Home | History | Annotate | Download | only in i965
      1 /*
      2  * Copyright (c) 2016 Intel Corporation
      3  *
      4  * Permission is hereby granted, free of charge, to any person obtaining a
      5  * copy of this software and associated documentation files (the "Software"),
      6  * to deal in the Software without restriction, including without limitation
      7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8  * and/or sell copies of the Software, and to permit persons to whom the
      9  * Software is furnished to do so, subject to the following conditions:
     10  *
     11  * The above copyright notice and this permission notice (including the next
     12  * paragraph) shall be included in all copies or substantial portions of the
     13  * Software.
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     21  * IN THE SOFTWARE.
     22  *
     23  */
     24 
     25 /** @file hsw_queryobj.c
     26  *
     27  * Support for query buffer objects (GL_ARB_query_buffer_object) on Haswell+.
     28  */
     29 #include "main/imports.h"
     30 
     31 #include "brw_context.h"
     32 #include "brw_defines.h"
     33 #include "intel_batchbuffer.h"
     34 #include "intel_buffer_objects.h"
     35 
     36 /*
     37  * GPR0 = 80 * GPR0;
     38  */
     39 static void
     40 mult_gpr0_by_80(struct brw_context *brw)
     41 {
     42    static const uint32_t maths[] = {
     43       MI_MATH_ALU2(LOAD, SRCA, R0),
     44       MI_MATH_ALU2(LOAD, SRCB, R0),
     45       MI_MATH_ALU0(ADD),
     46       MI_MATH_ALU2(STORE, R1, ACCU),
     47       MI_MATH_ALU2(LOAD, SRCA, R1),
     48       MI_MATH_ALU2(LOAD, SRCB, R1),
     49       MI_MATH_ALU0(ADD),
     50       MI_MATH_ALU2(STORE, R1, ACCU),
     51       MI_MATH_ALU2(LOAD, SRCA, R1),
     52       MI_MATH_ALU2(LOAD, SRCB, R1),
     53       MI_MATH_ALU0(ADD),
     54       MI_MATH_ALU2(STORE, R1, ACCU),
     55       MI_MATH_ALU2(LOAD, SRCA, R1),
     56       MI_MATH_ALU2(LOAD, SRCB, R1),
     57       MI_MATH_ALU0(ADD),
     58       /* GPR1 = 16 * GPR0 */
     59       MI_MATH_ALU2(STORE, R1, ACCU),
     60       MI_MATH_ALU2(LOAD, SRCA, R1),
     61       MI_MATH_ALU2(LOAD, SRCB, R1),
     62       MI_MATH_ALU0(ADD),
     63       MI_MATH_ALU2(STORE, R2, ACCU),
     64       MI_MATH_ALU2(LOAD, SRCA, R2),
     65       MI_MATH_ALU2(LOAD, SRCB, R2),
     66       MI_MATH_ALU0(ADD),
     67       /* GPR2 = 64 * GPR0 */
     68       MI_MATH_ALU2(STORE, R2, ACCU),
     69       MI_MATH_ALU2(LOAD, SRCA, R1),
     70       MI_MATH_ALU2(LOAD, SRCB, R2),
     71       MI_MATH_ALU0(ADD),
     72       /* GPR0 = 80 * GPR0 */
     73       MI_MATH_ALU2(STORE, R0, ACCU),
     74    };
     75 
     76    BEGIN_BATCH(1 + ARRAY_SIZE(maths));
     77    OUT_BATCH(HSW_MI_MATH | (1 + ARRAY_SIZE(maths) - 2));
     78 
     79    for (int m = 0; m < ARRAY_SIZE(maths); m++)
     80       OUT_BATCH(maths[m]);
     81 
     82    ADVANCE_BATCH();
     83 }
     84 
     85 /*
     86  * GPR0 = GPR0 & ((1ull << n) - 1);
     87  */
     88 static void
     89 keep_gpr0_lower_n_bits(struct brw_context *brw, uint32_t n)
     90 {
     91    static const uint32_t maths[] = {
     92       MI_MATH_ALU2(LOAD, SRCA, R0),
     93       MI_MATH_ALU2(LOAD, SRCB, R1),
     94       MI_MATH_ALU0(AND),
     95       MI_MATH_ALU2(STORE, R0, ACCU),
     96    };
     97 
     98    assert(n < 64);
