Home | History | Annotate | Download | only in nir
      1 #
      2 # Copyright (C) 2014 Intel Corporation
      3 #
      4 # Permission is hereby granted, free of charge, to any person obtaining a
      5 # copy of this software and associated documentation files (the "Software"),
      6 # to deal in the Software without restriction, including without limitation
      7 # the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8 # and/or sell copies of the Software, and to permit persons to whom the
      9 # Software is furnished to do so, subject to the following conditions:
     10 #
     11 # The above copyright notice and this permission notice (including the next
     12 # paragraph) shall be included in all copies or substantial portions of the
     13 # Software.
     14 #
     15 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16 # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17 # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18 # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19 # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     20 # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     21 # IN THE SOFTWARE.
     22 #
     23 # Authors:
     24 #    Jason Ekstrand (jason (at] jlekstrand.net)
     25 
     26 import nir_algebraic
     27 
     28 # Convenience variables
     29 a = 'a'
     30 b = 'b'
     31 c = 'c'
     32 d = 'd'
     33 
     34 # Written in the form (<search>, <replace>) where <search> is an expression
     35 # and <replace> is either an expression or a value.  An expression is
     36 # defined as a tuple of the form ([~]<op>, <src0>, <src1>, <src2>, <src3>)
     37 # where each source is either an expression or a value.  A value can be
     38 # either a numeric constant or a string representing a variable name.
     39 #
     40 # If the opcode in a search expression is prefixed by a '~' character, this
     41 # indicates that the operation is inexact.  Such operations will only get
     42 # applied to SSA values that do not have the exact bit set.  This should be
     43 # used by by any optimizations that are not bit-for-bit exact.  It should not,
     44 # however, be used for backend-requested lowering operations as those need to
     45 # happen regardless of precision.
     46 #
     47 # Variable names are specified as "[#]name[@type][(cond)]" where "#" inicates
     48 # that the given variable will only match constants and the type indicates that
     49 # the given variable will only match values from ALU instructions with the
     50 # given output type, and (cond) specifies an additional condition function
     51 # (see nir_search_helpers.h).
     52 #
     53 # For constants, you have to be careful to make sure that it is the right
     54 # type because python is unaware of the source and destination types of the
     55 # opcodes.
     56 #
     57 # All expression types can have a bit-size specified.  For opcodes, this
     58 # looks like "op@32", for variables it is "a@32" or "a@uint32" to specify a
     59 # type and size, and for literals, you can write "2.0@32".  In the search half
     60 # of the expression this indicates that it should only match that particular
     61 # bit-size.  In the replace half of the expression this indicates that the
     62 # constructed value should have that bit-size.
     63 
     64 optimizations = [
     65 
     66    (('imul', a, '#b@32(is_pos_power_of_two)'), ('ishl', a, ('find_lsb', b))),
     67    (('imul', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('ishl', a, ('find_lsb', ('iabs', b))))),
     68    (('udiv', a, 1), a),
     69    (('idiv', a, 1), a),
     70    (('umod', a, 1), 0),
     71    (('imod', a, 1), 0),
     72    (('udiv', a, '#b@32(is_pos_power_of_two)'), ('ushr', a, ('find_lsb', b))),
     73    (('idiv', a, '#b@32(is_pos_power_of_two)'), ('imul', ('isign', a), ('ushr', ('iabs', a), ('find_lsb', b))), 'options->lower_idiv'),
     74    (('idiv', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('imul', ('isign', a), ('ushr', ('iabs', a), ('find_lsb', ('iabs', b))))), 'options->lower_idiv'),
     75    (('umod', a, '#b(is_pos_power_of_two)'),    ('iand', a, ('isub', b, 1))),
     76 
     77    (('fneg', ('fneg', a)), a),
     78    (('ineg', ('ineg', a)), a),
     79    (('fabs', ('fabs', a)), ('fabs', a)),
     80    (('fabs', ('fneg', a)), ('fabs', a)),
