Home | History | Annotate | Download | only in i915
      1 /**************************************************************************
      2  *
      3  * Copyright 2003 VMware, Inc.
      4  * All Rights Reserved.
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a
      7  * copy of this software and associated documentation files (the
      8  * "Software"), to deal in the Software without restriction, including
      9  * without limitation the rights to use, copy, modify, merge, publish,
     10  * distribute, sub license, and/or sell copies of the Software, and to
     11  * permit persons to whom the Software is furnished to do so, subject to
     12  * the following conditions:
     13  *
     14  * The above copyright notice and this permission notice (including the
     15  * next paragraph) shall be included in all copies or substantial portions
     16  * of the Software.
     17  *
     18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
     19  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
     20  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
     21  * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
     22  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
     23  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
     24  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
     25  *
     26  **************************************************************************/
     27 
     28 /** @file intel_tris.c
     29  *
     30  * This file contains functions for managing the vertex buffer and emitting
     31  * primitives into it.
     32  */
     33 
     34 #include "main/glheader.h"
     35 #include "main/context.h"
     36 #include "main/macros.h"
     37 #include "main/enums.h"
     38 #include "main/texobj.h"
     39 #include "main/state.h"
     40 #include "main/dd.h"
     41 #include "main/fbobject.h"
     42 #include "main/state.h"
     43 
     44 #include "swrast/swrast.h"
     45 #include "swrast_setup/swrast_setup.h"
     46 #include "tnl/t_context.h"
     47 #include "tnl/t_pipeline.h"
     48 #include "tnl/t_vertex.h"
     49 
     50 #include "intel_screen.h"
     51 #include "intel_context.h"
     52 #include "intel_tris.h"
     53 #include "intel_batchbuffer.h"
     54 #include "intel_buffers.h"
     55 #include "intel_reg.h"
     56 #include "i830_context.h"
     57 #include "i830_reg.h"
     58 #include "i915_context.h"
     59 
     60 static void intelRenderPrimitive(struct gl_context * ctx, GLenum prim);
     61 static void intelRasterPrimitive(struct gl_context * ctx, GLenum rprim,
     62                                  GLuint hwprim);
     63 
     64 static void
     65 intel_flush_inline_primitive(struct intel_context *intel)
     66 {
     67    GLuint used = intel->batch.used - intel->prim.start_ptr;
     68 
     69    assert(intel->prim.primitive != ~0);
     70 
     71 /*    printf("/\n"); */
     72 
     73    if (used < 2)
     74       goto do_discard;
     75 
     76    intel->batch.map[intel->prim.start_ptr] =
     77       _3DPRIMITIVE | intel->prim.primitive | (used - 2);
     78 
     79    goto finished;
     80 
     81  do_discard:
     82    intel->batch.used = intel->prim.start_ptr;
     83 
     84  finished:
     85    intel->prim.primitive = ~0;
     86    intel->prim.start_ptr = 0;
     87    intel->prim.flush = 0;
     88 }
     89 
     90 static void intel_start_inline(struct intel_context *intel, uint32_t prim)
     91 {
     92    BATCH_LOCALS;
     93 
     94    intel->vtbl.emit_state(intel);
     95 
     96    intel->no_batch_wrap = true;
     97 
     98    /* Emit a slot which will be filled with the inline primitive
     99     * command later.
    100     */
    101    BEGIN_BATCH(1);
    102 
    103    intel->prim.start_ptr = intel->batch.used;
    104    intel->prim.primitive = prim;
    105    intel->prim.flush = intel_flush_inline_primitive;
    106 
    107    OUT_BATCH(0);
    108    ADVANCE_BATCH();
    109 
    110    intel->no_batch_wrap = false;
    111 /*    printf(">"); */
    112 }
    113 
    114 static void intel_wrap_inline(struct intel_context *intel)
    115 {
    116    GLuint prim = intel->prim.primitive;
    117 
    118    intel_flush_inline_primitive(intel);
    119    intel_batchbuffer_flush(intel);
    120    intel_start_inline(intel, prim);  /* ??? */
    121 }
    122 
    123 static GLuint *intel_extend_inline(struct intel_context *intel, GLuint dwords)
    124 {
    125    GLuint *ptr;
    126 
    127    assert(intel->prim.flush == intel_flush_inline_primitive);
    128 
    129    if (intel_batchbuffer_space(intel) < dwords * sizeof(GLuint))
    130       intel_wrap_inline(intel);
    131 
    132 /*    printf("."); */
    133 
    134    intel->vtbl.assert_not_dirty(intel);
    135 
    136    ptr = intel->batch.map + intel->batch.used;
    137    intel->batch.used += dwords;
    138 
    139    return ptr;
    140 }
    141 
    142 /** Sets the primitive type for a primitive sequence, flushing as needed. */
    143 void intel_set_prim(struct intel_context *intel, uint32_t prim)
    144 {
    145    /* if we have no VBOs */
    146 
    147    if (intel->intelScreen->no_vbo) {
    148       intel_start_inline(intel, prim);
    149       return;
    150    }
    151    if (prim != intel->prim.primitive) {
    152       INTEL_FIREVERTICES(intel);
    153       intel->prim.primitive = prim;
    154    }
    155 }
    156 
    157 /** Returns mapped VB space for the given number of vertices */
    158 uint32_t *intel_get_prim_space(struct intel_context *intel, unsigned int count)
    159 {
    160    uint32_t *addr;
    161 
    162    if (intel->intelScreen->no_vbo) {
    163       return intel_extend_inline(intel, count * intel->vertex_size);
    164    }
    165 
    166    /* Check for space in the existing VB */
    167    if (intel->prim.vb_bo == NULL ||
    168        (intel->prim.current_offset +
    169 	count * intel->vertex_size * 4) > INTEL_VB_SIZE ||
    170        (intel->prim.count + count) >= (1 << 16)) {
    171       /* Flush existing prim if any */
    172       INTEL_FIREVERTICES(intel);
    173 
    174       intel_finish_vb(intel);
    175 
    176       /* Start a new VB */
    177       if (intel->prim.vb == NULL)
    178 	 intel->prim.vb = malloc(INTEL_VB_SIZE);
    179       intel->prim.vb_bo = drm_intel_bo_alloc(intel->bufmgr, "vb",
    180 					     INTEL_VB_SIZE, 4);
    181       intel->prim.start_offset = 0;
    182       intel->prim.current_offset = 0;
    183    }
    184 
    185    intel->prim.flush = intel_flush_prim;
    186 
    187    addr = (uint32_t *)(intel->prim.vb + intel->prim.current_offset);
    188    intel->prim.current_offset += intel->vertex_size * 4 * count;
    189    intel->prim.count += count;
    190 
    191    return addr;
    192 }
    193 
    194 /** Dispatches the accumulated primitive to the batchbuffer. */
    195 void intel_flush_prim(struct intel_context *intel)
    196 {
    197    drm_intel_bo *aper_array[2];
    198    drm_intel_bo *vb_bo;
    199    unsigned int offset, count;
    200    BATCH_LOCALS;
    201 
    202    /* Must be called after an intel_start_prim. */
    203    assert(intel->prim.primitive != ~0);
    204 
    205    if (intel->prim.count == 0)
    206       return;
    207 
    208    /* Clear the current prims out of the context state so that a batch flush
    209     * flush triggered by emit_state doesn't loop back to flush_prim again.