     99    brw_load_register_imm64(brw, HSW_CS_GPR(1), (1ull << n) - 1);
    100 
    101    BEGIN_BATCH(1 + ARRAY_SIZE(maths));
    102    OUT_BATCH(HSW_MI_MATH | (1 + ARRAY_SIZE(maths) - 2));
    103 
    104    for (int m = 0; m < ARRAY_SIZE(maths); m++)
    105       OUT_BATCH(maths[m]);
    106 
    107    ADVANCE_BATCH();
    108 }
    109 
    110 /*
    111  * GPR0 = GPR0 << 30;
    112  */
    113 static void
    114 shl_gpr0_by_30_bits(struct brw_context *brw)
    115 {
    116    /* First we mask 34 bits of GPR0 to prevent overflow */
    117    keep_gpr0_lower_n_bits(brw, 34);
    118 
    119    static const uint32_t shl_maths[] = {
    120       MI_MATH_ALU2(LOAD, SRCA, R0),
    121       MI_MATH_ALU2(LOAD, SRCB, R0),
    122       MI_MATH_ALU0(ADD),
    123       MI_MATH_ALU2(STORE, R0, ACCU),
    124    };
    125 
    126    const uint32_t outer_count = 5;
    127    const uint32_t inner_count = 6;
    128    STATIC_ASSERT(outer_count * inner_count == 30);
    129    const uint32_t cmd_len = 1 + inner_count * ARRAY_SIZE(shl_maths);
    130    const uint32_t batch_len = cmd_len * outer_count;
    131 
    132    BEGIN_BATCH(batch_len);
    133 
    134    /* We'll emit 5 commands, each shifting GPR0 left by 6 bits, for a total of
    135     * 30 left shifts.
    136     */
    137    for (int o = 0; o < outer_count; o++) {
    138       /* Submit one MI_MATH to shift left by 6 bits */
    139       OUT_BATCH(HSW_MI_MATH | (cmd_len - 2));
    140       for (int i = 0; i < inner_count; i++)
    141          for (int m = 0; m < ARRAY_SIZE(shl_maths); m++)
    142             OUT_BATCH(shl_maths[m]);
    143    }
    144 
    145    ADVANCE_BATCH();
    146 }
    147 
    148 /*
    149  * GPR0 = GPR0 >> 2;
    150  *
    151  * Note that the upper 30 bits of GPR0 are lost!
    152  */
    153 static void
    154 shr_gpr0_by_2_bits(struct brw_context *brw)
    155 {
    156    shl_gpr0_by_30_bits(brw);
    157    brw_load_register_reg(brw, HSW_CS_GPR(0) + 4, HSW_CS_GPR(0));
    158    brw_load_register_imm32(brw, HSW_CS_GPR(0) + 4, 0);
    159 }
    160 
    161 /*
    162  * GPR0 = (GPR0 == 0) ? 0 : 1;
    163  */
    164 static void
    165 gpr0_to_bool(struct brw_context *brw)
    166 {
    167    static const uint32_t maths[] = {
    168       MI_MATH_ALU2(LOAD, SRCA, R0),
    169       MI_MATH_ALU1(LOAD0, SRCB),
    170       MI_MATH_ALU0(ADD),
    171       MI_MATH_ALU2(STOREINV, R0, ZF),
    172       MI_MATH_ALU2(LOAD, SRCA, R0),
    173       MI_MATH_ALU2(LOAD, SRCB, R1),
    174       MI_MATH_ALU0(AND),
    175       MI_MATH_ALU2(STORE, R0, ACCU),
    176    };
    177 
    178    brw_load_register_imm64(brw, HSW_CS_GPR(1), 1ull);
    179 
    180    BEGIN_BATCH(1 + ARRAY_SIZE(maths));
    181    OUT_BATCH(HSW_MI_MATH | (1 + ARRAY_SIZE(maths) - 2));
    182 
    183    for (int m = 0; m < ARRAY_SIZE(maths); m++)
    184       OUT_BATCH(maths[m]);
    185 
    186    ADVANCE_BATCH();
    187 }
    188 
    189 static void
    190 load_overflow_data_to_cs_gprs(struct brw_context *brw,
    191                               struct brw_query_object *query,
    192                               int idx)
    193 {
    194    int offset = idx * sizeof(uint64_t) * 4;
    195 
    196    brw_load_register_mem64(brw, HSW_CS_GPR(1), query->bo, offset);
    197 
    198    offset += sizeof(uint64_t);
    199    brw_load_register_mem64(brw, HSW_CS_GPR(2), query->bo, offset);
