Home | History | Annotate | Download | only in openssh
      1 /* $OpenBSD: fe25519.c,v 1.3 2013/12/09 11:03:45 markus Exp $ */
      2 
      3 /*
      4  * Public Domain, Authors: Daniel J. Bernstein, Niels Duif, Tanja Lange,
      5  * Peter Schwabe, Bo-Yin Yang.
      6  * Copied from supercop-20130419/crypto_sign/ed25519/ref/fe25519.c
      7  */
      8 
      9 #include "includes.h"
     10 
     11 #define WINDOWSIZE 1 /* Should be 1,2, or 4 */
     12 #define WINDOWMASK ((1<<WINDOWSIZE)-1)
     13 
     14 #include "fe25519.h"
     15 
     16 static crypto_uint32 equal(crypto_uint32 a,crypto_uint32 b) /* 16-bit inputs */
     17 {
     18   crypto_uint32 x = a ^ b; /* 0: yes; 1..65535: no */
     19   x -= 1; /* 4294967295: yes; 0..65534: no */
     20   x >>= 31; /* 1: yes; 0: no */
     21   return x;
     22 }
     23 
     24 static crypto_uint32 ge(crypto_uint32 a,crypto_uint32 b) /* 16-bit inputs */
     25 {
     26   unsigned int x = a;
     27   x -= (unsigned int) b; /* 0..65535: yes; 4294901761..4294967295: no */
     28   x >>= 31; /* 0: yes; 1: no */
     29   x ^= 1; /* 1: yes; 0: no */
     30   return x;
     31 }
     32 
     33 static crypto_uint32 times19(crypto_uint32 a)
     34 {
     35   return (a << 4) + (a << 1) + a;
     36 }
     37 
     38 static crypto_uint32 times38(crypto_uint32 a)
     39 {
     40   return (a << 5) + (a << 2) + (a << 1);
     41 }
     42 
     43 static void reduce_add_sub(fe25519 *r)
     44 {
     45   crypto_uint32 t;
     46   int i,rep;
     47 
     48   for(rep=0;rep<4;rep++)
     49   {
     50     t = r->v[31] >> 7;
     51     r->v[31] &= 127;
     52     t = times19(t);
     53     r->v[0] += t;
     54     for(i=0;i<31;i++)
     55     {
     56       t = r->v[i] >> 8;
     57       r->v[i+1] += t;
     58       r->v[i] &= 255;
     59     }
     60   }
     61 }
     62 
     63 static void reduce_mul(fe25519 *r)
     64 {
     65   crypto_uint32 t;
     66   int i,rep;
     67 
     68   for(rep=0;rep<2;rep++)
     69   {
     70     t = r->v[31] >> 7;
     71     r->v[31] &= 127;
     72     t = times19(t);
     73     r->v[0] += t;
     74     for(i=0;i<31;i++)
     75     {
     76       t = r->v[i] >> 8;
     77       r->v[i+1] += t;
     78       r->v[i] &= 255;
     79     }
     80   }
     81 }
     82 
     83 /* reduction modulo 2^255-19 */
     84 void fe25519_freeze(fe25519 *r)
     85 {
     86   int i;
     87   crypto_uint32 m = equal(r->v[31],127);
     88   for(i=30;i>0;i--)
     89     m &= equal(r->v[i],255);
     90   m &= ge(r->v[0],237);
     91 
     92   m = -m;
     93 
     94   r->v[31] -= m&127;
     95   for(i=30;i>0;i--)
     96     r->v[i] -= m&255;
     97   r->v[0] -= m&237;
     98 }
     99 
