; price  = GET_PRICEa(probs[sym], bit);
   2161       bit = sym & 1; sym >>= 1; price += GET_PRICEa(probs[sym], bit);
   2162       bit = sym & 1; sym >>= 1; price += GET_PRICEa(probs[sym], bit);
   2163       bit = sym & 1; sym >>= 1; price += GET_PRICEa(probs[sym], bit);
   2164       bit = sym & 1; sym >>= 1; price += GET_PRICEa(probs[sym], bit);
   2165       prob = probs[(size_t)slot + (1 << (kNumPosSlotBits - 1))];
   2166       posSlotPrices[(size_t)slot * 2    ] = price + GET_PRICEa_0(prob);
   2167       posSlotPrices[(size_t)slot * 2 + 1] = price + GET_PRICEa_1(prob);
   2168     }
   2169 
   2170     {
   2171       UInt32 delta = ((UInt32)((kEndPosModelIndex / 2 - 1) - kNumAlignBits) << kNumBitPriceShiftBits);
   2172       for (slot = kEndPosModelIndex / 2; slot < distTableSize2; slot++)
   2173       {
   2174         posSlotPrices[(size_t)slot * 2    ] += delta;
   2175         posSlotPrices[(size_t)slot * 2 + 1] += delta;
   2176         delta += ((UInt32)1 << kNumBitPriceShiftBits);
   2177       }
   2178     }
   2179 
   2180     {
   2181       UInt32 *dp = p->distancesPrices[lps];
   2182 
   2183       dp[0] = posSlotPrices[0];
   2184       dp[1] = posSlotPrices[1];
   2185       dp[2] = posSlotPrices[2];
   2186       dp[3] = posSlotPrices[3];
   2187 
   2188       for (i = 4; i < kNumFullDistances; i += 2)
   2189       {
   2190         UInt32 slotPrice = posSlotPrices[GetPosSlot1(i)];
   2191         dp[i    ] = slotPrice + tempPrices[i];
   2192         dp[i + 1] = slotPrice + tempPrices[i + 1];
   2193       }
   2194     }
   2195   }
   2196   // }
   2197 }
   2198 
   2199 
   2200 
   2201 void LzmaEnc_Construct(CLzmaEnc *p)
   2202 {
   2203   RangeEnc_Construct(&p->rc);
   2204   MatchFinder_Construct(&p->matchFinderBase);
   2205 
   2206   #ifndef _7ZIP_ST
   2207   MatchFinderMt_Construct(&p->matchFinderMt);
   2208   p->matchFinderMt.MatchFinder = &p->matchFinderBase;
   2209   #endif
   2210 
   2211   {
   2212     CLzmaEncProps props;
   2213     LzmaEncProps_Init(&props);
   2214     LzmaEnc_SetProps(p, &props);
   2215   }
   2216 
   2217   #ifndef LZMA_LOG_BSR
   2218   LzmaEnc_FastPosInit(p->g_FastPos);
   2219   #endif
   2220 
   2221   LzmaEnc_InitPriceTables(p->ProbPrices);
   2222   p->litProbs = NULL;
   2223   p->saveState.litProbs = NULL;
   2224 
   2225 }
   2226 
   2227 CLzmaEncHandle LzmaEnc_Create(ISzAllocPtr alloc)
   2228 {
   2229   void *p;
   2230   p = ISzAlloc_Alloc(alloc, sizeof(CLzmaEnc));
   2231   if (p)
   2232     LzmaEnc_Construct((CLzmaEnc *)p);
   2233   return p;
   2234 }
   2235 
   2236 void LzmaEnc_FreeLits(CLzmaEnc *p, ISzAllocPtr alloc)
   2237 {
   2238   ISzAlloc_Free(alloc, p->litProbs);
   2239   ISzAlloc_Free(alloc, p->saveState.litProbs);
   2240   p->litProbs = NULL;
   2241   p->saveState.litProbs = NULL;
   2242 }
   2243 
   2244 void LzmaEnc_Destruct(CLzmaEnc *p, ISzAllocPtr alloc, ISzAllocPtr allocBig)
   2245 {
   2246   #ifndef _7ZIP_ST
   2247   MatchFinderMt_Destruct(&p->matchFinderMt, allocBig);
   2248   #endif
   2249 
   2250   MatchFinder_Free(&p->matchFinderBase, allocBig);
   2251   LzmaEnc_FreeLits(p, alloc);
   2252   RangeEnc_Free(&p->rc, alloc);
   2253 }
   2254 
   2255 void LzmaEnc_Destroy(CLzmaEncHandle p, ISzAllocPtr alloc, ISzAllocPtr allocBig)
   2256 {
   2257   LzmaEnc_Destruct((CLzmaEnc *)p, alloc, allocBig);
   2258   ISzAlloc_Free(alloc, p);
   2259 }
   2260 
   2261 
