Home | History | Annotate | Download | only in src
      1 //---------------------------------------------------------------------------------
      2 //
      3 //  Little Color Management System
      4 //  Copyright (c) 1998-2016 Marti Maria Saguer
      5 //
      6 // Permission is hereby granted, free of charge, to any person obtaining
      7 // a copy of this software and associated documentation files (the "Software"),
      8 // to deal in the Software without restriction, including without limitation
      9 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
     10 // and/or sell copies of the Software, and to permit persons to whom the Software
     11 // is furnished to do so, subject to the following conditions:
     12 //
     13 // The above copyright notice and this permission notice shall be included in
     14 // all copies or substantial portions of the Software.
     15 //
     16 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
     17 // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
     18 // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
     19 // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
     20 // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
     21 // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
     22 // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
     23 //
     24 //---------------------------------------------------------------------------------
     25 //
     26 
     27 #include "lcms2_internal.h"
     28 
     29 
     30 //----------------------------------------------------------------------------------
     31 
     32 // Optimization for 8 bits, Shaper-CLUT (3 inputs only)
     33 typedef struct {
     34 
     35     cmsContext ContextID;
     36 
     37     const cmsInterpParams* p;   // Tetrahedrical interpolation parameters. This is a not-owned pointer.
     38 
     39     cmsUInt16Number rx[256], ry[256], rz[256];
     40     cmsUInt32Number X0[256], Y0[256], Z0[256];  // Precomputed nodes and offsets for 8-bit input data
     41 
     42 
     43 } Prelin8Data;
     44 
     45 
     46 // Generic optimization for 16 bits Shaper-CLUT-Shaper (any inputs)
     47 typedef struct {
     48 
     49     cmsContext ContextID;
     50 
     51     // Number of channels
     52     int nInputs;
     53     int nOutputs;
     54 
     55     _cmsInterpFn16 EvalCurveIn16[MAX_INPUT_DIMENSIONS];       // The maximum number of input channels is known in advance
     56     cmsInterpParams*  ParamsCurveIn16[MAX_INPUT_DIMENSIONS];
     57 
     58     _cmsInterpFn16 EvalCLUT;            // The evaluator for 3D grid
     59     const cmsInterpParams* CLUTparams;  // (not-owned pointer)
     60 
     61 
     62     _cmsInterpFn16* EvalCurveOut16;       // Points to an array of curve evaluators in 16 bits (not-owned pointer)
     63     cmsInterpParams**  ParamsCurveOut16;  // Points to an array of references to interpolation params (not-owned pointer)
     64 
     65 
     66 } Prelin16Data;
     67 
     68 
     69 // Optimization for matrix-shaper in 8 bits. Numbers are operated in n.14 signed, tables are stored in 1.14 fixed
     70 
     71 typedef cmsInt32Number cmsS1Fixed14Number;   // Note that this may hold more than 16 bits!
     72 
     73 #define DOUBLE_TO_1FIXED14(x) ((cmsS1Fixed14Number) floor((x) * 16384.0 + 0.5))
     74 
     75 typedef struct {
     76 
     77     cmsContext ContextID;
     78 
     79     cmsS1Fixed14Number Shaper1R[256];  // from 0..255 to 1.14  (0.0...1.0)
     80     cmsS1Fixed14Number Shaper1G[256];
     81     cmsS1Fixed14Number Shaper1B[256];
     82 
     83     cmsS1Fixed14Number Mat[3][3];     // n.14 to n.14 (needs a saturation after that)
     84     cmsS1Fixed14Number Off[3];
     85 
     86     cmsUInt16Number Shaper2R[16385];    // 1.14 to 0..255
     87     cmsUInt16Number Shaper2G[16385];
     88     cmsUInt16Number Shaper2B[16385];
     89 
     90 } MatShaper8Data;
     91 
     92 // Curves, optimization is shared between 8 and 16 bits
     93 typedef struct {
     94 
     95     cmsContext ContextID;
     96 
     97     int nCurves;                  // Number of curves
     98     int nElements;                // Elements in curves
     99     cmsUInt16Number** Curves;     // Points to a dynamically  allocated array
    100 
    101 } Curves16Data;
    102 
    103 
    104 // Simple optimizations ----------------------------------------------------------------------------------------------------------
    105 
    106 
    107 // Remove an element in linked chain
    108 static
    109 void _RemoveElement(cmsStage** head)
    110 {
    111     cmsStage* mpe = *head;
    112     cmsStage* next = mpe ->Next;
    113     *head = next;
    114     cmsStageFree(mpe);
    115 }
    116 
    117 // Remove all identities in chain. Note that pt actually is a double pointer to the element that holds the pointer.
    118 static
    119 cmsBool _Remove1Op(cmsPipeline* Lut, cmsStageSignature UnaryOp)
    120 {
    121     cmsStage** pt = &Lut ->Elements;
    122     cmsBool AnyOpt = FALSE;
    123 
    124     while (*pt != NULL) {
    125 
    126         if ((*pt) ->Implements == UnaryOp) {
    127             _RemoveElement(pt);
    128             AnyOpt = TRUE;
    129         }
    130         else
    131             pt = &((*pt) -> Next);
    132     }
    133 
    134     return AnyOpt;
    135 }
    136 
    137 // Same, but only if two adjacent elements are found
    138 static
    139 cmsBool _Remove2Op(cmsPipeline* Lut, cmsStageSignature Op1, cmsStageSignature Op2)
    140 {
    141     cmsStage** pt1;
    142     cmsStage** pt2;
    143     cmsBool AnyOpt = FALSE;
    144 
    145     pt1 = &Lut ->Elements;
    146     if (*pt1 == NULL) return AnyOpt;
    147 
    148     while (*pt1 != NULL) {
    149 
    150         pt2 = &((*pt1) -> Next);
    151         if (*pt2 == NULL) return AnyOpt;
    152 
    153         if ((*pt1) ->Implements == Op1 && (*pt2) ->Implements == Op2) {
    154             _RemoveElement(pt2);
    155             _RemoveElement(pt1);
    156             AnyOpt = TRUE;
    157         }
    158         else
    159             pt1 = &((*pt1) -> Next);
    160     }
    161 
    162     return AnyOpt;
    163 }
    164 
    165 
    166 static
    167 cmsBool CloseEnoughFloat(cmsFloat64Number a, cmsFloat64Number b)
    168 {
    169        return fabs(b - a) < 0.00001f;
    170 }
    171 
    172 static
    173 cmsBool  isFloatMatrixIdentity(const cmsMAT3* a)
    174 {
    175        cmsMAT3 Identity;
    176        int i, j;
    177 
    178        _cmsMAT3identity(&Identity);
    179 
    180        for (i = 0; i < 3; i++)
    181               for (j = 0; j < 3; j++)
    182                      if (!CloseEnoughFloat(a->v[i].n[j], Identity.v[i].n[j])) return FALSE;
    183 
    184        return TRUE;
    185 }
    186 // if two adjacent matrices are found, multiply them.
    187 static
    188 cmsBool _MultiplyMatrix(cmsPipeline* Lut)
    189 {
    190        cmsStage** pt1;
    191        cmsStage** pt2;
    192        cmsStage*  chain;
    193        cmsBool AnyOpt = FALSE;
    194 
    195        pt1 = &Lut->Elements;
    196        if (*pt1 == NULL) return AnyOpt;
    197 
    198        while (*pt1 != NULL) {
    199 
    200               pt2 = &((*pt1)->Next);
    201               if (*pt2 == NULL) return AnyOpt;
    202 
    203               if ((*pt1)->Implements == cmsSigMatrixElemType && (*pt2)->Implements == cmsSigMatrixElemType) {
    204 
    205                      // Get both matrices
    206                      _cmsStageMatrixData* m1 = (_cmsStageMatrixData*) cmsStageData(*pt1);
    207                      _cmsStageMatrixData* m2 = (_cmsStageMatrixData*) cmsStageData(*pt2);
    208                      cmsMAT3 res;
    209 
    210                      // Input offset and output offset should be zero to use this optimization
    211                      if (m1->Offset != NULL || m2 ->Offset != NULL ||
    212                             cmsStageInputChannels(*pt1) != 3 || cmsStageOutputChannels(*pt1) != 3 ||
    213                             cmsStageInputChannels(*pt2) != 3 || cmsStageOutputChannels(*pt2) != 3)
    214                             return FALSE;
    215 
    216                      // Multiply both matrices to get the result
    217                      _cmsMAT3per(&res, (cmsMAT3*)m2->Double, (cmsMAT3*)m1->Double);
    218 
    219                      // Get the next in chain afer the matrices
    220                      chain = (*pt2)->Next;
    221 
    222                      // Remove both matrices
    223                      _RemoveElement(pt2);
    224                      _RemoveElement(pt1);
    225 
    226                      // Now what if the result is a plain identity?
    227                      if (!isFloatMatrixIdentity(&res)) {
    228 
    229                             // We can not get rid of full matrix
    230                             cmsStage* Multmat = cmsStageAllocMatrix(Lut->ContextID, 3, 3, (const cmsFloat64Number*) &res, NULL);
    231                             if (Multmat == NULL) return FALSE;  // Should never happen
    232 
    233                             // Recover the chain
    234                             Multmat->Next = chain;
    235                             *pt1 = Multmat;
    236                      }
    237 
    238                      AnyOpt = TRUE;
    239               }
    240               else
    241                      pt1 = &((*pt1)->Next);
    242        }
    243 
    244        return AnyOpt;
    245 }
    246 
    247 
    248 // Preoptimize just gets rif of no-ops coming paired. Conversion from v2 to v4 followed
    249 // by a v4 to v2 and vice-versa. The elements are then discarded.
    250 static
    251 cmsBool PreOptimize(cmsPipeline* Lut)
    252 {
    253     cmsBool AnyOpt = FALSE, Opt;
    254 
    255     do {
    256 
    257         Opt = FALSE;
    258 
    259         // Remove all identities
    260         Opt |= _Remove1Op(Lut, cmsSigIdentityElemType);
    261 
    262         // Remove XYZ2Lab followed by Lab2XYZ
    263         Opt |= _Remove2Op(Lut, cmsSigXYZ2LabElemType, cmsSigLab2XYZElemType);
    264 
    265         // Remove Lab2XYZ followed by XYZ2Lab
    266         Opt |= _Remove2Op(Lut, cmsSigLab2XYZElemType, cmsSigXYZ2LabElemType);
    267 
    268         // Remove V4 to V2 followed by V2 to V4
    269         Opt |= _Remove2Op(Lut, cmsSigLabV4toV2, cmsSigLabV2toV4);
    270 
    271         // Remove V2 to V4 followed by V4 to V2
    272         Opt |= _Remove2Op(Lut, cmsSigLabV2toV4, cmsSigLabV4toV2);
    273 
    274         // Remove float pcs Lab conversions
    275         Opt |= _Remove2Op(Lut, cmsSigLab2FloatPCS, cmsSigFloatPCS2Lab);
    276 
    277         // Remove float pcs Lab conversions
    278         Opt |= _Remove2Op(Lut, cmsSigXYZ2FloatPCS, cmsSigFloatPCS2XYZ);
    279 
    280         // Simplify matrix.