    200 
    201    offset += sizeof(uint64_t);
    202    brw_load_register_mem64(brw, HSW_CS_GPR(3), query->bo, offset);
    203 
    204    offset += sizeof(uint64_t);
    205    brw_load_register_mem64(brw, HSW_CS_GPR(4), query->bo, offset);
    206 }
    207 
    208 /*
    209  * R3 = R4 - R3;
    210  * R1 = R2 - R1;
    211  * R1 = R3 - R1;
    212  * R0 = R0 | R1;
    213  */
    214 static void
    215 calc_overflow_for_stream(struct brw_context *brw)
    216 {
    217    static const uint32_t maths[] = {
    218       MI_MATH_ALU2(LOAD, SRCA, R4),
    219       MI_MATH_ALU2(LOAD, SRCB, R3),
    220       MI_MATH_ALU0(SUB),
    221       MI_MATH_ALU2(STORE, R3, ACCU),
    222       MI_MATH_ALU2(LOAD, SRCA, R2),
    223       MI_MATH_ALU2(LOAD, SRCB, R1),
    224       MI_MATH_ALU0(SUB),
    225       MI_MATH_ALU2(STORE, R1, ACCU),
    226       MI_MATH_ALU2(LOAD, SRCA, R3),
    227       MI_MATH_ALU2(LOAD, SRCB, R1),
    228       MI_MATH_ALU0(SUB),
    229       MI_MATH_ALU2(STORE, R1, ACCU),
    230       MI_MATH_ALU2(LOAD, SRCA, R1),
    231       MI_MATH_ALU2(LOAD, SRCB, R0),
    232       MI_MATH_ALU0(OR),
    233       MI_MATH_ALU2(STORE, R0, ACCU),
    234    };
    235 
    236    BEGIN_BATCH(1 + ARRAY_SIZE(maths));
    237    OUT_BATCH(HSW_MI_MATH | (1 + ARRAY_SIZE(maths) - 2));
    238 
    239    for (int m = 0; m < ARRAY_SIZE(maths); m++)
    240       OUT_BATCH(maths[m]);
    241 
    242    ADVANCE_BATCH();
    243 }
    244 
    245 static void
    246 calc_overflow_to_gpr0(struct brw_context *brw, struct brw_query_object *query,
    247                        int count)
    248 {
    249    brw_load_register_imm64(brw, HSW_CS_GPR(0), 0ull);
    250 
    251    for (int i = 0; i < count; i++) {
    252       load_overflow_data_to_cs_gprs(brw, query, i);
    253       calc_overflow_for_stream(brw);
    254    }
    255 }
    256 
    257 /*
    258  * Take a query and calculate whether there was overflow during transform
    259  * feedback. Store the result in the gpr0 register.
    260  */
    261 void
    262 hsw_overflow_result_to_gpr0(struct brw_context *brw,
    263                             struct brw_query_object *query,
    264                             int count)
    265 {
    266    calc_overflow_to_gpr0(brw, query, count);
    267    gpr0_to_bool(brw);
    268 }
    269 
    270 static void
    271 hsw_result_to_gpr0(struct gl_context *ctx, struct brw_query_object *query,
    272                    struct gl_buffer_object *buf, intptr_t offset,
    273                    GLenum pname, GLenum ptype)
    274 {
    275    struct brw_context *brw = brw_context(ctx);
    276    const struct gen_device_info *devinfo = &brw->screen->devinfo;
    277 
    278    assert(query->bo);
    279    assert(pname != GL_QUERY_TARGET);
    280 
    281    if (pname == GL_QUERY_RESULT_AVAILABLE) {
    282       /* The query result availability is stored at offset 0 of the buffer. */
    283       brw_load_register_mem64(brw,
    284                               HSW_CS_GPR(0),
    285                               query->bo,
    286                               2 * sizeof(uint64_t));
    287       return;
    288    }
    289 
    290    if (pname == GL_QUERY_RESULT) {
    291       /* Since GL_QUERY_RESULT_NO_WAIT wasn't used, they want us to stall to
    292        * make sure the query is available.