   2262 static SRes LzmaEnc_CodeOneBlock(CLzmaEnc *p, UInt32 maxPackSize, UInt32 maxUnpackSize)
   2263 {
   2264   UInt32 nowPos32, startPos32;
   2265   if (p->needInit)
   2266   {
   2267     p->matchFinder.Init(p->matchFinderObj);
   2268     p->needInit = 0;
   2269   }
   2270 
   2271   if (p->finished)
   2272     return p->result;
   2273   RINOK(CheckErrors(p));
   2274 
   2275   nowPos32 = (UInt32)p->nowPos64;
   2276   startPos32 = nowPos32;
   2277 
   2278   if (p->nowPos64 == 0)
   2279   {
   2280     unsigned numPairs;
   2281     Byte curByte;
   2282     if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
   2283       return Flush(p, nowPos32);
   2284     ReadMatchDistances(p, &numPairs);
   2285     RangeEnc_EncodeBit_0(&p->rc, &p->isMatch[kState_Start][0]);
   2286     // p->state = kLiteralNextStates[p->state];
   2287     curByte = *(p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset);
   2288     LitEnc_Encode(&p->rc, p->litProbs, curByte);
   2289     p->additionalOffset--;
   2290     nowPos32++;
   2291   }
   2292 
   2293   if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) != 0)
   2294 
   2295   for (;;)
   2296   {
   2297     UInt32 dist;
   2298     unsigned len, posState;
   2299     UInt32 range, ttt, newBound;
   2300     CLzmaProb *probs;
   2301 
   2302     if (p->fastMode)
   2303       len = GetOptimumFast(p);
   2304     else
   2305     {
   2306       unsigned oci = p->optCur;
   2307       if (p->optEnd == oci)
   2308         len = GetOptimum(p, nowPos32);
   2309       else
   2310       {
   2311         const COptimal *opt = &p->opt[oci];
   2312         len = opt->len;
   2313         p->backRes = opt->dist;
   2314         p->optCur = oci + 1;
   2315       }
   2316     }
   2317 
   2318     posState = (unsigned)nowPos32 & p->pbMask;
   2319     range = p->rc.range;
   2320     probs = &p->isMatch[p->state][posState];
   2321 
   2322     RC_BIT_PRE(&p->rc, probs)
   2323 
   2324     dist = p->backRes;
   2325 
   2326     #ifdef SHOW_STAT2
   2327     printf("\n pos = %6X, len = %3u  pos = %6u", nowPos32, len, dist);
   2328     #endif
   2329 
   2330     if (dist == MARK_LIT)
   2331     {
   2332       Byte curByte;
   2333       const Byte *data;
   2334       unsigned state;
   2335 
   2336       RC_BIT_0(&p->rc, probs);
   2337       p->rc.range = range;
   2338       data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
   2339       probs = LIT_PROBS(nowPos32, *(data - 1));
   2340       curByte = *data;
   2341       state = p->state;
   2342       p->state = kLiteralNextStates[state];
   2343       if (IsLitState(state))
   2344         LitEnc_Encode(&p->rc, probs, curByte);
   2345       else
   2346         LitEnc_EncodeMatched(&p->rc, probs, curByte, *(data - p->reps[0]));
   2347     }
   2348     else
   2349     {
   2350       RC_BIT_1(&p->rc, probs);
   2351       probs = &p->isRep[p->state];
   2352       RC_BIT_PRE(&p->rc, probs)
   2353 
   2354       if (dist < LZMA_NUM_REPS)
   2355       {
   2356         RC_BIT_1(&p->rc, probs);
   2357         probs = &p->isRepG0[p->state];
   2358         RC_BIT_PRE(&p->rc, probs)
   2359         if (dist == 0)
   2360         {
   2361           RC_BIT_0(&p->rc, probs);
   2362           probs = &p->isRep0Long[p->state][posState];
   2363           RC_BIT_PRE(&p->rc, probs)
   2364           if (len != 1)
   2365           {
   2366             RC_BIT_1_BASE(&p->rc, probs);