    210     */
    211    vb_bo = intel->prim.vb_bo;
    212    drm_intel_bo_reference(vb_bo);
    213    count = intel->prim.count;
    214    intel->prim.count = 0;
    215    offset = intel->prim.start_offset;
    216    intel->prim.start_offset = intel->prim.current_offset;
    217    if (intel->gen < 3)
    218       intel->prim.current_offset = intel->prim.start_offset = ALIGN(intel->prim.start_offset, 128);
    219    intel->prim.flush = NULL;
    220 
    221    intel->vtbl.emit_state(intel);
    222 
    223    aper_array[0] = intel->batch.bo;
    224    aper_array[1] = vb_bo;
    225    if (dri_bufmgr_check_aperture_space(aper_array, 2)) {
    226       intel_batchbuffer_flush(intel);
    227       intel->vtbl.emit_state(intel);
    228    }
    229 
    230    /* Ensure that we don't start a new batch for the following emit, which
    231     * depends on the state just emitted. emit_state should be making sure we
    232     * have the space for this.
    233     */
    234    intel->no_batch_wrap = true;
    235 
    236    if (intel->always_flush_cache) {
    237       intel_batchbuffer_emit_mi_flush(intel);
    238    }
    239 
    240 #if 0
    241    printf("emitting %d..%d=%d vertices size %d\n", offset,
    242 	  intel->prim.current_offset, count,
    243 	  intel->vertex_size * 4);
    244 #endif
    245 
    246    if (intel->gen >= 3) {
    247       struct i915_context *i915 = i915_context(&intel->ctx);
    248       unsigned int cmd = 0, len = 0;
    249 
    250       if (vb_bo != i915->current_vb_bo) {
    251 	 cmd |= I1_LOAD_S(0);
    252 	 len++;
    253       }
    254 
    255       if (intel->vertex_size != i915->current_vertex_size) {
    256 	 cmd |= I1_LOAD_S(1);
    257 	 len++;
    258       }
    259       if (len)
    260 	 len++;
    261 
    262       BEGIN_BATCH(2+len);
    263       if (cmd)
    264 	 OUT_BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_1 | cmd | (len - 2));
    265       if (vb_bo != i915->current_vb_bo) {
    266 	 OUT_RELOC(vb_bo, I915_GEM_DOMAIN_VERTEX, 0, 0);
    267 	 i915->current_vb_bo = vb_bo;
    268       }
    269       if (intel->vertex_size != i915->current_vertex_size) {
    270 	 OUT_BATCH((intel->vertex_size << S1_VERTEX_WIDTH_SHIFT) |
    271 		   (intel->vertex_size << S1_VERTEX_PITCH_SHIFT));
    272 	 i915->current_vertex_size = intel->vertex_size;
    273       }
    274       OUT_BATCH(_3DPRIMITIVE |
    275 		PRIM_INDIRECT |
    276 		PRIM_INDIRECT_SEQUENTIAL |
    277 		intel->prim.primitive |
    278 		count);
    279       OUT_BATCH(offset / (intel->vertex_size * 4));
    280       ADVANCE_BATCH();
    281    } else {
    282       struct i830_context *i830 = i830_context(&intel->ctx);
    283 
    284       BEGIN_BATCH(5);
    285       OUT_BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_1 |
    286 		I1_LOAD_S(0) | I1_LOAD_S(2) | 1);
    287       /* S0 */
    288       assert((offset & ~S0_VB_OFFSET_MASK_830) == 0);
    289       OUT_RELOC(vb_bo, I915_GEM_DOMAIN_VERTEX, 0,
    290 		offset | (intel->vertex_size << S0_VB_PITCH_SHIFT_830) |
    291 		S0_VB_ENABLE_830);
    292       /* S2
    293        * This is somewhat unfortunate -- VB width is tied up with
    294        * vertex format data that we've already uploaded through
    295        * _3DSTATE_VFT[01]_CMD.  We may want to replace emits of VFT state with
    296        * STATE_IMMEDIATE_1 like this to avoid duplication.
    297        */
    298       OUT_BATCH((i830->state.Ctx[I830_CTXREG_VF] & VFT0_TEX_COUNT_MASK) >>
    299 		VFT0_TEX_COUNT_SHIFT << S2_TEX_COUNT_SHIFT_830 |
    300 		(i830->state.Ctx[I830_CTXREG_VF2] << 16) |
    301 		intel->vertex_size << S2_VERTEX_0_WIDTH_SHIFT_830);
    302 
    303       OUT_BATCH(_3DPRIMITIVE |
    304 		PRIM_INDIRECT |
    305 		PRIM_INDIRECT_SEQUENTIAL |
    306 		intel->prim.primitive |
    307 		count);
    308       OUT_BATCH(0); /* Beginning vertex index */
    309       ADVANCE_BATCH();
    310    }
    311 
    312    if (intel->always_flush_cache) {
    313       intel_batchbuffer_emit_mi_flush(intel);
    314    }
    315 
    316    intel->no_batch_wrap = false;
    317 
    318    drm_intel_bo_unreference(vb_bo);
    319 }
    320 
    321 /**
    322  * Uploads the locally-accumulated VB into the buffer object.
    323  *
    324  * This avoids us thrashing the cachelines in and out as the buffer gets
    325  * filled, dispatched, then reused as the hardware completes rendering from it,
    326  * and also lets us clflush less if we dispatch with a partially-filled VB.
    327  *
    328  * This is called normally from get_space when we're finishing a BO, but also
    329  * at batch flush time so that we don't try accessing the contents of a
    330  * just-dispatched buffer.