     81    (('fabs', ('u2f32', a)), ('u2f32', a)),
     82    (('iabs', ('iabs', a)), ('iabs', a)),
     83    (('iabs', ('ineg', a)), ('iabs', a)),
     84    (('~fadd', a, 0.0), a),
     85    (('iadd', a, 0), a),
     86    (('usadd_4x8', a, 0), a),
     87    (('usadd_4x8', a, ~0), ~0),
     88    (('~fadd', ('fmul', a, b), ('fmul', a, c)), ('fmul', a, ('fadd', b, c))),
     89    (('iadd', ('imul', a, b), ('imul', a, c)), ('imul', a, ('iadd', b, c))),
     90    (('~fadd', ('fneg', a), a), 0.0),
     91    (('iadd', ('ineg', a), a), 0),
     92    (('iadd', ('ineg', a), ('iadd', a, b)), b),
     93    (('iadd', a, ('iadd', ('ineg', a), b)), b),
     94    (('~fadd', ('fneg', a), ('fadd', a, b)), b),
     95    (('~fadd', a, ('fadd', ('fneg', a), b)), b),
     96    (('~fmul', a, 0.0), 0.0),
     97    (('imul', a, 0), 0),
     98    (('umul_unorm_4x8', a, 0), 0),
     99    (('umul_unorm_4x8', a, ~0), a),
    100    (('fmul', a, 1.0), a),
    101    (('imul', a, 1), a),
    102    (('fmul', a, -1.0), ('fneg', a)),
    103    (('imul', a, -1), ('ineg', a)),
    104    (('~ffma', 0.0, a, b), b),
    105    (('~ffma', a, 0.0, b), b),
    106    (('~ffma', a, b, 0.0), ('fmul', a, b)),
    107    (('ffma', a, 1.0, b), ('fadd', a, b)),
    108    (('ffma', 1.0, a, b), ('fadd', a, b)),
    109    (('~flrp', a, b, 0.0), a),
    110    (('~flrp', a, b, 1.0), b),
    111    (('~flrp', a, a, b), a),
    112    (('~flrp', 0.0, a, b), ('fmul', a, b)),
    113    (('~flrp', a, b, ('b2f', c)), ('bcsel', c, b, a), 'options->lower_flrp32'),
    114    (('~flrp', a, 0.0, c), ('fadd', ('fmul', ('fneg', a), c), a)),
    115    (('flrp@32', a, b, c), ('fadd', ('fmul', c, ('fsub', b, a)), a), 'options->lower_flrp32'),
    116    (('flrp@64', a, b, c), ('fadd', ('fmul', c, ('fsub', b, a)), a), 'options->lower_flrp64'),
    117    (('ffract', a), ('fsub', a, ('ffloor', a)), 'options->lower_ffract'),
    118    (('~fadd', ('fmul', a, ('fadd', 1.0, ('fneg', ('b2f', c)))), ('fmul', b, ('b2f', c))), ('bcsel', c, b, a), 'options->lower_flrp32'),
    119    (('~fadd@32', ('fmul', a, ('fadd', 1.0, ('fneg',         c ))), ('fmul', b,         c )), ('flrp', a, b, c), '!options->lower_flrp32'),
    120    (('~fadd@64', ('fmul', a, ('fadd', 1.0, ('fneg',         c ))), ('fmul', b,         c )), ('flrp', a, b, c), '!options->lower_flrp64'),
    121    (('~fadd', a, ('fmul', ('b2f', c), ('fadd', b, ('fneg', a)))), ('bcsel', c, b, a), 'options->lower_flrp32'),
    122    (('~fadd@32', a, ('fmul',         c , ('fadd', b, ('fneg', a)))), ('flrp', a, b, c), '!options->lower_flrp32'),
    123    (('~fadd@64', a, ('fmul',         c , ('fadd', b, ('fneg', a)))), ('flrp', a, b, c), '!options->lower_flrp64'),
    124    (('ffma', a, b, c), ('fadd', ('fmul', a, b), c), 'options->lower_ffma'),
    125    (('~fadd', ('fmul', a, b), c), ('ffma', a, b, c), 'options->fuse_ffma'),
    126 
    127    # (a * #b + #c) << #d
    128    # ((a * #b) << #d) + (#c << #d)
    129    # (a * (#b << #d)) + (#c << #d)
    130    (('ishl', ('iadd', ('imul', a, '#b'), '#c'), '#d'),
    131     ('iadd', ('imul', a, ('ishl', b, d)), ('ishl', c, d))),
    132 
    133    # (a * #b) << #c
    134    # a * (#b << #c)
    135    (('ishl', ('imul', a, '#b'), '#c'), ('imul', a, ('ishl', b, c))),
    136 
    137    # Comparison simplifications
    138    (('~inot', ('flt', a, b)), ('fge', a, b)),
    139    (('~inot', ('fge', a, b)), ('flt', a, b)),
    140    (('~inot', ('feq', a, b)), ('fne', a, b)),
    141    (('~inot', ('fne', a, b)), ('feq', a, b)),
    142    (('inot', ('ilt', a, b)), ('ige', a, b)),
    143    (('inot', ('ige', a, b)), ('ilt', a, b)),
    144    (('inot', ('ieq', a, b)), ('ine', a, b)),
    145    (('inot', ('ine', a, b)), ('ieq', a, b)),
    146 
    147    # 0.0 >= b2f(a)
    148    # b2f(a) <= 0.0
    149    # b2f(a) == 0.0 because b2f(a) can only be 0 or 1
    150    # inot(a)
    151    (('fge', 0.0, ('b2f', a)), ('inot', a)),
    152 
    153    (('fge', ('fneg', ('b2f', a)), 0.0), ('inot', a)),
    154 
    155    # 0.0 < fabs(a)
    156    # fabs(a) > 0.0
    157    # fabs(a) != 0.0 because fabs(a) must be >= 0
    158    # a != 0.0
    159    (('flt', 0.0, ('fabs', a)), ('fne', a, 0.0)),
    160 
    161    # ignore this opt when the result is used by a bcsel or if so we can make
    162    # use of conditional modifiers on supported hardware.