   2367           }
   2368           else
   2369           {
   2370             RC_BIT_0_BASE(&p->rc, probs);
   2371             p->state = kShortRepNextStates[p->state];
   2372           }
   2373         }
   2374         else
   2375         {
   2376           RC_BIT_1(&p->rc, probs);
   2377           probs = &p->isRepG1[p->state];
   2378           RC_BIT_PRE(&p->rc, probs)
   2379           if (dist == 1)
   2380           {
   2381             RC_BIT_0_BASE(&p->rc, probs);
   2382             dist = p->reps[1];
   2383           }
   2384           else
   2385           {
   2386             RC_BIT_1(&p->rc, probs);
   2387             probs = &p->isRepG2[p->state];
   2388             RC_BIT_PRE(&p->rc, probs)
   2389             if (dist == 2)
   2390             {
   2391               RC_BIT_0_BASE(&p->rc, probs);
   2392               dist = p->reps[2];
   2393             }
   2394             else
   2395             {
   2396               RC_BIT_1_BASE(&p->rc, probs);
   2397               dist = p->reps[3];
   2398               p->reps[3] = p->reps[2];
   2399             }
   2400             p->reps[2] = p->reps[1];
   2401           }
   2402           p->reps[1] = p->reps[0];
   2403           p->reps[0] = dist;
   2404         }
   2405 
   2406         RC_NORM(&p->rc)
   2407 
   2408         p->rc.range = range;
   2409 
   2410         if (len != 1)
   2411         {
   2412           LenEnc_Encode(&p->repLenProbs, &p->rc, len - LZMA_MATCH_LEN_MIN, posState);
   2413           --p->repLenEncCounter;
   2414           p->state = kRepNextStates[p->state];
   2415         }
   2416       }
   2417       else
   2418       {
   2419         unsigned posSlot;
   2420         RC_BIT_0(&p->rc, probs);
   2421         p->rc.range = range;
   2422         p->state = kMatchNextStates[p->state];
   2423 
   2424         LenEnc_Encode(&p->lenProbs, &p->rc, len - LZMA_MATCH_LEN_MIN, posState);
   2425         // --p->lenEnc.counter;
   2426 
   2427         dist -= LZMA_NUM_REPS;
   2428         p->reps[3] = p->reps[2];
   2429         p->reps[2] = p->reps[1];
   2430         p->reps[1] = p->reps[0];
   2431         p->reps[0] = dist + 1;
   2432 
   2433         p->matchPriceCount++;
   2434         GetPosSlot(dist, posSlot);
   2435         // RcTree_Encode_PosSlot(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], posSlot);
   2436         {
   2437           UInt32 sym = (UInt32)posSlot + (1 << kNumPosSlotBits);
   2438           range = p->rc.range;
   2439           probs = p->posSlotEncoder[GetLenToPosState(len)];
   2440           do
   2441           {
   2442             CLzmaProb *prob = probs + (sym >> kNumPosSlotBits);
   2443             UInt32 bit = (sym >> (kNumPosSlotBits - 1)) & 1;
   2444             sym <<= 1;
   2445             RC_BIT(&p->rc, prob, bit);
   2446           }
   2447           while (sym < (1 << kNumPosSlotBits * 2));
   2448           p->rc.range = range;
   2449         }
   2450 
   2451         if (dist >= kStartPosModelIndex)
   2452         {
   2453           unsigned footerBits = ((posSlot >> 1) - 1);
   2454 
   2455           if (dist < kNumFullDistances)
   2456           {
   2457             unsigned base = ((2 | (posSlot & 1)) << footerBits);
   2458             RcTree_ReverseEncode(&p->rc, p->posEncoders + base, footerBits, (unsigned)(dist /* - base */));
   2459           }
   2460           else
   2461           {