    281         Opt |= _MultiplyMatrix(Lut);
    282 
    283         if (Opt) AnyOpt = TRUE;
    284 
    285     } while (Opt);
    286 
    287     return AnyOpt;
    288 }
    289 
    290 static
    291 void Eval16nop1D(register const cmsUInt16Number Input[],
    292                  register cmsUInt16Number Output[],
    293                  register const struct _cms_interp_struc* p)
    294 {
    295     Output[0] = Input[0];
    296 
    297     cmsUNUSED_PARAMETER(p);
    298 }
    299 
    300 static
    301 void PrelinEval16(register const cmsUInt16Number Input[],
    302                   register cmsUInt16Number Output[],
    303                   register const void* D)
    304 {
    305     Prelin16Data* p16 = (Prelin16Data*) D;
    306     cmsUInt16Number  StageABC[MAX_INPUT_DIMENSIONS];
    307     cmsUInt16Number  StageDEF[cmsMAXCHANNELS];
    308     int i;
    309 
    310     for (i=0; i < p16 ->nInputs; i++) {
    311 
    312         p16 ->EvalCurveIn16[i](&Input[i], &StageABC[i], p16 ->ParamsCurveIn16[i]);
    313     }
    314 
    315     p16 ->EvalCLUT(StageABC, StageDEF, p16 ->CLUTparams);
    316 
    317     for (i=0; i < p16 ->nOutputs; i++) {
    318 
    319         p16 ->EvalCurveOut16[i](&StageDEF[i], &Output[i], p16 ->ParamsCurveOut16[i]);
    320     }
    321 }
    322 
    323 
    324 static
    325 void PrelinOpt16free(cmsContext ContextID, void* ptr)
    326 {
    327     Prelin16Data* p16 = (Prelin16Data*) ptr;
    328 
    329     _cmsFree(ContextID, p16 ->EvalCurveOut16);
    330     _cmsFree(ContextID, p16 ->ParamsCurveOut16);
    331 
    332     _cmsFree(ContextID, p16);
    333 }
    334 
    335 static
    336 void* Prelin16dup(cmsContext ContextID, const void* ptr)
    337 {
    338     Prelin16Data* p16 = (Prelin16Data*) ptr;
    339     Prelin16Data* Duped = (Prelin16Data*) _cmsDupMem(ContextID, p16, sizeof(Prelin16Data));
    340 
    341     if (Duped == NULL) return NULL;
    342 
    343     Duped->EvalCurveOut16 = (_cmsInterpFn16*) _cmsDupMem(ContextID, p16->EvalCurveOut16, p16->nOutputs * sizeof(_cmsInterpFn16));
    344     Duped->ParamsCurveOut16 = (cmsInterpParams**)_cmsDupMem(ContextID, p16->ParamsCurveOut16, p16->nOutputs * sizeof(cmsInterpParams*));
    345 
    346     return Duped;
    347 }
    348 
    349 
    350 static
    351 Prelin16Data* PrelinOpt16alloc(cmsContext ContextID,
    352                                const cmsInterpParams* ColorMap,
    353                                int nInputs, cmsToneCurve** In,
    354                                int nOutputs, cmsToneCurve** Out )
    355 {
    356     int i;
    357     Prelin16Data* p16 = (Prelin16Data*)_cmsMallocZero(ContextID, sizeof(Prelin16Data));
    358     if (p16 == NULL) return NULL;
    359 
    360     p16 ->nInputs = nInputs;
    361     p16 -> nOutputs = nOutputs;
    362 
    363 
    364     for (i=0; i < nInputs; i++) {
    365 
    366         if (In == NULL) {
    367             p16 -> ParamsCurveIn16[i] = NULL;
    368             p16 -> EvalCurveIn16[i] = Eval16nop1D;
    369 
    370         }
    371         else {
    372             p16 -> ParamsCurveIn16[i] = In[i] ->InterpParams;
    373             p16 -> EvalCurveIn16[i] = p16 ->ParamsCurveIn16[i]->Interpolation.Lerp16;
    374         }
    375     }
    376 
    377     p16 ->CLUTparams = ColorMap;
    378     p16 ->EvalCLUT   = ColorMap ->Interpolation.Lerp16;
    379 
    380 
    381     p16 -> EvalCurveOut16 = (_cmsInterpFn16*) _cmsCalloc(ContextID, nOutputs, sizeof(_cmsInterpFn16));
    382     p16 -> ParamsCurveOut16 = (cmsInterpParams**) _cmsCalloc(ContextID, nOutputs, sizeof(cmsInterpParams* ));
    383 
    384     for (i=0; i < nOutputs; i++) {
    385 
    386         if (Out == NULL) {
    387             p16 ->ParamsCurveOut16[i] = NULL;
    388             p16 -> EvalCurveOut16[i] = Eval16nop1D;
    389         }
    390         else {
    391 
    392             p16 ->ParamsCurveOut16[i] = Out[i] ->InterpParams;
    393             p16 -> EvalCurveOut16[i] = p16 ->ParamsCurveOut16[i]->Interpolation.Lerp16;
    394         }
    395     }
    396 
    397     return p16;
    398 }
    399 
    400 
    401 
    402 // Resampling ---------------------------------------------------------------------------------
    403 
    404 #define PRELINEARIZATION_POINTS 4096
    405 
    406 // Sampler implemented by another LUT. This is a clean way to precalculate the devicelink 3D CLUT for
    407 // almost any transform. We use floating point precision and then convert from floating point to 16 bits.
    408 static
    409 int XFormSampler16(register const cmsUInt16Number In[], register cmsUInt16Number Out[], register void* Cargo)
    410 {
    411     cmsPipeline* Lut = (cmsPipeline*) Cargo;
    412     cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS];
    413     cmsUInt32Number i;
    414 
    415     _cmsAssert(Lut -> InputChannels < cmsMAXCHANNELS);
    416     _cmsAssert(Lut -> OutputChannels < cmsMAXCHANNELS);
    417 
    418     // From 16 bit to floating point
    419     for (i=0; i < Lut ->InputChannels; i++)
    420         InFloat[i] = (cmsFloat32Number) (In[i] / 65535.0);
    421 
    422     // Evaluate in floating point
    423     cmsPipelineEvalFloat(InFloat, OutFloat, Lut);
    424 
    425     // Back to 16 bits representation
    426     for (i=0; i < Lut ->OutputChannels; i++)
    427         Out[i] = _cmsQuickSaturateWord(OutFloat[i] * 65535.0);
    428 
    429     // Always succeed
    430     return TRUE;
    431 }
    432 
    433 // Try to see if the curves of a given MPE are linear
    434 static
    435 cmsBool AllCurvesAreLinear(cmsStage* mpe)
    436 {
    437     cmsToneCurve** Curves;
    438     cmsUInt32Number i, n;
    439 
    440     Curves = _cmsStageGetPtrToCurveSet(mpe);
    441     if (Curves == NULL) return FALSE;
    442 
    443     n = cmsStageOutputChannels(mpe);
    444 
    445     for (i=0; i < n; i++) {
    446         if (!cmsIsToneCurveLinear(Curves[i])) return FALSE;
    447     }
    448 
    449     return TRUE;
    450 }
    451 
    452 // This function replaces a specific node placed in "At" by the "Value" numbers. Its purpose
    453 // is to fix scum dot on broken profiles/transforms. Works on 1, 3 and 4 channels
    454 static
    455 cmsBool  PatchLUT(cmsStage* CLUT, cmsUInt16Number At[], cmsUInt16Number Value[],
    456                   int nChannelsOut, int nChannelsIn)
    457 {
    458     _cmsStageCLutData* Grid = (_cmsStageCLutData*) CLUT ->Data;
    459     cmsInterpParams* p16  = Grid ->Params;
    460     cmsFloat64Number px, py, pz, pw;
    461     int        x0, y0, z0, w0;
    462     int        i, index;
    463 
    464     if (CLUT -> Type != cmsSigCLutElemType) {
    465         cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) Attempt to PatchLUT on non-lut stage");
    466         return FALSE;
    467     }
    468 
    469     if (nChannelsIn == 4) {
    470 
    471         px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
    472         py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0;
    473         pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0;
    474         pw = ((cmsFloat64Number) At[3] * (p16->Domain[3])) / 65535.0;
    475 
    476         x0 = (int) floor(px);
    477         y0 = (int) floor(py);
    478         z0 = (int) floor(pz);
    479         w0 = (int) floor(pw);
    480 
    481         if (((px - x0) != 0) ||
    482             ((py - y0) != 0) ||
    483             ((pz - z0) != 0) ||
    484             ((pw - w0) != 0)) return FALSE; // Not on exact node
    485 
    486         index = p16 -> opta[3] * x0 +
    487                 p16 -> opta[2] * y0 +
    488                 p16 -> opta[1] * z0 +
    489                 p16 -> opta[0] * w0;
    490     }
    491     else
    492         if (nChannelsIn == 3) {
    493 
    494             px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
    495             py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0;
    496             pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0;
    497 
    498             x0 = (int) floor(px);
    499             y0 = (int) floor(py);
    500             z0 = (int) floor(pz);
    501 
    502             if (((px - x0) != 0) ||
    503                 ((py - y0) != 0) ||
    504                 ((pz - z0) != 0)) return FALSE;  // Not on exact node
    505 
    506             index = p16 -> opta[2] * x0 +
    507                     p16 -> opta[1] * y0 +
    508                     p16 -> opta[0] * z0;
    509         }
    510         else
    511             if (nChannelsIn == 1) {
    512 
    513                 px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
    514 
    515                 x0 = (int) floor(px);
    516 
    517                 if (((px - x0) != 0)) return FALSE; // Not on exact node
    518 
    519                 index = p16 -> opta[0] * x0;
    520             }
    521             else {
    522                 cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) %d Channels are not supported on PatchLUT", nChannelsIn);
    523                 return FALSE;
    524             }
    525 
    526             for (i=0; i < nChannelsOut; i++)
    527                 Grid -> Tab.T[index + i] = Value[i];
    528 
    529             return TRUE;
    530 }
    531 
    532 // Auxiliary, to see if two values are equal or very different
    533 static
    534 cmsBool WhitesAreEqual(int n, cmsUInt16Number White1[], cmsUInt16Number White2[] )
    535 {
    536     int i;
    537 
    538     for (i=0; i < n; i++) {
    539 
    540         if (abs(White1[i] - White2[i]) > 0xf000) return TRUE;  // Values are so extremely different that the fixup should be avoided
    541         if (White1[i] != White2[i]) return FALSE;
    542     }
    543     return TRUE;
    544 }
    545 
    546 
    547 // Locate the node for the white point and fix it to pure white in order to avoid scum dot.
