1 .. _logging-cookbook: 2 3 ================ 4 Logging Cookbook 5 ================ 6 7 :Author: Vinay Sajip <vinay_sajip at red-dove dot com> 8 9 This page contains a number of recipes related to logging, which have been found 10 useful in the past. 11 12 .. currentmodule:: logging 13 14 Using logging in multiple modules 15 --------------------------------- 16 17 Multiple calls to ``logging.getLogger('someLogger')`` return a reference to the 18 same logger object. This is true not only within the same module, but also 19 across modules as long as it is in the same Python interpreter process. It is 20 true for references to the same object; additionally, application code can 21 define and configure a parent logger in one module and create (but not 22 configure) a child logger in a separate module, and all logger calls to the 23 child will pass up to the parent. Here is a main module:: 24 25 import logging 26 import auxiliary_module 27 28 # create logger with 'spam_application' 29 logger = logging.getLogger('spam_application') 30 logger.setLevel(logging.DEBUG) 31 # create file handler which logs even debug messages 32 fh = logging.FileHandler('spam.log') 33 fh.setLevel(logging.DEBUG) 34 # create console handler with a higher log level 35 ch = logging.StreamHandler() 36 ch.setLevel(logging.ERROR) 37 # create formatter and add it to the handlers 38 formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') 39 fh.setFormatter(formatter) 40 ch.setFormatter(formatter) 41 # add the handlers to the logger 42 logger.addHandler(fh) 43 logger.addHandler(ch) 44 45 logger.info('creating an instance of auxiliary_module.Auxiliary') 46 a = auxiliary_module.Auxiliary() 47 logger.info('created an instance of auxiliary_module.Auxiliary') 48 logger.info('calling auxiliary_module.Auxiliary.do_something') 49 a.do_something() 50 logger.info('finished auxiliary_module.Auxiliary.do_something') 51 logger.info('calling auxiliary_module.some_function()') 52 auxiliary_module.some_function() 53 logger.info('done with auxiliary_module.some_function()') 54 55 Here is the auxiliary module:: 56 57 import logging 58 59 # create logger 60 module_logger = logging.getLogger('spam_application.auxiliary') 61 62 class Auxiliary: 63 def __init__(self): 64 self.logger = logging.getLogger('spam_application.auxiliary.Auxiliary') 65 self.logger.info('creating an instance of Auxiliary') 66 67 def do_something(self): 68 self.logger.info('doing something') 69 a = 1 + 1 70 self.logger.info('done doing something') 71 72 def some_function(): 73 module_logger.info('received a call to "some_function"') 74 75 The output looks like this: 76 77 .. code-block:: none 78 79 2005-03-23 23:47:11,663 - spam_application - INFO - 80 creating an instance of auxiliary_module.Auxiliary 81 2005-03-23 23:47:11,665 - spam_application.auxiliary.Auxiliary - INFO - 82 creating an instance of Auxiliary 83 2005-03-23 23:47:11,665 - spam_application - INFO - 84 created an instance of auxiliary_module.Auxiliary 85 2005-03-23 23:47:11,668 - spam_application - INFO - 86 calling auxiliary_module.Auxiliary.do_something 87 2005-03-23 23:47:11,668 - spam_application.auxiliary.Auxiliary - INFO - 88 doing something 89 2005-03-23 23:47:11,669 - spam_application.auxiliary.Auxiliary - INFO - 90 done doing something 91 2005-03-23 23:47:11,670 - spam_application - INFO - 92 finished auxiliary_module.Auxiliary.do_something 93 2005-03-23 23:47:11,671 - spam_application - INFO - 94 calling auxiliary_module.some_function() 95 2005-03-23 23:47:11,672 - spam_application.auxiliary - INFO - 96 received a call to 'some_function' 97 2005-03-23 23:47:11,673 - spam_application - INFO - 98 done with auxiliary_module.some_function() 99 100 Logging from multiple threads 101 ----------------------------- 102 103 Logging from multiple threads requires no special effort. The following example 104 shows logging from the main (initial) thread and another thread:: 105 106 import logging 107 import threading 108 import time 109 110 def worker(arg): 111 while not arg['stop']: 112 logging.debug('Hi from myfunc') 113 time.sleep(0.5) 114 115 def main(): 116 logging.basicConfig(level=logging.DEBUG, format='%(relativeCreated)6d %(threadName)s %(message)s') 117 info = {'stop': False} 118 thread = threading.Thread(target=worker, args=(info,)) 119 thread.start() 120 while True: 121 try: 122 logging.debug('Hello from main') 123 time.sleep(0.75) 124 except KeyboardInterrupt: 125 info['stop'] = True 126 break 127 thread.join() 128 129 if __name__ == '__main__': 130 main() 131 132 When run, the script should print something like the following: 133 134 .. code-block:: none 135 136 0 Thread-1 Hi from myfunc 137 3 MainThread Hello from main 138 505 Thread-1 Hi from myfunc 139 755 MainThread Hello from main 140 1007 Thread-1 Hi from myfunc 141 1507 MainThread Hello from main 142 1508 Thread-1 Hi from myfunc 143 2010 Thread-1 Hi from myfunc 144 2258 MainThread Hello from main 145 2512 Thread-1 Hi from myfunc 146 3009 MainThread Hello from main 147 3013 Thread-1 Hi from myfunc 148 3515 Thread-1 Hi from myfunc 149 3761 MainThread Hello from main 150 4017 Thread-1 Hi from myfunc 151 4513 MainThread Hello from main 152 4518 Thread-1 Hi from myfunc 153 154 This shows the logging output interspersed as one might expect. This approach 155 works for more threads than shown here, of course. 156 157 Multiple handlers and formatters 158 -------------------------------- 159 160 Loggers are plain Python objects. The :meth:`~Logger.addHandler` method has no 161 minimum or maximum quota for the number of handlers you may add. Sometimes it 162 will be beneficial for an application to log all messages of all severities to a 163 text file while simultaneously logging errors or above to the console. To set 164 this up, simply configure the appropriate handlers. The logging calls in the 165 application code will remain unchanged. Here is a slight modification to the 166 previous simple module-based configuration example:: 167 168 import logging 169 170 logger = logging.getLogger('simple_example') 171 logger.setLevel(logging.DEBUG) 172 # create file handler which logs even debug messages 173 fh = logging.FileHandler('spam.log') 174 fh.setLevel(logging.DEBUG) 175 # create console handler with a higher log level 176 ch = logging.StreamHandler() 177 ch.setLevel(logging.ERROR) 178 # create formatter and add it to the handlers 179 formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') 180 ch.setFormatter(formatter) 181 fh.setFormatter(formatter) 182 # add the handlers to logger 183 logger.addHandler(ch) 184 logger.addHandler(fh) 185 186 # 'application' code 187 logger.debug('debug message') 188 logger.info('info message') 189 logger.warning('warn message') 190 logger.error('error message') 191 logger.critical('critical message') 192 193 Notice that the 'application' code does not care about multiple handlers. All 194 that changed was the addition and configuration of a new handler named *fh*. 195 196 The ability to create new handlers with higher- or lower-severity filters can be 197 very helpful when writing and testing an application. Instead of using many 198 ``print`` statements for debugging, use ``logger.debug``: Unlike the print 199 statements, which you will have to delete or comment out later, the logger.debug 200 statements can remain intact in the source code and remain dormant until you 201 need them again. At that time, the only change that needs to happen is to 202 modify the severity level of the logger and/or handler to debug. 203 204 .. _multiple-destinations: 205 206 Logging to multiple destinations 207 -------------------------------- 208 209 Let's say you want to log to console and file with different message formats and 210 in differing circumstances. Say you want to log messages with levels of DEBUG 211 and higher to file, and those messages at level INFO and higher to the console. 212 Let's also assume that the file should contain timestamps, but the console 213 messages should not. Here's how you can achieve this:: 214 215 import logging 216 217 # set up logging to file - see previous section for more details 218 logging.basicConfig(level=logging.DEBUG, 219 format='%(asctime)s %(name)-12s %(levelname)-8s %(message)s', 220 datefmt='%m-%d %H:%M', 221 filename='/temp/myapp.log', 222 filemode='w') 223 # define a Handler which writes INFO messages or higher to the sys.stderr 224 console = logging.StreamHandler() 225 console.setLevel(logging.INFO) 226 # set a format which is simpler for console use 227 formatter = logging.Formatter('%(name)-12s: %(levelname)-8s %(message)s') 228 # tell the handler to use this format 229 console.setFormatter(formatter) 230 # add the handler to the root logger 231 logging.getLogger('').addHandler(console) 232 233 # Now, we can log to the root logger, or any other logger. First the root... 234 logging.info('Jackdaws love my big sphinx of quartz.') 235 236 # Now, define a couple of other loggers which might represent areas in your 237 # application: 238 239 logger1 = logging.getLogger('myapp.area1') 240 logger2 = logging.getLogger('myapp.area2') 241 242 logger1.debug('Quick zephyrs blow, vexing daft Jim.') 243 logger1.info('How quickly daft jumping zebras vex.') 244 logger2.warning('Jail zesty vixen who grabbed pay from quack.') 245 logger2.error('The five boxing wizards jump quickly.') 246 247 When you run this, on the console you will see 248 249 .. code-block:: none 250 251 root : INFO Jackdaws love my big sphinx of quartz. 252 myapp.area1 : INFO How quickly daft jumping zebras vex. 253 myapp.area2 : WARNING Jail zesty vixen who grabbed pay from quack. 254 myapp.area2 : ERROR The five boxing wizards jump quickly. 255 256 and in the file you will see something like 257 258 .. code-block:: none 259 260 10-22 22:19 root INFO Jackdaws love my big sphinx of quartz. 261 10-22 22:19 myapp.area1 DEBUG Quick zephyrs blow, vexing daft Jim. 262 10-22 22:19 myapp.area1 INFO How quickly daft jumping zebras vex. 263 10-22 22:19 myapp.area2 WARNING Jail zesty vixen who grabbed pay from quack. 264 10-22 22:19 myapp.area2 ERROR The five boxing wizards jump quickly. 265 266 As you can see, the DEBUG message only shows up in the file. The other messages 267 are sent to both destinations. 268 269 This example uses console and file handlers, but you can use any number and 270 combination of handlers you choose. 271 272 273 Configuration server example 274 ---------------------------- 275 276 Here is an example of a module using the logging configuration server:: 277 278 import logging 279 import logging.config 280 import time 281 import os 282 283 # read initial config file 284 logging.config.fileConfig('logging.conf') 285 286 # create and start listener on port 9999 287 t = logging.config.listen(9999) 288 t.start() 289 290 logger = logging.getLogger('simpleExample') 291 292 try: 293 # loop through logging calls to see the difference 294 # new configurations make, until Ctrl+C is pressed 295 while True: 296 logger.debug('debug message') 297 logger.info('info message') 298 logger.warning('warn message') 299 logger.error('error message') 300 logger.critical('critical message') 301 time.sleep(5) 302 except KeyboardInterrupt: 303 # cleanup 304 logging.config.stopListening() 305 t.join() 306 307 And here is a script that takes a filename and sends that file to the server, 308 properly preceded with the binary-encoded length, as the new logging 309 configuration:: 310 311 #!/usr/bin/env python 312 import socket, sys, struct 313 314 with open(sys.argv[1], 'rb') as f: 315 data_to_send = f.read() 316 317 HOST = 'localhost' 318 PORT = 9999 319 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 320 print('connecting...') 321 s.connect((HOST, PORT)) 322 print('sending config...') 323 s.send(struct.pack('>L', len(data_to_send))) 324 s.send(data_to_send) 325 s.close() 326 print('complete') 327 328 329 Dealing with handlers that block 330 -------------------------------- 331 332 .. currentmodule:: logging.handlers 333 334 Sometimes you have to get your logging handlers to do their work without 335 blocking the thread you're logging from. This is common in Web applications, 336 though of course it also occurs in other scenarios. 337 338 A common culprit which demonstrates sluggish behaviour is the 339 :class:`SMTPHandler`: sending emails can take a long time, for a 340 number of reasons outside the developer's control (for example, a poorly 341 performing mail or network infrastructure). But almost any network-based 342 handler can block: Even a :class:`SocketHandler` operation may do a 343 DNS query under the hood which is too slow (and this query can be deep in the 344 socket library code, below the Python layer, and outside your control). 