    331  */
    332 void intel_finish_vb(struct intel_context *intel)
    333 {
    334    if (intel->prim.vb_bo == NULL)
    335       return;
    336 
    337    drm_intel_bo_subdata(intel->prim.vb_bo, 0, intel->prim.start_offset,
    338 			intel->prim.vb);
    339    drm_intel_bo_unreference(intel->prim.vb_bo);
    340    intel->prim.vb_bo = NULL;
    341 }
    342 
    343 /***********************************************************************
    344  *                    Emit primitives as inline vertices               *
    345  ***********************************************************************/
    346 
    347 #ifdef __i386__
    348 #define COPY_DWORDS( j, vb, vertsize, v )			\
    349 do {								\
    350    int __tmp;							\
    351    __asm__ __volatile__( "rep ; movsl"				\
    352 			 : "=%c" (j), "=D" (vb), "=S" (__tmp)	\
    353 			 : "0" (vertsize),			\
    354 			 "D" ((long)vb),			\
    355 			 "S" ((long)v) );			\
    356 } while (0)
    357 #else
    358 #define COPY_DWORDS( j, vb, vertsize, v )	\
    359 do {						\
    360    for ( j = 0 ; j < vertsize ; j++ ) {		\
    361       vb[j] = ((GLuint *)v)[j];			\
    362    }						\
    363    vb += vertsize;				\
    364 } while (0)
    365 #endif
    366 
    367 static void
    368 intel_draw_quad(struct intel_context *intel,
    369                 intelVertexPtr v0,
    370                 intelVertexPtr v1, intelVertexPtr v2, intelVertexPtr v3)
    371 {
    372    GLuint vertsize = intel->vertex_size;
    373    GLuint *vb = intel_get_prim_space(intel, 6);
    374    int j;
    375 
    376    COPY_DWORDS(j, vb, vertsize, v0);
    377    COPY_DWORDS(j, vb, vertsize, v1);
    378 
    379    /* If smooth shading, draw like a trifan which gives better
    380     * rasterization.  Otherwise draw as two triangles with provoking
    381     * vertex in third position as required for flat shading.
    382     */
    383    if (intel->ctx.Light.ShadeModel == GL_FLAT) {
    384       COPY_DWORDS(j, vb, vertsize, v3);
    385       COPY_DWORDS(j, vb, vertsize, v1);
    386    }
    387    else {
    388       COPY_DWORDS(j, vb, vertsize, v2);
    389       COPY_DWORDS(j, vb, vertsize, v0);
    390    }
    391 
    392    COPY_DWORDS(j, vb, vertsize, v2);
    393    COPY_DWORDS(j, vb, vertsize, v3);
    394 }
    395 
    396 static void
    397 intel_draw_triangle(struct intel_context *intel,
    398                     intelVertexPtr v0, intelVertexPtr v1, intelVertexPtr v2)
    399 {
    400    GLuint vertsize = intel->vertex_size;
    401    GLuint *vb = intel_get_prim_space(intel, 3);
    402    int j;
    403 
    404    COPY_DWORDS(j, vb, vertsize, v0);
    405    COPY_DWORDS(j, vb, vertsize, v1);
    406    COPY_DWORDS(j, vb, vertsize, v2);
    407 }
    408 
    409 
    410 static void
    411 intel_draw_line(struct intel_context *intel,
    412                 intelVertexPtr v0, intelVertexPtr v1)
    413 {
    414    GLuint vertsize = intel->vertex_size;
    415    GLuint *vb = intel_get_prim_space(intel, 2);
    416    int j;
    417 
    418    COPY_DWORDS(j, vb, vertsize, v0);
    419    COPY_DWORDS(j, vb, vertsize, v1);
    420 }
    421 
    422 
    423 static void
    424 intel_draw_point(struct intel_context *intel, intelVertexPtr v0)
    425 {
    426    GLuint vertsize = intel->vertex_size;
    427    GLuint *vb = intel_get_prim_space(intel, 1);
    428    int j;
    429 
    430    COPY_DWORDS(j, vb, vertsize, v0);
    431 }
    432 
    433 
    434 
    435 /***********************************************************************
    436  *                Fixup for ARB_point_parameters                       *
    437  ***********************************************************************/
    438 
    439 /* Currently not working - VERT_ATTRIB_POINTSIZE isn't correctly
    440  * represented in the fragment program info.inputs_read field.
    441  */
    442 static void
    443 intel_atten_point(struct intel_context *intel, intelVertexPtr v0)
    444 {
    445    struct gl_context *ctx = &intel->ctx;
    446    GLfloat psz[4], col[4], restore_psz, restore_alpha;
    447 
    448    _tnl_get_attr(ctx, v0, _TNL_ATTRIB_POINTSIZE, psz);
    449    _tnl_get_attr(ctx, v0, _TNL_ATTRIB_COLOR0, col);
    450 
    451    restore_psz = psz[0];
    452    restore_alpha = col[3];
    453 
    454    if (psz[0] >= ctx->Point.Threshold) {
    455       psz[0] = MIN2(psz[0], ctx->Point.MaxSize);
    456    }
    457    else {
    458       GLfloat dsize = psz[0] / ctx->Point.Threshold;
    459       psz[0] = MAX2(ctx->Point.Threshold, ctx->Point.MinSize);
    460       col[3] *= dsize * dsize;
    461    }
    462 
    463    if (psz[0] < 1.0)
    464       psz[0] = 1.0;
    465 
    466    if (restore_psz != psz[0] || restore_alpha != col[3]) {
    467       _tnl_set_attr(ctx, v0, _TNL_ATTRIB_POINTSIZE, psz);
    468       _tnl_set_attr(ctx, v0, _TNL_ATTRIB_COLOR0, col);
    469 
    470       intel_draw_point(intel, v0);
    471 
    472       psz[0] = restore_psz;
    473       col[3] = restore_alpha;
    474 
    475       _tnl_set_attr(ctx, v0, _TNL_ATTRIB_POINTSIZE, psz);
    476       _tnl_set_attr(ctx, v0, _TNL_ATTRIB_COLOR0, col);
    477    }
    478    else
    479       intel_draw_point(intel, v0);
    480 }
    481 
    482 
    483 
    484 
    485 
    486 /***********************************************************************
    487  *                Fixup for I915 WPOS texture coordinate                *
    488  ***********************************************************************/
    489 
    490 static void
    491 intel_emit_fragcoord(struct intel_context *intel, intelVertexPtr v)