    548 static
    549 cmsBool FixWhiteMisalignment(cmsPipeline* Lut, cmsColorSpaceSignature EntryColorSpace, cmsColorSpaceSignature ExitColorSpace)
    550 {
    551     cmsUInt16Number *WhitePointIn, *WhitePointOut;
    552     cmsUInt16Number  WhiteIn[cmsMAXCHANNELS], WhiteOut[cmsMAXCHANNELS], ObtainedOut[cmsMAXCHANNELS];
    553     cmsUInt32Number i, nOuts, nIns;
    554     cmsStage *PreLin = NULL, *CLUT = NULL, *PostLin = NULL;
    555 
    556     if (!_cmsEndPointsBySpace(EntryColorSpace,
    557         &WhitePointIn, NULL, &nIns)) return FALSE;
    558 
    559     if (!_cmsEndPointsBySpace(ExitColorSpace,
    560         &WhitePointOut, NULL, &nOuts)) return FALSE;
    561 
    562     // It needs to be fixed?
    563     if (Lut ->InputChannels != nIns) return FALSE;
    564     if (Lut ->OutputChannels != nOuts) return FALSE;
    565 
    566     cmsPipelineEval16(WhitePointIn, ObtainedOut, Lut);
    567 
    568     if (WhitesAreEqual(nOuts, WhitePointOut, ObtainedOut)) return TRUE; // whites already match
    569 
    570     // Check if the LUT comes as Prelin, CLUT or Postlin. We allow all combinations
    571     if (!cmsPipelineCheckAndRetreiveStages(Lut, 3, cmsSigCurveSetElemType, cmsSigCLutElemType, cmsSigCurveSetElemType, &PreLin, &CLUT, &PostLin))
    572         if (!cmsPipelineCheckAndRetreiveStages(Lut, 2, cmsSigCurveSetElemType, cmsSigCLutElemType, &PreLin, &CLUT))
    573             if (!cmsPipelineCheckAndRetreiveStages(Lut, 2, cmsSigCLutElemType, cmsSigCurveSetElemType, &CLUT, &PostLin))
    574                 if (!cmsPipelineCheckAndRetreiveStages(Lut, 1, cmsSigCLutElemType, &CLUT))
    575                     return FALSE;
    576 
    577     // We need to interpolate white points of both, pre and post curves
    578     if (PreLin) {
    579 
    580         cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PreLin);
    581 
    582         for (i=0; i < nIns; i++) {
    583             WhiteIn[i] = cmsEvalToneCurve16(Curves[i], WhitePointIn[i]);
    584         }
    585     }
    586     else {
    587         for (i=0; i < nIns; i++)
    588             WhiteIn[i] = WhitePointIn[i];
    589     }
    590 
    591     // If any post-linearization, we need to find how is represented white before the curve, do
    592     // a reverse interpolation in this case.
    593     if (PostLin) {
    594 
    595         cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PostLin);
    596 
    597         for (i=0; i < nOuts; i++) {
    598 
    599             cmsToneCurve* InversePostLin = cmsReverseToneCurve(Curves[i]);
    600             if (InversePostLin == NULL) {
    601                 WhiteOut[i] = WhitePointOut[i];
    602 
    603             } else {
    604 
    605                 WhiteOut[i] = cmsEvalToneCurve16(InversePostLin, WhitePointOut[i]);
    606                 cmsFreeToneCurve(InversePostLin);
    607             }
    608         }
    609     }
    610     else {
    611         for (i=0; i < nOuts; i++)
    612             WhiteOut[i] = WhitePointOut[i];
    613     }
    614 
    615     // Ok, proceed with patching. May fail and we don't care if it fails
    616     PatchLUT(CLUT, WhiteIn, WhiteOut, nOuts, nIns);
    617 
    618     return TRUE;
    619 }
    620 
    621 // -----------------------------------------------------------------------------------------------------------------------------------------------
    622 // This function creates simple LUT from complex ones. The generated LUT has an optional set of
    623 // prelinearization curves, a CLUT of nGridPoints and optional postlinearization tables.
    624 // These curves have to exist in the original LUT in order to be used in the simplified output.
    625 // Caller may also use the flags to allow this feature.
    626 // LUTS with all curves will be simplified to a single curve. Parametric curves are lost.
    627 // This function should be used on 16-bits LUTS only, as floating point losses precision when simplified
    628 // -----------------------------------------------------------------------------------------------------------------------------------------------
    629 
    630 static
    631 cmsBool OptimizeByResampling(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
    632 {
    633     cmsPipeline* Src = NULL;
    634     cmsPipeline* Dest = NULL;
    635     cmsStage* mpe;
    636     cmsStage* CLUT;
    637     cmsStage *KeepPreLin = NULL, *KeepPostLin = NULL;
    638     int nGridPoints;
    639     cmsColorSpaceSignature ColorSpace, OutputColorSpace;
    640     cmsStage *NewPreLin = NULL;
    641     cmsStage *NewPostLin = NULL;
    642     _cmsStageCLutData* DataCLUT;
    643     cmsToneCurve** DataSetIn;
    644     cmsToneCurve** DataSetOut;
    645     Prelin16Data* p16;
    646 
    647     // This is a loosy optimization! does not apply in floating-point cases
    648     if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
    649 
    650     ColorSpace       = _cmsICCcolorSpace(T_COLORSPACE(*InputFormat));
    651     OutputColorSpace = _cmsICCcolorSpace(T_COLORSPACE(*OutputFormat));
    652     nGridPoints      = _cmsReasonableGridpointsByColorspace(ColorSpace, *dwFlags);
    653 
    654     // For empty LUTs, 2 points are enough
    655     if (cmsPipelineStageCount(*Lut) == 0)
    656         nGridPoints = 2;
    657 
    658     Src = *Lut;
    659 
    660     // Named color pipelines cannot be optimized either
    661     for (mpe = cmsPipelineGetPtrToFirstStage(Src);
    662         mpe != NULL;
    663         mpe = cmsStageNext(mpe)) {
    664             if (cmsStageType(mpe) == cmsSigNamedColorElemType) return FALSE;
    665     }
    666 
    667     // Allocate an empty LUT
    668     Dest =  cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
    669     if (!Dest) return FALSE;
    670 
    671     // Prelinearization tables are kept unless indicated by flags
    672     if (*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION) {
    673 
    674         // Get a pointer to the prelinearization element
    675         cmsStage* PreLin = cmsPipelineGetPtrToFirstStage(Src);
    676 
    677         // Check if suitable
    678         if (PreLin && PreLin ->Type == cmsSigCurveSetElemType) {
    679 
    680             // Maybe this is a linear tram, so we can avoid the whole stuff
    681             if (!AllCurvesAreLinear(PreLin)) {
    682 
    683                 // All seems ok, proceed.
    684                 NewPreLin = cmsStageDup(PreLin);
    685                 if(!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, NewPreLin))
    686                     goto Error;
    687 
    688                 // Remove prelinearization. Since we have duplicated the curve
    689                 // in destination LUT, the sampling shoud be applied after this stage.
    690                 cmsPipelineUnlinkStage(Src, cmsAT_BEGIN, &KeepPreLin);
    691             }
    692         }
    693     }
    694 
    695     // Allocate the CLUT
    696     CLUT = cmsStageAllocCLut16bit(Src ->ContextID, nGridPoints, Src ->InputChannels, Src->OutputChannels, NULL);
    697     if (CLUT == NULL) goto Error;
    698 
    699     // Add the CLUT to the destination LUT
    700     if (!cmsPipelineInsertStage(Dest, cmsAT_END, CLUT)) {
    701         goto Error;
    702     }
    703 
    704     // Postlinearization tables are kept unless indicated by flags
    705     if (*dwFlags & cmsFLAGS_CLUT_POST_LINEARIZATION) {
    706 
    707         // Get a pointer to the postlinearization if present
    708         cmsStage* PostLin = cmsPipelineGetPtrToLastStage(Src);
    709 
    710         // Check if suitable
    711         if (PostLin && cmsStageType(PostLin) == cmsSigCurveSetElemType) {
    712 
    713             // Maybe this is a linear tram, so we can avoid the whole stuff
    714             if (!AllCurvesAreLinear(PostLin)) {
    715 
    716                 // All seems ok, proceed.
    717                 NewPostLin = cmsStageDup(PostLin);
    718                 if (!cmsPipelineInsertStage(Dest, cmsAT_END, NewPostLin))
    719                     goto Error;
    720 
    721                 // In destination LUT, the sampling shoud be applied after this stage.
    722                 cmsPipelineUnlinkStage(Src, cmsAT_END, &KeepPostLin);
    723             }
    724         }
    725     }
    726 
    727     // Now its time to do the sampling. We have to ignore pre/post linearization
    728     // The source LUT whithout pre/post curves is passed as parameter.
    729     if (!cmsStageSampleCLut16bit(CLUT, XFormSampler16, (void*) Src, 0)) {
    730 Error:
    731         // Ops, something went wrong, Restore stages
    732         if (KeepPreLin != NULL) {
    733             if (!cmsPipelineInsertStage(Src, cmsAT_BEGIN, KeepPreLin)) {
    734                 _cmsAssert(0); // This never happens
    735             }
    736         }
    737         if (KeepPostLin != NULL) {
    738             if (!cmsPipelineInsertStage(Src, cmsAT_END,   KeepPostLin)) {
    739                 _cmsAssert(0); // This never happens
    740             }
    741         }
    742         cmsPipelineFree(Dest);
    743         return FALSE;
    744     }
    745 
    746     // Done.