345 346 One solution is to use a two-part approach. For the first part, attach only a 347 :class:`QueueHandler` to those loggers which are accessed from 348 performance-critical threads. They simply write to their queue, which can be 349 sized to a large enough capacity or initialized with no upper bound to their 350 size. The write to the queue will typically be accepted quickly, though you 351 will probably need to catch the :exc:`queue.Full` exception as a precaution 352 in your code. If you are a library developer who has performance-critical 353 threads in their code, be sure to document this (together with a suggestion to 354 attach only ``QueueHandlers`` to your loggers) for the benefit of other 355 developers who will use your code. 356 357 The second part of the solution is :class:`QueueListener`, which has been 358 designed as the counterpart to :class:`QueueHandler`. A 359 :class:`QueueListener` is very simple: it's passed a queue and some handlers, 360 and it fires up an internal thread which listens to its queue for LogRecords 361 sent from ``QueueHandlers`` (or any other source of ``LogRecords``, for that 362 matter). The ``LogRecords`` are removed from the queue and passed to the 363 handlers for processing. 364 365 The advantage of having a separate :class:`QueueListener` class is that you 366 can use the same instance to service multiple ``QueueHandlers``. This is more 367 resource-friendly than, say, having threaded versions of the existing handler 368 classes, which would eat up one thread per handler for no particular benefit. 369 370 An example of using these two classes follows (imports omitted):: 371 372 que = queue.Queue(-1) # no limit on size 373 queue_handler = QueueHandler(que) 374 handler = logging.StreamHandler() 375 listener = QueueListener(que, handler) 376 root = logging.getLogger() 377 root.addHandler(queue_handler) 378 formatter = logging.Formatter('%(threadName)s: %(message)s') 379 handler.setFormatter(formatter) 380 listener.start() 381 # The log output will display the thread which generated 382 # the event (the main thread) rather than the internal 383 # thread which monitors the internal queue. This is what 384 # you want to happen. 385 root.warning('Look out!') 386 listener.stop() 387 388 which, when run, will produce: 389 390 .. code-block:: none 391 392 MainThread: Look out! 393 394 .. versionchanged:: 3.5 395 Prior to Python 3.5, the :class:`QueueListener` always passed every message 396 received from the queue to every handler it was initialized with. (This was 397 because it was assumed that level filtering was all done on the other side, 398 where the queue is filled.) From 3.5 onwards, this behaviour can be changed 399 by passing a keyword argument ``respect_handler_level=True`` to the 400 listener's constructor. When this is done, the listener compares the level 401 of each message with the handler's level, and only passes a message to a 402 handler if it's appropriate to do so. 403 404 .. _network-logging: 405 406 Sending and receiving logging events across a network 407 ----------------------------------------------------- 408 409 Let's say you want to send logging events across a network, and handle them at 410 the receiving end. A simple way of doing this is attaching a 411 :class:`SocketHandler` instance to the root logger at the sending end:: 412 413 import logging, logging.handlers 414 415 rootLogger = logging.getLogger('') 416 rootLogger.setLevel(logging.DEBUG) 417 socketHandler = logging.handlers.SocketHandler('localhost', 418 logging.handlers.DEFAULT_TCP_LOGGING_PORT) 419 # don't bother with a formatter, since a socket handler sends the event as 420 # an unformatted pickle 421 rootLogger.addHandler(socketHandler) 422 423 # Now, we can log to the root logger, or any other logger. First the root... 424 logging.info('Jackdaws love my big sphinx of quartz.') 425 426 # Now, define a couple of other loggers which might represent areas in your 427 # application: 428 429 logger1 = logging.getLogger('myapp.area1') 430 logger2 = logging.getLogger('myapp.area2') 431 432 logger1.debug('Quick zephyrs blow, vexing daft Jim.') 433 logger1.info('How quickly daft jumping zebras vex.') 434 logger2.warning('Jail zesty vixen who grabbed pay from quack.') 435 logger2.error('The five boxing wizards jump quickly.') 436 437 At the receiving end, you can set up a receiver using the :mod:`socketserver` 438 module. Here is a basic working example:: 439 440 import pickle 441 import logging 442 import logging.handlers 443 import socketserver 444 import struct 445 446 447 class LogRecordStreamHandler(socketserver.StreamRequestHandler): 448 """Handler for a streaming logging request. 449 450 This basically logs the record using whatever logging policy is 451 configured locally. 452 """ 453 454 def handle(self): 455 """ 456 Handle multiple requests - each expected to be a 4-byte length, 457 followed by the LogRecord in pickle format. Logs the record 458 according to whatever policy is configured locally. 459 """ 460 while True: 461 chunk = self.connection.recv(4) 462 if len(chunk) < 4: 463 break 464 slen = struct.unpack('>L', chunk)[0] 465 chunk = self.connection.recv(slen) 466 while len(chunk) < slen: 467 chunk = chunk + self.connection.recv(slen - len(chunk)) 468 obj = self.unPickle(chunk) 469 record = logging.makeLogRecord(obj) 470 self.handleLogRecord(record) 471 472 def unPickle(self, data): 473 return pickle.loads(data) 474 475 def handleLogRecord(self, record): 476 # if a name is specified, we use the named logger rather than the one 477 # implied by the record. 478 if self.server.logname is not None: 479 name = self.server.logname 480 else: 481 name = record.name 482 logger = logging.getLogger(name) 483 # N.B. EVERY record gets logged. This is because Logger.handle 484 # is normally called AFTER logger-level filtering. If you want 485 # to do filtering, do it at the client end to save wasting 486 # cycles and network bandwidth! 487 logger.handle(record) 488 489 class LogRecordSocketReceiver(socketserver.ThreadingTCPServer): 490 """ 491 Simple TCP socket-based logging receiver suitable for testing. 492 """ 493 494 allow_reuse_address = True 495 496 def __init__(self, host='localhost', 497 port=logging.handlers.DEFAULT_TCP_LOGGING_PORT, 498 handler=LogRecordStreamHandler): 499 socketserver.ThreadingTCPServer.__init__(self, (host, port), handler) 500 self.abort = 0 501 self.timeout = 1 502 self.logname = None 503 504 def serve_until_stopped(self): 505 import select 506 abort = 0 507 while not abort: 508 rd, wr, ex = select.select([self.socket.fileno()], 509 [], [], 510 self.timeout) 511 if rd: 512 self.handle_request() 513 abort = self.abort 514 515 def main(): 516 logging.basicConfig( 517 format='%(relativeCreated)5d %(name)-15s %(levelname)-8s %(message)s') 518 tcpserver = LogRecordSocketReceiver() 519 print('About to start TCP server...') 520 tcpserver.serve_until_stopped() 521 522 if __name__ == '__main__': 523 main() 524 525 First run the server, and then the client. On the client side, nothing is 526 printed on the console; on the server side, you should see something like: 527 528 .. code-block:: none 529 530 About to start TCP server... 531 59 root INFO Jackdaws love my big sphinx of quartz. 532 59 myapp.area1 DEBUG Quick zephyrs blow, vexing daft Jim. 533 69 myapp.area1 INFO How quickly daft jumping zebras vex. 534 69 myapp.area2 WARNING Jail zesty vixen who grabbed pay from quack. 535 69 myapp.area2 ERROR The five boxing wizards jump quickly. 536 537 Note that there are some security issues with pickle in some scenarios. If 538 these affect you, you can use an alternative serialization scheme by overriding 539 the :meth:`~handlers.SocketHandler.makePickle` method and implementing your 540 alternative there, as well as adapting the above script to use your alternative 541 serialization. 542 543 544 .. _context-info: 545 546 Adding contextual information to your logging output 547 ---------------------------------------------------- 548 549 Sometimes you want logging output to contain contextual information in 550 addition to the parameters passed to the logging call. For example, in a 551 networked application, it may be desirable to log client-specific information 552 in the log (e.g. remote client's username, or IP address). Although you could 553 use the *extra* parameter to achieve this, it's not always convenient to pass 554 the information in this way. While it might be tempting to create 555 :class:`Logger` instances on a per-connection basis, this is not a good idea 556 because these instances are not garbage collected. While this is not a problem 557 in practice, when the number of :class:`Logger` instances is dependent on the 558 level of granularity you want to use in logging an application, it could 559 be hard to manage if the number of :class:`Logger` instances becomes 560 effectively unbounded. 561 562 563 Using LoggerAdapters to impart contextual information 564 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 565 566 An easy way in which you can pass contextual information to be output along 567 with logging event information is to use the :class:`LoggerAdapter` class. 568 This class is designed to look like a :class:`Logger`, so that you can call 569 :meth:`debug`, :meth:`info`, :meth:`warning`, :meth:`error`, 570 :meth:`exception`, :meth:`critical` and :meth:`log`. These methods have the 571 same signatures as their counterparts in :class:`Logger`, so you can use the 572 two types of instances interchangeably. 573 574 When you create an instance of :class:`LoggerAdapter`, you pass it a 575 :class:`Logger` instance and a dict-like object which contains your contextual 576 information. When you call one of the logging methods on an instance of 577 :class:`LoggerAdapter`, it delegates the call to the underlying instance of 578 :class:`Logger` passed to its constructor, and arranges to pass the contextual 579 information in the delegated call. Here's a snippet from the code of 580 :class:`LoggerAdapter`:: 581 582 def debug(self, msg, *args, **kwargs): 583 """ 584 Delegate a debug call to the underlying logger, after adding 585 contextual information from this adapter instance. 586 """ 587 msg, kwargs = self.process(msg, kwargs) 588 self.logger.debug(msg, *args, **kwargs) 589 590 The :meth:`~LoggerAdapter.process` method of :class:`LoggerAdapter` is where the 591 contextual information is added to the logging output. It's passed the message 592 and keyword arguments of the logging call, and it passes back (potentially) 593 modified versions of these to use in the call to the underlying logger. The 594 default implementation of this method leaves the message alone, but inserts 595 an 'extra' key in the keyword argument whose value is the dict-like object 596 passed to the constructor. Of course, if you had passed an 'extra' keyword 597 argument in the call to the adapter, it will be silently overwritten. 598 599 The advantage of using 'extra' is that the values in the dict-like object are 600 merged into the :class:`LogRecord` instance's __dict__, allowing you to use 601 customized strings with your :class:`Formatter` instances which know about 602 the keys of the dict-like object. If you need a different method, e.g. if you 603 want to prepend or append the contextual information to the message string, 604 you just need to subclass :class:`LoggerAdapter` and override 605 :meth:`~LoggerAdapter.process` to do what you need. Here is a simple example:: 606 607 class CustomAdapter(logging.LoggerAdapter): 608 """ 609 This example adapter expects the passed in dict-like object to have a 610 'connid' key, whose value in brackets is prepended to the log message. 611 """ 612 def process(self, msg, kwargs): 613 return '[%s] %s' % (self.extra['connid'], msg), kwargs 614 615 which you can use like this:: 616 617 logger = logging.getLogger(__name__) 618 adapter = CustomAdapter(logger, {'connid': some_conn_id}) 619 620 Then any events that you log to the adapter will have the value of 621 ``some_conn_id`` prepended to the log messages. 622 623 Using objects other than dicts to pass contextual information 624 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 625 626 You don't need to pass an actual dict to a :class:`LoggerAdapter` - you could 627 pass an instance of a class which implements ``__getitem__`` and ``__iter__`` so 628 that it looks like a dict to logging. This would be useful if you want to 629 generate values dynamically (whereas the values in a dict would be constant). 