    492 {
    493    struct gl_context *ctx = &intel->ctx;
    494    struct gl_framebuffer *fb = ctx->DrawBuffer;
    495    GLuint offset = intel->wpos_offset;
    496    float *vertex_position = (float *)v;
    497    float *fragcoord = (float *)((char *)v + offset);
    498 
    499    fragcoord[0] = vertex_position[0];
    500 
    501    if (_mesa_is_user_fbo(fb))
    502       fragcoord[1] = vertex_position[1];
    503    else
    504       fragcoord[1] = fb->Height - vertex_position[1];
    505 
    506    fragcoord[2] = vertex_position[2];
    507    fragcoord[3] = vertex_position[3];
    508 }
    509 
    510 static void
    511 intel_wpos_triangle(struct intel_context *intel,
    512                     intelVertexPtr v0, intelVertexPtr v1, intelVertexPtr v2)
    513 {
    514    intel_emit_fragcoord(intel, v0);
    515    intel_emit_fragcoord(intel, v1);
    516    intel_emit_fragcoord(intel, v2);
    517 
    518    intel_draw_triangle(intel, v0, v1, v2);
    519 }
    520 
    521 
    522 static void
    523 intel_wpos_line(struct intel_context *intel,
    524                 intelVertexPtr v0, intelVertexPtr v1)
    525 {
    526    intel_emit_fragcoord(intel, v0);
    527    intel_emit_fragcoord(intel, v1);
    528    intel_draw_line(intel, v0, v1);
    529 }
    530 
    531 
    532 static void
    533 intel_wpos_point(struct intel_context *intel, intelVertexPtr v0)
    534 {
    535    intel_emit_fragcoord(intel, v0);
    536    intel_draw_point(intel, v0);
    537 }
    538 
    539 
    540 
    541 
    542 
    543 
    544 /***********************************************************************
    545  *          Macros for t_dd_tritmp.h to draw basic primitives          *
    546  ***********************************************************************/
    547 
    548 #define TRI( a, b, c )				\
    549 do { 						\
    550    if (DO_FALLBACK)				\
    551       intel->draw_tri( intel, a, b, c );	\
    552    else						\
    553       intel_draw_triangle( intel, a, b, c );	\
    554 } while (0)
    555 
    556 #define QUAD( a, b, c, d )			\
    557 do { 						\
    558    if (DO_FALLBACK) {				\
    559       intel->draw_tri( intel, a, b, d );	\
    560       intel->draw_tri( intel, b, c, d );	\
    561    } else					\
    562       intel_draw_quad( intel, a, b, c, d );	\
    563 } while (0)
    564 
    565 #define LINE( v0, v1 )				\
    566 do { 						\
    567    if (DO_FALLBACK)				\
    568       intel->draw_line( intel, v0, v1 );	\
    569    else						\
    570       intel_draw_line( intel, v0, v1 );		\
    571 } while (0)
    572 
    573 #define POINT( v0 )				\
    574 do { 						\
    575    if (DO_FALLBACK)				\
    576       intel->draw_point( intel, v0 );		\
    577    else						\
    578       intel_draw_point( intel, v0 );		\
    579 } while (0)
    580 
    581 
    582 /***********************************************************************
    583  *              Build render functions from dd templates               *
    584  ***********************************************************************/
    585 
    586 #define INTEL_OFFSET_BIT 	0x01
    587 #define INTEL_TWOSIDE_BIT	0x02
    588 #define INTEL_UNFILLED_BIT	0x04
    589 #define INTEL_FALLBACK_BIT	0x08
    590 #define INTEL_MAX_TRIFUNC	0x10
    591 
    592 
    593 static struct
    594 {
    595    tnl_points_func points;
    596    tnl_line_func line;
    597    tnl_triangle_func triangle;
    598    tnl_quad_func quad;
    599 } rast_tab[INTEL_MAX_TRIFUNC];
    600 
    601 
    602 #define DO_FALLBACK ((IND & INTEL_FALLBACK_BIT) != 0)
    603 #define DO_OFFSET   ((IND & INTEL_OFFSET_BIT) != 0)
    604 #define DO_UNFILLED ((IND & INTEL_UNFILLED_BIT) != 0)
    605 #define DO_TWOSIDE  ((IND & INTEL_TWOSIDE_BIT) != 0)
    606 #define DO_FLAT      0
    607 #define DO_TRI       1
    608 #define DO_QUAD      1
    609 #define DO_LINE      1
    610 #define DO_POINTS    1
    611 #define DO_FULL_QUAD 1
    612 
    613 #define HAVE_SPEC         1
    614 #define HAVE_BACK_COLORS  0
    615 #define HAVE_HW_FLATSHADE 1
    616 #define VERTEX            intelVertex
    617 #define TAB               rast_tab
    618 
    619 /* Only used to pull back colors into vertices (ie, we know color is
    620  * floating point).
    621  */
    622 #define INTEL_COLOR( dst, src )				\
    623 do {							\
    624    UNCLAMPED_FLOAT_TO_UBYTE((dst)[0], (src)[2]);	\
    625    UNCLAMPED_FLOAT_TO_UBYTE((dst)[1], (src)[1]);	\
    626    UNCLAMPED_FLOAT_TO_UBYTE((dst)[2], (src)[0]);	\
    627    UNCLAMPED_FLOAT_TO_UBYTE((dst)[3], (src)[3]);	\
    628 } while (0)
    629 
    630 #define INTEL_SPEC( dst, src )				\
    631 do {							\
    632    UNCLAMPED_FLOAT_TO_UBYTE((dst)[0], (src)[2]);	\
    633    UNCLAMPED_FLOAT_TO_UBYTE((dst)[1], (src)[1]);	\
    634    UNCLAMPED_FLOAT_TO_UBYTE((dst)[2], (src)[0]);	\
    635 } while (0)
    636 
    637 
    638 #define DEPTH_SCALE (ctx->DrawBuffer->Visual.depthBits == 16 ? 1.0 : 2.0)
    639 #define UNFILLED_TRI unfilled_tri
    640 #define UNFILLED_QUAD unfilled_quad
    641 #define VERT_X(_v) _v->v.x
    642 #define VERT_Y(_v) _v->v.y
    643 #define VERT_Z(_v) _v->v.z
    644 #define AREA_IS_CCW( a ) (a > 0)
    645 #define GET_VERTEX(e) (intel->verts + (e * intel->vertex_size * sizeof(GLuint)))
    646 
    647 #define VERT_SET_RGBA( v, c )    if (coloroffset) INTEL_COLOR( v->ub4[coloroffset], c )
    648 #define VERT_COPY_RGBA( v0, v1 ) if (coloroffset) v0->ui[coloroffset] = v1->ui[coloroffset]
    649 #define VERT_SAVE_RGBA( idx )    if (coloroffset) color[idx] = v[idx]->ui[coloroffset]