    747 
    748     if (KeepPreLin != NULL) cmsStageFree(KeepPreLin);
    749     if (KeepPostLin != NULL) cmsStageFree(KeepPostLin);
    750     cmsPipelineFree(Src);
    751 
    752     DataCLUT = (_cmsStageCLutData*) CLUT ->Data;
    753 
    754     if (NewPreLin == NULL) DataSetIn = NULL;
    755     else DataSetIn = ((_cmsStageToneCurvesData*) NewPreLin ->Data) ->TheCurves;
    756 
    757     if (NewPostLin == NULL) DataSetOut = NULL;
    758     else  DataSetOut = ((_cmsStageToneCurvesData*) NewPostLin ->Data) ->TheCurves;
    759 
    760 
    761     if (DataSetIn == NULL && DataSetOut == NULL) {
    762 
    763         _cmsPipelineSetOptimizationParameters(Dest, (_cmsOPTeval16Fn) DataCLUT->Params->Interpolation.Lerp16, DataCLUT->Params, NULL, NULL);
    764     }
    765     else {
    766 
    767         p16 = PrelinOpt16alloc(Dest ->ContextID,
    768             DataCLUT ->Params,
    769             Dest ->InputChannels,
    770             DataSetIn,
    771             Dest ->OutputChannels,
    772             DataSetOut);
    773 
    774         _cmsPipelineSetOptimizationParameters(Dest, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup);
    775     }
    776 
    777 
    778     // Don't fix white on absolute colorimetric
    779     if (Intent == INTENT_ABSOLUTE_COLORIMETRIC)
    780         *dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP;
    781 
    782     if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) {
    783 
    784         FixWhiteMisalignment(Dest, ColorSpace, OutputColorSpace);
    785     }
    786 
    787     *Lut = Dest;
    788     return TRUE;
    789 
    790     cmsUNUSED_PARAMETER(Intent);
    791 }
    792 
    793 
    794 // -----------------------------------------------------------------------------------------------------------------------------------------------
    795 // Fixes the gamma balancing of transform. This is described in my paper "Prelinearization Stages on
    796 // Color-Management Application-Specific Integrated Circuits (ASICs)" presented at NIP24. It only works
    797 // for RGB transforms. See the paper for more details
    798 // -----------------------------------------------------------------------------------------------------------------------------------------------
    799 
    800 
    801 // Normalize endpoints by slope limiting max and min. This assures endpoints as well.
    802 // Descending curves are handled as well.
    803 static
    804 void SlopeLimiting(cmsToneCurve* g)
    805 {
    806     int BeginVal, EndVal;
    807     int AtBegin = (int) floor((cmsFloat64Number) g ->nEntries * 0.02 + 0.5);   // Cutoff at 2%
    808     int AtEnd   = g ->nEntries - AtBegin - 1;                                  // And 98%
    809     cmsFloat64Number Val, Slope, beta;
    810     int i;
    811 
    812     if (cmsIsToneCurveDescending(g)) {
    813         BeginVal = 0xffff; EndVal = 0;
    814     }
    815     else {
    816         BeginVal = 0; EndVal = 0xffff;
    817     }
    818 
    819     // Compute slope and offset for begin of curve
    820     Val   = g ->Table16[AtBegin];
    821     Slope = (Val - BeginVal) / AtBegin;
    822     beta  = Val - Slope * AtBegin;
    823 
    824     for (i=0; i < AtBegin; i++)
    825         g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta);
    826 
    827     // Compute slope and offset for the end
    828     Val   = g ->Table16[AtEnd];
    829     Slope = (EndVal - Val) / AtBegin;   // AtBegin holds the X interval, which is same in both cases
    830     beta  = Val - Slope * AtEnd;
    831 
    832     for (i = AtEnd; i < (int) g ->nEntries; i++)
    833         g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta);
    834 }
    835 
    836 
    837 // Precomputes tables for 8-bit on input devicelink.
    838 static
    839 Prelin8Data* PrelinOpt8alloc(cmsContext ContextID, const cmsInterpParams* p, cmsToneCurve* G[3])
    840 {
    841     int i;
    842     cmsUInt16Number Input[3];
    843     cmsS15Fixed16Number v1, v2, v3;
    844     Prelin8Data* p8;
    845 
    846     p8 = (Prelin8Data*)_cmsMallocZero(ContextID, sizeof(Prelin8Data));
    847     if (p8 == NULL) return NULL;
    848 
    849     // Since this only works for 8 bit input, values comes always as x * 257,
    850     // we can safely take msb byte (x << 8 + x)
    851 
    852     for (i=0; i < 256; i++) {
    853 
    854         if (G != NULL) {
    855 
    856             // Get 16-bit representation
    857             Input[0] = cmsEvalToneCurve16(G[0], FROM_8_TO_16(i));
    858             Input[1] = cmsEvalToneCurve16(G[1], FROM_8_TO_16(i));
    859             Input[2] = cmsEvalToneCurve16(G[2], FROM_8_TO_16(i));
    860         }
    861         else {
    862             Input[0] = FROM_8_TO_16(i);
    863             Input[1] = FROM_8_TO_16(i);
    864             Input[2] = FROM_8_TO_16(i);
    865         }
    866 
    867 
    868         // Move to 0..1.0 in fixed domain
    869         v1 = _cmsToFixedDomain(Input[0] * p -> Domain[0]);
    870         v2 = _cmsToFixedDomain(Input[1] * p -> Domain[1]);
    871         v3 = _cmsToFixedDomain(Input[2] * p -> Domain[2]);
    872 
    873         // Store the precalculated table of nodes
    874         p8 ->X0[i] = (p->opta[2] * FIXED_TO_INT(v1));
    875         p8 ->Y0[i] = (p->opta[1] * FIXED_TO_INT(v2));
    876         p8 ->Z0[i] = (p->opta[0] * FIXED_TO_INT(v3));
    877 
    878         // Store the precalculated table of offsets
    879         p8 ->rx[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v1);
    880         p8 ->ry[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v2);
    881         p8 ->rz[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v3);
    882     }
    883 
    884     p8 ->ContextID = ContextID;
    885     p8 ->p = p;
    886 
    887     return p8;
    888 }
    889 
    890 static
    891 void Prelin8free(cmsContext ContextID, void* ptr)
    892 {
    893     _cmsFree(ContextID, ptr);
    894 }
    895 
    896 static
    897 void* Prelin8dup(cmsContext ContextID, const void* ptr)
    898 {
    899     return _cmsDupMem(ContextID, ptr, sizeof(Prelin8Data));
    900 }
    901 
    902 
    903 
    904 // A optimized interpolation for 8-bit input.
    905 #define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan])
    906 static
    907 void PrelinEval8(register const cmsUInt16Number Input[],
    908                   register cmsUInt16Number Output[],
    909                   register const void* D)
    910 {
    911 
    912     cmsUInt8Number         r, g, b;
    913     cmsS15Fixed16Number    rx, ry, rz;
    914     cmsS15Fixed16Number    c0, c1, c2, c3, Rest;
    915     int                    OutChan;
    916     register cmsS15Fixed16Number    X0, X1, Y0, Y1, Z0, Z1;
    917     Prelin8Data* p8 = (Prelin8Data*) D;
    918     register const cmsInterpParams* p = p8 ->p;
    919     int                    TotalOut = p -> nOutputs;
    920     const cmsUInt16Number* LutTable = (const cmsUInt16Number*) p->Table;
    921 
    922     r = Input[0] >> 8;
    923     g = Input[1] >> 8;
    924     b = Input[2] >> 8;
    925 
    926     X0 = X1 = p8->X0[r];
    927     Y0 = Y1 = p8->Y0[g];
    928     Z0 = Z1 = p8->Z0[b];
    929 
    930     rx = p8 ->rx[r];
    931     ry = p8 ->ry[g];
    932     rz = p8 ->rz[b];
    933 
    934     X1 = X0 + ((rx == 0) ? 0 : p ->opta[2]);
    935     Y1 = Y0 + ((ry == 0) ? 0 : p ->opta[1]);
    936     Z1 = Z0 + ((rz == 0) ? 0 : p ->opta[0]);
    937 
    938 
    939     // These are the 6 Tetrahedral
    940     for (OutChan=0; OutChan < TotalOut; OutChan++) {
    941 
    942         c0 = DENS(X0, Y0, Z0);
    943 
    944         if (rx >= ry && ry >= rz)
    945         {
    946             c1 = DENS(X1, Y0, Z0) - c0;
    947             c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0);
    948             c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
    949         }
    950         else
    951             if (rx >= rz && rz >= ry)
    952             {
    953                 c1 = DENS(X1, Y0, Z0) - c0;
    954                 c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
    955                 c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0);
    956             }
    957             else
    958                 if (rz >= rx && rx >= ry)
    959                 {
    960                     c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1);
    961                     c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
    962                     c3 = DENS(X0, Y0, Z1) - c0;
    963                 }
    964                 else
    965                     if (ry >= rx && rx >= rz)
    966                     {
    967                         c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0);
    968                         c2 = DENS(X0, Y1, Z0) - c0;
    969                         c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
    970                     }
    971                     else
    972                         if (ry >= rz && rz >= rx)
    973                         {
    974                             c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
    975                             c2 = DENS(X0, Y1, Z0) - c0;
    976                             c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0);
    977                         }
    978                         else
    979                             if (rz >= ry && ry >= rx)
    980                             {
    981                                 c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
    982                                 c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1);
    983                                 c3 = DENS(X0, Y0, Z1) - c0;
    984                             }
    985                             else  {
    986                                 c1 = c2 = c3 = 0;
    987                             }
    988 
    989 
    990                             Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001;
    991                             Output[OutChan] = (cmsUInt16Number)c0 + ((Rest + (Rest>>16))>>16);
    992 
    993     }
    994 }
    995 
    996 #undef DENS
    997 
    998 
    999 // Curves that contain wide empty areas are not optimizeable
   1000 static
   1001 cmsBool IsDegenerated(const cmsToneCurve* g)
   1002 {
   1003     int i, Zeros = 0, Poles = 0;
   1004     int nEntries = g ->nEntries;
   1005 
   1006     for (i=0; i < nEntries; i++) {
   1007 
   1008         if (g ->Table16[i] == 0x0000) Zeros++;
   1009         if (g ->Table16[i] == 0xffff) Poles++;
   1010     }
   1011 