    163    (('flt(is_not_used_by_conditional)', ('fadd(is_used_once)', a, ('fneg', b)), 0.0), ('flt', a, b)),
    164 
    165    (('fge', ('fneg', ('fabs', a)), 0.0), ('feq', a, 0.0)),
    166    (('bcsel', ('flt', b, a), b, a), ('fmin', a, b)),
    167    (('bcsel', ('flt', a, b), b, a), ('fmax', a, b)),
    168    (('bcsel', ('inot', a), b, c), ('bcsel', a, c, b)),
    169    (('bcsel', a, ('bcsel', a, b, c), d), ('bcsel', a, b, d)),
    170    (('bcsel', a, True, 'b@bool'), ('ior', a, b)),
    171    (('fmin', a, a), a),
    172    (('fmax', a, a), a),
    173    (('imin', a, a), a),
    174    (('imax', a, a), a),
    175    (('umin', a, a), a),
    176    (('umax', a, a), a),
    177    (('fmin', a, ('fneg', a)), ('fneg', ('fabs', a))),
    178    (('imin', a, ('ineg', a)), ('ineg', ('iabs', a))),
    179    (('fmin', a, ('fneg', ('fabs', a))), ('fneg', ('fabs', a))),
    180    (('imin', a, ('ineg', ('iabs', a))), ('ineg', ('iabs', a))),
    181    (('fmin', a, ('fabs', a)), a),
    182    (('imin', a, ('iabs', a)), a),
    183    (('fmax', a, ('fneg', ('fabs', a))), a),
    184    (('imax', a, ('ineg', ('iabs', a))), a),
    185    (('fmax', a, ('fabs', a)), ('fabs', a)),
    186    (('imax', a, ('iabs', a)), ('iabs', a)),
    187    (('fmax', a, ('fneg', a)), ('fabs', a)),
    188    (('imax', a, ('ineg', a)), ('iabs', a)),
    189    (('~fmin', ('fmax', a, 0.0), 1.0), ('fsat', a), '!options->lower_fsat'),
    190    (('~fmax', ('fmin', a, 1.0), 0.0), ('fsat', a), '!options->lower_fsat'),
    191    (('fsat', a), ('fmin', ('fmax', a, 0.0), 1.0), 'options->lower_fsat'),
    192    (('fsat', ('fsat', a)), ('fsat', a)),
    193    (('fmin', ('fmax', ('fmin', ('fmax', a, b), c), b), c), ('fmin', ('fmax', a, b), c)),
    194    (('imin', ('imax', ('imin', ('imax', a, b), c), b), c), ('imin', ('imax', a, b), c)),
    195    (('umin', ('umax', ('umin', ('umax', a, b), c), b), c), ('umin', ('umax', a, b), c)),
    196    (('fmax', ('fsat', a), '#b@32(is_zero_to_one)'), ('fsat', ('fmax', a, b))),
    197    (('fmin', ('fsat', a), '#b@32(is_zero_to_one)'), ('fsat', ('fmin', a, b))),
    198    (('extract_u8', ('imin', ('imax', a, 0), 0xff), 0), ('imin', ('imax', a, 0), 0xff)),
    199    (('~ior', ('flt', a, b), ('flt', a, c)), ('flt', a, ('fmax', b, c))),
    200    (('~ior', ('flt', a, c), ('flt', b, c)), ('flt', ('fmin', a, b), c)),
    201    (('~ior', ('fge', a, b), ('fge', a, c)), ('fge', a, ('fmin', b, c))),
    202    (('~ior', ('fge', a, c), ('fge', b, c)), ('fge', ('fmax', a, b), c)),
    203    (('fabs', ('slt', a, b)), ('slt', a, b)),
    204    (('fabs', ('sge', a, b)), ('sge', a, b)),
    205    (('fabs', ('seq', a, b)), ('seq', a, b)),
    206    (('fabs', ('sne', a, b)), ('sne', a, b)),
    207    (('slt', a, b), ('b2f', ('flt', a, b)), 'options->lower_scmp'),
    208    (('sge', a, b), ('b2f', ('fge', a, b)), 'options->lower_scmp'),
    209    (('seq', a, b), ('b2f', ('feq', a, b)), 'options->lower_scmp'),
    210    (('sne', a, b), ('b2f', ('fne', a, b)), 'options->lower_scmp'),
    211    (('fne', ('fneg', a), a), ('fne', a, 0.0)),
    212    (('feq', ('fneg', a), a), ('feq', a, 0.0)),
    213    # Emulating booleans
    214    (('imul', ('b2i', a), ('b2i', b)), ('b2i', ('iand', a, b))),
    215    (('fmul', ('b2f', a), ('b2f', b)), ('b2f', ('iand', a, b))),
    216    (('fsat', ('fadd', ('b2f', a), ('b2f', b))), ('b2f', ('ior', a, b))),
    217    (('iand', 'a@bool', 1.0), ('b2f', a)),
    218    # True/False are ~0 and 0 in NIR.  b2i of True is 1, and -1 is ~0 (True).