    650 #define VERT_RESTORE_RGBA( idx ) if (coloroffset) v[idx]->ui[coloroffset] = color[idx]
    651 
    652 #define VERT_SET_SPEC( v, c )    if (specoffset) INTEL_SPEC( v->ub4[specoffset], c )
    653 #define VERT_COPY_SPEC( v0, v1 ) if (specoffset) COPY_3V(v0->ub4[specoffset], v1->ub4[specoffset])
    654 #define VERT_SAVE_SPEC( idx )    if (specoffset) spec[idx] = v[idx]->ui[specoffset]
    655 #define VERT_RESTORE_SPEC( idx ) if (specoffset) v[idx]->ui[specoffset] = spec[idx]
    656 
    657 #define LOCAL_VARS(n)							\
    658    struct intel_context *intel = intel_context(ctx);			\
    659    GLuint color[n] = { 0, }, spec[n] = { 0, };				\
    660    GLuint coloroffset = intel->coloroffset;				\
    661    GLuint specoffset = intel->specoffset;				\
    662    (void) color; (void) spec; (void) coloroffset; (void) specoffset;
    663 
    664 
    665 /***********************************************************************
    666  *                Helpers for rendering unfilled primitives            *
    667  ***********************************************************************/
    668 
    669 static const GLuint hw_prim[GL_POLYGON + 1] = {
    670    [GL_POINTS] = PRIM3D_POINTLIST,
    671    [GL_LINES] = PRIM3D_LINELIST,
    672    [GL_LINE_LOOP] = PRIM3D_LINELIST,
    673    [GL_LINE_STRIP] = PRIM3D_LINELIST,
    674    [GL_TRIANGLES] = PRIM3D_TRILIST,
    675    [GL_TRIANGLE_STRIP] = PRIM3D_TRILIST,
    676    [GL_TRIANGLE_FAN] = PRIM3D_TRILIST,
    677    [GL_QUADS] = PRIM3D_TRILIST,
    678    [GL_QUAD_STRIP] = PRIM3D_TRILIST,
    679    [GL_POLYGON] = PRIM3D_TRILIST,
    680 };
    681 
    682 #define RASTERIZE(x) intelRasterPrimitive( ctx, x, hw_prim[x] )
    683 #define RENDER_PRIMITIVE intel->render_primitive
    684 #define TAG(x) x
    685 #define IND INTEL_FALLBACK_BIT
    686 #include "tnl_dd/t_dd_unfilled.h"
    687 #undef IND
    688 
    689 /***********************************************************************
    690  *                      Generate GL render functions                   *
    691  ***********************************************************************/
    692 
    693 #define IND (0)
    694 #define TAG(x) x
    695 #include "tnl_dd/t_dd_tritmp.h"
    696 
    697 #define IND (INTEL_OFFSET_BIT)
    698 #define TAG(x) x##_offset
    699 #include "tnl_dd/t_dd_tritmp.h"
    700 
    701 #define IND (INTEL_TWOSIDE_BIT)
    702 #define TAG(x) x##_twoside
    703 #include "tnl_dd/t_dd_tritmp.h"
    704 
    705 #define IND (INTEL_TWOSIDE_BIT|INTEL_OFFSET_BIT)
    706 #define TAG(x) x##_twoside_offset
    707 #include "tnl_dd/t_dd_tritmp.h"
    708 
    709 #define IND (INTEL_UNFILLED_BIT)
    710 #define TAG(x) x##_unfilled
    711 #include "tnl_dd/t_dd_tritmp.h"
    712 
    713 #define IND (INTEL_OFFSET_BIT|INTEL_UNFILLED_BIT)
    714 #define TAG(x) x##_offset_unfilled
    715 #include "tnl_dd/t_dd_tritmp.h"
    716 
    717 #define IND (INTEL_TWOSIDE_BIT|INTEL_UNFILLED_BIT)
    718 #define TAG(x) x##_twoside_unfilled
    719 #include "tnl_dd/t_dd_tritmp.h"
    720 
    721 #define IND (INTEL_TWOSIDE_BIT|INTEL_OFFSET_BIT|INTEL_UNFILLED_BIT)
    722 #define TAG(x) x##_twoside_offset_unfilled
    723 #include "tnl_dd/t_dd_tritmp.h"
    724 
    725 #define IND (INTEL_FALLBACK_BIT)
    726 #define TAG(x) x##_fallback
    727 #include "tnl_dd/t_dd_tritmp.h"
    728 
    729 #define IND (INTEL_OFFSET_BIT|INTEL_FALLBACK_BIT)
    730 #define TAG(x) x##_offset_fallback
    731 #include "tnl_dd/t_dd_tritmp.h"
    732 
    733 #define IND (INTEL_TWOSIDE_BIT|INTEL_FALLBACK_BIT)
    734 #define TAG(x) x##_twoside_fallback
    735 #include "tnl_dd/t_dd_tritmp.h"
    736 
    737 #define IND (INTEL_TWOSIDE_BIT|INTEL_OFFSET_BIT|INTEL_FALLBACK_BIT)
    738 #define TAG(x) x##_twoside_offset_fallback
    739 #include "tnl_dd/t_dd_tritmp.h"
    740 
    741 #define IND (INTEL_UNFILLED_BIT|INTEL_FALLBACK_BIT)
    742 #define TAG(x) x##_unfilled_fallback
    743 #include "tnl_dd/t_dd_tritmp.h"
    744 
    745 #define IND (INTEL_OFFSET_BIT|INTEL_UNFILLED_BIT|INTEL_FALLBACK_BIT)
    746 #define TAG(x) x##_offset_unfilled_fallback
    747 #include "tnl_dd/t_dd_tritmp.h"
    748 
    749 #define IND (INTEL_TWOSIDE_BIT|INTEL_UNFILLED_BIT|INTEL_FALLBACK_BIT)
    750 #define TAG(x) x##_twoside_unfilled_fallback
    751 #include "tnl_dd/t_dd_tritmp.h"
    752 
    753 #define IND (INTEL_TWOSIDE_BIT|INTEL_OFFSET_BIT|INTEL_UNFILLED_BIT| \
    754 	     INTEL_FALLBACK_BIT)
    755 #define TAG(x) x##_twoside_offset_unfilled_fallback
    756 #include "tnl_dd/t_dd_tritmp.h"
    757 
    758 
    759 static void
    760 init_rast_tab(void)
    761 {
    762    init();
    763    init_offset();
    764    init_twoside();
    765    init_twoside_offset();
    766    init_unfilled();
    767    init_offset_unfilled();
    768    init_twoside_unfilled();
    769    init_twoside_offset_unfilled();
    770    init_fallback();
    771    init_offset_fallback();
    772    init_twoside_fallback();
    773    init_twoside_offset_fallback();
    774    init_unfilled_fallback();
    775    init_offset_unfilled_fallback();
    776    init_twoside_unfilled_fallback();
    777    init_twoside_offset_unfilled_fallback();
    778 }
    779 
    780 
    781 /***********************************************************************
    782  *                    Rasterization fallback helpers                   *
    783  ***********************************************************************/
    784 
    785 
    786 /* This code is hit only when a mix of accelerated and unaccelerated
    787  * primitives are being drawn, and only for the unaccelerated
    788  * primitives.