    293        */
    294       brw_emit_pipe_control_flush(brw,
    295                                   PIPE_CONTROL_CS_STALL |
    296                                   PIPE_CONTROL_STALL_AT_SCOREBOARD);
    297    }
    298 
    299    if (query->Base.Target == GL_TIMESTAMP) {
    300       brw_load_register_mem64(brw,
    301                               HSW_CS_GPR(0),
    302                               query->bo,
    303                               0 * sizeof(uint64_t));
    304    } else if (query->Base.Target == GL_TRANSFORM_FEEDBACK_STREAM_OVERFLOW_ARB
    305               || query->Base.Target == GL_TRANSFORM_FEEDBACK_OVERFLOW_ARB) {
    306       /* Don't do anything in advance here, since the math for this is a little
    307        * more complex.
    308        */
    309    } else {
    310       brw_load_register_mem64(brw,
    311                               HSW_CS_GPR(1),
    312                               query->bo,
    313                               0 * sizeof(uint64_t));
    314       brw_load_register_mem64(brw,
    315                               HSW_CS_GPR(2),
    316                               query->bo,
    317                               1 * sizeof(uint64_t));
    318 
    319       BEGIN_BATCH(5);
    320       OUT_BATCH(HSW_MI_MATH | (5 - 2));
    321 
    322       OUT_BATCH(MI_MATH_ALU2(LOAD, SRCA, R2));
    323       OUT_BATCH(MI_MATH_ALU2(LOAD, SRCB, R1));
    324       OUT_BATCH(MI_MATH_ALU0(SUB));
    325       OUT_BATCH(MI_MATH_ALU2(STORE, R0, ACCU));
    326 
    327       ADVANCE_BATCH();
    328    }
    329 
    330    switch (query->Base.Target) {
    331    case GL_FRAGMENT_SHADER_INVOCATIONS_ARB:
    332       /* Implement the "WaDividePSInvocationCountBy4:HSW,BDW" workaround:
    333        * "Invocation counter is 4 times actual.  WA: SW to divide HW reported
    334        *  PS Invocations value by 4."
    335        *
    336        * Prior to Haswell, invocation count was counted by the WM, and it
    337        * buggily counted invocations in units of subspans (2x2 unit). To get the
    338        * correct value, the CS multiplied this by 4. With HSW the logic moved,
    339        * and correctly emitted the number of pixel shader invocations, but,
    340        * whomever forgot to undo the multiply by 4.
    341        */
    342       if (devinfo->gen == 8 || devinfo->is_haswell)
    343          shr_gpr0_by_2_bits(brw);
    344       break;
    345    case GL_TIME_ELAPSED:
    346    case GL_TIMESTAMP:
    347       mult_gpr0_by_80(brw);
    348       if (query->Base.Target == GL_TIMESTAMP) {
    349          keep_gpr0_lower_n_bits(brw, 36);
    350       }
    351       break;
    352    case GL_ANY_SAMPLES_PASSED:
    353    case GL_ANY_SAMPLES_PASSED_CONSERVATIVE:
    354       gpr0_to_bool(brw);
    355       break;
    356    case GL_TRANSFORM_FEEDBACK_STREAM_OVERFLOW_ARB:
    357       hsw_overflow_result_to_gpr0(brw, query, 1);
    358       break;
    359    case GL_TRANSFORM_FEEDBACK_OVERFLOW_ARB:
    360       hsw_overflow_result_to_gpr0(brw, query, MAX_VERTEX_STREAMS);
    361       break;
    362    }
    363 }
    364 
    365 /*
    366  * Store immediate data into the user buffer using the requested size.
    367  */
    368 static void
    369 store_query_result_imm(struct brw_context *brw, struct brw_bo *bo,
    370                        uint32_t offset, GLenum ptype, uint64_t imm)
    371 {
    372    switch (ptype) {
    373    case GL_INT:
    374    case GL_UNSIGNED_INT:
    375       brw_store_data_imm32(brw, bo, offset, imm);
    376       break;
    377    case GL_INT64_ARB:
    378    case GL_UNSIGNED_INT64_ARB:
    379       brw_store_data_imm64(brw, bo, offset, imm);
    380       break;
    381    default:
    382       unreachable("Unexpected result type");
    383    }
    384 }
    385 
    386 static void
    387 set_predicate(struct brw_context *brw, struct brw_bo *query_bo)
    388 {
    389    brw_load_register_imm64(brw, MI_PREDICATE_SRC1, 0ull);
    390 
    391    /* Load query availability into SRC0 */
    392    brw_load_register_mem64(brw, MI_PREDICATE_SRC0, query_bo,
    393                            2 * sizeof(uint64_t));
    394 
    395    /* predicate = !(query_availability == 0); */
    396    BEGIN_BATCH(1);
    397    OUT_BATCH(GEN7_MI_PREDICATE |
    398              MI_PREDICATE_LOADOP_LOADINV |
    399              MI_PREDICATE_COMBINEOP_SET |
    400              MI_PREDICATE_COMPAREOP_SRCS_EQUAL);
    401    ADVANCE_BATCH();
    402 }
    403 
    404 /*
    405  * Store data from the register into the user buffer using the requested size.