630 631 632 .. _filters-contextual: 633 634 Using Filters to impart contextual information 635 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 636 637 You can also add contextual information to log output using a user-defined 638 :class:`Filter`. ``Filter`` instances are allowed to modify the ``LogRecords`` 639 passed to them, including adding additional attributes which can then be output 640 using a suitable format string, or if needed a custom :class:`Formatter`. 641 642 For example in a web application, the request being processed (or at least, 643 the interesting parts of it) can be stored in a threadlocal 644 (:class:`threading.local`) variable, and then accessed from a ``Filter`` to 645 add, say, information from the request - say, the remote IP address and remote 646 user's username - to the ``LogRecord``, using the attribute names 'ip' and 647 'user' as in the ``LoggerAdapter`` example above. In that case, the same format 648 string can be used to get similar output to that shown above. Here's an example 649 script:: 650 651 import logging 652 from random import choice 653 654 class ContextFilter(logging.Filter): 655 """ 656 This is a filter which injects contextual information into the log. 657 658 Rather than use actual contextual information, we just use random 659 data in this demo. 660 """ 661 662 USERS = ['jim', 'fred', 'sheila'] 663 IPS = ['123.231.231.123', '127.0.0.1', '192.168.0.1'] 664 665 def filter(self, record): 666 667 record.ip = choice(ContextFilter.IPS) 668 record.user = choice(ContextFilter.USERS) 669 return True 670 671 if __name__ == '__main__': 672 levels = (logging.DEBUG, logging.INFO, logging.WARNING, logging.ERROR, logging.CRITICAL) 673 logging.basicConfig(level=logging.DEBUG, 674 format='%(asctime)-15s %(name)-5s %(levelname)-8s IP: %(ip)-15s User: %(user)-8s %(message)s') 675 a1 = logging.getLogger('a.b.c') 676 a2 = logging.getLogger('d.e.f') 677 678 f = ContextFilter() 679 a1.addFilter(f) 680 a2.addFilter(f) 681 a1.debug('A debug message') 682 a1.info('An info message with %s', 'some parameters') 683 for x in range(10): 684 lvl = choice(levels) 685 lvlname = logging.getLevelName(lvl) 686 a2.log(lvl, 'A message at %s level with %d %s', lvlname, 2, 'parameters') 687 688 which, when run, produces something like: 689 690 .. code-block:: none 691 692 2010-09-06 22:38:15,292 a.b.c DEBUG IP: 123.231.231.123 User: fred A debug message 693 2010-09-06 22:38:15,300 a.b.c INFO IP: 192.168.0.1 User: sheila An info message with some parameters 694 2010-09-06 22:38:15,300 d.e.f CRITICAL IP: 127.0.0.1 User: sheila A message at CRITICAL level with 2 parameters 695 2010-09-06 22:38:15,300 d.e.f ERROR IP: 127.0.0.1 User: jim A message at ERROR level with 2 parameters 696 2010-09-06 22:38:15,300 d.e.f DEBUG IP: 127.0.0.1 User: sheila A message at DEBUG level with 2 parameters 697 2010-09-06 22:38:15,300 d.e.f ERROR IP: 123.231.231.123 User: fred A message at ERROR level with 2 parameters 698 2010-09-06 22:38:15,300 d.e.f CRITICAL IP: 192.168.0.1 User: jim A message at CRITICAL level with 2 parameters 699 2010-09-06 22:38:15,300 d.e.f CRITICAL IP: 127.0.0.1 User: sheila A message at CRITICAL level with 2 parameters 700 2010-09-06 22:38:15,300 d.e.f DEBUG IP: 192.168.0.1 User: jim A message at DEBUG level with 2 parameters 701 2010-09-06 22:38:15,301 d.e.f ERROR IP: 127.0.0.1 User: sheila A message at ERROR level with 2 parameters 702 2010-09-06 22:38:15,301 d.e.f DEBUG IP: 123.231.231.123 User: fred A message at DEBUG level with 2 parameters 703 2010-09-06 22:38:15,301 d.e.f INFO IP: 123.231.231.123 User: fred A message at INFO level with 2 parameters 704 705 706 .. _multiple-processes: 707 708 Logging to a single file from multiple processes 709 ------------------------------------------------ 710 711 Although logging is thread-safe, and logging to a single file from multiple 712 threads in a single process *is* supported, logging to a single file from 713 *multiple processes* is *not* supported, because there is no standard way to 714 serialize access to a single file across multiple processes in Python. If you 715 need to log to a single file from multiple processes, one way of doing this is 716 to have all the processes log to a :class:`~handlers.SocketHandler`, and have a 717 separate process which implements a socket server which reads from the socket 718 and logs to file. (If you prefer, you can dedicate one thread in one of the 719 existing processes to perform this function.) 720 :ref:`This section <network-logging>` documents this approach in more detail and 721 includes a working socket receiver which can be used as a starting point for you 722 to adapt in your own applications. 723 724 If you are using a recent version of Python which includes the 725 :mod:`multiprocessing` module, you could write your own handler which uses the 726 :class:`~multiprocessing.Lock` class from this module to serialize access to the 727 file from your processes. The existing :class:`FileHandler` and subclasses do 728 not make use of :mod:`multiprocessing` at present, though they may do so in the 729 future. Note that at present, the :mod:`multiprocessing` module does not provide 730 working lock functionality on all platforms (see 731 https://bugs.python.org/issue3770). 732 733 .. currentmodule:: logging.handlers 734 735 Alternatively, you can use a ``Queue`` and a :class:`QueueHandler` to send 736 all logging events to one of the processes in your multi-process application. 737 The following example script demonstrates how you can do this; in the example 738 a separate listener process listens for events sent by other processes and logs 739 them according to its own logging configuration. Although the example only 740 demonstrates one way of doing it (for example, you may want to use a listener 741 thread rather than a separate listener process -- the implementation would be 742 analogous) it does allow for completely different logging configurations for 743 the listener and the other processes in your application, and can be used as 744 the basis for code meeting your own specific requirements:: 745 746 # You'll need these imports in your own code 747 import logging 748 import logging.handlers 749 import multiprocessing 750 751 # Next two import lines for this demo only 752 from random import choice, random 753 import time 754 755 # 756 # Because you'll want to define the logging configurations for listener and workers, the 757 # listener and worker process functions take a configurer parameter which is a callable 758 # for configuring logging for that process. These functions are also passed the queue, 759 # which they use for communication. 760 # 761 # In practice, you can configure the listener however you want, but note that in this 762 # simple example, the listener does not apply level or filter logic to received records. 763 # In practice, you would probably want to do this logic in the worker processes, to avoid 764 # sending events which would be filtered out between processes. 765 # 766 # The size of the rotated files is made small so you can see the results easily. 767 def listener_configurer(): 768 root = logging.getLogger() 769 h = logging.handlers.RotatingFileHandler('mptest.log', 'a', 300, 10) 770 f = logging.Formatter('%(asctime)s %(processName)-10s %(name)s %(levelname)-8s %(message)s') 771 h.setFormatter(f) 772 root.addHandler(h) 773 774 # This is the listener process top-level loop: wait for logging events 775 # (LogRecords)on the queue and handle them, quit when you get a None for a 776 # LogRecord. 777 def listener_process(queue, configurer): 778 configurer() 779 while True: 780 try: 781 record = queue.get() 782 if record is None: # We send this as a sentinel to tell the listener to quit. 783 break 784 logger = logging.getLogger(record.name) 785 logger.handle(record) # No level or filter logic applied - just do it! 786 except Exception: 787 import sys, traceback 788 print('Whoops! Problem:', file=sys.stderr) 789 traceback.print_exc(file=sys.stderr) 790 791 # Arrays used for random selections in this demo 792 793 LEVELS = [logging.DEBUG, logging.INFO, logging.WARNING, 794 logging.ERROR, logging.CRITICAL] 795 796 LOGGERS = ['a.b.c', 'd.e.f'] 797 798 MESSAGES = [ 799 'Random message #1', 800 'Random message #2', 801 'Random message #3', 802 ] 803 804 # The worker configuration is done at the start of the worker process run. 805 # Note that on Windows you can't rely on fork semantics, so each process 806 # will run the logging configuration code when it starts. 807 def worker_configurer(queue): 808 h = logging.handlers.QueueHandler(queue) # Just the one handler needed 809 root = logging.getLogger() 810 root.addHandler(h) 811 # send all messages, for demo; no other level or filter logic applied. 812 root.setLevel(logging.DEBUG) 813 814 # This is the worker process top-level loop, which just logs ten events with 815 # random intervening delays before terminating. 816 # The print messages are just so you know it's doing something! 817 def worker_process(queue, configurer): 818 configurer(queue) 819 name = multiprocessing.current_process().name 820 print('Worker started: %s' % name) 821 for i in range(10): 822 time.sleep(random()) 823 logger = logging.getLogger(choice(LOGGERS)) 824 level = choice(LEVELS) 825 message = choice(MESSAGES) 826 logger.log(level, message) 827 print('Worker finished: %s' % name) 828 829 # Here's where the demo gets orchestrated. Create the queue, create and start 830 # the listener, create ten workers and start them, wait for them to finish, 831 # then send a None to the queue to tell the listener to finish. 832 def main(): 833 queue = multiprocessing.Queue(-1) 834 listener = multiprocessing.Process(target=listener_process, 835 args=(queue, listener_configurer)) 836 listener.start() 837 workers = [] 838 for i in range(10): 839 worker = multiprocessing.Process(target=worker_process, 840 args=(queue, worker_configurer)) 841 workers.append(worker) 842 worker.start() 843 for w in workers: 844 w.join() 845 queue.put_nowait(None) 846 listener.join() 847 848 if __name__ == '__main__': 849 main() 850 851 A variant of the above script keeps the logging in the main process, in a 852 separate thread:: 853 854 import logging 855 import logging.config 856 import logging.handlers 857 from multiprocessing import Process, Queue 858 import random 859 import threading 860 import time 861 862 def logger_thread(q): 863 while True: 864 record = q.get() 865 if record is None: 866 break 867 logger = logging.getLogger(record.name) 868 logger.handle(record) 869 870 871 def worker_process(q): 872 qh = logging.handlers.QueueHandler(q) 873 root = logging.getLogger() 874 root.setLevel(logging.DEBUG) 875 root.addHandler(qh) 876 levels = [logging.DEBUG, logging.INFO, logging.WARNING, logging.ERROR, 877 logging.CRITICAL] 878 loggers = ['foo', 'foo.bar', 'foo.bar.baz', 879 'spam', 'spam.ham', 'spam.ham.eggs'] 880 for i in range(100): 881 lvl = random.choice(levels) 882 logger = logging.getLogger(random.choice(loggers)) 883 logger.log(lvl, 'Message no. %d', i) 884 885 if __name__ == '__main__': 886 q = Queue() 887 d = { 888 'version': 1, 889 'formatters': { 890 'detailed': { 891 'class': 'logging.Formatter', 892 'format': '%(asctime)s %(name)-15s %(levelname)-8s %(processName)-10s %(message)s' 893 } 894 }, 895 'handlers': { 896 'console': { 897 'class': 'logging.StreamHandler', 898 'level': 'INFO', 899 }, 900 'file': { 901 'class': 'logging.FileHandler', 902 'filename': 'mplog.log', 903 'mode': 'w', 904 'formatter': 'detailed', 905 }, 906 'foofile': { 907 'class': 'logging.FileHandler', 908 'filename': 'mplog-foo.log', 909 'mode': 'w', 910 'formatter': 'detailed', 911 }, 912 'errors': { 913 'class': 'logging.FileHandler', 914 'filename': 'mplog-errors.log', 915 'mode': 'w', 916 'level': 'ERROR', 917 'formatter': 'detailed', 918 }, 919 }, 920 'loggers': { 921 'foo': { 922 'handlers': ['foofile'] 923 } 924 }, 925 'root': { 926 'level': 'DEBUG', 927 'handlers': ['console', 'file', 'errors'] 928 }, 929 } 930 workers = [] 931 for i in range(5): 932 wp = Process(target=worker_process, name='worker %d' % (i + 1), args=(q,)) 933 workers.append(wp) 934 wp.start() 935 logging.config.dictConfig(d) 936 lp = threading.Thread(target=logger_thread, args=(q,)) 937 lp.start() 938 # At this point, the main process could do some useful work of its own 939 # Once it's done that, it can wait for the workers to terminate... 