    789  */
    790 static void
    791 intel_fallback_tri(struct intel_context *intel,
    792                    intelVertex * v0, intelVertex * v1, intelVertex * v2)
    793 {
    794    struct gl_context *ctx = &intel->ctx;
    795    SWvertex v[3];
    796 
    797    if (0)
    798       fprintf(stderr, "\n%s\n", __func__);
    799 
    800    INTEL_FIREVERTICES(intel);
    801 
    802    _swsetup_Translate(ctx, v0, &v[0]);
    803    _swsetup_Translate(ctx, v1, &v[1]);
    804    _swsetup_Translate(ctx, v2, &v[2]);
    805    _swrast_render_start(ctx);
    806    _swrast_Triangle(ctx, &v[0], &v[1], &v[2]);
    807    _swrast_render_finish(ctx);
    808 }
    809 
    810 
    811 static void
    812 intel_fallback_line(struct intel_context *intel,
    813                     intelVertex * v0, intelVertex * v1)
    814 {
    815    struct gl_context *ctx = &intel->ctx;
    816    SWvertex v[2];
    817 
    818    if (0)
    819       fprintf(stderr, "\n%s\n", __func__);
    820 
    821    INTEL_FIREVERTICES(intel);
    822 
    823    _swsetup_Translate(ctx, v0, &v[0]);
    824    _swsetup_Translate(ctx, v1, &v[1]);
    825    _swrast_render_start(ctx);
    826    _swrast_Line(ctx, &v[0], &v[1]);
    827    _swrast_render_finish(ctx);
    828 }
    829 
    830 static void
    831 intel_fallback_point(struct intel_context *intel,
    832 		     intelVertex * v0)
    833 {
    834    struct gl_context *ctx = &intel->ctx;
    835    SWvertex v[1];
    836 
    837    if (0)
    838       fprintf(stderr, "\n%s\n", __func__);
    839 
    840    INTEL_FIREVERTICES(intel);
    841 
    842    _swsetup_Translate(ctx, v0, &v[0]);
    843    _swrast_render_start(ctx);
    844    _swrast_Point(ctx, &v[0]);
    845    _swrast_render_finish(ctx);
    846 }
    847 
    848 
    849 /**********************************************************************/
    850 /*               Render unclipped begin/end objects                   */
    851 /**********************************************************************/
    852 
    853 #define IND 0
    854 #define V(x) (intelVertex *)(vertptr + ((x)*vertsize*sizeof(GLuint)))
    855 #define RENDER_POINTS( start, count )	\
    856    for ( ; start < count ; start++) POINT( V(ELT(start)) );
    857 #define RENDER_LINE( v0, v1 )         LINE( V(v0), V(v1) )
    858 #define RENDER_TRI(  v0, v1, v2 )     TRI(  V(v0), V(v1), V(v2) )
    859 #define RENDER_QUAD( v0, v1, v2, v3 ) QUAD( V(v0), V(v1), V(v2), V(v3) )
    860 #define INIT(x) intelRenderPrimitive( ctx, x )
    861 #undef LOCAL_VARS
    862 #define LOCAL_VARS						\
    863     struct intel_context *intel = intel_context(ctx);			\
    864     GLubyte *vertptr = (GLubyte *)intel->verts;			\
    865     const GLuint vertsize = intel->vertex_size;       	\
    866     const GLuint * const elt = TNL_CONTEXT(ctx)->vb.Elts;	\
    867     (void) elt;
    868 #define RESET_STIPPLE
    869 #define RESET_OCCLUSION
    870 #define PRESERVE_VB_DEFS
    871 #define ELT(x) x
    872 #define TAG(x) intel_##x##_verts
    873 #include "tnl/t_vb_rendertmp.h"
    874 #undef ELT
    875 #undef TAG
    876 #define TAG(x) intel_##x##_elts
    877 #define ELT(x) elt[x]
    878 #include "tnl/t_vb_rendertmp.h"
    879 
    880 /**********************************************************************/
    881 /*                   Render clipped primitives                        */
    882 /**********************************************************************/
    883 
    884 
    885 
    886 static void
    887 intelRenderClippedPoly(struct gl_context * ctx, const GLuint * elts, GLuint n)
    888 {
    889    struct intel_context *intel = intel_context(ctx);
    890    TNLcontext *tnl = TNL_CONTEXT(ctx);
    891    GLuint prim = intel->render_primitive;
    892 
    893    /* Render the new vertices as an unclipped polygon.
    894     */
    895    _tnl_RenderClippedPolygon(ctx, elts, n);
    896 
    897    /* Restore the render primitive
    898     */
    899    if (prim != GL_POLYGON)
    900       tnl->Driver.Render.PrimitiveNotify(ctx, prim);
    901 }
    902 
    903 static void
    904 intelFastRenderClippedPoly(struct gl_context * ctx, const GLuint * elts, GLuint n)
    905 {
    906    struct intel_context *intel = intel_context(ctx);
    907    const GLuint vertsize = intel->vertex_size;
    908    GLuint *vb = intel_get_prim_space(intel, (n - 2) * 3);
    909    GLubyte *vertptr = (GLubyte *) intel->verts;
    910    const GLuint *start = (const GLuint *) V(elts[0]);
    911    int i, j;
    912 
    913    if (ctx->Light.ProvokingVertex == GL_LAST_VERTEX_CONVENTION) {
    914       for (i = 2; i < n; i++) {
    915          COPY_DWORDS(j, vb, vertsize, V(elts[i - 1]));
    916          COPY_DWORDS(j, vb, vertsize, V(elts[i]));
    917          COPY_DWORDS(j, vb, vertsize, start);
    918       }
    919    } else {
    920       for (i = 2; i < n; i++) {
    921          COPY_DWORDS(j, vb, vertsize, start);
    922          COPY_DWORDS(j, vb, vertsize, V(elts[i - 1]));
    923          COPY_DWORDS(j, vb, vertsize, V(elts[i]));
    924       }
    925    }
    926 }
    927 
    928 /**********************************************************************/
    929 /*                    Choose render functions                         */
    930 /**********************************************************************/
    931 
    932 
    933 #define DD_TRI_LIGHT_TWOSIDE (1 << 1)
    934 #define DD_TRI_UNFILLED (1 << 2)
    935 #define DD_TRI_STIPPLE  (1 << 4)
    936 #define DD_TRI_OFFSET   (1 << 5)
    937 #define DD_LINE_STIPPLE (1 << 7)
    938 #define DD_POINT_ATTEN  (1 << 9)
    939 
    940 #define ANY_FALLBACK_FLAGS (DD_LINE_STIPPLE | DD_TRI_STIPPLE | DD_POINT_ATTEN)
    941 #define ANY_RASTER_FLAGS (DD_TRI_LIGHT_TWOSIDE | DD_TRI_OFFSET | DD_TRI_UNFILLED)
    942 
    943 void
    944 intelChooseRenderState(struct gl_context * ctx)
    945 {
    946    TNLcontext *tnl = TNL_CONTEXT(ctx);
    947    struct intel_context *intel = intel_context(ctx);
    948    GLuint flags =
    949       ((ctx->Light.Enabled &&
    950         ctx->Light.Model.TwoSide) ? DD_TRI_LIGHT_TWOSIDE : 0) |
    951       ((ctx->Polygon.FrontMode != GL_FILL ||
    952         ctx->Polygon.BackMode != GL_FILL) ? DD_TRI_UNFILLED : 0) |
    953       (ctx->Polygon.StippleFlag ? DD_TRI_STIPPLE : 0) |
    954       ((ctx->Polygon.OffsetPoint ||
    955         ctx->Polygon.OffsetLine ||
    956         ctx->Polygon.OffsetFill) ? DD_TRI_OFFSET : 0) |
    957       (ctx->Line.StippleFlag ? DD_LINE_STIPPLE : 0) |
    958       (ctx->Point._Attenuated ? DD_POINT_ATTEN : 0);
    959    const struct gl_program *fprog = ctx->FragmentProgram._Current;
    960    bool have_wpos = (fprog && (fprog->info.inputs_read & VARYING_BIT_POS));
    961    GLuint index = 0;
    962 
    963    if (INTEL_DEBUG & DEBUG_STATE)
    964       fprintf(stderr, "\n%s\n", __func__);
    965 
    966    if ((flags & (ANY_FALLBACK_FLAGS | ANY_RASTER_FLAGS)) || have_wpos) {
    967 
    968       if (flags & ANY_RASTER_FLAGS) {
    969          if (flags & DD_TRI_LIGHT_TWOSIDE)
    970             index |= INTEL_TWOSIDE_BIT;
    971          if (flags & DD_TRI_OFFSET)
    972             index |= INTEL_OFFSET_BIT;
    973          if (flags & DD_TRI_UNFILLED)
    974             index |= INTEL_UNFILLED_BIT;
    975       }
    976 
    977       if (have_wpos) {
    978          intel->draw_point = intel_wpos_point;
    979          intel->draw_line = intel_wpos_line;
    980          intel->draw_tri = intel_wpos_triangle;
    981 
    982          /* Make sure these get called:
    983           */
    984          index |= INTEL_FALLBACK_BIT;
    985       }
    986       else {
    987          intel->draw_point = intel_draw_point;
    988          intel->draw_line = intel_draw_line;
    989          intel->draw_tri = intel_draw_triangle;
    990       }
    991 
    992       /* Hook in fallbacks for specific primitives.