   1012     if (Zeros == 1 && Poles == 1) return FALSE;  // For linear tables
   1013     if (Zeros > (nEntries / 20)) return TRUE;  // Degenerated, many zeros
   1014     if (Poles > (nEntries / 20)) return TRUE;  // Degenerated, many poles
   1015 
   1016     return FALSE;
   1017 }
   1018 
   1019 // --------------------------------------------------------------------------------------------------------------
   1020 // We need xput over here
   1021 
   1022 static
   1023 cmsBool OptimizeByComputingLinearization(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
   1024 {
   1025     cmsPipeline* OriginalLut;
   1026     int nGridPoints;
   1027     cmsToneCurve *Trans[cmsMAXCHANNELS], *TransReverse[cmsMAXCHANNELS];
   1028     cmsUInt32Number t, i;
   1029     cmsFloat32Number v, In[cmsMAXCHANNELS], Out[cmsMAXCHANNELS];
   1030     cmsBool lIsSuitable, lIsLinear;
   1031     cmsPipeline* OptimizedLUT = NULL, *LutPlusCurves = NULL;
   1032     cmsStage* OptimizedCLUTmpe;
   1033     cmsColorSpaceSignature ColorSpace, OutputColorSpace;
   1034     cmsStage* OptimizedPrelinMpe;
   1035     cmsStage* mpe;
   1036     cmsToneCurve** OptimizedPrelinCurves;
   1037     _cmsStageCLutData* OptimizedPrelinCLUT;
   1038 
   1039 
   1040     // This is a loosy optimization! does not apply in floating-point cases
   1041     if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
   1042 
   1043     // Only on chunky RGB
   1044     if (T_COLORSPACE(*InputFormat)  != PT_RGB) return FALSE;
   1045     if (T_PLANAR(*InputFormat)) return FALSE;
   1046 
   1047     if (T_COLORSPACE(*OutputFormat) != PT_RGB) return FALSE;
   1048     if (T_PLANAR(*OutputFormat)) return FALSE;
   1049 
   1050     // On 16 bits, user has to specify the feature
   1051     if (!_cmsFormatterIs8bit(*InputFormat)) {
   1052         if (!(*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION)) return FALSE;
   1053     }
   1054 
   1055     OriginalLut = *Lut;
   1056 
   1057    // Named color pipelines cannot be optimized either
   1058    for (mpe = cmsPipelineGetPtrToFirstStage(OriginalLut);
   1059          mpe != NULL;
   1060          mpe = cmsStageNext(mpe)) {
   1061             if (cmsStageType(mpe) == cmsSigNamedColorElemType) return FALSE;
   1062     }
   1063 
   1064     ColorSpace       = _cmsICCcolorSpace(T_COLORSPACE(*InputFormat));
   1065     OutputColorSpace = _cmsICCcolorSpace(T_COLORSPACE(*OutputFormat));
   1066     nGridPoints      = _cmsReasonableGridpointsByColorspace(ColorSpace, *dwFlags);
   1067 
   1068     // Empty gamma containers
   1069     memset(Trans, 0, sizeof(Trans));
   1070     memset(TransReverse, 0, sizeof(TransReverse));
   1071 
   1072     // If the last stage of the original lut are curves, and those curves are
   1073     // degenerated, it is likely the transform is squeezing and clipping
   1074     // the output from previous CLUT. We cannot optimize this case
   1075     {
   1076         cmsStage* last = cmsPipelineGetPtrToLastStage(OriginalLut);
   1077 
   1078         if (cmsStageType(last) == cmsSigCurveSetElemType) {
   1079 
   1080             _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*)cmsStageData(last);
   1081             for (i = 0; i < Data->nCurves; i++) {
   1082                 if (IsDegenerated(Data->TheCurves[i]))
   1083                     goto Error;
   1084             }
   1085         }
   1086     }
   1087 
   1088     for (t = 0; t < OriginalLut ->InputChannels; t++) {
   1089         Trans[t] = cmsBuildTabulatedToneCurve16(OriginalLut ->ContextID, PRELINEARIZATION_POINTS, NULL);
   1090         if (Trans[t] == NULL) goto Error;
   1091     }
   1092 
   1093     // Populate the curves
   1094     for (i=0; i < PRELINEARIZATION_POINTS; i++) {
   1095 
   1096         v = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1));
   1097 
   1098         // Feed input with a gray ramp
   1099         for (t=0; t < OriginalLut ->InputChannels; t++)
   1100             In[t] = v;
   1101 
   1102         // Evaluate the gray value
   1103         cmsPipelineEvalFloat(In, Out, OriginalLut);
   1104 
   1105         // Store result in curve
   1106         for (t=0; t < OriginalLut ->InputChannels; t++)
   1107             Trans[t] ->Table16[i] = _cmsQuickSaturateWord(Out[t] * 65535.0);
   1108     }
   1109 
   1110     // Slope-limit the obtained curves
   1111     for (t = 0; t < OriginalLut ->InputChannels; t++)
   1112         SlopeLimiting(Trans[t]);
   1113 
   1114     // Check for validity
   1115     lIsSuitable = TRUE;
   1116     lIsLinear   = TRUE;
   1117     for (t=0; (lIsSuitable && (t < OriginalLut ->InputChannels)); t++) {
   1118 
   1119         // Exclude if already linear
   1120         if (!cmsIsToneCurveLinear(Trans[t]))
   1121             lIsLinear = FALSE;
   1122 
   1123         // Exclude if non-monotonic
   1124         if (!cmsIsToneCurveMonotonic(Trans[t]))
   1125             lIsSuitable = FALSE;
   1126 
   1127         if (IsDegenerated(Trans[t]))
   1128             lIsSuitable = FALSE;
   1129     }
   1130 
   1131     // If it is not suitable, just quit
   1132     if (!lIsSuitable) goto Error;
   1133 
   1134     // Invert curves if possible
   1135     for (t = 0; t < OriginalLut ->InputChannels; t++) {
   1136         TransReverse[t] = cmsReverseToneCurveEx(PRELINEARIZATION_POINTS, Trans[t]);
   1137         if (TransReverse[t] == NULL) goto Error;
   1138     }
   1139 
   1140     // Now inset the reversed curves at the begin of transform
   1141     LutPlusCurves = cmsPipelineDup(OriginalLut);
   1142     if (LutPlusCurves == NULL) goto Error;
   1143 
   1144     if (!cmsPipelineInsertStage(LutPlusCurves, cmsAT_BEGIN, cmsStageAllocToneCurves(OriginalLut ->ContextID, OriginalLut ->InputChannels, TransReverse)))
   1145         goto Error;
   1146 
   1147     // Create the result LUT
   1148     OptimizedLUT = cmsPipelineAlloc(OriginalLut ->ContextID, OriginalLut ->InputChannels, OriginalLut ->OutputChannels);
   1149     if (OptimizedLUT == NULL) goto Error;
   1150 
   1151     OptimizedPrelinMpe = cmsStageAllocToneCurves(OriginalLut ->ContextID, OriginalLut ->InputChannels, Trans);
   1152 
   1153     // Create and insert the curves at the beginning
   1154     if (!cmsPipelineInsertStage(OptimizedLUT, cmsAT_BEGIN, OptimizedPrelinMpe))
   1155         goto Error;
   1156 
   1157     // Allocate the CLUT for result
   1158     OptimizedCLUTmpe = cmsStageAllocCLut16bit(OriginalLut ->ContextID, nGridPoints, OriginalLut ->InputChannels, OriginalLut ->OutputChannels, NULL);
   1159 
   1160     // Add the CLUT to the destination LUT
   1161     if (!cmsPipelineInsertStage(OptimizedLUT, cmsAT_END, OptimizedCLUTmpe))
   1162         goto Error;
   1163 
   1164     // Resample the LUT
   1165     if (!cmsStageSampleCLut16bit(OptimizedCLUTmpe, XFormSampler16, (void*) LutPlusCurves, 0)) goto Error;
   1166 
   1167     // Free resources
   1168     for (t = 0; t < OriginalLut ->InputChannels; t++) {
   1169 
   1170         if (Trans[t]) cmsFreeToneCurve(Trans[t]);
   1171         if (TransReverse[t]) cmsFreeToneCurve(TransReverse[t]);
   1172     }
   1173 
   1174     cmsPipelineFree(LutPlusCurves);
   1175 
   1176 
   1177     OptimizedPrelinCurves = _cmsStageGetPtrToCurveSet(OptimizedPrelinMpe);
   1178     OptimizedPrelinCLUT   = (_cmsStageCLutData*) OptimizedCLUTmpe ->Data;
   1179 
   1180     // Set the evaluator if 8-bit
   1181     if (_cmsFormatterIs8bit(*InputFormat)) {
   1182 
   1183         Prelin8Data* p8 = PrelinOpt8alloc(OptimizedLUT ->ContextID,
   1184                                                 OptimizedPrelinCLUT ->Params,
   1185                                                 OptimizedPrelinCurves);
   1186         if (p8 == NULL) return FALSE;
   1187 
   1188         _cmsPipelineSetOptimizationParameters(OptimizedLUT, PrelinEval8, (void*) p8, Prelin8free, Prelin8dup);
   1189 
   1190     }
   1191     else
   1192     {
   1193         Prelin16Data* p16 = PrelinOpt16alloc(OptimizedLUT ->ContextID,
   1194             OptimizedPrelinCLUT ->Params,
   1195             3, OptimizedPrelinCurves, 3, NULL);
   1196         if (p16 == NULL) return FALSE;
   1197 
   1198         _cmsPipelineSetOptimizationParameters(OptimizedLUT, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup);
   1199 
   1200     }
   1201 
   1202     // Don't fix white on absolute colorimetric
   1203     if (Intent == INTENT_ABSOLUTE_COLORIMETRIC)
   1204         *dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP;
   1205 
   1206     if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) {
   1207 
   1208         if (!FixWhiteMisalignment(OptimizedLUT, ColorSpace, OutputColorSpace)) {
   1209 
   1210             return FALSE;
   1211         }
   1212     }
   1213 
   1214     // And return the obtained LUT
   1215 
   1216     cmsPipelineFree(OriginalLut);
   1217     *Lut = OptimizedLUT;
   1218     return TRUE;
   1219 
   1220 Error:
   1221 
   1222     for (t = 0; t < OriginalLut ->InputChannels; t++) {
   1223 
   1224         if (Trans[t]) cmsFreeToneCurve(Trans[t]);
   1225         if (TransReverse[t]) cmsFreeToneCurve(TransReverse[t]);
   1226     }
   1227 
   1228     if (LutPlusCurves != NULL) cmsPipelineFree(LutPlusCurves);
   1229     if (OptimizedLUT != NULL) cmsPipelineFree(OptimizedLUT);
   1230 
   1231     return FALSE;
   1232 
   1233     cmsUNUSED_PARAMETER(Intent);
   1234 }
   1235 
   1236 
   1237 // Curves optimizer ------------------------------------------------------------------------------------------------------------------
   1238 
   1239 static
   1240 void CurvesFree(cmsContext ContextID, void* ptr)
   1241 {
   1242      Curves16Data* Data = (Curves16Data*) ptr;
   1243      int i;
   1244 
   1245      for (i=0; i < Data -> nCurves; i++) {
   1246 
   1247          _cmsFree(ContextID, Data ->Curves[i]);
   1248      }
   1249 
   1250      _cmsFree(ContextID, Data ->Curves);
   1251      _cmsFree(ContextID, ptr);
   1252 }
   1253 
   1254 static
   1255 void* CurvesDup(cmsContext ContextID, const void* ptr)
   1256 {
   1257     Curves16Data* Data = (Curves16Data*)_cmsDupMem(ContextID, ptr, sizeof(Curves16Data));
   1258     int i;
   1259 
   1260     if (Data == NULL) return NULL;
   1261 
   1262     Data->Curves = (cmsUInt16Number**) _cmsDupMem(ContextID, Data->Curves, Data->nCurves * sizeof(cmsUInt16Number*));
   1263 
   1264     for (i=0; i < Data -> nCurves; i++) {
   1265         Data->Curves[i] = (cmsUInt16Number*) _cmsDupMem(ContextID, Data->Curves[i], Data->nElements * sizeof(cmsUInt16Number));
   1266     }
   1267 
   1268     return (void*) Data;
   1269 }
   1270 
   1271 // Precomputes tables for 8-bit on input devicelink.