   2462             UInt32 pos2 = (dist | 0xF) << (32 - footerBits);
   2463             range = p->rc.range;
   2464             // RangeEnc_EncodeDirectBits(&p->rc, posReduced >> kNumAlignBits, footerBits - kNumAlignBits);
   2465             /*
   2466             do
   2467             {
   2468               range >>= 1;
   2469               p->rc.low += range & (0 - ((dist >> --footerBits) & 1));
   2470               RC_NORM(&p->rc)
   2471             }
   2472             while (footerBits > kNumAlignBits);
   2473             */
   2474             do
   2475             {
   2476               range >>= 1;
   2477               p->rc.low += range & (0 - (pos2 >> 31));
   2478               pos2 += pos2;
   2479               RC_NORM(&p->rc)
   2480             }
   2481             while (pos2 != 0xF0000000);
   2482 
   2483 
   2484             // RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, posReduced & kAlignMask);
   2485 
   2486             {
   2487               unsigned m = 1;
   2488               unsigned bit;
   2489               bit = dist & 1; dist >>= 1; RC_BIT(&p->rc, p->posAlignEncoder + m, bit); m = (m << 1) + bit;
   2490               bit = dist & 1; dist >>= 1; RC_BIT(&p->rc, p->posAlignEncoder + m, bit); m = (m << 1) + bit;
   2491               bit = dist & 1; dist >>= 1; RC_BIT(&p->rc, p->posAlignEncoder + m, bit); m = (m << 1) + bit;
   2492               bit = dist & 1;             RC_BIT(&p->rc, p->posAlignEncoder + m, bit);
   2493               p->rc.range = range;
   2494               // p->alignPriceCount++;
   2495             }
   2496           }
   2497         }
   2498       }
   2499     }
   2500 
   2501     nowPos32 += (UInt32)len;
   2502     p->additionalOffset -= len;
   2503 
   2504     if (p->additionalOffset == 0)
   2505     {
   2506       UInt32 processed;
   2507 
   2508       if (!p->fastMode)
   2509       {
   2510         /*
   2511         if (p->alignPriceCount >= 16) // kAlignTableSize
   2512           FillAlignPrices(p);
   2513         if (p->matchPriceCount >= 128)
   2514           FillDistancesPrices(p);
   2515         if (p->lenEnc.counter <= 0)
   2516           LenPriceEnc_UpdateTables(&p->lenEnc, 1 << p->pb, &p->lenProbs, p->ProbPrices);
   2517         */
   2518         if (p->matchPriceCount >= 64)
   2519         {
   2520           FillAlignPrices(p);
   2521           // { int y; for (y = 0; y < 100; y++) {
   2522           FillDistancesPrices(p);
   2523           // }}
   2524           LenPriceEnc_UpdateTables(&p->lenEnc, 1 << p->pb, &p->lenProbs, p->ProbPrices);
   2525         }
   2526         if (p->repLenEncCounter <= 0)
   2527         {
   2528           p->repLenEncCounter = REP_LEN_COUNT;
   2529           LenPriceEnc_UpdateTables(&p->repLenEnc, 1 << p->pb, &p->repLenProbs, p->ProbPrices);
   2530         }
   2531       }
   2532 
   2533       if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
   2534         break;
   2535       processed = nowPos32 - startPos32;
   2536 
   2537       if (maxPackSize)
   2538       {
   2539         if (processed + kNumOpts + 300 >= maxUnpackSize
   2540             || RangeEnc_GetProcessed_sizet(&p->rc) + kPackReserve >= maxPackSize)
   2541           break;
   2542       }
   2543       else if (processed >= (1 << 17))
   2544       {
   2545         p->nowPos64 += nowPos32 - startPos32;
   2546         return CheckErrors(p);
   2547       }
   2548     }
   2549   }