    219    (('ineg', ('b2i@32', a)), a),
    220    (('flt', ('fneg', ('b2f', a)), 0), a), # Generated by TGSI KILL_IF.
    221    (('flt', ('fsub', 0.0, ('b2f', a)), 0), a), # Generated by TGSI KILL_IF.
    222    # Comparison with the same args.  Note that these are not done for
    223    # the float versions because NaN always returns false on float
    224    # inequalities.
    225    (('ilt', a, a), False),
    226    (('ige', a, a), True),
    227    (('ieq', a, a), True),
    228    (('ine', a, a), False),
    229    (('ult', a, a), False),
    230    (('uge', a, a), True),
    231    # Logical and bit operations
    232    (('fand', a, 0.0), 0.0),
    233    (('iand', a, a), a),
    234    (('iand', a, ~0), a),
    235    (('iand', a, 0), 0),
    236    (('ior', a, a), a),
    237    (('ior', a, 0), a),
    238    (('ior', a, True), True),
    239    (('fxor', a, a), 0.0),
    240    (('ixor', a, a), 0),
    241    (('ixor', a, 0), a),
    242    (('inot', ('inot', a)), a),
    243    # DeMorgan's Laws
    244    (('iand', ('inot', a), ('inot', b)), ('inot', ('ior',  a, b))),
    245    (('ior',  ('inot', a), ('inot', b)), ('inot', ('iand', a, b))),
    246    # Shift optimizations
    247    (('ishl', 0, a), 0),
    248    (('ishl', a, 0), a),
    249    (('ishr', 0, a), 0),
    250    (('ishr', a, 0), a),
    251    (('ushr', 0, a), 0),
    252    (('ushr', a, 0), a),
    253    (('iand', 0xff, ('ushr@32', a, 24)), ('ushr', a, 24)),
    254    (('iand', 0xffff, ('ushr@32', a, 16)), ('ushr', a, 16)),
    255    # Exponential/logarithmic identities
    256    (('~fexp2', ('flog2', a)), a), # 2^lg2(a) = a
    257    (('~flog2', ('fexp2', a)), a), # lg2(2^a) = a
    258    (('fpow', a, b), ('fexp2', ('fmul', ('flog2', a), b)), 'options->lower_fpow'), # a^b = 2^(lg2(a)*b)
    259    (('~fexp2', ('fmul', ('flog2', a), b)), ('fpow', a, b), '!options->lower_fpow'), # 2^(lg2(a)*b) = a^b
    260    (('~fexp2', ('fadd', ('fmul', ('flog2', a), b), ('fmul', ('flog2', c), d))),
    261     ('~fmul', ('fpow', a, b), ('fpow', c, d)), '!options->lower_fpow'), # 2^(lg2(a) * b + lg2(c) + d) = a^b * c^d
    262    (('~fpow', a, 1.0), a),
    263    (('~fpow', a, 2.0), ('fmul', a, a)),
    264    (('~fpow', a, 4.0), ('fmul', ('fmul', a, a), ('fmul', a, a))),
    265    (('~fpow', 2.0, a), ('fexp2', a)),
    266    (('~fpow', ('fpow', a, 2.2), 0.454545), a),
    267    (('~fpow', ('fabs', ('fpow', a, 2.2)), 0.454545), ('fabs', a)),
    268    (('~fsqrt', ('fexp2', a)), ('fexp2', ('fmul', 0.5, a))),
    269    (('~frcp', ('fexp2', a)), ('fexp2', ('fneg', a))),
    270    (('~frsq', ('fexp2', a)), ('fexp2', ('fmul', -0.5, a))),
    271    (('~flog2', ('fsqrt', a)), ('fmul', 0.5, ('flog2', a))),
    272    (('~flog2', ('frcp', a)), ('fneg', ('flog2', a))),
    273    (('~flog2', ('frsq', a)), ('fmul', -0.5, ('flog2', a))),
    274    (('~flog2', ('fpow', a, b)), ('fmul', b, ('flog2', a))),
    275    (('~fmul', ('fexp2', a), ('fexp2', b)), ('fexp2', ('fadd', a, b))),
    276    # Division and reciprocal
    277    (('~fdiv', 1.0, a), ('frcp', a)),
    278    (('fdiv', a, b), ('fmul', a, ('frcp', b)), 'options->lower_fdiv'),
    279    (('~frcp', ('frcp', a)), a),
    280    (('~frcp', ('fsqrt', a)), ('frsq', a)),
    281    (('fsqrt', a), ('frcp', ('frsq', a)), 'options->lower_fsqrt'),
    282    (('~frcp', ('frsq', a)), ('fsqrt', a), '!options->lower_fsqrt'),
    283    # Boolean simplifications
    284    (('ieq', 'a@bool', True), a),
    285    (('ine(is_not_used_by_if)', 'a@bool', True), ('inot', a)),
    286    (('ine', 'a@bool', False), a),
    287    (('ieq(is_not_used_by_if)', 'a@bool', False), ('inot', 'a')),
    288    (('bcsel', a, True, False), a),
    289    (('bcsel', a, False, True), ('inot', a)),
    290    (('bcsel@32', a, 1.0, 0.0), ('b2f', a)),
    291    (('bcsel@32', a, 0.0, 1.0), ('b2f', ('inot', a))),
    292    (('bcsel@32', a, -1.0, -0.0), ('fneg', ('b2f', a))),
    293    (('bcsel@32', a, -0.0, -1.0), ('fneg', ('b2f', ('inot', a)))),
    294    (('bcsel', True, b, c), b),
    295    (('bcsel', False, b, c), c),
    296    # The result of this should be hit by constant propagation and, in the
    297    # next round of opt_algebraic, get picked up by one of the above two.