    100 void fe25519_unpack(fe25519 *r, const unsigned char x[32])
    101 {
    102   int i;
    103   for(i=0;i<32;i++) r->v[i] = x[i];
    104   r->v[31] &= 127;
    105 }
    106 
    107 /* Assumes input x being reduced below 2^255 */
    108 void fe25519_pack(unsigned char r[32], const fe25519 *x)
    109 {
    110   int i;
    111   fe25519 y = *x;
    112   fe25519_freeze(&y);
    113   for(i=0;i<32;i++)
    114     r[i] = y.v[i];
    115 }
    116 
    117 int fe25519_iszero(const fe25519 *x)
    118 {
    119   int i;
    120   int r;
    121   fe25519 t = *x;
    122   fe25519_freeze(&t);
    123   r = equal(t.v[0],0);
    124   for(i=1;i<32;i++)
    125     r &= equal(t.v[i],0);
    126   return r;
    127 }
    128 
    129 int fe25519_iseq_vartime(const fe25519 *x, const fe25519 *y)
    130 {
    131   int i;
    132   fe25519 t1 = *x;
    133   fe25519 t2 = *y;
    134   fe25519_freeze(&t1);
    135   fe25519_freeze(&t2);
    136   for(i=0;i<32;i++)
    137     if(t1.v[i] != t2.v[i]) return 0;
    138   return 1;
    139 }
    140 
    141 void fe25519_cmov(fe25519 *r, const fe25519 *x, unsigned char b)
    142 {
    143   int i;
    144   crypto_uint32 mask = b;
    145   mask = -mask;
    146   for(i=0;i<32;i++) r->v[i] ^= mask & (x->v[i] ^ r->v[i]);
    147 }
    148 
    149 unsigned char fe25519_getparity(const fe25519 *x)
    150 {
    151   fe25519 t = *x;
    152   fe25519_freeze(&t);
    153   return t.v[0] & 1;
    154 }
    155 
    156 void fe25519_setone(fe25519 *r)
    157 {
    158   int i;
    159   r->v[0] = 1;
    160   for(i=1;i<32;i++) r->v[i]=0;
    161 }
    162 
    163 void fe25519_setzero(fe25519 *r)
    164 {
    165   int i;
    166   for(i=0;i<32;i++) r->v[i]=0;
    167 }
    168 
    169 void fe25519_neg(fe25519 *r, const fe25519 *x)
    170 {
    171   fe25519 t;
    172   int i;
    173   for(i=0;i<32;i++) t.v[i]=x->v[i];
    174   fe25519_setzero(r);
    175   fe25519_sub(r, r, &t);
    176 }
    177 
    178 void fe25519_add(fe25519 *r, const fe25519 *x, const fe25519 *y)
    179 {
    180   int i;
    181   for(i=0;i<32;i++) r->v[i] = x->v[i] + y->v[i];
    182   reduce_add_sub(r);
    183 }
    184 
    185 void fe25519_sub(fe25519 *r, const fe25519 *x, const fe25519 *y)
    186 {
    187   int i;
    188   crypto_uint32 t[32];
    189   t[0] = x->v[0] + 0x1da;
    190   t[31] = x->v[31] + 0xfe;
    191   for(i=1;i<31;i++) t[i] = x->v[i] + 0x1fe;
    192   for(i=0;i<32;i++) r->v[i] = t[i] - y->v[i];
    193   reduce_add_sub(r);
    194 }
    195 
    196 void fe25519_mul(fe25519 *r, const fe25519 *x, const fe25519 *y)
    197 {
    198   int i,j;
    199   crypto_uint32 t[63];
    200   for(i=0;i<63;i++)t[i] = 0;
    201 
    202   for(i=0;i<32;i++)
    203     for(j=0;j<32;j++)