   2550 
   2551   p->nowPos64 += nowPos32 - startPos32;
   2552   return Flush(p, nowPos32);
   2553 }
   2554 
   2555 
   2556 
   2557 #define kBigHashDicLimit ((UInt32)1 << 24)
   2558 
   2559 static SRes LzmaEnc_Alloc(CLzmaEnc *p, UInt32 keepWindowSize, ISzAllocPtr alloc, ISzAllocPtr allocBig)
   2560 {
   2561   UInt32 beforeSize = kNumOpts;
   2562   if (!RangeEnc_Alloc(&p->rc, alloc))
   2563     return SZ_ERROR_MEM;
   2564 
   2565   #ifndef _7ZIP_ST
   2566   p->mtMode = (p->multiThread && !p->fastMode && (p->matchFinderBase.btMode != 0));
   2567   #endif
   2568 
   2569   {
   2570     unsigned lclp = p->lc + p->lp;
   2571     if (!p->litProbs || !p->saveState.litProbs || p->lclp != lclp)
   2572     {
   2573       LzmaEnc_FreeLits(p, alloc);
   2574       p->litProbs = (CLzmaProb *)ISzAlloc_Alloc(alloc, ((UInt32)0x300 << lclp) * sizeof(CLzmaProb));
   2575       p->saveState.litProbs = (CLzmaProb *)ISzAlloc_Alloc(alloc, ((UInt32)0x300 << lclp) * sizeof(CLzmaProb));
   2576       if (!p->litProbs || !p->saveState.litProbs)
   2577       {
   2578         LzmaEnc_FreeLits(p, alloc);
   2579         return SZ_ERROR_MEM;
   2580       }
   2581       p->lclp = lclp;
   2582     }
   2583   }
   2584 
   2585   p->matchFinderBase.bigHash = (Byte)(p->dictSize > kBigHashDicLimit ? 1 : 0);
   2586 
   2587   if (beforeSize + p->dictSize < keepWindowSize)
   2588     beforeSize = keepWindowSize - p->dictSize;
   2589 
   2590   #ifndef _7ZIP_ST
   2591   if (p->mtMode)
   2592   {
   2593     RINOK(MatchFinderMt_Create(&p->matchFinderMt, p->dictSize, beforeSize, p->numFastBytes,
   2594         LZMA_MATCH_LEN_MAX
   2595         + 1  /* 18.04 */
   2596         , allocBig));
   2597     p->matchFinderObj = &p->matchFinderMt;
   2598     p->matchFinderBase.bigHash = (Byte)(
   2599         (p->dictSize > kBigHashDicLimit && p->matchFinderBase.hashMask >= 0xFFFFFF) ? 1 : 0);
   2600     MatchFinderMt_CreateVTable(&p->matchFinderMt, &p->matchFinder);
   2601   }
   2602   else
   2603   #endif
   2604   {
   2605     if (!MatchFinder_Create(&p->matchFinderBase, p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX, allocBig))
   2606       return SZ_ERROR_MEM;
   2607     p->matchFinderObj = &p->matchFinderBase;
   2608     MatchFinder_CreateVTable(&p->matchFinderBase, &p->matchFinder);
   2609   }
   2610 
   2611   return SZ_OK;
   2612 }
   2613 
   2614 void LzmaEnc_Init(CLzmaEnc *p)
   2615 {
   2616   unsigned i;
   2617   p->state = 0;
   2618   p->reps[0] =
   2619   p->reps[1] =
   2620   p->reps[2] =
   2621   p->reps[3] = 1;
   2622 
   2623   RangeEnc_Init(&p->rc);
   2624 
   2625   for (i = 0; i < (1 << kNumAlignBits); i++)
   2626     p->posAlignEncoder[i] = kProbInitValue;
   2627 
   2628   for (i = 0; i < kNumStates; i++)
   2629   {
   2630     unsigned j;
   2631     for (j = 0; j < LZMA_NUM_PB_STATES_MAX; j++)
   2632     {
   2633       p->isMatch[i][j] = kProbInitValue;
   2634       p->isRep0Long[i][j] = kProbInitValue;
   2635     }
   2636     p->isRep[i] = kProbInitValue;
   2637     p->isRepG0[i] = kProbInitValue;
   2638     p->isRepG1[i] = kProbInitValue;
   2639     p->isRepG2[i] = kProbInitValue;
   2640   }
   2641 
   2642   {
   2643     for (i = 0; i < kNumLenToPosStates; i++)
   2644     {
   2645       CLzmaProb *probs = p->posSlotEncoder[i];
   2646       unsigned j;
   2647       for (j = 0; j < (1 << kNumPosSlotBits); j++)
   2648         probs[j] = kProbInitValue;