    298    (('bcsel', '#a', b, c), ('bcsel', ('ine', 'a', 0), b, c)),
    299 
    300    (('bcsel', a, b, b), b),
    301    (('fcsel', a, b, b), b),
    302 
    303    # Conversions
    304    (('i2b', ('b2i', a)), a),
    305    (('f2i32', ('ftrunc', a)), ('f2i32', a)),
    306    (('f2u32', ('ftrunc', a)), ('f2u32', a)),
    307    (('i2b', ('ineg', a)), ('i2b', a)),
    308    (('i2b', ('iabs', a)), ('i2b', a)),
    309    (('fabs', ('b2f', a)), ('b2f', a)),
    310    (('iabs', ('b2i', a)), ('b2i', a)),
    311 
    312    # Packing and then unpacking does nothing
    313    (('unpack_64_2x32_split_x', ('pack_64_2x32_split', a, b)), a),
    314    (('unpack_64_2x32_split_y', ('pack_64_2x32_split', a, b)), b),
    315    (('pack_64_2x32_split', ('unpack_64_2x32_split_x', a),
    316                            ('unpack_64_2x32_split_y', a)), a),
    317 
    318    # Byte extraction
    319    (('ushr', a, 24), ('extract_u8', a, 3), '!options->lower_extract_byte'),
    320    (('iand', 0xff, ('ushr', a, 16)), ('extract_u8', a, 2), '!options->lower_extract_byte'),
    321    (('iand', 0xff, ('ushr', a,  8)), ('extract_u8', a, 1), '!options->lower_extract_byte'),
    322    (('iand', 0xff, a), ('extract_u8', a, 0), '!options->lower_extract_byte'),
    323 
    324     # Word extraction
    325    (('ushr', a, 16), ('extract_u16', a, 1), '!options->lower_extract_word'),
    326    (('iand', 0xffff, a), ('extract_u16', a, 0), '!options->lower_extract_word'),
    327 
    328    # Subtracts
    329    (('~fsub', a, ('fsub', 0.0, b)), ('fadd', a, b)),
    330    (('isub', a, ('isub', 0, b)), ('iadd', a, b)),
    331    (('ussub_4x8', a, 0), a),
    332    (('ussub_4x8', a, ~0), 0),
    333    (('fsub', a, b), ('fadd', a, ('fneg', b)), 'options->lower_sub'),
    334    (('isub', a, b), ('iadd', a, ('ineg', b)), 'options->lower_sub'),
    335    (('fneg', a), ('fsub', 0.0, a), 'options->lower_negate'),
    336    (('ineg', a), ('isub', 0, a), 'options->lower_negate'),
    337    (('~fadd', a, ('fsub', 0.0, b)), ('fsub', a, b)),
    338    (('iadd', a, ('isub', 0, b)), ('isub', a, b)),
    339    (('fabs', ('fsub', 0.0, a)), ('fabs', a)),
    340    (('iabs', ('isub', 0, a)), ('iabs', a)),
    341 
    342    # Propagate negation up multiplication chains
    343    (('fmul', ('fneg', a), b), ('fneg', ('fmul', a, b))),
    344    (('imul', ('ineg', a), b), ('ineg', ('imul', a, b))),
    345 
    346    # Propagate constants up multiplication chains
    347    (('~fmul(is_used_once)', ('fmul(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('fmul', ('fmul', a, c), b)),
    348    (('imul(is_used_once)', ('imul(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('imul', ('imul', a, c), b)),
    349    (('~fadd(is_used_once)', ('fadd(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('fadd', ('fadd', a, c), b)),
    350    (('iadd(is_used_once)', ('iadd(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('iadd', ('iadd', a, c), b)),
    351 
    352    # Reassociate constants in add/mul chains so they can be folded together.
    353    # For now, we mostly only handle cases where the constants are separated by
    354    # a single non-constant.  We could do better eventually.
    355    (('~fmul', '#a', ('fmul', b, '#c')), ('fmul', ('fmul', a, c), b)),
    356    (('imul', '#a', ('imul', b, '#c')), ('imul', ('imul', a, c), b)),
    357    (('~fadd', '#a', ('fadd', b, '#c')), ('fadd', ('fadd', a, c), b)),
    358    (('iadd', '#a', ('iadd', b, '#c')), ('iadd', ('iadd', a, c), b)),
    359 
    360    # By definition...