940 for wp in workers: 941 wp.join() 942 # And now tell the logging thread to finish up, too 943 q.put(None) 944 lp.join() 945 946 This variant shows how you can e.g. apply configuration for particular loggers 947 - e.g. the ``foo`` logger has a special handler which stores all events in the 948 ``foo`` subsystem in a file ``mplog-foo.log``. This will be used by the logging 949 machinery in the main process (even though the logging events are generated in 950 the worker processes) to direct the messages to the appropriate destinations. 951 952 Using file rotation 953 ------------------- 954 955 .. sectionauthor:: Doug Hellmann, Vinay Sajip (changes) 956 .. (see <https://pymotw.com/3/logging/>) 957 958 Sometimes you want to let a log file grow to a certain size, then open a new 959 file and log to that. You may want to keep a certain number of these files, and 960 when that many files have been created, rotate the files so that the number of 961 files and the size of the files both remain bounded. For this usage pattern, the 962 logging package provides a :class:`~handlers.RotatingFileHandler`:: 963 964 import glob 965 import logging 966 import logging.handlers 967 968 LOG_FILENAME = 'logging_rotatingfile_example.out' 969 970 # Set up a specific logger with our desired output level 971 my_logger = logging.getLogger('MyLogger') 972 my_logger.setLevel(logging.DEBUG) 973 974 # Add the log message handler to the logger 975 handler = logging.handlers.RotatingFileHandler( 976 LOG_FILENAME, maxBytes=20, backupCount=5) 977 978 my_logger.addHandler(handler) 979 980 # Log some messages 981 for i in range(20): 982 my_logger.debug('i = %d' % i) 983 984 # See what files are created 985 logfiles = glob.glob('%s*' % LOG_FILENAME) 986 987 for filename in logfiles: 988 print(filename) 989 990 The result should be 6 separate files, each with part of the log history for the 991 application: 992 993 .. code-block:: none 994 995 logging_rotatingfile_example.out 996 logging_rotatingfile_example.out.1 997 logging_rotatingfile_example.out.2 998 logging_rotatingfile_example.out.3 999 logging_rotatingfile_example.out.4 1000 logging_rotatingfile_example.out.5 1001 1002 The most current file is always :file:`logging_rotatingfile_example.out`, 1003 and each time it reaches the size limit it is renamed with the suffix 1004 ``.1``. Each of the existing backup files is renamed to increment the suffix 1005 (``.1`` becomes ``.2``, etc.) and the ``.6`` file is erased. 1006 1007 Obviously this example sets the log length much too small as an extreme 1008 example. You would want to set *maxBytes* to an appropriate value. 1009 1010 .. _format-styles: 1011 1012 Use of alternative formatting styles 1013 ------------------------------------ 1014 1015 When logging was added to the Python standard library, the only way of 1016 formatting messages with variable content was to use the %-formatting 1017 method. Since then, Python has gained two new formatting approaches: 1018 :class:`string.Template` (added in Python 2.4) and :meth:`str.format` 1019 (added in Python 2.6). 1020 1021 Logging (as of 3.2) provides improved support for these two additional 1022 formatting styles. The :class:`Formatter` class been enhanced to take an 1023 additional, optional keyword parameter named ``style``. This defaults to 1024 ``'%'``, but other possible values are ``'{'`` and ``'$'``, which correspond 1025 to the other two formatting styles. Backwards compatibility is maintained by 1026 default (as you would expect), but by explicitly specifying a style parameter, 1027 you get the ability to specify format strings which work with 1028 :meth:`str.format` or :class:`string.Template`. Here's an example console 1029 session to show the possibilities: 1030 1031 .. code-block:: pycon 1032 1033 >>> import logging 1034 >>> root = logging.getLogger() 1035 >>> root.setLevel(logging.DEBUG) 1036 >>> handler = logging.StreamHandler() 1037 >>> bf = logging.Formatter('{asctime} {name} {levelname:8s} {message}', 1038 ... style='{') 1039 >>> handler.setFormatter(bf) 1040 >>> root.addHandler(handler) 1041 >>> logger = logging.getLogger('foo.bar') 1042 >>> logger.debug('This is a DEBUG message') 1043 2010-10-28 15:11:55,341 foo.bar DEBUG This is a DEBUG message 1044 >>> logger.critical('This is a CRITICAL message') 1045 2010-10-28 15:12:11,526 foo.bar CRITICAL This is a CRITICAL message 1046 >>> df = logging.Formatter('$asctime $name ${levelname} $message', 1047 ... style='$') 1048 >>> handler.setFormatter(df) 1049 >>> logger.debug('This is a DEBUG message') 1050 2010-10-28 15:13:06,924 foo.bar DEBUG This is a DEBUG message 1051 >>> logger.critical('This is a CRITICAL message') 1052 2010-10-28 15:13:11,494 foo.bar CRITICAL This is a CRITICAL message 1053 >>> 1054 1055 Note that the formatting of logging messages for final output to logs is 1056 completely independent of how an individual logging message is constructed. 1057 That can still use %-formatting, as shown here:: 1058 1059 >>> logger.error('This is an%s %s %s', 'other,', 'ERROR,', 'message') 1060 2010-10-28 15:19:29,833 foo.bar ERROR This is another, ERROR, message 1061 >>> 1062 1063 Logging calls (``logger.debug()``, ``logger.info()`` etc.) only take 1064 positional parameters for the actual logging message itself, with keyword 1065 parameters used only for determining options for how to handle the actual 1066 logging call (e.g. the ``exc_info`` keyword parameter to indicate that 1067 traceback information should be logged, or the ``extra`` keyword parameter 1068 to indicate additional contextual information to be added to the log). So 1069 you cannot directly make logging calls using :meth:`str.format` or 1070 :class:`string.Template` syntax, because internally the logging package 1071 uses %-formatting to merge the format string and the variable arguments. 1072 There would be no changing this while preserving backward compatibility, since 1073 all logging calls which are out there in existing code will be using %-format 1074 strings. 1075 1076 There is, however, a way that you can use {}- and $- formatting to construct 1077 your individual log messages. Recall that for a message you can use an 1078 arbitrary object as a message format string, and that the logging package will 1079 call ``str()`` on that object to get the actual format string. Consider the 1080 following two classes:: 1081 1082 class BraceMessage: 1083 def __init__(self, fmt, *args, **kwargs): 1084 self.fmt = fmt 1085 self.args = args 1086 self.kwargs = kwargs 1087 1088 def __str__(self): 1089 return self.fmt.format(*self.args, **self.kwargs) 1090 1091 class DollarMessage: 1092 def __init__(self, fmt, **kwargs): 1093 self.fmt = fmt 1094 self.kwargs = kwargs 1095 1096 def __str__(self): 1097 from string import Template 1098 return Template(self.fmt).substitute(**self.kwargs) 1099 1100 Either of these can be used in place of a format string, to allow {}- or 1101 $-formatting to be used to build the actual "message" part which appears in the 1102 formatted log output in place of "%(message)s" or "{message}" or "$message". 1103 It's a little unwieldy to use the class names whenever you want to log 1104 something, but it's quite palatable if you use an alias such as __ (double 1105 underscore --- not to be confused with _, the single underscore used as a 1106 synonym/alias for :func:`gettext.gettext` or its brethren). 1107 1108 The above classes are not included in Python, though they're easy enough to 1109 copy and paste into your own code. They can be used as follows (assuming that 1110 they're declared in a module called ``wherever``): 1111 1112 .. code-block:: pycon 1113 1114 >>> from wherever import BraceMessage as __ 1115 >>> print(__('Message with {0} {name}', 2, name='placeholders')) 1116 Message with 2 placeholders 1117 >>> class Point: pass 1118 ... 1119 >>> p = Point() 1120 >>> p.x = 0.5 1121 >>> p.y = 0.5 1122 >>> print(__('Message with coordinates: ({point.x:.2f}, {point.y:.2f})', 1123 ... point=p)) 1124 Message with coordinates: (0.50, 0.50) 1125 >>> from wherever import DollarMessage as __ 1126 >>> print(__('Message with $num $what', num=2, what='placeholders')) 1127 Message with 2 placeholders 1128 >>> 1129 1130 While the above examples use ``print()`` to show how the formatting works, you 1131 would of course use ``logger.debug()`` or similar to actually log using this 1132 approach. 1133 1134 One thing to note is that you pay no significant performance penalty with this 1135 approach: the actual formatting happens not when you make the logging call, but 1136 when (and if) the logged message is actually about to be output to a log by a 1137 handler. So the only slightly unusual thing which might trip you up is that the 1138 parentheses go around the format string and the arguments, not just the format 1139 string. That's because the __ notation is just syntax sugar for a constructor 1140 call to one of the XXXMessage classes. 1141 1142 If you prefer, you can use a :class:`LoggerAdapter` to achieve a similar effect 1143 to the above, as in the following example:: 1144 1145 import logging 1146 1147 class Message(object): 1148 def __init__(self, fmt, args): 1149 self.fmt = fmt 1150 self.args = args 1151 1152 def __str__(self): 1153 return self.fmt.format(*self.args) 1154 1155 class StyleAdapter(logging.LoggerAdapter): 1156 def __init__(self, logger, extra=None): 1157 super(StyleAdapter, self).__init__(logger, extra or {}) 1158 1159 def log(self, level, msg, *args, **kwargs): 1160 if self.isEnabledFor(level): 1161 msg, kwargs = self.process(msg, kwargs) 1162 self.logger._log(level, Message(msg, args), (), **kwargs) 1163 1164 logger = StyleAdapter(logging.getLogger(__name__)) 1165 1166 def main(): 1167 logger.debug('Hello, {}', 'world!') 1168 1169 if __name__ == '__main__': 1170 logging.basicConfig(level=logging.DEBUG) 1171 main() 1172 1173 The above script should log the message ``Hello, world!`` when run with 1174 Python 3.2 or later. 1175 1176 1177 .. currentmodule:: logging 1178 1179 .. _custom-logrecord: 1180 1181 Customizing ``LogRecord`` 1182 ------------------------- 1183 1184 Every logging event is represented by a :class:`LogRecord` instance. 1185 When an event is logged and not filtered out by a logger's level, a 1186 :class:`LogRecord` is created, populated with information about the event and 1187 then passed to the handlers for that logger (and its ancestors, up to and 1188 including the logger where further propagation up the hierarchy is disabled). 1189 Before Python 3.2, there were only two places where this creation was done: 1190 1191 * :meth:`Logger.makeRecord`, which is called in the normal process of 1192 logging an event. This invoked :class:`LogRecord` directly to create an 1193 instance. 1194 * :func:`makeLogRecord`, which is called with a dictionary containing 1195 attributes to be added to the LogRecord. This is typically invoked when a 1196 suitable dictionary has been received over the network (e.g. in pickle form 1197 via a :class:`~handlers.SocketHandler`, or in JSON form via an 1198 :class:`~handlers.HTTPHandler`). 1199 1200 This has usually meant that if you need to do anything special with a 1201 :class:`LogRecord`, you've had to do one of the following. 1202 1203 * Create your own :class:`Logger` subclass, which overrides 1204 :meth:`Logger.makeRecord`, and set it using :func:`~logging.setLoggerClass` 1205 before any loggers that you care about are instantiated. 1206 * Add a :class:`Filter` to a logger or handler, which does the 1207 necessary special manipulation you need when its 1208 :meth:`~Filter.filter` method is called. 1209 1210 The first approach would be a little unwieldy in the scenario where (say) 1211 several different libraries wanted to do different things. Each would attempt 1212 to set its own :class:`Logger` subclass, and the one which did this last would 1213 win. 1214 1215 The second approach works reasonably well for many cases, but does not allow 1216 you to e.g. use a specialized subclass of :class:`LogRecord`. Library 1217 developers can set a suitable filter on their loggers, but they would have to 1218 remember to do this every time they introduced a new logger (which they would 1219 do simply by adding new packages or modules and doing :: 1220 1221 logger = logging.getLogger(__name__) 1222 1223 at module level). It's probably one too many things to think about. Developers 1224 could also add the filter to a :class:`~logging.NullHandler` attached to their 1225 top-level logger, but this would not be invoked if an application developer 1226 attached a handler to a lower-level library logger --- so output from that 1227 handler would not reflect the intentions of the library developer. 