   2649     }
   2650   }
   2651   {
   2652     for (i = 0; i < kNumFullDistances; i++)
   2653       p->posEncoders[i] = kProbInitValue;
   2654   }
   2655 
   2656   {
   2657     UInt32 num = (UInt32)0x300 << (p->lp + p->lc);
   2658     UInt32 k;
   2659     CLzmaProb *probs = p->litProbs;
   2660     for (k = 0; k < num; k++)
   2661       probs[k] = kProbInitValue;
   2662   }
   2663 
   2664 
   2665   LenEnc_Init(&p->lenProbs);
   2666   LenEnc_Init(&p->repLenProbs);
   2667 
   2668   p->optEnd = 0;
   2669   p->optCur = 0;
   2670 
   2671   {
   2672     for (i = 0; i < kNumOpts; i++)
   2673       p->opt[i].price = kInfinityPrice;
   2674   }
   2675 
   2676   p->additionalOffset = 0;
   2677 
   2678   p->pbMask = (1 << p->pb) - 1;
   2679   p->lpMask = ((UInt32)0x100 << p->lp) - ((unsigned)0x100 >> p->lc);
   2680 }
   2681 
   2682 
   2683 void LzmaEnc_InitPrices(CLzmaEnc *p)
   2684 {
   2685   if (!p->fastMode)
   2686   {
   2687     FillDistancesPrices(p);
   2688     FillAlignPrices(p);
   2689   }
   2690 
   2691   p->lenEnc.tableSize =
   2692   p->repLenEnc.tableSize =
   2693       p->numFastBytes + 1 - LZMA_MATCH_LEN_MIN;
   2694 
   2695   p->repLenEncCounter = REP_LEN_COUNT;
   2696 
   2697   LenPriceEnc_UpdateTables(&p->lenEnc, 1 << p->pb, &p->lenProbs, p->ProbPrices);
   2698   LenPriceEnc_UpdateTables(&p->repLenEnc, 1 << p->pb, &p->repLenProbs, p->ProbPrices);
   2699 }
   2700 
   2701 static SRes LzmaEnc_AllocAndInit(CLzmaEnc *p, UInt32 keepWindowSize, ISzAllocPtr alloc, ISzAllocPtr allocBig)
   2702 {
   2703   unsigned i;
   2704   for (i = kEndPosModelIndex / 2; i < kDicLogSizeMax; i++)
   2705     if (p->dictSize <= ((UInt32)1 << i))
   2706       break;
   2707   p->distTableSize = i * 2;
   2708 
   2709   p->finished = False;
   2710   p->result = SZ_OK;
   2711   RINOK(LzmaEnc_Alloc(p, keepWindowSize, alloc, allocBig));
   2712   LzmaEnc_Init(p);
   2713   LzmaEnc_InitPrices(p);
   2714   p->nowPos64 = 0;
   2715   return SZ_OK;
   2716 }
   2717 
   2718 static SRes LzmaEnc_Prepare(CLzmaEncHandle pp, ISeqOutStream *outStream, ISeqInStream *inStream,
   2719     ISzAllocPtr alloc, ISzAllocPtr allocBig)
   2720 {
   2721   CLzmaEnc *p = (CLzmaEnc *)pp;
   2722   p->matchFinderBase.stream = inStream;
   2723   p->needInit = 1;
   2724   p->rc.outStream = outStream;
   2725   return LzmaEnc_AllocAndInit(p, 0, alloc, allocBig);
   2726 }
   2727 
   2728 SRes LzmaEnc_PrepareForLzma2(CLzmaEncHandle pp,
   2729     ISeqInStream *inStream, UInt32 keepWindowSize,
   2730     ISzAllocPtr alloc, ISzAllocPtr allocBig)
   2731 {
   2732   CLzmaEnc *p = (CLzmaEnc *)pp;
   2733   p->matchFinderBase.stream = inStream;
   2734   p->needInit = 1;
   2735   return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
   2736 }
   2737 
   2738 static void LzmaEnc_SetInputBuf(CLzmaEnc *p, const Byte *src, SizeT srcLen)
   2739 {
   2740   p->matchFinderBase.directInput = 1;
   2741   p->matchFinderBase.bufferBase = (Byte *)src;
   2742   p->matchFinderBase.directInputRem = srcLen;
   2743 }
   2744 
   2745 SRes LzmaEnc_MemPrepare(CLzmaEncHandle pp, const Byte *src, SizeT srcLen,
   2746     UInt32 keepWindowSize, ISzAllocPtr alloc, ISzAllocPtr allocBig)
   2747 {
   2748   CLzmaEnc *p = (CLzmaEnc *)pp;
   2749   LzmaEnc_SetInputBuf(p, src, srcLen);
   2750   p->needInit = 1;
   2751 
   2752   LzmaEnc_SetDataSize(pp, srcLen);
   2753   return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