    361    (('bcsel', ('ige', ('find_lsb', a), 0), ('find_lsb', a), -1), ('find_lsb', a)),
    362    (('bcsel', ('ige', ('ifind_msb', a), 0), ('ifind_msb', a), -1), ('ifind_msb', a)),
    363    (('bcsel', ('ige', ('ufind_msb', a), 0), ('ufind_msb', a), -1), ('ufind_msb', a)),
    364 
    365    (('bcsel', ('ine', a, 0), ('find_lsb', a), -1), ('find_lsb', a)),
    366    (('bcsel', ('ine', a, 0), ('ifind_msb', a), -1), ('ifind_msb', a)),
    367    (('bcsel', ('ine', a, 0), ('ufind_msb', a), -1), ('ufind_msb', a)),
    368 
    369    (('bcsel', ('ine', a, -1), ('ifind_msb', a), -1), ('ifind_msb', a)),
    370 
    371    # Misc. lowering
    372    (('fmod@32', a, b), ('fsub', a, ('fmul', b, ('ffloor', ('fdiv', a, b)))), 'options->lower_fmod32'),
    373    (('fmod@64', a, b), ('fsub', a, ('fmul', b, ('ffloor', ('fdiv', a, b)))), 'options->lower_fmod64'),
    374    (('frem', a, b), ('fsub', a, ('fmul', b, ('ftrunc', ('fdiv', a, b)))), 'options->lower_fmod32'),
    375    (('uadd_carry@32', a, b), ('b2i', ('ult', ('iadd', a, b), a)), 'options->lower_uadd_carry'),
    376    (('usub_borrow@32', a, b), ('b2i', ('ult', a, b)), 'options->lower_usub_borrow'),
    377 
    378    (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
    379     ('bcsel', ('ilt', 31, 'bits'), 'insert',
    380               ('bfi', ('bfm', 'bits', 'offset'), 'insert', 'base')),
    381     'options->lower_bitfield_insert'),
    382 
    383    (('ibitfield_extract', 'value', 'offset', 'bits'),
    384     ('bcsel', ('ilt', 31, 'bits'), 'value',
    385               ('ibfe', 'value', 'offset', 'bits')),
    386     'options->lower_bitfield_extract'),
    387 
    388    (('ubitfield_extract', 'value', 'offset', 'bits'),
    389     ('bcsel', ('ult', 31, 'bits'), 'value',
    390               ('ubfe', 'value', 'offset', 'bits')),
    391     'options->lower_bitfield_extract'),
    392 
    393    (('extract_i8', a, 'b@32'),
    394     ('ishr', ('ishl', a, ('imul', ('isub', 3, b), 8)), 24),
    395     'options->lower_extract_byte'),
    396 
    397    (('extract_u8', a, 'b@32'),
    398     ('iand', ('ushr', a, ('imul', b, 8)), 0xff),
    399     'options->lower_extract_byte'),
    400 
    401    (('extract_i16', a, 'b@32'),
    402     ('ishr', ('ishl', a, ('imul', ('isub', 1, b), 16)), 16),
    403     'options->lower_extract_word'),
    404 
    405    (('extract_u16', a, 'b@32'),
    406     ('iand', ('ushr', a, ('imul', b, 16)), 0xffff),
    407     'options->lower_extract_word'),
    408 
    409     (('pack_unorm_2x16', 'v'),
    410      ('pack_uvec2_to_uint',
    411         ('f2u32', ('fround_even', ('fmul', ('fsat', 'v'), 65535.0)))),
    412      'options->lower_pack_unorm_2x16'),
    413 
    414     (('pack_unorm_4x8', 'v'),
    415      ('pack_uvec4_to_uint',
    416         ('f2u32', ('fround_even', ('fmul', ('fsat', 'v'), 255.0)))),
    417      'options->lower_pack_unorm_4x8'),
    418 
    419     (('pack_snorm_2x16', 'v'),
    420      ('pack_uvec2_to_uint',
    421         ('f2i32', ('fround_even', ('fmul', ('fmin', 1.0, ('fmax', -1.0, 'v')), 32767.0)))),
    422      'options->lower_pack_snorm_2x16'),
    423 
    424     (('pack_snorm_4x8', 'v'),
    425      ('pack_uvec4_to_uint',
    426         ('f2i32', ('fround_even', ('fmul', ('fmin', 1.0, ('fmax', -1.0, 'v')), 127.0)))),
    427      'options->lower_pack_snorm_4x8'),
    428 
    429     (('unpack_unorm_2x16', 'v'),
    430      ('fdiv', ('u2f32', ('vec2', ('extract_u16', 'v', 0),
    431                                  ('extract_u16', 'v', 1))),
    432               65535.0),
    433      'options->lower_unpack_unorm_2x16'),
    434 
    435     (('unpack_unorm_4x8', 'v'),
    436      ('fdiv', ('u2f32', ('vec4', ('extract_u8', 'v', 0),
    437                                  ('extract_u8', 'v', 1),
    438                                  ('extract_u8', 'v', 2),
    439                                  ('extract_u8', 'v', 3))),
    440               255.0),
    441      'options->lower_unpack_unorm_4x8'),
    442 
    443     (('unpack_snorm_2x16', 'v'),
    444      ('fmin', 1.0, ('fmax', -1.0, ('fdiv', ('i2f32', ('vec2', ('extract_i16', 'v', 0),
    445                                                               ('extract_i16', 'v', 1))),
    446                                            32767.0))),
    447      'options->lower_unpack_snorm_2x16'),
    448 
    449     (('unpack_snorm_4x8', 'v'),
    450      ('fmin', 1.0, ('fmax', -1.0, ('fdiv', ('i2f32', ('vec4', ('extract_i8', 'v', 0),
    451                                                               ('extract_i8', 'v', 1),
    452                                                               ('extract_i8', 'v', 2),
    453                                                               ('extract_i8', 'v', 3))),
    454                                            127.0))),
    455      'options->lower_unpack_snorm_4x8'),
    456 ]
    457 
    458 def fexp2i(exp, bits):
    459    # We assume that exp is already in the right range.