1228 1229 In Python 3.2 and later, :class:`~logging.LogRecord` creation is done through a 1230 factory, which you can specify. The factory is just a callable you can set with 1231 :func:`~logging.setLogRecordFactory`, and interrogate with 1232 :func:`~logging.getLogRecordFactory`. The factory is invoked with the same 1233 signature as the :class:`~logging.LogRecord` constructor, as :class:`LogRecord` 1234 is the default setting for the factory. 1235 1236 This approach allows a custom factory to control all aspects of LogRecord 1237 creation. For example, you could return a subclass, or just add some additional 1238 attributes to the record once created, using a pattern similar to this:: 1239 1240 old_factory = logging.getLogRecordFactory() 1241 1242 def record_factory(*args, **kwargs): 1243 record = old_factory(*args, **kwargs) 1244 record.custom_attribute = 0xdecafbad 1245 return record 1246 1247 logging.setLogRecordFactory(record_factory) 1248 1249 This pattern allows different libraries to chain factories together, and as 1250 long as they don't overwrite each other's attributes or unintentionally 1251 overwrite the attributes provided as standard, there should be no surprises. 1252 However, it should be borne in mind that each link in the chain adds run-time 1253 overhead to all logging operations, and the technique should only be used when 1254 the use of a :class:`Filter` does not provide the desired result. 1255 1256 1257 .. _zeromq-handlers: 1258 1259 Subclassing QueueHandler - a ZeroMQ example 1260 ------------------------------------------- 1261 1262 You can use a :class:`QueueHandler` subclass to send messages to other kinds 1263 of queues, for example a ZeroMQ 'publish' socket. In the example below,the 1264 socket is created separately and passed to the handler (as its 'queue'):: 1265 1266 import zmq # using pyzmq, the Python binding for ZeroMQ 1267 import json # for serializing records portably 1268 1269 ctx = zmq.Context() 1270 sock = zmq.Socket(ctx, zmq.PUB) # or zmq.PUSH, or other suitable value 1271 sock.bind('tcp://*:5556') # or wherever 1272 1273 class ZeroMQSocketHandler(QueueHandler): 1274 def enqueue(self, record): 1275 self.queue.send_json(record.__dict__) 1276 1277 1278 handler = ZeroMQSocketHandler(sock) 1279 1280 1281 Of course there are other ways of organizing this, for example passing in the 1282 data needed by the handler to create the socket:: 1283 1284 class ZeroMQSocketHandler(QueueHandler): 1285 def __init__(self, uri, socktype=zmq.PUB, ctx=None): 1286 self.ctx = ctx or zmq.Context() 1287 socket = zmq.Socket(self.ctx, socktype) 1288 socket.bind(uri) 1289 super().__init__(socket) 1290 1291 def enqueue(self, record): 1292 self.queue.send_json(record.__dict__) 1293 1294 def close(self): 1295 self.queue.close() 1296 1297 1298 Subclassing QueueListener - a ZeroMQ example 1299 -------------------------------------------- 1300 1301 You can also subclass :class:`QueueListener` to get messages from other kinds 1302 of queues, for example a ZeroMQ 'subscribe' socket. Here's an example:: 1303 1304 class ZeroMQSocketListener(QueueListener): 1305 def __init__(self, uri, *handlers, **kwargs): 1306 self.ctx = kwargs.get('ctx') or zmq.Context() 1307 socket = zmq.Socket(self.ctx, zmq.SUB) 1308 socket.setsockopt_string(zmq.SUBSCRIBE, '') # subscribe to everything 1309 socket.connect(uri) 1310 super().__init__(socket, *handlers, **kwargs) 1311 1312 def dequeue(self): 1313 msg = self.queue.recv_json() 1314 return logging.makeLogRecord(msg) 1315 1316 1317 .. seealso:: 1318 1319 Module :mod:`logging` 1320 API reference for the logging module. 1321 1322 Module :mod:`logging.config` 1323 Configuration API for the logging module. 1324 1325 Module :mod:`logging.handlers` 1326 Useful handlers included with the logging module. 1327 1328 :ref:`A basic logging tutorial <logging-basic-tutorial>` 1329 1330 :ref:`A more advanced logging tutorial <logging-advanced-tutorial>` 1331 1332 1333 An example dictionary-based configuration 1334 ----------------------------------------- 1335 1336 Below is an example of a logging configuration dictionary - it's taken from 1337 the `documentation on the Django project <https://docs.djangoproject.com/en/1.9/topics/logging/#configuring-logging>`_. 1338 This dictionary is passed to :func:`~config.dictConfig` to put the configuration into effect:: 1339 1340 LOGGING = { 1341 'version': 1, 1342 'disable_existing_loggers': True, 1343 'formatters': { 1344 'verbose': { 1345 'format': '%(levelname)s %(asctime)s %(module)s %(process)d %(thread)d %(message)s' 1346 }, 1347 'simple': { 1348 'format': '%(levelname)s %(message)s' 1349 }, 1350 }, 1351 'filters': { 1352 'special': { 1353 '()': 'project.logging.SpecialFilter', 1354 'foo': 'bar', 1355 } 1356 }, 1357 'handlers': { 1358 'null': { 1359 'level':'DEBUG', 1360 'class':'django.utils.log.NullHandler', 1361 }, 1362 'console':{ 1363 'level':'DEBUG', 1364 'class':'logging.StreamHandler', 1365 'formatter': 'simple' 1366 }, 1367 'mail_admins': { 1368 'level': 'ERROR', 1369 'class': 'django.utils.log.AdminEmailHandler', 1370 'filters': ['special'] 1371 } 1372 }, 1373 'loggers': { 1374 'django': { 1375 'handlers':['null'], 1376 'propagate': True, 1377 'level':'INFO', 1378 }, 1379 'django.request': { 1380 'handlers': ['mail_admins'], 1381 'level': 'ERROR', 1382 'propagate': False, 1383 }, 1384 'myproject.custom': { 1385 'handlers': ['console', 'mail_admins'], 1386 'level': 'INFO', 1387 'filters': ['special'] 1388 } 1389 } 1390 } 1391 1392 For more information about this configuration, you can see the `relevant 1393 section <https://docs.djangoproject.com/en/1.9/topics/logging/#configuring-logging>`_ 1394 of the Django documentation. 1395 1396 .. _cookbook-rotator-namer: 1397 1398 Using a rotator and namer to customize log rotation processing 1399 -------------------------------------------------------------- 1400 1401 An example of how you can define a namer and rotator is given in the following 1402 snippet, which shows zlib-based compression of the log file:: 1403 1404 def namer(name): 1405 return name + ".gz" 1406 1407 def rotator(source, dest): 1408 with open(source, "rb") as sf: 1409 data = sf.read() 1410 compressed = zlib.compress(data, 9) 1411 with open(dest, "wb") as df: 1412 df.write(compressed) 1413 os.remove(source) 1414 1415 rh = logging.handlers.RotatingFileHandler(...) 1416 rh.rotator = rotator 1417 rh.namer = namer 1418 1419 These are not "true" .gz files, as they are bare compressed data, with no 1420 "container" such as youd find in an actual gzip file. This snippet is just 1421 for illustration purposes. 1422 1423 A more elaborate multiprocessing example 1424 ---------------------------------------- 1425 1426 The following working example shows how logging can be used with multiprocessing 1427 using configuration files. The configurations are fairly simple, but serve to 1428 illustrate how more complex ones could be implemented in a real multiprocessing 1429 scenario. 1430 1431 In the example, the main process spawns a listener process and some worker 1432 processes. Each of the main process, the listener and the workers have three 1433 separate configurations (the workers all share the same configuration). We can 1434 see logging in the main process, how the workers log to a QueueHandler and how 1435 the listener implements a QueueListener and a more complex logging 1436 configuration, and arranges to dispatch events received via the queue to the 1437 handlers specified in the configuration. Note that these configurations are 1438 purely illustrative, but you should be able to adapt this example to your own 1439 scenario. 1440 1441 Here's the script - the docstrings and the comments hopefully explain how it 1442 works:: 1443 1444 import logging 1445 import logging.config 1446 import logging.handlers 1447 from multiprocessing import Process, Queue, Event, current_process 1448 import os 1449 import random 1450 import time 1451 1452 class MyHandler: 1453 """ 1454 A simple handler for logging events. It runs in the listener process and 1455 dispatches events to loggers based on the name in the received record, 1456 which then get dispatched, by the logging system, to the handlers 1457 configured for those loggers. 1458 """ 1459 def handle(self, record): 1460 logger = logging.getLogger(record.name) 1461 # The process name is transformed just to show that it's the listener 1462 # doing the logging to files and console 1463 record.processName = '%s (for %s)' % (current_process().name, record.processName) 1464 logger.handle(record) 1465 1466 def listener_process(q, stop_event, config): 1467 """ 1468 This could be done in the main process, but is just done in a separate 1469 process for illustrative purposes. 1470 1471 This initialises logging according to the specified configuration, 1472 starts the listener and waits for the main process to signal completion 1473 via the event. The listener is then stopped, and the process exits. 1474 """ 1475 logging.config.dictConfig(config) 1476 listener = logging.handlers.QueueListener(q, MyHandler()) 1477 listener.start() 1478 if os.name == 'posix': 1479 # On POSIX, the setup logger will have been configured in the 1480 # parent process, but should have been disabled following the 1481 # dictConfig call. 1482 # On Windows, since fork isn't used, the setup logger won't 1483 # exist in the child, so it would be created and the message 1484 # would appear - hence the "if posix" clause. 1485 logger = logging.getLogger('setup') 1486 logger.critical('Should not appear, because of disabled logger ...') 1487 stop_event.wait() 1488 listener.stop() 1489 1490 def worker_process(config): 1491 """ 1492 A number of these are spawned for the purpose of illustration. In 1493 practice, they could be a heterogeneous bunch of processes rather than 1494 ones which are identical to each other. 1495 1496 This initialises logging according to the specified configuration, 1497 and logs a hundred messages with random levels to randomly selected 1498 loggers. 1499 1500 A small sleep is added to allow other processes a chance to run. This 1501 is not strictly needed, but it mixes the output from the different 1502 processes a bit more than if it's left out. 1503 """ 1504 logging.config.dictConfig(config) 1505 levels = [logging.DEBUG, logging.INFO, logging.WARNING, logging.ERROR, 1506 logging.CRITICAL] 1507 loggers = ['foo', 'foo.bar', 'foo.bar.baz', 1508 'spam', 'spam.ham', 'spam.ham.eggs'] 1509 if os.name == 'posix': 1510 # On POSIX, the setup logger will have been configured in the 1511 # parent process, but should have been disabled following the 1512 # dictConfig call. 1513 # On Windows, since fork isn't used, the setup logger won't 1514 # exist in the child, so it would be created and the message 1515 # would appear - hence the "if posix" clause. 1516 logger = logging.getLogger('setup') 1517 logger.critical('Should not appear, because of disabled logger ...') 1518 for i in range(100): 1519 lvl = random.choice(levels) 1520 logger = logging.getLogger(random.choice(loggers)) 1521 logger.log(lvl, 'Message no. %d', i) 1522 time.sleep(0.01) 1523 1524 def main(): 1525 q = Queue() 1526 # The main process gets a simple configuration which prints to the console. 1527 config_initial = { 1528 'version': 1, 1529 'formatters': { 1530 'detailed': { 1531 'class': 'logging.Formatter', 1532 'format': '%(asctime)s %(name)-15s %(levelname)-8s %(processName)-10s %(message)s' 1533 } 1534 }, 1535 'handlers': { 1536 'console': { 1537 'class': 'logging.StreamHandler', 1538 'level': 'INFO', 1539 }, 1540 }, 1541 'root': { 1542 'level': 'DEBUG', 1543 'handlers': ['console'] 1544 }, 1545 } 1546 # The worker process configuration is just a QueueHandler attached to the 1547 # root logger, which allows all messages to be sent to the queue. 1548 # We disable existing loggers to disable the "setup" logger used in the 1549 # parent process. This is needed on POSIX because the logger will 1550 # be there in the child following a fork(). 1551 config_worker = { 1552 'version': 1, 1553 'disable_existing_loggers': True, 1554 'handlers': { 1555 'queue': { 1556 'class': 'logging.handlers.QueueHandler', 1557 'queue': q, 1558 }, 1559 }, 1560 'root': { 1561 'level': 'DEBUG', 1562 'handlers': ['queue'] 1563 }, 1564 } 1565 # The listener process configuration shows that the full flexibility of 1566 # logging configuration is available to dispatch events to handlers however 1567 # you want. 1568 # We disable existing loggers to disable the "setup" logger used in the 1569 # parent process. This is needed on POSIX because the logger will 1570 # be there in the child following a fork(). 