Home | History | Annotate | Download | only in llvmpipe
      1 /**************************************************************************
      2  *
      3  * Copyright 2007-2010 VMware, Inc.
      4  * All Rights Reserved.
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a
      7  * copy of this software and associated documentation files (the
      8  * "Software"), to deal in the Software without restriction, including
      9  * without limitation the rights to use, copy, modify, merge, publish,
     10  * distribute, sub license, and/or sell copies of the Software, and to
     11  * permit persons to whom the Software is furnished to do so, subject to
     12  * the following conditions:
     13  *
     14  * The above copyright notice and this permission notice (including the
     15  * next paragraph) shall be included in all copies or substantial portions
     16  * of the Software.
     17  *
     18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
     19  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
     20  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
     21  * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
     22  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
     23  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
     24  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
     25  *
     26  **************************************************************************/
     27 
     28 /*
     29  * Rasterization for binned triangles within a tile
     30  */
     31 
     32 
     33 
     34 /**
     35  * Prototype for a 8 plane rasterizer function.  Will codegenerate
     36  * several of these.
     37  *
     38  * XXX: Varients for more/fewer planes.
     39  * XXX: Need ways of dropping planes as we descend.
     40  * XXX: SIMD
     41  */
     42 static void
     43 TAG(do_block_4)(struct lp_rasterizer_task *task,
     44                 const struct lp_rast_triangle *tri,
     45                 const struct lp_rast_plane *plane,
     46                 int x, int y,
     47                 const int64_t *c)
     48 {
     49    unsigned mask = 0xffff;
     50    int j;
     51 
     52    for (j = 0; j < NR_PLANES; j++) {
     53 #ifdef RASTER_64
     54       mask &= ~BUILD_MASK_LINEAR(((c[j] - 1) >> (int64_t)FIXED_ORDER),
     55                                  -plane[j].dcdx >> FIXED_ORDER,
     56                                  plane[j].dcdy >> FIXED_ORDER);
     57 #else
     58       mask &= ~BUILD_MASK_LINEAR((c[j] - 1),
     59                                  -plane[j].dcdx,
     60                                  plane[j].dcdy);
     61 #endif
     62    }
     63 
     64    /* Now pass to the shader:
     65     */
     66    if (mask)
     67       lp_rast_shade_quads_mask(task, &tri->inputs, x, y, mask);
     68 }
     69 
     70 /**
     71  * Evaluate a 16x16 block of pixels to determine which 4x4 subblocks are in/out
     72  * of the triangle's bounds.
     73  */
     74 static void
     75 TAG(do_block_16)(struct lp_rasterizer_task *task,
     76                  const struct lp_rast_triangle *tri,
     77                  const struct lp_rast_plane *plane,
     78                  int x, int y,
     79                  const int64_t *c)
     80 {
     81    unsigned outmask, inmask, partmask, partial_mask;
     82    unsigned j;
     83 
     84    outmask = 0;                 /* outside one or more trivial reject planes */
     85    partmask = 0;                /* outside one or more trivial accept planes */
     86 
     87    for (j = 0; j < NR_PLANES; j++) {
     88 #ifdef RASTER_64
     89       int32_t dcdx = -plane[j].dcdx >> FIXED_ORDER;
     90       int32_t dcdy = plane[j].dcdy >> FIXED_ORDER;
     91       const int32_t cox = plane[j].eo >> FIXED_ORDER;
     92       const int32_t ei = (dcdy + dcdx - cox) << 2;
     93       const int32_t cox_s = cox << 2;
     94       const int32_t co = (int32_t)(c[j] >> (int64_t)FIXED_ORDER) + cox_s;
     95       int32_t cdiff;
     96       cdiff = ei - cox_s + ((int32_t)((c[j] - 1) >> (int64_t)FIXED_ORDER) -
     97                             (int32_t)(c[j] >> (int64_t)FIXED_ORDER));
     98       dcdx <<= 2;
     99       dcdy <<= 2;
    100 #else
    101       const int64_t dcdx = -IMUL64(plane[j].dcdx, 4);
    102       const int64_t dcdy = IMUL64(plane[j].dcdy, 4);
    103       const int64_t cox = IMUL64(plane[j].eo, 4);
    104       const int32_t ei = plane[j].dcdy - plane[j].dcdx - (int64_t)plane[j].eo;
    105       const int64_t cio = IMUL64(ei, 4) - 1;
    106       int32_t co, cdiff;
    107       co = c[j] + cox;
    108       cdiff = cio - cox;