    460    if bits == 32:
    461       return ('ishl', ('iadd', exp, 127), 23)
    462    elif bits == 64:
    463       return ('pack_64_2x32_split', 0, ('ishl', ('iadd', exp, 1023), 20))
    464    else:
    465       assert False
    466 
    467 def ldexp(f, exp, bits):
    468    # First, we clamp exp to a reasonable range.  The maximum possible range
    469    # for a normal exponent is [-126, 127] and, throwing in denormals, you get
    470    # a maximum range of [-149, 127].  This means that we can potentially have
    471    # a swing of +-276.  If you start with FLT_MAX, you actually have to do
    472    # ldexp(FLT_MAX, -278) to get it to flush all the way to zero.  The GLSL
    473    # spec, on the other hand, only requires that we handle an exponent value
    474    # in the range [-126, 128].  This implementation is *mostly* correct; it
    475    # handles a range on exp of [-252, 254] which allows you to create any
    476    # value (including denorms if the hardware supports it) and to adjust the
    477    # exponent of any normal value to anything you want.
    478    if bits == 32:
    479       exp = ('imin', ('imax', exp, -252), 254)
    480    elif bits == 64:
    481       exp = ('imin', ('imax', exp, -2044), 2046)
    482    else:
    483       assert False
    484 
    485    # Now we compute two powers of 2, one for exp/2 and one for exp-exp/2.
    486    # (We use ishr which isn't the same for -1, but the -1 case still works
    487    # since we use exp-exp/2 as the second exponent.)  While the spec
    488    # technically defines ldexp as f * 2.0^exp, simply multiplying once doesn't
    489    # work with denormals and doesn't allow for the full swing in exponents
    490    # that you can get with normalized values.  Instead, we create two powers
    491    # of two and multiply by them each in turn.  That way the effective range
    492    # of our exponent is doubled.
    493    pow2_1 = fexp2i(('ishr', exp, 1), bits)
    494    pow2_2 = fexp2i(('isub', exp, ('ishr', exp, 1)), bits)
    495    return ('fmul', ('fmul', f, pow2_1), pow2_2)
    496 
    497 optimizations += [
    498    (('ldexp@32', 'x', 'exp'), ldexp('x', 'exp', 32)),
    499    (('ldexp@64', 'x', 'exp'), ldexp('x', 'exp', 64)),
    500 ]
    501 
    502 # Unreal Engine 4 demo applications open-codes bitfieldReverse()
    503 def bitfield_reverse(u):
    504     step1 = ('ior', ('ishl', u, 16), ('ushr', u, 16))
    505     step2 = ('ior', ('ishl', ('iand', step1, 0x00ff00ff), 8), ('ushr', ('iand', step1, 0xff00ff00), 8))
    506     step3 = ('ior', ('ishl', ('iand', step2, 0x0f0f0f0f), 4), ('ushr', ('iand', step2, 0xf0f0f0f0), 4))
    507     step4 = ('ior', ('ishl', ('iand', step3, 0x33333333), 2), ('ushr', ('iand', step3, 0xcccccccc), 2))
    508     step5 = ('ior', ('ishl', ('iand', step4, 0x55555555), 1), ('ushr', ('iand', step4, 0xaaaaaaaa), 1))
    509 
    510     return step5
    511 
    512 optimizations += [(bitfield_reverse('x@32'), ('bitfield_reverse', 'x'))]
    513 
    514 # For any float comparison operation, "cmp", if you have "a == a && a cmp b"
    515 # then the "a == a" is redundant because it's equivalent to "a is not NaN"
    516 # and, if a is a NaN then the second comparison will fail anyway.