    993        */
    994       if (flags & ANY_FALLBACK_FLAGS) {
    995          if (flags & DD_LINE_STIPPLE)
    996             intel->draw_line = intel_fallback_line;
    997 
    998          if ((flags & DD_TRI_STIPPLE) && !intel->hw_stipple)
    999             intel->draw_tri = intel_fallback_tri;
   1000 
   1001          if (flags & DD_POINT_ATTEN) {
   1002 	    if (0)
   1003 	       intel->draw_point = intel_atten_point;
   1004 	    else
   1005 	       intel->draw_point = intel_fallback_point;
   1006 	 }
   1007 
   1008          index |= INTEL_FALLBACK_BIT;
   1009       }
   1010    }
   1011 
   1012    if (intel->RenderIndex != index) {
   1013       intel->RenderIndex = index;
   1014 
   1015       tnl->Driver.Render.Points = rast_tab[index].points;
   1016       tnl->Driver.Render.Line = rast_tab[index].line;
   1017       tnl->Driver.Render.Triangle = rast_tab[index].triangle;
   1018       tnl->Driver.Render.Quad = rast_tab[index].quad;
   1019 
   1020       if (index == 0) {
   1021          tnl->Driver.Render.PrimTabVerts = intel_render_tab_verts;
   1022          tnl->Driver.Render.PrimTabElts = intel_render_tab_elts;
   1023          tnl->Driver.Render.ClippedLine = line; /* from tritmp.h */
   1024          tnl->Driver.Render.ClippedPolygon = intelFastRenderClippedPoly;
   1025       }
   1026       else {
   1027          tnl->Driver.Render.PrimTabVerts = _tnl_render_tab_verts;
   1028          tnl->Driver.Render.PrimTabElts = _tnl_render_tab_elts;
   1029          tnl->Driver.Render.ClippedLine = _tnl_RenderClippedLine;
   1030          tnl->Driver.Render.ClippedPolygon = intelRenderClippedPoly;
   1031       }
   1032    }
   1033 }
   1034 
   1035 static const GLenum reduced_prim[GL_POLYGON + 1] = {
   1036    [GL_POINTS] = GL_POINTS,
   1037    [GL_LINES] = GL_LINES,
   1038    [GL_LINE_LOOP] = GL_LINES,
   1039    [GL_LINE_STRIP] = GL_LINES,
   1040    [GL_TRIANGLES] = GL_TRIANGLES,
   1041    [GL_TRIANGLE_STRIP] = GL_TRIANGLES,
   1042    [GL_TRIANGLE_FAN] = GL_TRIANGLES,
   1043    [GL_QUADS] = GL_TRIANGLES,
   1044    [GL_QUAD_STRIP] = GL_TRIANGLES,
   1045    [GL_POLYGON] = GL_TRIANGLES
   1046 };
   1047 
   1048 
   1049 /**********************************************************************/
   1050 /*                 High level hooks for t_vb_render.c                 */
   1051 /**********************************************************************/
   1052 
   1053 
   1054 
   1055 
   1056 static void
   1057 intelRunPipeline(struct gl_context * ctx)
   1058 {
   1059    struct intel_context *intel = intel_context(ctx);
   1060 
   1061    _mesa_lock_context_textures(ctx);
   1062 
   1063    if (ctx->NewState)
   1064       _mesa_update_state_locked(ctx);
   1065 
   1066    /* We need to get this done before we start the pipeline, or a
   1067     * change in the INTEL_FALLBACK() of its intel_draw_buffers() call
   1068     * while the pipeline is running will result in mismatched swrast
   1069     * map/unmaps, and later assertion failures.
   1070     */
   1071    intel_prepare_render(intel);
   1072 
   1073    if (intel->NewGLState) {
   1074       if (intel->NewGLState & _NEW_TEXTURE) {
   1075          intel->vtbl.update_texture_state(intel);
   1076       }
   1077 
   1078       if (!intel->Fallback) {
   1079          if (intel->NewGLState & _INTEL_NEW_RENDERSTATE)
   1080             intelChooseRenderState(ctx);
   1081       }
   1082 
   1083       intel->NewGLState = 0;
   1084    }
   1085 
   1086    intel->tnl_pipeline_running = true;
   1087    _tnl_run_pipeline(ctx);
   1088    intel->tnl_pipeline_running = false;
   1089 
   1090    _mesa_unlock_context_textures(ctx);
   1091 }
   1092 
   1093 static void
   1094 intelRenderStart(struct gl_context * ctx)
   1095 {
   1096    struct intel_context *intel = intel_context(ctx);
   1097 
   1098    intel_check_front_buffer_rendering(intel);
   1099    intel->vtbl.render_start(intel_context(ctx));
   1100    intel->vtbl.emit_state(intel);
   1101 }
   1102 
   1103 static void
   1104 intelRenderFinish(struct gl_context * ctx)
   1105 {
   1106    struct intel_context *intel = intel_context(ctx);
   1107 
   1108    if (intel->RenderIndex & INTEL_FALLBACK_BIT)
   1109       _swrast_flush(ctx);
   1110 
   1111    INTEL_FIREVERTICES(intel);
   1112 }
   1113 
   1114 
   1115 
   1116 
   1117  /* System to flush dma and emit state changes based on the rasterized
   1118   * primitive.