   1272 static
   1273 Curves16Data* CurvesAlloc(cmsContext ContextID, int nCurves, int nElements, cmsToneCurve** G)
   1274 {
   1275     int i, j;
   1276     Curves16Data* c16;
   1277 
   1278     c16 = (Curves16Data*)_cmsMallocZero(ContextID, sizeof(Curves16Data));
   1279     if (c16 == NULL) return NULL;
   1280 
   1281     c16 ->nCurves = nCurves;
   1282     c16 ->nElements = nElements;
   1283 
   1284     c16->Curves = (cmsUInt16Number**) _cmsCalloc(ContextID, nCurves, sizeof(cmsUInt16Number*));
   1285     if (c16 ->Curves == NULL) return NULL;
   1286 
   1287     for (i=0; i < nCurves; i++) {
   1288 
   1289         c16->Curves[i] = (cmsUInt16Number*) _cmsCalloc(ContextID, nElements, sizeof(cmsUInt16Number));
   1290 
   1291         if (c16->Curves[i] == NULL) {
   1292 
   1293             for (j=0; j < i; j++) {
   1294                 _cmsFree(ContextID, c16->Curves[j]);
   1295             }
   1296             _cmsFree(ContextID, c16->Curves);
   1297             _cmsFree(ContextID, c16);
   1298             return NULL;
   1299         }
   1300 
   1301         if (nElements == 256) {
   1302 
   1303             for (j=0; j < nElements; j++) {
   1304 
   1305                 c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], FROM_8_TO_16(j));
   1306             }
   1307         }
   1308         else {
   1309 
   1310             for (j=0; j < nElements; j++) {
   1311                 c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], (cmsUInt16Number) j);
   1312             }
   1313         }
   1314     }
   1315 
   1316     return c16;
   1317 }
   1318 
   1319 static
   1320 void FastEvaluateCurves8(register const cmsUInt16Number In[],
   1321                           register cmsUInt16Number Out[],
   1322                           register const void* D)
   1323 {
   1324     Curves16Data* Data = (Curves16Data*) D;
   1325     cmsUInt8Number x;
   1326     int i;
   1327 
   1328     for (i=0; i < Data ->nCurves; i++) {
   1329 
   1330          x = (In[i] >> 8);
   1331          Out[i] = Data -> Curves[i][x];
   1332     }
   1333 }
   1334 
   1335 
   1336 static
   1337 void FastEvaluateCurves16(register const cmsUInt16Number In[],
   1338                           register cmsUInt16Number Out[],
   1339                           register const void* D)
   1340 {
   1341     Curves16Data* Data = (Curves16Data*) D;
   1342     int i;
   1343 
   1344     for (i=0; i < Data ->nCurves; i++) {
   1345          Out[i] = Data -> Curves[i][In[i]];
   1346     }
   1347 }
   1348 
   1349 
   1350 static
   1351 void FastIdentity16(register const cmsUInt16Number In[],
   1352                     register cmsUInt16Number Out[],
   1353                     register const void* D)
   1354 {
   1355     cmsPipeline* Lut = (cmsPipeline*) D;
   1356     cmsUInt32Number i;
   1357 
   1358     for (i=0; i < Lut ->InputChannels; i++) {
   1359          Out[i] = In[i];
   1360     }
   1361 }
   1362 
   1363 
   1364 // If the target LUT holds only curves, the optimization procedure is to join all those
   1365 // curves together. That only works on curves and does not work on matrices.
   1366 static
   1367 cmsBool OptimizeByJoiningCurves(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
   1368 {
   1369     cmsToneCurve** GammaTables = NULL;
   1370     cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS];
   1371     cmsUInt32Number i, j;
   1372     cmsPipeline* Src = *Lut;
   1373     cmsPipeline* Dest = NULL;
   1374     cmsStage* mpe;
   1375     cmsStage* ObtainedCurves = NULL;
   1376 
   1377 
   1378     // This is a loosy optimization! does not apply in floating-point cases
   1379     if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
   1380 
   1381     //  Only curves in this LUT?
   1382     for (mpe = cmsPipelineGetPtrToFirstStage(Src);
   1383          mpe != NULL;
   1384          mpe = cmsStageNext(mpe)) {
   1385             if (cmsStageType(mpe) != cmsSigCurveSetElemType) return FALSE;
   1386     }
   1387 
   1388     // Allocate an empty LUT
   1389     Dest =  cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
   1390     if (Dest == NULL) return FALSE;
   1391 
   1392     // Create target curves
   1393     GammaTables = (cmsToneCurve**) _cmsCalloc(Src ->ContextID, Src ->InputChannels, sizeof(cmsToneCurve*));
   1394     if (GammaTables == NULL) goto Error;
   1395 
   1396     for (i=0; i < Src ->InputChannels; i++) {
   1397         GammaTables[i] = cmsBuildTabulatedToneCurve16(Src ->ContextID, PRELINEARIZATION_POINTS, NULL);
   1398         if (GammaTables[i] == NULL) goto Error;
   1399     }
   1400 
   1401     // Compute 16 bit result by using floating point
   1402     for (i=0; i < PRELINEARIZATION_POINTS; i++) {
   1403 
   1404         for (j=0; j < Src ->InputChannels; j++)
   1405             InFloat[j] = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1));
   1406 
   1407         cmsPipelineEvalFloat(InFloat, OutFloat, Src);
   1408 
   1409         for (j=0; j < Src ->InputChannels; j++)
   1410             GammaTables[j] -> Table16[i] = _cmsQuickSaturateWord(OutFloat[j] * 65535.0);
   1411     }
   1412 
   1413     ObtainedCurves = cmsStageAllocToneCurves(Src ->ContextID, Src ->InputChannels, GammaTables);
   1414     if (ObtainedCurves == NULL) goto Error;
   1415 
   1416     for (i=0; i < Src ->InputChannels; i++) {
   1417         cmsFreeToneCurve(GammaTables[i]);
   1418         GammaTables[i] = NULL;
   1419     }
   1420 
   1421     if (GammaTables != NULL) {
   1422         _cmsFree(Src->ContextID, GammaTables);
   1423         GammaTables = NULL;
   1424     }
   1425 
   1426     // Maybe the curves are linear at the end
   1427     if (!AllCurvesAreLinear(ObtainedCurves)) {
   1428 
   1429         if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, ObtainedCurves))
   1430             goto Error;
   1431 
   1432         // If the curves are to be applied in 8 bits, we can save memory
   1433         if (_cmsFormatterIs8bit(*InputFormat)) {
   1434 
   1435             _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) ObtainedCurves ->Data;
   1436              Curves16Data* c16 = CurvesAlloc(Dest ->ContextID, Data ->nCurves, 256, Data ->TheCurves);
   1437 
   1438              if (c16 == NULL) goto Error;
   1439              *dwFlags |= cmsFLAGS_NOCACHE;
   1440             _cmsPipelineSetOptimizationParameters(Dest, FastEvaluateCurves8, c16, CurvesFree, CurvesDup);
   1441 
   1442         }
   1443         else {
   1444 
   1445             _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) cmsStageData(ObtainedCurves);
   1446              Curves16Data* c16 = CurvesAlloc(Dest ->ContextID, Data ->nCurves, 65536, Data ->TheCurves);
   1447 
   1448              if (c16 == NULL) goto Error;
   1449              *dwFlags |= cmsFLAGS_NOCACHE;
   1450             _cmsPipelineSetOptimizationParameters(Dest, FastEvaluateCurves16, c16, CurvesFree, CurvesDup);
   1451         }
   1452     }
   1453     else {
   1454 
   1455         // LUT optimizes to nothing. Set the identity LUT
   1456         cmsStageFree(ObtainedCurves);
   1457 
   1458         if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, cmsStageAllocIdentity(Dest ->ContextID, Src ->InputChannels)))
   1459             goto Error;
   1460 
   1461         *dwFlags |= cmsFLAGS_NOCACHE;
   1462         _cmsPipelineSetOptimizationParameters(Dest, FastIdentity16, (void*) Dest, NULL, NULL);
   1463     }
   1464 
   1465     // We are done.