    204       t[i+j] += x->v[i] * y->v[j];
    205 
    206   for(i=32;i<63;i++)
    207     r->v[i-32] = t[i-32] + times38(t[i]);
    208   r->v[31] = t[31]; /* result now in r[0]...r[31] */
    209 
    210   reduce_mul(r);
    211 }
    212 
    213 void fe25519_square(fe25519 *r, const fe25519 *x)
    214 {
    215   fe25519_mul(r, x, x);
    216 }
    217 
    218 void fe25519_invert(fe25519 *r, const fe25519 *x)
    219 {
    220 	fe25519 z2;
    221 	fe25519 z9;
    222 	fe25519 z11;
    223 	fe25519 z2_5_0;
    224 	fe25519 z2_10_0;
    225 	fe25519 z2_20_0;
    226 	fe25519 z2_50_0;
    227 	fe25519 z2_100_0;
    228 	fe25519 t0;
    229 	fe25519 t1;
    230 	int i;
    231 
    232 	/* 2 */ fe25519_square(&z2,x);
    233 	/* 4 */ fe25519_square(&t1,&z2);
    234 	/* 8 */ fe25519_square(&t0,&t1);
    235 	/* 9 */ fe25519_mul(&z9,&t0,x);
    236 	/* 11 */ fe25519_mul(&z11,&z9,&z2);
    237 	/* 22 */ fe25519_square(&t0,&z11);
    238 	/* 2^5 - 2^0 = 31 */ fe25519_mul(&z2_5_0,&t0,&z9);
    239 
    240 	/* 2^6 - 2^1 */ fe25519_square(&t0,&z2_5_0);
    241 	/* 2^7 - 2^2 */ fe25519_square(&t1,&t0);
    242 	/* 2^8 - 2^3 */ fe25519_square(&t0,&t1);
    243 	/* 2^9 - 2^4 */ fe25519_square(&t1,&t0);
    244 	/* 2^10 - 2^5 */ fe25519_square(&t0,&t1);
    245 	/* 2^10 - 2^0 */ fe25519_mul(&z2_10_0,&t0,&z2_5_0);
    246 
    247 	/* 2^11 - 2^1 */ fe25519_square(&t0,&z2_10_0);
    248 	/* 2^12 - 2^2 */ fe25519_square(&t1,&t0);
    249 	/* 2^20 - 2^10 */ for (i = 2;i < 10;i += 2) { fe25519_square(&t0,&t1); fe25519_square(&t1,&t0); }
    250 	/* 2^20 - 2^0 */ fe25519_mul(&z2_20_0,&t1,&z2_10_0);
    251 
    252 	/* 2^21 - 2^1 */ fe25519_square(&t0,&z2_20_0);
    253 	/* 2^22 - 2^2 */ fe25519_square(&t1,&t0);
    254 	/* 2^40 - 2^20 */ for (i = 2;i < 20;i += 2) { fe25519_square(&t0,&t1); fe25519_square(&t1,&t0); }
    255 	/* 2^40 - 2^0 */ fe25519_mul(&t0,&t1,&z2_20_0);
    256 
    257 	/* 2^41 - 2^1 */ fe25519_square(&t1,&t0);
    258 	/* 2^42 - 2^2 */ fe25519_square(&t0,&t1);
    259 	/* 2^50 - 2^10 */ for (i = 2;i < 10;i += 2) { fe25519_square(&t1,&t0); fe25519_square(&t0,&t1); }
    260 	/* 2^50 - 2^0 */ fe25519_mul(&z2_50_0,&t0,&z2_10_0);
    261 
    262 	/* 2^51 - 2^1 */ fe25519_square(&t0,&z2_50_0);
    263 	/* 2^52 - 2^2 */ fe25519_square(&t1,&t0);
    264 	/* 2^100 - 2^50 */ for (i = 2;i < 50;i += 2) { fe25519_square(&t0,&t1); fe25519_square(&t1,&t0); }
    265 	/* 2^100 - 2^0 */ fe25519_mul(&z2_100_0,&t1,&z2_50_0);
    266 
    267 	/* 2^101 - 2^1 */ fe25519_square(&t1,&z2_100_0);
    268 	/* 2^102 - 2^2 */ fe25519_square(&t0,&t1);
    269 	/* 2^200 - 2^100 */ for (i = 2;i < 100;i += 2) { fe25519_square(&t1,&t0); fe25519_square(&t0,&t1); }
    270 	/* 2^200 - 2^0 */ fe25519_mul(&t1,&t0,&z2_100_0);
    271 