1571 config_listener = { 1572 'version': 1, 1573 'disable_existing_loggers': True, 1574 'formatters': { 1575 'detailed': { 1576 'class': 'logging.Formatter', 1577 'format': '%(asctime)s %(name)-15s %(levelname)-8s %(processName)-10s %(message)s' 1578 }, 1579 'simple': { 1580 'class': 'logging.Formatter', 1581 'format': '%(name)-15s %(levelname)-8s %(processName)-10s %(message)s' 1582 } 1583 }, 1584 'handlers': { 1585 'console': { 1586 'class': 'logging.StreamHandler', 1587 'level': 'INFO', 1588 'formatter': 'simple', 1589 }, 1590 'file': { 1591 'class': 'logging.FileHandler', 1592 'filename': 'mplog.log', 1593 'mode': 'w', 1594 'formatter': 'detailed', 1595 }, 1596 'foofile': { 1597 'class': 'logging.FileHandler', 1598 'filename': 'mplog-foo.log', 1599 'mode': 'w', 1600 'formatter': 'detailed', 1601 }, 1602 'errors': { 1603 'class': 'logging.FileHandler', 1604 'filename': 'mplog-errors.log', 1605 'mode': 'w', 1606 'level': 'ERROR', 1607 'formatter': 'detailed', 1608 }, 1609 }, 1610 'loggers': { 1611 'foo': { 1612 'handlers': ['foofile'] 1613 } 1614 }, 1615 'root': { 1616 'level': 'DEBUG', 1617 'handlers': ['console', 'file', 'errors'] 1618 }, 1619 } 1620 # Log some initial events, just to show that logging in the parent works 1621 # normally. 1622 logging.config.dictConfig(config_initial) 1623 logger = logging.getLogger('setup') 1624 logger.info('About to create workers ...') 1625 workers = [] 1626 for i in range(5): 1627 wp = Process(target=worker_process, name='worker %d' % (i + 1), 1628 args=(config_worker,)) 1629 workers.append(wp) 1630 wp.start() 1631 logger.info('Started worker: %s', wp.name) 1632 logger.info('About to create listener ...') 1633 stop_event = Event() 1634 lp = Process(target=listener_process, name='listener', 1635 args=(q, stop_event, config_listener)) 1636 lp.start() 1637 logger.info('Started listener') 1638 # We now hang around for the workers to finish their work. 1639 for wp in workers: 1640 wp.join() 1641 # Workers all done, listening can now stop. 1642 # Logging in the parent still works normally. 1643 logger.info('Telling listener to stop ...') 1644 stop_event.set() 1645 lp.join() 1646 logger.info('All done.') 1647 1648 if __name__ == '__main__': 1649 main() 1650 1651 1652 Inserting a BOM into messages sent to a SysLogHandler 1653 ----------------------------------------------------- 1654 1655 :rfc:`5424` requires that a 1656 Unicode message be sent to a syslog daemon as a set of bytes which have the 1657 following structure: an optional pure-ASCII component, followed by a UTF-8 Byte 1658 Order Mark (BOM), followed by Unicode encoded using UTF-8. (See the 1659 :rfc:`relevant section of the specification <5424#section-6>`.) 1660 1661 In Python 3.1, code was added to 1662 :class:`~logging.handlers.SysLogHandler` to insert a BOM into the message, but 1663 unfortunately, it was implemented incorrectly, with the BOM appearing at the 1664 beginning of the message and hence not allowing any pure-ASCII component to 1665 appear before it. 1666 1667 As this behaviour is broken, the incorrect BOM insertion code is being removed 1668 from Python 3.2.4 and later. However, it is not being replaced, and if you 1669 want to produce :rfc:`5424`-compliant messages which include a BOM, an optional 1670 pure-ASCII sequence before it and arbitrary Unicode after it, encoded using 1671 UTF-8, then you need to do the following: 1672 1673 #. Attach a :class:`~logging.Formatter` instance to your 1674 :class:`~logging.handlers.SysLogHandler` instance, with a format string 1675 such as:: 1676 1677 'ASCII section\ufeffUnicode section' 1678 1679 The Unicode code point U+FEFF, when encoded using UTF-8, will be 1680 encoded as a UTF-8 BOM -- the byte-string ``b'\xef\xbb\xbf'``. 1681 1682 #. Replace the ASCII section with whatever placeholders you like, but make sure 1683 that the data that appears in there after substitution is always ASCII (that 1684 way, it will remain unchanged after UTF-8 encoding). 1685 1686 #. Replace the Unicode section with whatever placeholders you like; if the data 1687 which appears there after substitution contains characters outside the ASCII 1688 range, that's fine -- it will be encoded using UTF-8. 1689 1690 The formatted message *will* be encoded using UTF-8 encoding by 1691 ``SysLogHandler``. If you follow the above rules, you should be able to produce 1692 :rfc:`5424`-compliant messages. If you don't, logging may not complain, but your 1693 messages will not be RFC 5424-compliant, and your syslog daemon may complain. 1694 1695 1696 Implementing structured logging 1697 ------------------------------- 1698 1699 Although most logging messages are intended for reading by humans, and thus not 1700 readily machine-parseable, there might be circumstances where you want to output 1701 messages in a structured format which *is* capable of being parsed by a program 1702 (without needing complex regular expressions to parse the log message). This is 1703 straightforward to achieve using the logging package. There are a number of 1704 ways in which this could be achieved, but the following is a simple approach 1705 which uses JSON to serialise the event in a machine-parseable manner:: 1706 1707 import json 1708 import logging 1709 1710 class StructuredMessage(object): 1711 def __init__(self, message, **kwargs): 1712 self.message = message 1713 self.kwargs = kwargs 1714 1715 def __str__(self): 1716 return '%s >>> %s' % (self.message, json.dumps(self.kwargs)) 1717 1718 _ = StructuredMessage # optional, to improve readability 1719 1720 logging.basicConfig(level=logging.INFO, format='%(message)s') 1721 logging.info(_('message 1', foo='bar', bar='baz', num=123, fnum=123.456)) 1722 1723 If the above script is run, it prints: 1724 1725 .. code-block:: none 1726 1727 message 1 >>> {"fnum": 123.456, "num": 123, "bar": "baz", "foo": "bar"} 1728 1729 Note that the order of items might be different according to the version of 1730 Python used. 1731 1732 If you need more specialised processing, you can use a custom JSON encoder, 1733 as in the following complete example:: 1734 1735 from __future__ import unicode_literals 1736 1737 import json 1738 import logging 1739 1740 # This next bit is to ensure the script runs unchanged on 2.x and 3.x 1741 try: 1742 unicode 1743 except NameError: 1744 unicode = str 1745 1746 class Encoder(json.JSONEncoder): 1747 def default(self, o): 1748 if isinstance(o, set): 1749 return tuple(o) 1750 elif isinstance(o, unicode): 1751 return o.encode('unicode_escape').decode('ascii') 1752 return super(Encoder, self).default(o) 1753 1754 class StructuredMessage(object): 1755 def __init__(self, message, **kwargs): 1756 self.message = message 1757 self.kwargs = kwargs 1758 1759 def __str__(self): 1760 s = Encoder().encode(self.kwargs) 1761 return '%s >>> %s' % (self.message, s) 1762 1763 _ = StructuredMessage # optional, to improve readability 1764 1765 def main(): 1766 logging.basicConfig(level=logging.INFO, format='%(message)s') 1767 logging.info(_('message 1', set_value={1, 2, 3}, snowman='\u2603')) 1768 1769 if __name__ == '__main__': 1770 main() 1771 1772 When the above script is run, it prints: 1773 1774 .. code-block:: none 1775 1776 message 1 >>> {"snowman": "\u2603", "set_value": [1, 2, 3]} 1777 1778 Note that the order of items might be different according to the version of 1779 Python used. 1780 1781 1782 .. _custom-handlers: 1783 1784 .. currentmodule:: logging.config 1785 1786 Customizing handlers with :func:`dictConfig` 1787 -------------------------------------------- 1788 1789 There are times when you want to customize logging handlers in particular ways, 1790 and if you use :func:`dictConfig` you may be able to do this without 1791 subclassing. As an example, consider that you may want to set the ownership of a 1792 log file. On POSIX, this is easily done using :func:`shutil.chown`, but the file 1793 handlers in the stdlib don't offer built-in support. You can customize handler 1794 creation using a plain function such as:: 1795 1796 def owned_file_handler(filename, mode='a', encoding=None, owner=None): 1797 if owner: 1798 if not os.path.exists(filename): 1799 open(filename, 'a').close() 1800 shutil.chown(filename, *owner) 1801 return logging.FileHandler(filename, mode, encoding) 1802 1803 You can then specify, in a logging configuration passed to :func:`dictConfig`, 1804 that a logging handler be created by calling this function:: 1805 1806 LOGGING = { 1807 'version': 1, 1808 'disable_existing_loggers': False, 1809 'formatters': { 1810 'default': { 1811 'format': '%(asctime)s %(levelname)s %(name)s %(message)s' 1812 }, 1813 }, 1814 'handlers': { 1815 'file':{ 1816 # The values below are popped from this dictionary and 1817 # used to create the handler, set the handler's level and 1818 # its formatter. 1819 '()': owned_file_handler, 1820 'level':'DEBUG', 1821 'formatter': 'default', 1822 # The values below are passed to the handler creator callable 1823 # as keyword arguments. 1824 'owner': ['pulse', 'pulse'], 1825 'filename': 'chowntest.log', 1826 'mode': 'w', 1827 'encoding': 'utf-8', 1828 }, 1829 }, 1830 'root': { 1831 'handlers': ['file'], 1832 'level': 'DEBUG', 1833 }, 1834 } 1835 1836 In this example I am setting the ownership using the ``pulse`` user and group, 1837 just for the purposes of illustration. Putting it together into a working 1838 script, ``chowntest.py``:: 1839 1840 import logging, logging.config, os, shutil 1841 1842 def owned_file_handler(filename, mode='a', encoding=None, owner=None): 1843 if owner: 1844 if not os.path.exists(filename): 1845 open(filename, 'a').close() 1846 shutil.chown(filename, *owner) 1847 return logging.FileHandler(filename, mode, encoding) 1848 1849 LOGGING = { 1850 'version': 1, 1851 'disable_existing_loggers': False, 1852 'formatters': { 1853 'default': { 1854 'format': '%(asctime)s %(levelname)s %(name)s %(message)s' 1855 }, 1856 }, 1857 'handlers': { 1858 'file':{ 1859 # The values below are popped from this dictionary and 1860 # used to create the handler, set the handler's level and 1861 # its formatter. 1862 '()': owned_file_handler, 1863 'level':'DEBUG', 1864 'formatter': 'default', 1865 # The values below are passed to the handler creator callable 1866 # as keyword arguments. 1867 'owner': ['pulse', 'pulse'], 1868 'filename': 'chowntest.log', 1869 'mode': 'w', 1870 'encoding': 'utf-8', 1871 }, 1872 }, 1873 'root': { 1874 'handlers': ['file'], 1875 'level': 'DEBUG', 1876 }, 1877 } 1878 1879 logging.config.dictConfig(LOGGING) 1880 logger = logging.getLogger('mylogger') 1881 logger.debug('A debug message') 1882 1883 To run this, you will probably need to run as ``root``: 1884 1885 .. code-block:: shell-session 1886 1887 $ sudo python3.3 chowntest.py 1888 $ cat chowntest.log 1889 2013-11-05 09:34:51,128 DEBUG mylogger A debug message 1890 $ ls -l chowntest.log 1891 -rw-r--r-- 1 pulse pulse 55 2013-11-05 09:34 chowntest.log 1892 1893 Note that this example uses Python 3.3 because that's where :func:`shutil.chown` 1894 makes an appearance. This approach should work with any Python version that 1895 supports :func:`dictConfig` - namely, Python 2.7, 3.2 or later. With pre-3.3 1896 versions, you would need to implement the actual ownership change using e.g. 1897 :func:`os.chown`. 1898 1899 In practice, the handler-creating function may be in a utility module somewhere 1900 in your project. Instead of the line in the configuration:: 1901 1902 '()': owned_file_handler, 1903 1904 you could use e.g.:: 1905 1906 '()': 'ext://project.util.owned_file_handler', 1907 1908 where ``project.util`` can be replaced with the actual name of the package 1909 where the function resides. In the above working script, using 1910 ``'ext://__main__.owned_file_handler'`` should work. Here, the actual callable 1911 is resolved by :func:`dictConfig` from the ``ext://`` specification. 1912 1913 This example hopefully also points the way to how you could implement other 1914 types of file change - e.g. setting specific POSIX permission bits - in the 1915 same way, using :func:`os.chmod`. 1916 1917 Of course, the approach could also be extended to types of handler other than a 1918 :class:`~logging.FileHandler` - for example, one of the rotating file handlers, 1919 or a different type of handler altogether. 