   1466     cmsPipelineFree(Src);
   1467     *Lut = Dest;
   1468     return TRUE;
   1469 
   1470 Error:
   1471 
   1472     if (ObtainedCurves != NULL) cmsStageFree(ObtainedCurves);
   1473     if (GammaTables != NULL) {
   1474         for (i=0; i < Src ->InputChannels; i++) {
   1475             if (GammaTables[i] != NULL) cmsFreeToneCurve(GammaTables[i]);
   1476         }
   1477 
   1478         _cmsFree(Src ->ContextID, GammaTables);
   1479     }
   1480 
   1481     if (Dest != NULL) cmsPipelineFree(Dest);
   1482     return FALSE;
   1483 
   1484     cmsUNUSED_PARAMETER(Intent);
   1485     cmsUNUSED_PARAMETER(InputFormat);
   1486     cmsUNUSED_PARAMETER(OutputFormat);
   1487     cmsUNUSED_PARAMETER(dwFlags);
   1488 }
   1489 
   1490 // -------------------------------------------------------------------------------------------------------------------------------------
   1491 // LUT is Shaper - Matrix - Matrix - Shaper, which is very frequent when combining two matrix-shaper profiles
   1492 
   1493 
   1494 static
   1495 void  FreeMatShaper(cmsContext ContextID, void* Data)
   1496 {
   1497     if (Data != NULL) _cmsFree(ContextID, Data);
   1498 }
   1499 
   1500 static
   1501 void* DupMatShaper(cmsContext ContextID, const void* Data)
   1502 {
   1503     return _cmsDupMem(ContextID, Data, sizeof(MatShaper8Data));
   1504 }
   1505 
   1506 
   1507 // A fast matrix-shaper evaluator for 8 bits. This is a bit ticky since I'm using 1.14 signed fixed point
   1508 // to accomplish some performance. Actually it takes 256x3 16 bits tables and 16385 x 3 tables of 8 bits,
   1509 // in total about 50K, and the performance boost is huge!
   1510 static
   1511 void MatShaperEval16(register const cmsUInt16Number In[],
   1512                      register cmsUInt16Number Out[],
   1513                      register const void* D)
   1514 {
   1515     MatShaper8Data* p = (MatShaper8Data*) D;
   1516     cmsS1Fixed14Number l1, l2, l3, r, g, b;
   1517     cmsUInt32Number ri, gi, bi;
   1518 
   1519     // In this case (and only in this case!) we can use this simplification since
   1520     // In[] is assured to come from a 8 bit number. (a << 8 | a)
   1521     ri = In[0] & 0xFF;
   1522     gi = In[1] & 0xFF;
   1523     bi = In[2] & 0xFF;
   1524 
   1525     // Across first shaper, which also converts to 1.14 fixed point
   1526     r = p->Shaper1R[ri];
   1527     g = p->Shaper1G[gi];
   1528     b = p->Shaper1B[bi];
   1529 
   1530     // Evaluate the matrix in 1.14 fixed point
   1531     l1 =  (p->Mat[0][0] * r + p->Mat[0][1] * g + p->Mat[0][2] * b + p->Off[0] + 0x2000) >> 14;
   1532     l2 =  (p->Mat[1][0] * r + p->Mat[1][1] * g + p->Mat[1][2] * b + p->Off[1] + 0x2000) >> 14;
   1533     l3 =  (p->Mat[2][0] * r + p->Mat[2][1] * g + p->Mat[2][2] * b + p->Off[2] + 0x2000) >> 14;
   1534 
   1535     // Now we have to clip to 0..1.0 range
   1536     ri = (l1 < 0) ? 0 : ((l1 > 16384) ? 16384 : l1);
   1537     gi = (l2 < 0) ? 0 : ((l2 > 16384) ? 16384 : l2);
   1538     bi = (l3 < 0) ? 0 : ((l3 > 16384) ? 16384 : l3);
   1539 
   1540     // And across second shaper,
   1541     Out[0] = p->Shaper2R[ri];
   1542     Out[1] = p->Shaper2G[gi];
   1543     Out[2] = p->Shaper2B[bi];
   1544 
   1545 }
   1546 
   1547 // This table converts from 8 bits to 1.14 after applying the curve
   1548 static
   1549 cmsBool FillFirstShaper(cmsS1Fixed14Number* Table, cmsToneCurve* Curve)
   1550 {
   1551     int i;
   1552     cmsFloat32Number R, y;
   1553 
   1554     for (i=0; i < 256; i++) {
   1555 
   1556         R   = (cmsFloat32Number) (i / 255.0);
   1557         y   = cmsEvalToneCurveFloat(Curve, R);
   1558         if (isinf(y))
   1559             return FALSE;
   1560 
   1561         Table[i] = DOUBLE_TO_1FIXED14(y);
   1562     }
   1563     return TRUE;
   1564 }
   1565 
   1566 // This table converts form 1.14 (being 0x4000 the last entry) to 8 bits after applying the curve
   1567 static
   1568 cmsBool FillSecondShaper(cmsUInt16Number* Table, cmsToneCurve* Curve, cmsBool Is8BitsOutput)
   1569 {
   1570     int i;
   1571     cmsFloat32Number R, Val;
   1572 
   1573     for (i=0; i < 16385; i++) {
   1574 
   1575         R   = (cmsFloat32Number) (i / 16384.0);
   1576         Val = cmsEvalToneCurveFloat(Curve, R);    // Val comes 0..1.0
   1577         if (isinf(Val))
   1578             return FALSE;
   1579 
   1580         if (Is8BitsOutput) {
   1581 
   1582             // If 8 bits output, we can optimize further by computing the / 257 part.
   1583             // first we compute the resulting byte and then we store the byte times
   1584             // 257. This quantization allows to round very quick by doing a >> 8, but
   1585             // since the low byte is always equal to msb, we can do a & 0xff and this works!
   1586             cmsUInt16Number w = _cmsQuickSaturateWord(Val * 65535.0);
   1587             cmsUInt8Number  b = FROM_16_TO_8(w);
   1588 
   1589             Table[i] = FROM_8_TO_16(b);
   1590         }
   1591         else Table[i]  = _cmsQuickSaturateWord(Val * 65535.0);
   1592     }
   1593     return TRUE;
   1594 }
   1595 
   1596 // Compute the matrix-shaper structure
   1597 static
   1598 cmsBool SetMatShaper(cmsPipeline* Dest, cmsToneCurve* Curve1[3], cmsMAT3* Mat, cmsVEC3* Off, cmsToneCurve* Curve2[3], cmsUInt32Number* OutputFormat)
   1599 {
   1600     MatShaper8Data* p;
   1601     int i, j;
   1602     cmsBool Is8Bits = _cmsFormatterIs8bit(*OutputFormat);
   1603 
   1604     // Allocate a big chuck of memory to store precomputed tables
   1605     p = (MatShaper8Data*) _cmsMalloc(Dest ->ContextID, sizeof(MatShaper8Data));
   1606     if (p == NULL) return FALSE;
   1607 
   1608     p -> ContextID = Dest -> ContextID;
   1609 
   1610     // Precompute tables
   1611     if (!FillFirstShaper(p ->Shaper1R, Curve1[0]))
   1612         goto Error;
   1613     if (!FillFirstShaper(p ->Shaper1G, Curve1[1]))
   1614         goto Error;
   1615     if (!FillFirstShaper(p ->Shaper1B, Curve1[2]))
   1616         goto Error;
   1617 
   1618     if (!FillSecondShaper(p ->Shaper2R, Curve2[0], Is8Bits))
   1619         goto Error;
   1620     if (!FillSecondShaper(p ->Shaper2G, Curve2[1], Is8Bits))
   1621         goto Error;
   1622     if (!FillSecondShaper(p ->Shaper2B, Curve2[2], Is8Bits))
   1623         goto Error;
   1624 
   1625     // Convert matrix to nFixed14. Note that those values may take more than 16 bits as
   1626     for (i=0; i < 3; i++) {
   1627         for (j=0; j < 3; j++) {
   1628             p ->Mat[i][j] = DOUBLE_TO_1FIXED14(Mat->v[i].n[j]);
   1629         }
   1630     }
   1631 
   1632     for (i=0; i < 3; i++) {
   1633 
   1634         if (Off == NULL) {
   1635             p ->Off[i] = 0;
   1636         }
   1637         else {
   1638             p ->Off[i] = DOUBLE_TO_1FIXED14(Off->n[i]);
   1639         }
   1640     }
   1641 
   1642     // Mark as optimized for faster formatter
   1643     if (Is8Bits)
   1644         *OutputFormat |= OPTIMIZED_SH(1);
   1645 
   1646     // Fill function pointers
   1647     _cmsPipelineSetOptimizationParameters(Dest, MatShaperEval16, (void*) p, FreeMatShaper, DupMatShaper);
   1648     return TRUE;
   1649     Error:
   1650         _cmsFree(Dest->ContextID, p);
   1651         return FALSE;
   1652 }
   1653 
   1654 //  8 bits on input allows matrix-shaper boot up to 25 Mpixels per second on RGB. That's fast!
   1655 static
   1656 cmsBool OptimizeMatrixShaper(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
   1657 {
   1658        cmsStage* Curve1, *Curve2;
   1659        cmsStage* Matrix1, *Matrix2;
   1660        cmsMAT3 res;
   1661        cmsBool IdentityMat;
   1662        cmsPipeline* Dest, *Src;
   1663        cmsFloat64Number* Offset;
   1664 
   1665        // Only works on RGB to RGB
   1666        if (T_CHANNELS(*InputFormat) != 3 || T_CHANNELS(*OutputFormat) != 3) return FALSE;
   1667 
   1668        // Only works on 8 bit input
   1669        if (!_cmsFormatterIs8bit(*InputFormat)) return FALSE;
   1670 
   1671        // Seems suitable, proceed
   1672        Src = *Lut;
   1673 
   1674        // Check for:
   1675        //
   1676        //    shaper-matrix-matrix-shaper
   1677        //    shaper-matrix-shaper
   1678        //
   1679        // Both of those constructs are possible (first because abs. colorimetric).
   1680        // additionally, In the first case, the input matrix offset should be zero.
   1681 
   1682        IdentityMat = FALSE;
   1683        if (cmsPipelineCheckAndRetreiveStages(Src, 4,
   1684               cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType,
   1685               &Curve1, &Matrix1, &Matrix2, &Curve2)) {
   1686 
   1687               // Get both matrices
   1688               _cmsStageMatrixData* Data1 = (_cmsStageMatrixData*)cmsStageData(Matrix1);
   1689               _cmsStageMatrixData* Data2 = (_cmsStageMatrixData*)cmsStageData(Matrix2);
   1690 
   1691               // Input offset should be zero
   1692               if (Data1->Offset != NULL) return FALSE;
   1693 
   1694               // Multiply both matrices to get the result
   1695               _cmsMAT3per(&res, (cmsMAT3*)Data2->Double, (cmsMAT3*)Data1->Double);
   1696 
   1697               // Only 2nd matrix has offset, or it is zero
   1698               Offset = Data2->Offset;
   1699 
   1700               // Now the result is in res + Data2 -> Offset. Maybe is a plain identity?