    517 for op in ['flt', 'fge', 'feq']:
    518    optimizations += [
    519       (('iand', ('feq', a, a), (op, a, b)), (op, a, b)),
    520       (('iand', ('feq', a, a), (op, b, a)), (op, b, a)),
    521    ]
    522 
    523 # Add optimizations to handle the case where the result of a ternary is
    524 # compared to a constant.  This way we can take things like
    525 #
    526 # (a ? 0 : 1) > 0
    527 #
    528 # and turn it into
    529 #
    530 # a ? (0 > 0) : (1 > 0)
    531 #
    532 # which constant folding will eat for lunch.  The resulting ternary will
    533 # further get cleaned up by the boolean reductions above and we will be
    534 # left with just the original variable "a".
    535 for op in ['flt', 'fge', 'feq', 'fne',
    536            'ilt', 'ige', 'ieq', 'ine', 'ult', 'uge']:
    537    optimizations += [
    538       ((op, ('bcsel', 'a', '#b', '#c'), '#d'),
    539        ('bcsel', 'a', (op, 'b', 'd'), (op, 'c', 'd'))),
    540       ((op, '#d', ('bcsel', a, '#b', '#c')),
    541        ('bcsel', 'a', (op, 'd', 'b'), (op, 'd', 'c'))),
    542    ]
    543 
    544 # This section contains "late" optimizations that should be run before
    545 # creating ffmas and calling regular optimizations for the final time.
    546 # Optimizations should go here if they help code generation and conflict
    547 # with the regular optimizations.
    548 before_ffma_optimizations = [
    549    # Propagate constants down multiplication chains
    550    (('~fmul(is_used_once)', ('fmul(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('fmul', ('fmul', a, c), b)),
    551    (('imul(is_used_once)', ('imul(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('imul', ('imul', a, c), b)),
    552    (('~fadd(is_used_once)', ('fadd(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('fadd', ('fadd', a, c), b)),
    553    (('iadd(is_used_once)', ('iadd(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('iadd', ('iadd', a, c), b)),
    554 
    555    (('~fadd', ('fmul', a, b), ('fmul', a, c)), ('fmul', a, ('fadd', b, c))),
    556    (('iadd', ('imul', a, b), ('imul', a, c)), ('imul', a, ('iadd', b, c))),
    557    (('~fadd', ('fneg', a), a), 0.0),
    558    (('iadd', ('ineg', a), a), 0),
    559    (('iadd', ('ineg', a), ('iadd', a, b)), b),
    560    (('iadd', a, ('iadd', ('ineg', a), b)), b),
    561    (('~fadd', ('fneg', a), ('fadd', a, b)), b),
    562    (('~fadd', a, ('fadd', ('fneg', a), b)), b),
    563 ]
    564 
    565 # This section contains "late" optimizations that should be run after the
    566 # regular optimizations have finished.  Optimizations should go here if
    567 # they help code generation but do not necessarily produce code that is
    568 # more easily optimizable.
    569 late_optimizations = [
    570    # Most of these optimizations aren't quite safe when you get infinity or
    571    # Nan involved but the first one should be fine.
    572    (('flt', ('fadd', a, b), 0.0), ('flt', a, ('fneg', b))),
    573    (('~fge', ('fadd', a, b), 0.0), ('fge', a, ('fneg', b))),
    574    (('~feq', ('fadd', a, b), 0.0), ('feq', a, ('fneg', b))),
    575    (('~fne', ('fadd', a, b), 0.0), ('fne', a, ('fneg', b))),
    576 
    577    (('fdot2', a, b), ('fdot_replicated2', a, b), 'options->fdot_replicates'),
    578    (('fdot3', a, b), ('fdot_replicated3', a, b), 'options->fdot_replicates'),
    579    (('fdot4', a, b), ('fdot_replicated4', a, b), 'options->fdot_replicates'),
    580    (('fdph', a, b), ('fdph_replicated', a, b), 'options->fdot_replicates'),
    581 
    582    (('b2f(is_used_more_than_once)', ('inot', a)), ('bcsel', a, 0.0, 1.0)),
    583    (('fneg(is_used_more_than_once)', ('b2f', ('inot', a))), ('bcsel', a, -0.0, -1.0)),
    584 
    585    # we do these late so that we don't get in the way of creating ffmas
    586    (('fmin', ('fadd(is_used_once)', '#c', a), ('fadd(is_used_once)', '#c', b)), ('fadd', c, ('fmin', a, b))),
    587    (('fmax', ('fadd(is_used_once)', '#c', a), ('fadd(is_used_once)', '#c', b)), ('fadd', c, ('fmax', a, b))),
    588 ]
    589 
    590 print nir_algebraic.AlgebraicPass("nir_opt_algebraic", optimizations).render()
    591 print nir_algebraic.AlgebraicPass("nir_opt_algebraic_before_ffma",
    592                                   before_ffma_optimizations).render()
    593 print nir_algebraic.AlgebraicPass("nir_opt_algebraic_late",
    594                                   late_optimizations).render()
    595