    272 	/* 2^201 - 2^1 */ fe25519_square(&t0,&t1);
    273 	/* 2^202 - 2^2 */ fe25519_square(&t1,&t0);
    274 	/* 2^250 - 2^50 */ for (i = 2;i < 50;i += 2) { fe25519_square(&t0,&t1); fe25519_square(&t1,&t0); }
    275 	/* 2^250 - 2^0 */ fe25519_mul(&t0,&t1,&z2_50_0);
    276 
    277 	/* 2^251 - 2^1 */ fe25519_square(&t1,&t0);
    278 	/* 2^252 - 2^2 */ fe25519_square(&t0,&t1);
    279 	/* 2^253 - 2^3 */ fe25519_square(&t1,&t0);
    280 	/* 2^254 - 2^4 */ fe25519_square(&t0,&t1);
    281 	/* 2^255 - 2^5 */ fe25519_square(&t1,&t0);
    282 	/* 2^255 - 21 */ fe25519_mul(r,&t1,&z11);
    283 }
    284 
    285 void fe25519_pow2523(fe25519 *r, const fe25519 *x)
    286 {
    287 	fe25519 z2;
    288 	fe25519 z9;
    289 	fe25519 z11;
    290 	fe25519 z2_5_0;
    291 	fe25519 z2_10_0;
    292 	fe25519 z2_20_0;
    293 	fe25519 z2_50_0;
    294 	fe25519 z2_100_0;
    295 	fe25519 t;
    296 	int i;
    297 
    298 	/* 2 */ fe25519_square(&z2,x);
    299 	/* 4 */ fe25519_square(&t,&z2);
    300 	/* 8 */ fe25519_square(&t,&t);
    301 	/* 9 */ fe25519_mul(&z9,&t,x);
    302 	/* 11 */ fe25519_mul(&z11,&z9,&z2);
    303 	/* 22 */ fe25519_square(&t,&z11);
    304 	/* 2^5 - 2^0 = 31 */ fe25519_mul(&z2_5_0,&t,&z9);
    305 
    306 	/* 2^6 - 2^1 */ fe25519_square(&t,&z2_5_0);
    307 	/* 2^10 - 2^5 */ for (i = 1;i < 5;i++) { fe25519_square(&t,&t); }
    308 	/* 2^10 - 2^0 */ fe25519_mul(&z2_10_0,&t,&z2_5_0);
    309 
    310 	/* 2^11 - 2^1 */ fe25519_square(&t,&z2_10_0);
    311 	/* 2^20 - 2^10 */ for (i = 1;i < 10;i++) { fe25519_square(&t,&t); }
    312 	/* 2^20 - 2^0 */ fe25519_mul(&z2_20_0,&t,&z2_10_0);
    313 
    314 	/* 2^21 - 2^1 */ fe25519_square(&t,&z2_20_0);
    315 	/* 2^40 - 2^20 */ for (i = 1;i < 20;i++) { fe25519_square(&t,&t); }
    316 	/* 2^40 - 2^0 */ fe25519_mul(&t,&t,&z2_20_0);
    317 
    318 	/* 2^41 - 2^1 */ fe25519_square(&t,&t);
    319 	/* 2^50 - 2^10 */ for (i = 1;i < 10;i++) { fe25519_square(&t,&t); }
    320 	/* 2^50 - 2^0 */ fe25519_mul(&z2_50_0,&t,&z2_10_0);
    321 
    322 	/* 2^51 - 2^1 */ fe25519_square(&t,&z2_50_0);
    323 	/* 2^100 - 2^50 */ for (i = 1;i < 50;i++) { fe25519_square(&t,&t); }
    324 	/* 2^100 - 2^0 */ fe25519_mul(&z2_100_0,&t,&z2_50_0);
    325 
    326 	/* 2^101 - 2^1 */ fe25519_square(&t,&z2_100_0);
    327 	/* 2^200 - 2^100 */ for (i = 1;i < 100;i++) { fe25519_square(&t,&t); }
    328 	/* 2^200 - 2^0 */ fe25519_mul(&t,&t,&z2_100_0);
    329 
    330 	/* 2^201 - 2^1 */ fe25519_square(&t,&t);
    331 	/* 2^250 - 2^50 */ for (i = 1;i < 50;i++) { fe25519_square(&t,&t); }
    332 	/* 2^250 - 2^0 */ fe25519_mul(&t,&t,&z2_50_0);
    333 
    334 	/* 2^251 - 2^1 */ fe25519_square(&t,&t);
    335 	/* 2^252 - 2^2 */ fe25519_square(&t,&t);
    336 	/* 2^252 - 3 */ fe25519_mul(r,&t,x);
    337 }
    338