   1701               if (_cmsMAT3isIdentity(&res) && Offset == NULL) {
   1702 
   1703                      // We can get rid of full matrix
   1704                      IdentityMat = TRUE;
   1705               }
   1706 
   1707        }
   1708        else {
   1709 
   1710               if (cmsPipelineCheckAndRetreiveStages(Src, 3,
   1711                      cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType,
   1712                      &Curve1, &Matrix1, &Curve2)) {
   1713 
   1714                      _cmsStageMatrixData* Data = (_cmsStageMatrixData*)cmsStageData(Matrix1);
   1715 
   1716                      // Copy the matrix to our result
   1717                      memcpy(&res, Data->Double, sizeof(res));
   1718 
   1719                      // Preserve the Odffset (may be NULL as a zero offset)
   1720                      Offset = Data->Offset;
   1721 
   1722                      if (_cmsMAT3isIdentity(&res) && Offset == NULL) {
   1723 
   1724                             // We can get rid of full matrix
   1725                             IdentityMat = TRUE;
   1726                      }
   1727               }
   1728               else
   1729                      return FALSE; // Not optimizeable this time
   1730 
   1731        }
   1732 
   1733       // Allocate an empty LUT
   1734     Dest =  cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
   1735     if (!Dest) return FALSE;
   1736 
   1737     // Assamble the new LUT
   1738     if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, cmsStageDup(Curve1)))
   1739         goto Error;
   1740 
   1741     if (!IdentityMat) {
   1742 
   1743            if (!cmsPipelineInsertStage(Dest, cmsAT_END, cmsStageAllocMatrix(Dest->ContextID, 3, 3, (const cmsFloat64Number*)&res, Offset)))
   1744                   goto Error;
   1745     }
   1746 
   1747     if (!cmsPipelineInsertStage(Dest, cmsAT_END, cmsStageDup(Curve2)))
   1748         goto Error;
   1749 
   1750     // If identity on matrix, we can further optimize the curves, so call the join curves routine
   1751     if (IdentityMat) {
   1752 
   1753         OptimizeByJoiningCurves(&Dest, Intent, InputFormat, OutputFormat, dwFlags);
   1754     }
   1755     else {
   1756         _cmsStageToneCurvesData* mpeC1 = (_cmsStageToneCurvesData*) cmsStageData(Curve1);
   1757         _cmsStageToneCurvesData* mpeC2 = (_cmsStageToneCurvesData*) cmsStageData(Curve2);
   1758 
   1759         // In this particular optimization, cache does not help as it takes more time to deal with
   1760         // the cache that with the pixel handling
   1761         *dwFlags |= cmsFLAGS_NOCACHE;
   1762 
   1763         // Setup the optimizarion routines
   1764         if (!SetMatShaper(Dest, mpeC1 ->TheCurves, &res, (cmsVEC3*) Offset, mpeC2->TheCurves, OutputFormat))
   1765             goto Error;
   1766     }
   1767 
   1768     cmsPipelineFree(Src);
   1769     *Lut = Dest;
   1770     return TRUE;
   1771 Error:
   1772     // Leave Src unchanged
   1773     cmsPipelineFree(Dest);
   1774     return FALSE;
   1775 }
   1776 
   1777 
   1778 // -------------------------------------------------------------------------------------------------------------------------------------
   1779 // Optimization plug-ins
   1780 
   1781 // List of optimizations
   1782 typedef struct _cmsOptimizationCollection_st {
   1783 
   1784     _cmsOPToptimizeFn  OptimizePtr;
   1785 
   1786     struct _cmsOptimizationCollection_st *Next;
   1787 
   1788 } _cmsOptimizationCollection;
   1789 
   1790 
   1791 // The built-in list. We currently implement 4 types of optimizations. Joining of curves, matrix-shaper, linearization and resampling
   1792 static _cmsOptimizationCollection DefaultOptimization[] = {
   1793 
   1794     { OptimizeByJoiningCurves,            &DefaultOptimization[1] },
   1795     { OptimizeMatrixShaper,               &DefaultOptimization[2] },
   1796     { OptimizeByComputingLinearization,   &DefaultOptimization[3] },
   1797     { OptimizeByResampling,               NULL }
   1798 };
   1799 
   1800 // The linked list head
   1801 _cmsOptimizationPluginChunkType _cmsOptimizationPluginChunk = { NULL };
   1802 
   1803 
   1804 // Duplicates the zone of memory used by the plug-in in the new context
   1805 static
   1806 void DupPluginOptimizationList(struct _cmsContext_struct* ctx,
   1807                                const struct _cmsContext_struct* src)
   1808 {
   1809    _cmsOptimizationPluginChunkType newHead = { NULL };
   1810    _cmsOptimizationCollection*  entry;
   1811    _cmsOptimizationCollection*  Anterior = NULL;
   1812    _cmsOptimizationPluginChunkType* head = (_cmsOptimizationPluginChunkType*) src->chunks[OptimizationPlugin];
   1813 
   1814     _cmsAssert(ctx != NULL);
   1815     _cmsAssert(head != NULL);
   1816 
   1817     // Walk the list copying all nodes
   1818    for (entry = head->OptimizationCollection;
   1819         entry != NULL;
   1820         entry = entry ->Next) {
   1821 
   1822             _cmsOptimizationCollection *newEntry = ( _cmsOptimizationCollection *) _cmsSubAllocDup(ctx ->MemPool, entry, sizeof(_cmsOptimizationCollection));
   1823 
   1824             if (newEntry == NULL)
   1825                 return;
   1826 
   1827             // We want to keep the linked list order, so this is a little bit tricky
   1828             newEntry -> Next = NULL;
   1829             if (Anterior)
   1830                 Anterior -> Next = newEntry;
   1831 
   1832             Anterior = newEntry;
   1833 
   1834             if (newHead.OptimizationCollection == NULL)
   1835                 newHead.OptimizationCollection = newEntry;
   1836     }
   1837 
   1838   ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx->MemPool, &newHead, sizeof(_cmsOptimizationPluginChunkType));
   1839 }
   1840 
   1841 void  _cmsAllocOptimizationPluginChunk(struct _cmsContext_struct* ctx,
   1842                                          const struct _cmsContext_struct* src)
   1843 {
   1844   if (src != NULL) {
   1845 
   1846         // Copy all linked list
   1847        DupPluginOptimizationList(ctx, src);
   1848     }
   1849     else {
   1850         static _cmsOptimizationPluginChunkType OptimizationPluginChunkType = { NULL };
   1851         ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx ->MemPool, &OptimizationPluginChunkType, sizeof(_cmsOptimizationPluginChunkType));
   1852     }
   1853 }
   1854 
   1855 
   1856 // Register new ways to optimize
   1857 cmsBool  _cmsRegisterOptimizationPlugin(cmsContext ContextID, cmsPluginBase* Data)
   1858 {
   1859     cmsPluginOptimization* Plugin = (cmsPluginOptimization*) Data;
   1860     _cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin);
   1861     _cmsOptimizationCollection* fl;
   1862 
   1863     if (Data == NULL) {
   1864 
   1865         ctx->OptimizationCollection = NULL;
   1866         return TRUE;
   1867     }
   1868 
   1869     // Optimizer callback is required
   1870     if (Plugin ->OptimizePtr == NULL) return FALSE;
   1871 
   1872     fl = (_cmsOptimizationCollection*) _cmsPluginMalloc(ContextID, sizeof(_cmsOptimizationCollection));
   1873     if (fl == NULL) return FALSE;
   1874 
   1875     // Copy the parameters
   1876     fl ->OptimizePtr = Plugin ->OptimizePtr;
   1877 
   1878     // Keep linked list
   1879     fl ->Next = ctx->OptimizationCollection;
   1880 
   1881     // Set the head
   1882     ctx ->OptimizationCollection = fl;
   1883 
   1884     // All is ok
   1885     return TRUE;
   1886 }
   1887 
   1888 // The entry point for LUT optimization
   1889 cmsBool _cmsOptimizePipeline(cmsContext ContextID,
   1890                              cmsPipeline**    PtrLut,
   1891                              int              Intent,
   1892                              cmsUInt32Number* InputFormat,
   1893                              cmsUInt32Number* OutputFormat,
   1894                              cmsUInt32Number* dwFlags)
   1895 {
   1896     _cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin);
   1897     _cmsOptimizationCollection* Opts;
   1898     cmsBool AnySuccess = FALSE;
   1899 
   1900     // A CLUT is being asked, so force this specific optimization
   1901     if (*dwFlags & cmsFLAGS_FORCE_CLUT) {
   1902 
   1903         PreOptimize(*PtrLut);
   1904         return OptimizeByResampling(PtrLut, Intent, InputFormat, OutputFormat, dwFlags);
   1905     }
   1906 
   1907     // Anything to optimize?
   1908     if ((*PtrLut) ->Elements == NULL) {
   1909         _cmsPipelineSetOptimizationParameters(*PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL);
   1910         return TRUE;
   1911     }
   1912 
   1913     // Try to get rid of identities and trivial conversions.
   1914     AnySuccess = PreOptimize(*PtrLut);
   1915 
   1916     // After removal do we end with an identity?
   1917     if ((*PtrLut) ->Elements == NULL) {
   1918         _cmsPipelineSetOptimizationParameters(*PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL);
   1919         return TRUE;
   1920     }
   1921 
   1922     // Do not optimize, keep all precision
   1923     if (*dwFlags & cmsFLAGS_NOOPTIMIZE)
   1924         return FALSE;
   1925 
   1926     // Try plug-in optimizations
   1927     for (Opts = ctx->OptimizationCollection;
   1928          Opts != NULL;
   1929          Opts = Opts ->Next) {
   1930 
   1931             // If one schema succeeded, we are done
   1932             if (Opts ->OptimizePtr(PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) {
   1933 
   1934                 return TRUE;    // Optimized!
   1935             }
   1936     }
   1937 
   1938    // Try built-in optimizations
   1939     for (Opts = DefaultOptimization;
   1940          Opts != NULL;
   1941          Opts = Opts ->Next) {
   1942 
   1943             if (Opts ->OptimizePtr(PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) {
   1944 
   1945                 return TRUE;
   1946             }
   1947     }
   1948 
   1949     // Only simple optimizations succeeded
   1950     return AnySuccess;
   1951 }
   1952 
   1953 
   1954 
   1955