    109 #endif
    110 
    111       BUILD_MASKS(co, cdiff,
    112                   dcdx, dcdy,
    113                   &outmask,   /* sign bits from c[i][0..15] + cox */
    114                   &partmask); /* sign bits from c[i][0..15] + cio */
    115    }
    116 
    117    if (outmask == 0xffff)
    118       return;
    119 
    120    /* Mask of sub-blocks which are inside all trivial accept planes:
    121     */
    122    inmask = ~partmask & 0xffff;
    123 
    124    /* Mask of sub-blocks which are inside all trivial reject planes,
    125     * but outside at least one trivial accept plane:
    126     */
    127    partial_mask = partmask & ~outmask;
    128 
    129    assert((partial_mask & inmask) == 0);
    130 
    131    LP_COUNT_ADD(nr_empty_4, util_bitcount(0xffff & ~(partial_mask | inmask)));
    132 
    133    /* Iterate over partials:
    134     */
    135    while (partial_mask) {
    136       int i = ffs(partial_mask) - 1;
    137       int ix = (i & 3) * 4;
    138       int iy = (i >> 2) * 4;
    139       int px = x + ix;
    140       int py = y + iy;
    141       int64_t cx[NR_PLANES];
    142 
    143       partial_mask &= ~(1 << i);
    144 
    145       LP_COUNT(nr_partially_covered_4);
    146 
    147       for (j = 0; j < NR_PLANES; j++)
    148          cx[j] = (c[j]
    149                   - IMUL64(plane[j].dcdx, ix)
    150                   + IMUL64(plane[j].dcdy, iy));
    151 
    152       TAG(do_block_4)(task, tri, plane, px, py, cx);
    153    }
    154 
    155    /* Iterate over fulls:
    156     */
    157    while (inmask) {
    158       int i = ffs(inmask) - 1;
    159       int ix = (i & 3) * 4;
    160       int iy = (i >> 2) * 4;
    161       int px = x + ix;
    162       int py = y + iy;
    163 
    164       inmask &= ~(1 << i);
    165 
    166       LP_COUNT(nr_fully_covered_4);
    167       block_full_4(task, tri, px, py);
    168    }
    169 }
    170 
    171 
    172 /**
    173  * Scan the tile in chunks and figure out which pixels to rasterize
    174  * for this triangle.
    175  */
    176 void
    177 TAG(lp_rast_triangle)(struct lp_rasterizer_task *task,
    178                       const union lp_rast_cmd_arg arg)
    179 {
    180    const struct lp_rast_triangle *tri = arg.triangle.tri;
    181    unsigned plane_mask = arg.triangle.plane_mask;
    182    const struct lp_rast_plane *tri_plane = GET_PLANES(tri);
    183    const int x = task->x, y = task->y;
    184    struct lp_rast_plane plane[NR_PLANES];
    185    int64_t c[NR_PLANES];
    186    unsigned outmask, inmask, partmask, partial_mask;
    187    unsigned j = 0;
    188 
    189    if (tri->inputs.disable) {
    190       /* This triangle was partially binned and has been disabled */
    191       return;
    192    }
    193 
    194    outmask = 0;                 /* outside one or more trivial reject planes */
    195    partmask = 0;                /* outside one or more trivial accept planes */
    196 
    197    while (plane_mask) {
    198       int i = ffs(plane_mask) - 1;
    199       plane[j] = tri_plane[i];
    200       plane_mask &= ~(1 << i);
    201       c[j] = plane[j].c + IMUL64(plane[j].dcdy, y) - IMUL64(plane[j].dcdx, x);
    202 
    203       {
    204 #ifdef RASTER_64
    205          /*
    206           * Strip off lower FIXED_ORDER bits. Note that those bits from
    207           * dcdx, dcdy, eo are always 0 (by definition).
    208           * c values, however, are not. This means that for every
    209           * addition of the form c + n*dcdx the lower FIXED_ORDER bits will
    210           * NOT change. And those bits are not relevant to the sign bit (which
    211           * is only what we need!) that is,
    212           * sign(c + n*dcdx) == sign((c >> FIXED_ORDER) + n*(dcdx >> FIXED_ORDER))
    213           * This means we can get away with using 32bit math for the most part.
    214           * Only tricky part is the -1 adjustment for cdiff.
    215           */
    216          int32_t dcdx = -plane[j].dcdx >> FIXED_ORDER;
    217          int32_t dcdy = plane[j].dcdy >> FIXED_ORDER;
    218          const int32_t cox = plane[j].eo >> FIXED_ORDER;
    219          const int32_t ei = (dcdy + dcdx - cox) << 4;
    220          const int32_t cox_s = cox << 4;
    221          const int32_t co = (int32_t)(c[j] >> (int64_t)FIXED_ORDER) + cox_s;
    222          int32_t cdiff;
    223          /*
    224           * Plausibility check to ensure the 32bit math works.
    225           * Note that within a tile, the max we can move the edge function
    226           * is essentially dcdx * TILE_SIZE + dcdy * TILE_SIZE.