   2754 }
   2755 
   2756 void LzmaEnc_Finish(CLzmaEncHandle pp)
   2757 {
   2758   #ifndef _7ZIP_ST
   2759   CLzmaEnc *p = (CLzmaEnc *)pp;
   2760   if (p->mtMode)
   2761     MatchFinderMt_ReleaseStream(&p->matchFinderMt);
   2762   #else
   2763   UNUSED_VAR(pp);
   2764   #endif
   2765 }
   2766 
   2767 
   2768 typedef struct
   2769 {
   2770   ISeqOutStream vt;
   2771   Byte *data;
   2772   SizeT rem;
   2773   BoolInt overflow;
   2774 } CLzmaEnc_SeqOutStreamBuf;
   2775 
   2776 static size_t SeqOutStreamBuf_Write(const ISeqOutStream *pp, const void *data, size_t size)
   2777 {
   2778   CLzmaEnc_SeqOutStreamBuf *p = CONTAINER_FROM_VTBL(pp, CLzmaEnc_SeqOutStreamBuf, vt);
   2779   if (p->rem < size)
   2780   {
   2781     size = p->rem;
   2782     p->overflow = True;
   2783   }
   2784   memcpy(p->data, data, size);
   2785   p->rem -= size;
   2786   p->data += size;
   2787   return size;
   2788 }
   2789 
   2790 
   2791 UInt32 LzmaEnc_GetNumAvailableBytes(CLzmaEncHandle pp)
   2792 {
   2793   const CLzmaEnc *p = (CLzmaEnc *)pp;
   2794   return p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
   2795 }
   2796 
   2797 
   2798 const Byte *LzmaEnc_GetCurBuf(CLzmaEncHandle pp)
   2799 {
   2800   const CLzmaEnc *p = (CLzmaEnc *)pp;
   2801   return p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
   2802 }
   2803 
   2804 
   2805 SRes LzmaEnc_CodeOneMemBlock(CLzmaEncHandle pp, BoolInt reInit,
   2806     Byte *dest, size_t *destLen, UInt32 desiredPackSize, UInt32 *unpackSize)
   2807 {
   2808   CLzmaEnc *p = (CLzmaEnc *)pp;
   2809   UInt64 nowPos64;
   2810   SRes res;
   2811   CLzmaEnc_SeqOutStreamBuf outStream;
   2812 
   2813   outStream.vt.Write = SeqOutStreamBuf_Write;
   2814   outStream.data = dest;
   2815   outStream.rem = *destLen;
   2816   outStream.overflow = False;
   2817 
   2818   p->writeEndMark = False;
   2819   p->finished = False;
   2820   p->result = SZ_OK;
   2821 
   2822   if (reInit)
   2823     LzmaEnc_Init(p);
   2824   LzmaEnc_InitPrices(p);
   2825 
   2826   nowPos64 = p->nowPos64;
   2827   RangeEnc_Init(&p->rc);
   2828   p->rc.outStream = &outStream.vt;
   2829 
   2830   if (desiredPackSize == 0)
   2831     return SZ_ERROR_OUTPUT_EOF;
   2832 
   2833   res = LzmaEnc_CodeOneBlock(p, desiredPackSize, *unpackSize);
   2834 
   2835   *unpackSize = (UInt32)(p->nowPos64 - nowPos64);
   2836   *destLen -= outStream.rem;
   2837   if (outStream.overflow)
   2838     return SZ_ERROR_OUTPUT_EOF;
   2839 
   2840   return res;
   2841 }
   2842 
   2843 
   2844 static SRes LzmaEnc_Encode2(CLzmaEnc *p, ICompressProgress *progress)
   2845 {
   2846   SRes res = SZ_OK;
   2847 
   2848   #ifndef _7ZIP_ST
   2849   Byte allocaDummy[0x300];
   2850   allocaDummy[0] = 0;
   2851   allocaDummy[1] = allocaDummy[0];
   2852   #endif
   2853 
   2854   for (;;)
   2855   {
   2856     res = LzmaEnc_CodeOneBlock(p, 0, 0);
   2857     if (res != SZ_OK || p->finished)
   2858       break;
   2859     if (progress)
   2860     {
   2861       res = ICompressProgress_Progress(progress, p->nowPos64, RangeEnc_GetProcessed(&p->rc));
   2862       if (res != SZ_OK)
   2863       {
   2864         res = SZ_ERROR_PROGRESS;
   2865         break;
   2866       }
   2867     }
   2868   }
   2869 
   2870   LzmaEnc_Finish(p);
   2871 
   2872   /*
   2873   if (res == SZ_OK && !Inline_MatchFinder_IsFinishedOK(&p->matchFinderBase))