1920 1921 1922 .. currentmodule:: logging 1923 1924 .. _formatting-styles: 1925 1926 Using particular formatting styles throughout your application 1927 -------------------------------------------------------------- 1928 1929 In Python 3.2, the :class:`~logging.Formatter` gained a ``style`` keyword 1930 parameter which, while defaulting to ``%`` for backward compatibility, allowed 1931 the specification of ``{`` or ``$`` to support the formatting approaches 1932 supported by :meth:`str.format` and :class:`string.Template`. Note that this 1933 governs the formatting of logging messages for final output to logs, and is 1934 completely orthogonal to how an individual logging message is constructed. 1935 1936 Logging calls (:meth:`~Logger.debug`, :meth:`~Logger.info` etc.) only take 1937 positional parameters for the actual logging message itself, with keyword 1938 parameters used only for determining options for how to handle the logging call 1939 (e.g. the ``exc_info`` keyword parameter to indicate that traceback information 1940 should be logged, or the ``extra`` keyword parameter to indicate additional 1941 contextual information to be added to the log). So you cannot directly make 1942 logging calls using :meth:`str.format` or :class:`string.Template` syntax, 1943 because internally the logging package uses %-formatting to merge the format 1944 string and the variable arguments. There would no changing this while preserving 1945 backward compatibility, since all logging calls which are out there in existing 1946 code will be using %-format strings. 1947 1948 There have been suggestions to associate format styles with specific loggers, 1949 but that approach also runs into backward compatibility problems because any 1950 existing code could be using a given logger name and using %-formatting. 1951 1952 For logging to work interoperably between any third-party libraries and your 1953 code, decisions about formatting need to be made at the level of the 1954 individual logging call. This opens up a couple of ways in which alternative 1955 formatting styles can be accommodated. 1956 1957 1958 Using LogRecord factories 1959 ^^^^^^^^^^^^^^^^^^^^^^^^^ 1960 1961 In Python 3.2, along with the :class:`~logging.Formatter` changes mentioned 1962 above, the logging package gained the ability to allow users to set their own 1963 :class:`LogRecord` subclasses, using the :func:`setLogRecordFactory` function. 1964 You can use this to set your own subclass of :class:`LogRecord`, which does the 1965 Right Thing by overriding the :meth:`~LogRecord.getMessage` method. The base 1966 class implementation of this method is where the ``msg % args`` formatting 1967 happens, and where you can substitute your alternate formatting; however, you 1968 should be careful to support all formatting styles and allow %-formatting as 1969 the default, to ensure interoperability with other code. Care should also be 1970 taken to call ``str(self.msg)``, just as the base implementation does. 1971 1972 Refer to the reference documentation on :func:`setLogRecordFactory` and 1973 :class:`LogRecord` for more information. 1974 1975 1976 Using custom message objects 1977 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 1978 1979 There is another, perhaps simpler way that you can use {}- and $- formatting to 1980 construct your individual log messages. You may recall (from 1981 :ref:`arbitrary-object-messages`) that when logging you can use an arbitrary 1982 object as a message format string, and that the logging package will call 1983 :func:`str` on that object to get the actual format string. Consider the 1984 following two classes:: 1985 1986 class BraceMessage(object): 1987 def __init__(self, fmt, *args, **kwargs): 1988 self.fmt = fmt 1989 self.args = args 1990 self.kwargs = kwargs 1991 1992 def __str__(self): 1993 return self.fmt.format(*self.args, **self.kwargs) 1994 1995 class DollarMessage(object): 1996 def __init__(self, fmt, **kwargs): 1997 self.fmt = fmt 1998 self.kwargs = kwargs 1999 2000 def __str__(self): 2001 from string import Template 2002 return Template(self.fmt).substitute(**self.kwargs) 2003 2004 Either of these can be used in place of a format string, to allow {}- or 2005 $-formatting to be used to build the actual "message" part which appears in the 2006 formatted log output in place of %(message)s or {message} or $message. 2007 If you find it a little unwieldy to use the class names whenever you want to log 2008 something, you can make it more palatable if you use an alias such as ``M`` or 2009 ``_`` for the message (or perhaps ``__``, if you are using ``_`` for 2010 localization). 2011 2012 Examples of this approach are given below. Firstly, formatting with 2013 :meth:`str.format`:: 2014 2015 >>> __ = BraceMessage 2016 >>> print(__('Message with {0} {1}', 2, 'placeholders')) 2017 Message with 2 placeholders 2018 >>> class Point: pass 2019 ... 2020 >>> p = Point() 2021 >>> p.x = 0.5 2022 >>> p.y = 0.5 2023 >>> print(__('Message with coordinates: ({point.x:.2f}, {point.y:.2f})', point=p)) 2024 Message with coordinates: (0.50, 0.50) 2025 2026 Secondly, formatting with :class:`string.Template`:: 2027 2028 >>> __ = DollarMessage 2029 >>> print(__('Message with $num $what', num=2, what='placeholders')) 2030 Message with 2 placeholders 2031 >>> 2032 2033 One thing to note is that you pay no significant performance penalty with this 2034 approach: the actual formatting happens not when you make the logging call, but 2035 when (and if) the logged message is actually about to be output to a log by a 2036 handler. So the only slightly unusual thing which might trip you up is that the 2037 parentheses go around the format string and the arguments, not just the format 2038 string. Thats because the __ notation is just syntax sugar for a constructor 2039 call to one of the ``XXXMessage`` classes shown above. 2040 2041 2042 .. _filters-dictconfig: 2043 2044 .. currentmodule:: logging.config 2045 2046 Configuring filters with :func:`dictConfig` 2047 ------------------------------------------- 2048 2049 You *can* configure filters using :func:`~logging.config.dictConfig`, though it 2050 might not be obvious at first glance how to do it (hence this recipe). Since 2051 :class:`~logging.Filter` is the only filter class included in the standard 2052 library, and it is unlikely to cater to many requirements (it's only there as a 2053 base class), you will typically need to define your own :class:`~logging.Filter` 2054 subclass with an overridden :meth:`~logging.Filter.filter` method. To do this, 2055 specify the ``()`` key in the configuration dictionary for the filter, 2056 specifying a callable which will be used to create the filter (a class is the 2057 most obvious, but you can provide any callable which returns a 2058 :class:`~logging.Filter` instance). Here is a complete example:: 2059 2060 import logging 2061 import logging.config 2062 import sys 2063 2064 class MyFilter(logging.Filter): 2065 def __init__(self, param=None): 2066 self.param = param 2067 2068 def filter(self, record): 2069 if self.param is None: 2070 allow = True 2071 else: 2072 allow = self.param not in record.msg 2073 if allow: 2074 record.msg = 'changed: ' + record.msg 2075 return allow 2076 2077 LOGGING = { 2078 'version': 1, 2079 'filters': { 2080 'myfilter': { 2081 '()': MyFilter, 2082 'param': 'noshow', 2083 } 2084 }, 2085 'handlers': { 2086 'console': { 2087 'class': 'logging.StreamHandler', 2088 'filters': ['myfilter'] 2089 } 2090 }, 2091 'root': { 2092 'level': 'DEBUG', 2093 'handlers': ['console'] 2094 }, 2095 } 2096 2097 if __name__ == '__main__': 2098 logging.config.dictConfig(LOGGING) 2099 logging.debug('hello') 2100 logging.debug('hello - noshow') 2101 2102 This example shows how you can pass configuration data to the callable which 2103 constructs the instance, in the form of keyword parameters. When run, the above 2104 script will print: 2105 2106 .. code-block:: none 2107 2108 changed: hello 2109 2110 which shows that the filter is working as configured. 2111 2112 A couple of extra points to note: 2113 2114 * If you can't refer to the callable directly in the configuration (e.g. if it 2115 lives in a different module, and you can't import it directly where the 2116 configuration dictionary is), you can use the form ``ext://...`` as described 2117 in :ref:`logging-config-dict-externalobj`. For example, you could have used 2118 the text ``'ext://__main__.MyFilter'`` instead of ``MyFilter`` in the above 2119 example. 2120 2121 * As well as for filters, this technique can also be used to configure custom 2122 handlers and formatters. See :ref:`logging-config-dict-userdef` for more 2123 information on how logging supports using user-defined objects in its 2124 configuration, and see the other cookbook recipe :ref:`custom-handlers` above. 2125 2126 2127 .. _custom-format-exception: 2128 2129 Customized exception formatting 2130 ------------------------------- 2131 2132 There might be times when you want to do customized exception formatting - for 2133 argument's sake, let's say you want exactly one line per logged event, even 2134 when exception information is present. You can do this with a custom formatter 2135 class, as shown in the following example:: 2136 2137 import logging 2138 2139 class OneLineExceptionFormatter(logging.Formatter): 2140 def formatException(self, exc_info): 2141 """ 2142 Format an exception so that it prints on a single line. 2143 """ 2144 result = super(OneLineExceptionFormatter, self).formatException(exc_info) 2145 return repr(result) # or format into one line however you want to 2146 2147 def format(self, record): 2148 s = super(OneLineExceptionFormatter, self).format(record) 2149 if record.exc_text: 2150 s = s.replace('\n', '') + '|' 2151 return s 2152 2153 def configure_logging(): 2154 fh = logging.FileHandler('output.txt', 'w') 2155 f = OneLineExceptionFormatter('%(asctime)s|%(levelname)s|%(message)s|', 2156 '%d/%m/%Y %H:%M:%S') 2157 fh.setFormatter(f) 2158 root = logging.getLogger() 2159 root.setLevel(logging.DEBUG) 2160 root.addHandler(fh) 2161 2162 def main(): 2163 configure_logging() 2164 logging.info('Sample message') 2165 try: 2166 x = 1 / 0 2167 except ZeroDivisionError as e: 2168 logging.exception('ZeroDivisionError: %s', e) 2169 2170 if __name__ == '__main__': 2171 main() 2172 2173 When run, this produces a file with exactly two lines: 2174 2175 .. code-block:: none 2176 2177 28/01/2015 07:21:23|INFO|Sample message| 2178 28/01/2015 07:21:23|ERROR|ZeroDivisionError: integer division or modulo by zero|'Traceback (most recent call last):\n File "logtest7.py", line 30, in main\n x = 1 / 0\nZeroDivisionError: integer division or modulo by zero'| 2179 2180 While the above treatment is simplistic, it points the way to how exception 2181 information can be formatted to your liking. The :mod:`traceback` module may be 2182 helpful for more specialized needs. 2183 2184 .. _spoken-messages: 2185 2186 Speaking logging messages 2187 ------------------------- 2188 2189 There might be situations when it is desirable to have logging messages rendered 2190 in an audible rather than a visible format. This is easy to do if you have 2191 text-to-speech (TTS) functionality available in your system, even if it doesn't have 2192 a Python binding. Most TTS systems have a command line program you can run, and 2193 this can be invoked from a handler using :mod:`subprocess`. It's assumed here 2194 that TTS command line programs won't expect to interact with users or take a 2195 long time to complete, and that the frequency of logged messages will be not so 2196 high as to swamp the user with messages, and that it's acceptable to have the 2197 messages spoken one at a time rather than concurrently, The example implementation 2198 below waits for one message to be spoken before the next is processed, and this 2199 might cause other handlers to be kept waiting. Here is a short example showing 2200 the approach, which assumes that the ``espeak`` TTS package is available:: 2201 2202 import logging 2203 import subprocess 2204 import sys 2205 2206 class TTSHandler(logging.Handler): 2207 def emit(self, record): 2208 msg = self.format(record) 2209 # Speak slowly in a female English voice 2210 cmd = ['espeak', '-s150', '-ven+f3', msg] 2211 p = subprocess.Popen(cmd, stdout=subprocess.PIPE, 2212 stderr=subprocess.STDOUT) 2213 # wait for the program to finish 2214 p.communicate() 2215 2216 def configure_logging(): 2217 h = TTSHandler() 2218 root = logging.getLogger() 2219 root.addHandler(h) 2220 # the default formatter just returns the message 2221 root.setLevel(logging.DEBUG) 2222 2223 def main(): 2224 logging.info('Hello') 2225 logging.debug('Goodbye') 2226 2227 if __name__ == '__main__': 2228 configure_logging() 2229 sys.exit(main()) 2230 2231 When run, this script should say "Hello" and then "Goodbye" in a female voice. 