    227           * TILE_SIZE is 64, dcdx/dcdy are nominally 21 bit (for 8192 max size
    228           * and 8 subpixel bits), I'd be happy with 2 bits more too (1 for
    229           * increasing fb size to 16384, the required d3d11 value, another one
    230           * because I'm not quite sure we can't be _just_ above the max value
    231           * here). This gives us 30 bits max - hence if c would exceed that here
    232           * that means the plane is either trivial reject for the whole tile
    233           * (in which case the tri will not get binned), or trivial accept for
    234           * the whole tile (in which case plane_mask will not include it).
    235           */
    236          assert((c[j] >> (int64_t)FIXED_ORDER) > (int32_t)0xb0000000 &&
    237                 (c[j] >> (int64_t)FIXED_ORDER) < (int32_t)0x3fffffff);
    238          /*
    239           * Note the fixup part is constant throughout the tile - thus could
    240           * just calculate this and avoid _all_ 64bit math in rasterization
    241           * (except exactly this fixup calc).
    242           * In fact theoretically could move that even to setup, albeit that
    243           * seems tricky (pre-bin certainly can have values larger than 32bit,
    244           * and would need to communicate that fixup value through).
    245           * And if we want to support msaa, we'd probably don't want to do the
    246           * downscaling in setup in any case...
    247           */
    248          cdiff = ei - cox_s + ((int32_t)((c[j] - 1) >> (int64_t)FIXED_ORDER) -
    249                                (int32_t)(c[j] >> (int64_t)FIXED_ORDER));
    250          dcdx <<= 4;
    251          dcdy <<= 4;
    252 #else
    253          const int32_t dcdx = -plane[j].dcdx << 4;
    254          const int32_t dcdy = plane[j].dcdy << 4;
    255          const int32_t cox = plane[j].eo << 4;
    256          const int32_t ei = plane[j].dcdy - plane[j].dcdx - (int32_t)plane[j].eo;
    257          const int32_t cio = (ei << 4) - 1;
    258          int32_t co, cdiff;
    259          co = c[j] + cox;
    260          cdiff = cio - cox;
    261 #endif
    262          BUILD_MASKS(co, cdiff,
    263                      dcdx, dcdy,
    264                      &outmask,   /* sign bits from c[i][0..15] + cox */
    265                      &partmask); /* sign bits from c[i][0..15] + cio */
    266       }
    267 
    268       j++;
    269    }
    270 
    271    if (outmask == 0xffff)
    272       return;
    273 
    274    /* Mask of sub-blocks which are inside all trivial accept planes:
    275     */
    276    inmask = ~partmask & 0xffff;
    277 
    278    /* Mask of sub-blocks which are inside all trivial reject planes,
    279     * but outside at least one trivial accept plane:
    280     */
    281    partial_mask = partmask & ~outmask;
    282 
    283    assert((partial_mask & inmask) == 0);
    284 
    285    LP_COUNT_ADD(nr_empty_16, util_bitcount(0xffff & ~(partial_mask | inmask)));
    286 
    287    /* Iterate over partials:
    288     */
    289    while (partial_mask) {
    290       int i = ffs(partial_mask) - 1;
    291       int ix = (i & 3) * 16;
    292       int iy = (i >> 2) * 16;
    293       int px = x + ix;
    294       int py = y + iy;
    295       int64_t cx[NR_PLANES];
    296 
    297       for (j = 0; j < NR_PLANES; j++)
    298          cx[j] = (c[j]
    299                   - IMUL64(plane[j].dcdx, ix)
    300                   + IMUL64(plane[j].dcdy, iy));
    301 
    302       partial_mask &= ~(1 << i);
    303 
    304       LP_COUNT(nr_partially_covered_16);
    305       TAG(do_block_16)(task, tri, plane, px, py, cx);
    306    }
    307 
    308    /* Iterate over fulls:
    309     */
    310    while (inmask) {
    311       int i = ffs(inmask) - 1;
    312       int ix = (i & 3) * 16;
    313       int iy = (i >> 2) * 16;
    314       int px = x + ix;
    315       int py = y + iy;
    316 
    317       inmask &= ~(1 << i);
    318 
    319       LP_COUNT(nr_fully_covered_16);
    320       block_full_16(task, tri, px, py);
    321    }
    322 }
    323 
    324 #if defined(PIPE_ARCH_SSE) && defined(TRI_16)
    325 /* XXX: special case this when intersection is not required.
    326  *      - tile completely within bbox,
    327  *      - bbox completely within tile.