   1119   */
   1120 static void
   1121 intelRasterPrimitive(struct gl_context * ctx, GLenum rprim, GLuint hwprim)
   1122 {
   1123    struct intel_context *intel = intel_context(ctx);
   1124 
   1125    if (0)
   1126       fprintf(stderr, "%s %s %x\n", __func__,
   1127               _mesa_enum_to_string(rprim), hwprim);
   1128 
   1129    intel->vtbl.reduced_primitive_state(intel, rprim);
   1130 
   1131    /* Start a new primitive.  Arrange to have it flushed later on.
   1132     */
   1133    if (hwprim != intel->prim.primitive) {
   1134       INTEL_FIREVERTICES(intel);
   1135 
   1136       intel_set_prim(intel, hwprim);
   1137    }
   1138 }
   1139 
   1140 
   1141  /*
   1142   */
   1143 static void
   1144 intelRenderPrimitive(struct gl_context * ctx, GLenum prim)
   1145 {
   1146    struct intel_context *intel = intel_context(ctx);
   1147    GLboolean unfilled = (ctx->Polygon.FrontMode != GL_FILL ||
   1148                          ctx->Polygon.BackMode != GL_FILL);
   1149 
   1150    if (0)
   1151       fprintf(stderr, "%s %s\n", __func__, _mesa_enum_to_string(prim));
   1152 
   1153    /* Let some clipping routines know which primitive they're dealing
   1154     * with.
   1155     */
   1156    intel->render_primitive = prim;
   1157 
   1158    /* Shortcircuit this when called for unfilled triangles.  The rasterized
   1159     * primitive will always be reset by lower level functions in that case,
   1160     * potentially pingponging the state:
   1161     */
   1162    if (reduced_prim[prim] == GL_TRIANGLES && unfilled)
   1163       return;
   1164 
   1165    /* Set some primitive-dependent state and Start? a new primitive.
   1166     */
   1167    intelRasterPrimitive(ctx, reduced_prim[prim], hw_prim[prim]);
   1168 }
   1169 
   1170 
   1171  /**********************************************************************/
   1172  /*           Transition to/from hardware rasterization.               */
   1173  /**********************************************************************/
   1174 
   1175 static char *fallbackStrings[] = {
   1176    [0] = "Draw buffer",
   1177    [1] = "Read buffer",
   1178    [2] = "Depth buffer",
   1179    [3] = "Stencil buffer",
   1180    [4] = "User disable",
   1181    [5] = "Render mode",
   1182 
   1183    [12] = "Texture",
   1184    [13] = "Color mask",
   1185    [14] = "Stencil",
   1186    [15] = "Stipple",
   1187    [16] = "Program",
   1188    [17] = "Logic op",
   1189    [18] = "Smooth polygon",
   1190    [19] = "Smooth point",
   1191    [20] = "point sprite coord origin",
   1192    [21] = "depth/color drawing offset",
   1193    [22] = "coord replace(SPRITE POINT ENABLE)",
   1194 };
   1195 
   1196 
   1197 static char *
   1198 getFallbackString(GLuint bit)
   1199 {
   1200    int i = 0;
   1201    while (bit > 1) {
   1202       i++;
   1203       bit >>= 1;
   1204    }
   1205    return fallbackStrings[i];
   1206 }
   1207 
   1208 
   1209 
   1210 /**
   1211  * Enable/disable a fallback flag.
   1212  * \param bit  one of INTEL_FALLBACK_x flags.
   1213  */
   1214 void
   1215 intelFallback(struct intel_context *intel, GLbitfield bit, bool mode)
   1216 {
   1217    struct gl_context *ctx = &intel->ctx;
   1218    TNLcontext *tnl = TNL_CONTEXT(ctx);
   1219    const GLbitfield oldfallback = intel->Fallback;
   1220 
   1221    if (mode) {
   1222       intel->Fallback |= bit;
   1223       if (oldfallback == 0) {
   1224 	 assert(!intel->tnl_pipeline_running);
   1225 
   1226          intel_flush(ctx);
   1227          if (INTEL_DEBUG & DEBUG_PERF)
   1228             fprintf(stderr, "ENTER FALLBACK %x: %s\n",
   1229                     bit, getFallbackString(bit));
   1230          _swsetup_Wakeup(ctx);
   1231          intel->RenderIndex = ~0;
   1232       }
   1233    }
   1234    else {
   1235       intel->Fallback &= ~bit;
   1236       if (oldfallback == bit) {
   1237 	 assert(!intel->tnl_pipeline_running);
   1238 
   1239          _swrast_flush(ctx);
   1240          if (INTEL_DEBUG & DEBUG_PERF)
   1241             fprintf(stderr, "LEAVE FALLBACK %s\n", getFallbackString(bit));
   1242          tnl->Driver.Render.Start = intelRenderStart;
   1243          tnl->Driver.Render.PrimitiveNotify = intelRenderPrimitive;
   1244          tnl->Driver.Render.Finish = intelRenderFinish;
   1245          tnl->Driver.Render.BuildVertices = _tnl_build_vertices;
   1246          tnl->Driver.Render.CopyPV = _tnl_copy_pv;
   1247          tnl->Driver.Render.Interp = _tnl_interp;
   1248 
   1249          _tnl_invalidate_vertex_state(ctx, ~0);
   1250          _tnl_invalidate_vertices(ctx, ~0);
   1251          _tnl_install_attrs(ctx,
   1252                             intel->vertex_attrs,
   1253                             intel->vertex_attr_count,
   1254                             intel->ViewportMatrix.m, 0);
   1255 
   1256          intel->NewGLState |= _INTEL_NEW_RENDERSTATE;
   1257       }
   1258    }
   1259 }
   1260 
   1261 /**********************************************************************/
   1262 /*                            Initialization.                         */
   1263 /**********************************************************************/
   1264 
   1265 
   1266 void
   1267 intelInitTriFuncs(struct gl_context * ctx)
   1268 {
   1269    TNLcontext *tnl = TNL_CONTEXT(ctx);
   1270    static int firsttime = 1;
   1271 
   1272    if (firsttime) {
   1273       init_rast_tab();
   1274       firsttime = 0;
   1275    }
   1276 
   1277    tnl->Driver.RunPipeline = intelRunPipeline;
   1278    tnl->Driver.Render.Start = intelRenderStart;
   1279    tnl->Driver.Render.Finish = intelRenderFinish;
   1280    tnl->Driver.Render.PrimitiveNotify = intelRenderPrimitive;
   1281    tnl->Driver.Render.ResetLineStipple = _swrast_ResetLineStipple;
   1282    tnl->Driver.Render.BuildVertices = _tnl_build_vertices;
   1283    tnl->Driver.Render.CopyPV = _tnl_copy_pv;
   1284    tnl->Driver.Render.Interp = _tnl_interp;
   1285 }
   1286