    406  * The write also enables the predication to prevent writing the result if the
    407  * query has not finished yet.
    408  */
    409 static void
    410 store_query_result_reg(struct brw_context *brw, struct brw_bo *bo,
    411                        uint32_t offset, GLenum ptype, uint32_t reg,
    412                        const bool pipelined)
    413 {
    414    const struct gen_device_info *devinfo = &brw->screen->devinfo;
    415    uint32_t cmd_size = devinfo->gen >= 8 ? 4 : 3;
    416    uint32_t dwords = (ptype == GL_INT || ptype == GL_UNSIGNED_INT) ? 1 : 2;
    417    assert(devinfo->gen >= 6);
    418 
    419    BEGIN_BATCH(dwords * cmd_size);
    420    for (int i = 0; i < dwords; i++) {
    421       OUT_BATCH(MI_STORE_REGISTER_MEM |
    422                 (pipelined ? MI_STORE_REGISTER_MEM_PREDICATE : 0) |
    423                 (cmd_size - 2));
    424       OUT_BATCH(reg + 4 * i);
    425       if (devinfo->gen >= 8) {
    426          OUT_RELOC64(bo, RELOC_WRITE, offset + 4 * i);
    427       } else {
    428          OUT_RELOC(bo, RELOC_WRITE | RELOC_NEEDS_GGTT, offset + 4 * i);
    429       }
    430    }
    431    ADVANCE_BATCH();
    432 }
    433 
    434 static void
    435 hsw_store_query_result(struct gl_context *ctx, struct gl_query_object *q,
    436                        struct gl_buffer_object *buf, intptr_t offset,
    437                        GLenum pname, GLenum ptype)
    438 {
    439    struct brw_context *brw = brw_context(ctx);
    440    struct brw_query_object *query = (struct brw_query_object *)q;
    441    struct intel_buffer_object *bo = intel_buffer_object(buf);
    442    const bool pipelined = brw_is_query_pipelined(query);
    443 
    444    if (pname == GL_QUERY_TARGET) {
    445       store_query_result_imm(brw, bo->buffer, offset, ptype,
    446                              query->Base.Target);
    447       return;
    448    } else if (pname == GL_QUERY_RESULT_AVAILABLE && !pipelined) {
    449       store_query_result_imm(brw, bo->buffer, offset, ptype, 1ull);
    450    } else if (query->bo) {
    451       /* The query bo still around. Therefore, we:
    452        *
    453        *  1. Compute the current result in GPR0
    454        *  2. Set the command streamer predicate based on query availability
    455        *  3. (With predication) Write GPR0 to the requested buffer
    456        */
    457       hsw_result_to_gpr0(ctx, query, buf, offset, pname, ptype);
    458       if (pipelined)
    459          set_predicate(brw, query->bo);
    460       store_query_result_reg(brw, bo->buffer, offset, ptype, HSW_CS_GPR(0),
    461                              pipelined);
    462    } else {
    463       /* The query bo is gone, so the query must have been processed into
    464        * client memory. In this case we can fill the buffer location with the
    465        * requested data using MI_STORE_DATA_IMM.
    466        */
    467       switch (pname) {
    468       case GL_QUERY_RESULT_AVAILABLE:
    469          store_query_result_imm(brw, bo->buffer, offset, ptype, 1ull);
    470          break;
    471       case GL_QUERY_RESULT_NO_WAIT:
    472       case GL_QUERY_RESULT:
    473          store_query_result_imm(brw, bo->buffer, offset, ptype,
    474                                 q->Result);
    475          break;
    476       default:
    477          unreachable("Unexpected result type");
    478       }
    479    }
    480 
    481 }
    482 
    483 /* Initialize hsw+-specific query object functions. */
    484 void hsw_init_queryobj_functions(struct dd_function_table *functions)
    485 {
    486    gen6_init_queryobj_functions(functions);
    487    functions->StoreQueryResult = hsw_store_query_result;
    488 }
    489