    328  */
    329 void
    330 TRI_16(struct lp_rasterizer_task *task,
    331        const union lp_rast_cmd_arg arg)
    332 {
    333    const struct lp_rast_triangle *tri = arg.triangle.tri;
    334    const struct lp_rast_plane *plane = GET_PLANES(tri);
    335    unsigned mask = arg.triangle.plane_mask;
    336    unsigned outmask, partial_mask;
    337    unsigned j;
    338    __m128i cstep4[NR_PLANES][4];
    339 
    340    int x = (mask & 0xff);
    341    int y = (mask >> 8);
    342 
    343    outmask = 0;                 /* outside one or more trivial reject planes */
    344 
    345    x += task->x;
    346    y += task->y;
    347 
    348    for (j = 0; j < NR_PLANES; j++) {
    349       const int dcdx = -plane[j].dcdx * 4;
    350       const int dcdy = plane[j].dcdy * 4;
    351       __m128i xdcdy = _mm_set1_epi32(dcdy);
    352 
    353       cstep4[j][0] = _mm_setr_epi32(0, dcdx, dcdx*2, dcdx*3);
    354       cstep4[j][1] = _mm_add_epi32(cstep4[j][0], xdcdy);
    355       cstep4[j][2] = _mm_add_epi32(cstep4[j][1], xdcdy);
    356       cstep4[j][3] = _mm_add_epi32(cstep4[j][2], xdcdy);
    357 
    358       {
    359 	 const int c = plane[j].c + plane[j].dcdy * y - plane[j].dcdx * x;
    360 	 const int cox = plane[j].eo * 4;
    361 
    362 	 outmask |= sign_bits4(cstep4[j], c + cox);
    363       }
    364    }
    365 
    366    if (outmask == 0xffff)
    367       return;
    368 
    369 
    370    /* Mask of sub-blocks which are inside all trivial reject planes,
    371     * but outside at least one trivial accept plane:
    372     */
    373    partial_mask = 0xffff & ~outmask;
    374 
    375    /* Iterate over partials:
    376     */
    377    while (partial_mask) {
    378       int i = ffs(partial_mask) - 1;
    379       int ix = (i & 3) * 4;
    380       int iy = (i >> 2) * 4;
    381       int px = x + ix;
    382       int py = y + iy;
    383       unsigned mask = 0xffff;
    384 
    385       partial_mask &= ~(1 << i);
    386 
    387       for (j = 0; j < NR_PLANES; j++) {
    388          const int cx = (plane[j].c - 1
    389 			 - plane[j].dcdx * px
    390 			 + plane[j].dcdy * py) * 4;
    391 
    392 	 mask &= ~sign_bits4(cstep4[j], cx);
    393       }
    394 
    395       if (mask)
    396 	 lp_rast_shade_quads_mask(task, &tri->inputs, px, py, mask);
    397    }
    398 }
    399 #endif
    400 
    401 #if defined(PIPE_ARCH_SSE) && defined(TRI_4)
    402 void
    403 TRI_4(struct lp_rasterizer_task *task,
    404       const union lp_rast_cmd_arg arg)
    405 {
    406    const struct lp_rast_triangle *tri = arg.triangle.tri;
    407    const struct lp_rast_plane *plane = GET_PLANES(tri);
    408    unsigned mask = arg.triangle.plane_mask;
    409    const int x = task->x + (mask & 0xff);
    410    const int y = task->y + (mask >> 8);
    411    unsigned j;
    412 
    413    /* Iterate over partials:
    414     */
    415    {
    416       unsigned mask = 0xffff;
    417 
    418       for (j = 0; j < NR_PLANES; j++) {
    419 	 const int cx = (plane[j].c
    420 			 - plane[j].dcdx * x
    421 			 + plane[j].dcdy * y);
    422 
    423 	 const int dcdx = -plane[j].dcdx;
    424 	 const int dcdy = plane[j].dcdy;
    425 	 __m128i xdcdy = _mm_set1_epi32(dcdy);
    426 
    427 	 __m128i cstep0 = _mm_setr_epi32(cx, cx + dcdx, cx + dcdx*2, cx + dcdx*3);
    428 	 __m128i cstep1 = _mm_add_epi32(cstep0, xdcdy);
    429 	 __m128i cstep2 = _mm_add_epi32(cstep1, xdcdy);
    430 	 __m128i cstep3 = _mm_add_epi32(cstep2, xdcdy);
    431 
    432 	 __m128i cstep01 = _mm_packs_epi32(cstep0, cstep1);
    433 	 __m128i cstep23 = _mm_packs_epi32(cstep2, cstep3);
    434 	 __m128i result = _mm_packs_epi16(cstep01, cstep23);
    435 
    436 	 /* Extract the sign bits
    437 	  */
    438 	 mask &= ~_mm_movemask_epi8(result);
    439       }
    440 
    441       if (mask)
    442 	 lp_rast_shade_quads_mask(task, &tri->inputs, x, y, mask);
    443    }
    444 }
    445 #endif
    446 
    447 
    448 
    449 #undef TAG
    450 #undef TRI_4
    451 #undef TRI_16
    452 #undef NR_PLANES
    453 
    454