   2874     res = SZ_ERROR_FAIL;
   2875   }
   2876   */
   2877 
   2878   return res;
   2879 }
   2880 
   2881 
   2882 SRes LzmaEnc_Encode(CLzmaEncHandle pp, ISeqOutStream *outStream, ISeqInStream *inStream, ICompressProgress *progress,
   2883     ISzAllocPtr alloc, ISzAllocPtr allocBig)
   2884 {
   2885   RINOK(LzmaEnc_Prepare(pp, outStream, inStream, alloc, allocBig));
   2886   return LzmaEnc_Encode2((CLzmaEnc *)pp, progress);
   2887 }
   2888 
   2889 
   2890 SRes LzmaEnc_WriteProperties(CLzmaEncHandle pp, Byte *props, SizeT *size)
   2891 {
   2892   CLzmaEnc *p = (CLzmaEnc *)pp;
   2893   unsigned i;
   2894   UInt32 dictSize = p->dictSize;
   2895   if (*size < LZMA_PROPS_SIZE)
   2896     return SZ_ERROR_PARAM;
   2897   *size = LZMA_PROPS_SIZE;
   2898   props[0] = (Byte)((p->pb * 5 + p->lp) * 9 + p->lc);
   2899 
   2900   if (dictSize >= ((UInt32)1 << 22))
   2901   {
   2902     UInt32 kDictMask = ((UInt32)1 << 20) - 1;
   2903     if (dictSize < (UInt32)0xFFFFFFFF - kDictMask)
   2904       dictSize = (dictSize + kDictMask) & ~kDictMask;
   2905   }
   2906   else for (i = 11; i <= 30; i++)
   2907   {
   2908     if (dictSize <= ((UInt32)2 << i)) { dictSize = (2 << i); break; }
   2909     if (dictSize <= ((UInt32)3 << i)) { dictSize = (3 << i); break; }
   2910   }
   2911 
   2912   for (i = 0; i < 4; i++)
   2913     props[1 + i] = (Byte)(dictSize >> (8 * i));
   2914   return SZ_OK;
   2915 }
   2916 
   2917 
   2918 unsigned LzmaEnc_IsWriteEndMark(CLzmaEncHandle pp)
   2919 {
   2920   return ((CLzmaEnc *)pp)->writeEndMark;
   2921 }
   2922 
   2923 
   2924 SRes LzmaEnc_MemEncode(CLzmaEncHandle pp, Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
   2925     int writeEndMark, ICompressProgress *progress, ISzAllocPtr alloc, ISzAllocPtr allocBig)
   2926 {
   2927   SRes res;
   2928   CLzmaEnc *p = (CLzmaEnc *)pp;
   2929 
   2930   CLzmaEnc_SeqOutStreamBuf outStream;
   2931 
   2932   outStream.vt.Write = SeqOutStreamBuf_Write;
   2933   outStream.data = dest;
   2934   outStream.rem = *destLen;
   2935   outStream.overflow = False;
   2936 
   2937   p->writeEndMark = writeEndMark;
   2938   p->rc.outStream = &outStream.vt;
   2939 
   2940   res = LzmaEnc_MemPrepare(pp, src, srcLen, 0, alloc, allocBig);
   2941 
   2942   if (res == SZ_OK)
   2943   {
   2944     res = LzmaEnc_Encode2(p, progress);
   2945     if (res == SZ_OK && p->nowPos64 != srcLen)
   2946       res = SZ_ERROR_FAIL;
   2947   }
   2948 
   2949   *destLen -= outStream.rem;
   2950   if (outStream.overflow)
   2951     return SZ_ERROR_OUTPUT_EOF;
   2952   return res;
   2953 }
   2954 
   2955 
   2956 SRes LzmaEncode(Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
   2957     const CLzmaEncProps *props, Byte *propsEncoded, SizeT *propsSize, int writeEndMark,
   2958     ICompressProgress *progress, ISzAllocPtr alloc, ISzAllocPtr allocBig)
   2959 {
   2960   CLzmaEnc *p = (CLzmaEnc *)LzmaEnc_Create(alloc);
   2961   SRes res;
   2962   if (!p)
   2963     return SZ_ERROR_MEM;
   2964 
   2965   res = LzmaEnc_SetProps(p, props);
   2966   if (res == SZ_OK)
   2967   {
   2968     res = LzmaEnc_WriteProperties(p, propsEncoded, propsSize);
   2969     if (res == SZ_OK)
   2970       res = LzmaEnc_MemEncode(p, dest, destLen, src, srcLen,
   2971           writeEndMark, progress, alloc, allocBig);
   2972   }
   2973 
   2974   LzmaEnc_Destroy(p, alloc, allocBig);
   2975   return res;
   2976 }
   2977