2232 2233 The above approach can, of course, be adapted to other TTS systems and even 2234 other systems altogether which can process messages via external programs run 2235 from a command line. 2236 2237 2238 .. _buffered-logging: 2239 2240 Buffering logging messages and outputting them conditionally 2241 ------------------------------------------------------------ 2242 2243 There might be situations where you want to log messages in a temporary area 2244 and only output them if a certain condition occurs. For example, you may want to 2245 start logging debug events in a function, and if the function completes without 2246 errors, you don't want to clutter the log with the collected debug information, 2247 but if there is an error, you want all the debug information to be output as well 2248 as the error. 2249 2250 Here is an example which shows how you could do this using a decorator for your 2251 functions where you want logging to behave this way. It makes use of the 2252 :class:`logging.handlers.MemoryHandler`, which allows buffering of logged events 2253 until some condition occurs, at which point the buffered events are ``flushed`` 2254 - passed to another handler (the ``target`` handler) for processing. By default, 2255 the ``MemoryHandler`` flushed when its buffer gets filled up or an event whose 2256 level is greater than or equal to a specified threshold is seen. You can use this 2257 recipe with a more specialised subclass of ``MemoryHandler`` if you want custom 2258 flushing behavior. 2259 2260 The example script has a simple function, ``foo``, which just cycles through 2261 all the logging levels, writing to ``sys.stderr`` to say what level it's about 2262 to log at, and then actually logging a message at that level. You can pass a 2263 parameter to ``foo`` which, if true, will log at ERROR and CRITICAL levels - 2264 otherwise, it only logs at DEBUG, INFO and WARNING levels. 2265 2266 The script just arranges to decorate ``foo`` with a decorator which will do the 2267 conditional logging that's required. The decorator takes a logger as a parameter 2268 and attaches a memory handler for the duration of the call to the decorated 2269 function. The decorator can be additionally parameterised using a target handler, 2270 a level at which flushing should occur, and a capacity for the buffer. These 2271 default to a :class:`~logging.StreamHandler` which writes to ``sys.stderr``, 2272 ``logging.ERROR`` and ``100`` respectively. 2273 2274 Here's the script:: 2275 2276 import logging 2277 from logging.handlers import MemoryHandler 2278 import sys 2279 2280 logger = logging.getLogger(__name__) 2281 logger.addHandler(logging.NullHandler()) 2282 2283 def log_if_errors(logger, target_handler=None, flush_level=None, capacity=None): 2284 if target_handler is None: 2285 target_handler = logging.StreamHandler() 2286 if flush_level is None: 2287 flush_level = logging.ERROR 2288 if capacity is None: 2289 capacity = 100 2290 handler = MemoryHandler(capacity, flushLevel=flush_level, target=target_handler) 2291 2292 def decorator(fn): 2293 def wrapper(*args, **kwargs): 2294 logger.addHandler(handler) 2295 try: 2296 return fn(*args, **kwargs) 2297 except Exception: 2298 logger.exception('call failed') 2299 raise 2300 finally: 2301 super(MemoryHandler, handler).flush() 2302 logger.removeHandler(handler) 2303 return wrapper 2304 2305 return decorator 2306 2307 def write_line(s): 2308 sys.stderr.write('%s\n' % s) 2309 2310 def foo(fail=False): 2311 write_line('about to log at DEBUG ...') 2312 logger.debug('Actually logged at DEBUG') 2313 write_line('about to log at INFO ...') 2314 logger.info('Actually logged at INFO') 2315 write_line('about to log at WARNING ...') 2316 logger.warning('Actually logged at WARNING') 2317 if fail: 2318 write_line('about to log at ERROR ...') 2319 logger.error('Actually logged at ERROR') 2320 write_line('about to log at CRITICAL ...') 2321 logger.critical('Actually logged at CRITICAL') 2322 return fail 2323 2324 decorated_foo = log_if_errors(logger)(foo) 2325 2326 if __name__ == '__main__': 2327 logger.setLevel(logging.DEBUG) 2328 write_line('Calling undecorated foo with False') 2329 assert not foo(False) 2330 write_line('Calling undecorated foo with True') 2331 assert foo(True) 2332 write_line('Calling decorated foo with False') 2333 assert not decorated_foo(False) 2334 write_line('Calling decorated foo with True') 2335 assert decorated_foo(True) 2336 2337 When this script is run, the following output should be observed: 2338 2339 .. code-block:: none 2340 2341 Calling undecorated foo with False 2342 about to log at DEBUG ... 2343 about to log at INFO ... 2344 about to log at WARNING ... 2345 Calling undecorated foo with True 2346 about to log at DEBUG ... 2347 about to log at INFO ... 2348 about to log at WARNING ... 2349 about to log at ERROR ... 2350 about to log at CRITICAL ... 2351 Calling decorated foo with False 2352 about to log at DEBUG ... 2353 about to log at INFO ... 2354 about to log at WARNING ... 2355 Calling decorated foo with True 2356 about to log at DEBUG ... 2357 about to log at INFO ... 2358 about to log at WARNING ... 2359 about to log at ERROR ... 2360 Actually logged at DEBUG 2361 Actually logged at INFO 2362 Actually logged at WARNING 2363 Actually logged at ERROR 2364 about to log at CRITICAL ... 2365 Actually logged at CRITICAL 2366 2367 As you can see, actual logging output only occurs when an event is logged whose 2368 severity is ERROR or greater, but in that case, any previous events at lower 2369 severities are also logged. 2370 2371 You can of course use the conventional means of decoration:: 2372 2373 @log_if_errors(logger) 2374 def foo(fail=False): 2375 ... 2376 2377 2378 .. _utc-formatting: 2379 2380 Formatting times using UTC (GMT) via configuration 2381 -------------------------------------------------- 2382 2383 Sometimes you want to format times using UTC, which can be done using a class 2384 such as `UTCFormatter`, shown below:: 2385 2386 import logging 2387 import time 2388 2389 class UTCFormatter(logging.Formatter): 2390 converter = time.gmtime 2391 2392 and you can then use the ``UTCFormatter`` in your code instead of 2393 :class:`~logging.Formatter`. If you want to do that via configuration, you can 2394 use the :func:`~logging.config.dictConfig` API with an approach illustrated by 2395 the following complete example:: 2396 2397 import logging 2398 import logging.config 2399 import time 2400 2401 class UTCFormatter(logging.Formatter): 2402 converter = time.gmtime 2403 2404 LOGGING = { 2405 'version': 1, 2406 'disable_existing_loggers': False, 2407 'formatters': { 2408 'utc': { 2409 '()': UTCFormatter, 2410 'format': '%(asctime)s %(message)s', 2411 }, 2412 'local': { 2413 'format': '%(asctime)s %(message)s', 2414 } 2415 }, 2416 'handlers': { 2417 'console1': { 2418 'class': 'logging.StreamHandler', 2419 'formatter': 'utc', 2420 }, 2421 'console2': { 2422 'class': 'logging.StreamHandler', 2423 'formatter': 'local', 2424 }, 2425 }, 2426 'root': { 2427 'handlers': ['console1', 'console2'], 2428 } 2429 } 2430 2431 if __name__ == '__main__': 2432 logging.config.dictConfig(LOGGING) 2433 logging.warning('The local time is %s', time.asctime()) 2434 2435 When this script is run, it should print something like: 2436 2437 .. code-block:: none 2438 2439 2015-10-17 12:53:29,501 The local time is Sat Oct 17 13:53:29 2015 2440 2015-10-17 13:53:29,501 The local time is Sat Oct 17 13:53:29 2015 2441 2442 showing how the time is formatted both as local time and UTC, one for each 2443 handler. 2444 2445 2446 .. _context-manager: 2447 2448 Using a context manager for selective logging 2449 --------------------------------------------- 2450 2451 There are times when it would be useful to temporarily change the logging 2452 configuration and revert it back after doing something. For this, a context 2453 manager is the most obvious way of saving and restoring the logging context. 2454 Here is a simple example of such a context manager, which allows you to 2455 optionally change the logging level and add a logging handler purely in the 2456 scope of the context manager:: 2457 2458 import logging 2459 import sys 2460 2461 class LoggingContext(object): 2462 def __init__(self, logger, level=None, handler=None, close=True): 2463 self.logger = logger 2464 self.level = level 2465 self.handler = handler 2466 self.close = close 2467 2468 def __enter__(self): 2469 if self.level is not None: 2470 self.old_level = self.logger.level 2471 self.logger.setLevel(self.level) 2472 if self.handler: 2473 self.logger.addHandler(self.handler) 2474 2475 def __exit__(self, et, ev, tb): 2476 if self.level is not None: 2477 self.logger.setLevel(self.old_level) 2478 if self.handler: 2479 self.logger.removeHandler(self.handler) 2480 if self.handler and self.close: 2481 self.handler.close() 2482 # implicit return of None => don't swallow exceptions 2483 2484 If you specify a level value, the logger's level is set to that value in the 2485 scope of the with block covered by the context manager. If you specify a 2486 handler, it is added to the logger on entry to the block and removed on exit 2487 from the block. You can also ask the manager to close the handler for you on 2488 block exit - you could do this if you don't need the handler any more. 2489 2490 To illustrate how it works, we can add the following block of code to the 2491 above:: 2492 2493 if __name__ == '__main__': 2494 logger = logging.getLogger('foo') 2495 logger.addHandler(logging.StreamHandler()) 2496 logger.setLevel(logging.INFO) 2497 logger.info('1. This should appear just once on stderr.') 2498 logger.debug('2. This should not appear.') 2499 with LoggingContext(logger, level=logging.DEBUG): 2500 logger.debug('3. This should appear once on stderr.') 2501 logger.debug('4. This should not appear.') 2502 h = logging.StreamHandler(sys.stdout) 2503 with LoggingContext(logger, level=logging.DEBUG, handler=h, close=True): 2504 logger.debug('5. This should appear twice - once on stderr and once on stdout.') 2505 logger.info('6. This should appear just once on stderr.') 2506 logger.debug('7. This should not appear.') 2507 2508 We initially set the logger's level to ``INFO``, so message #1 appears and 2509 message #2 doesn't. We then change the level to ``DEBUG`` temporarily in the 2510 following ``with`` block, and so message #3 appears. After the block exits, the 2511 logger's level is restored to ``INFO`` and so message #4 doesn't appear. In the 2512 next ``with`` block, we set the level to ``DEBUG`` again but also add a handler 2513 writing to ``sys.stdout``. Thus, message #5 appears twice on the console (once 2514 via ``stderr`` and once via ``stdout``). After the ``with`` statement's 2515 completion, the status is as it was before so message #6 appears (like message 2516 #1) whereas message #7 doesn't (just like message #2). 2517 2518 If we run the resulting script, the result is as follows: 2519 2520 .. code-block:: shell-session 2521 2522 $ python logctx.py 2523 1. This should appear just once on stderr. 2524 3. This should appear once on stderr. 2525 5. This should appear twice - once on stderr and once on stdout. 2526 5. This should appear twice - once on stderr and once on stdout. 2527 6. This should appear just once on stderr. 2528 2529 If we run it again, but pipe ``stderr`` to ``/dev/null``, we see the following, 2530 which is the only message written to ``stdout``: 2531 2532 .. code-block:: shell-session 2533 2534 $ python logctx.py 2>/dev/null 2535 5. This should appear twice - once on stderr and once on stdout. 2536 2537 Once again, but piping ``stdout`` to ``/dev/null``, we get: 2538 2539 .. code-block:: shell-session 2540 2541 $ python logctx.py >/dev/null 2542 1. This should appear just once on stderr. 2543 3. This should appear once on stderr. 2544 5. This should appear twice - once on stderr and once on stdout. 2545 6. This should appear just once on stderr. 2546 2547 In this case, the message #5 printed to ``stdout`` doesn't appear, as expected. 2548 2549 Of course, the approach described here can be generalised, for example to attach 2550 logging filters temporarily. Note that the above code works in Python 2 as well 2551 as Python 3. 2552