Home | History | Annotate | Download | only in tutorial
      1 .. _tut-brieftourtwo:
      2 
      3 **********************************************
      4 Brief Tour of the Standard Library --- Part II
      5 **********************************************
      6 
      7 This second tour covers more advanced modules that support professional
      8 programming needs.  These modules rarely occur in small scripts.
      9 
     10 
     11 .. _tut-output-formatting:
     12 
     13 Output Formatting
     14 =================
     15 
     16 The :mod:`reprlib` module provides a version of :func:`repr` customized for
     17 abbreviated displays of large or deeply nested containers::
     18 
     19    >>> import reprlib
     20    >>> reprlib.repr(set('supercalifragilisticexpialidocious'))
     21    "{'a', 'c', 'd', 'e', 'f', 'g', ...}"
     22 
     23 The :mod:`pprint` module offers more sophisticated control over printing both
     24 built-in and user defined objects in a way that is readable by the interpreter.
     25 When the result is longer than one line, the "pretty printer" adds line breaks
     26 and indentation to more clearly reveal data structure::
     27 
     28    >>> import pprint
     29    >>> t = [[[['black', 'cyan'], 'white', ['green', 'red']], [['magenta',
     30    ...     'yellow'], 'blue']]]
     31    ...
     32    >>> pprint.pprint(t, width=30)
     33    [[[['black', 'cyan'],
     34       'white',
     35       ['green', 'red']],
     36      [['magenta', 'yellow'],
     37       'blue']]]
     38 
     39 The :mod:`textwrap` module formats paragraphs of text to fit a given screen
     40 width::
     41 
     42    >>> import textwrap
     43    >>> doc = """The wrap() method is just like fill() except that it returns
     44    ... a list of strings instead of one big string with newlines to separate
     45    ... the wrapped lines."""
     46    ...
     47    >>> print(textwrap.fill(doc, width=40))
     48    The wrap() method is just like fill()
     49    except that it returns a list of strings
     50    instead of one big string with newlines
     51    to separate the wrapped lines.
     52 
     53 The :mod:`locale` module accesses a database of culture specific data formats.
     54 The grouping attribute of locale's format function provides a direct way of
     55 formatting numbers with group separators::
     56 
     57    >>> import locale
     58    >>> locale.setlocale(locale.LC_ALL, 'English_United States.1252')
     59    'English_United States.1252'
     60    >>> conv = locale.localeconv()          # get a mapping of conventions
     61    >>> x = 1234567.8
     62    >>> locale.format("%d", x, grouping=True)
     63    '1,234,567'
     64    >>> locale.format_string("%s%.*f", (conv['currency_symbol'],
     65    ...                      conv['frac_digits'], x), grouping=True)
     66    '$1,234,567.80'
     67 
     68 
     69 .. _tut-templating:
     70 
     71 Templating
     72 ==========
     73 
     74 The :mod:`string` module includes a versatile :class:`~string.Template` class
     75 with a simplified syntax suitable for editing by end-users.  This allows users
     76 to customize their applications without having to alter the application.
     77 
     78 The format uses placeholder names formed by ``$`` with valid Python identifiers
     79 (alphanumeric characters and underscores).  Surrounding the placeholder with
     80 braces allows it to be followed by more alphanumeric letters with no intervening
     81 spaces.  Writing ``$$`` creates a single escaped ``$``::
     82 
     83    >>> from string import Template
     84    >>> t = Template('${village}folk send $$10 to $cause.')
     85    >>> t.substitute(village='Nottingham', cause='the ditch fund')
     86    'Nottinghamfolk send $10 to the ditch fund.'
     87 
     88 The :meth:`~string.Template.substitute` method raises a :exc:`KeyError` when a
     89 placeholder is not supplied in a dictionary or a keyword argument.  For
     90 mail-merge style applications, user supplied data may be incomplete and the
     91 :meth:`~string.Template.safe_substitute` method may be more appropriate ---
     92 it will leave placeholders unchanged if data is missing::
     93 
     94    >>> t = Template('Return the $item to $owner.')
     95    >>> d = dict(item='unladen swallow')
     96    >>> t.substitute(d)
     97    Traceback (most recent call last):
     98      ...
     99    KeyError: 'owner'
    100    >>> t.safe_substitute(d)
    101    'Return the unladen swallow to $owner.'
    102 
    103 Template subclasses can specify a custom delimiter.  For example, a batch
    104 renaming utility for a photo browser may elect to use percent signs for
    105 placeholders such as the current date, image sequence number, or file format::
    106 
    107    >>> import time, os.path
    108    >>> photofiles = ['img_1074.jpg', 'img_1076.jpg', 'img_1077.jpg']
    109    >>> class BatchRename(Template):
    110    ...     delimiter = '%'
    111    >>> fmt = input('Enter rename style (%d-date %n-seqnum %f-format):  ')
    112    Enter rename style (%d-date %n-seqnum %f-format):  Ashley_%n%f
    113 
    114    >>> t = BatchRename(fmt)
    115    >>> date = time.strftime('%d%b%y')
    116    >>> for i, filename in enumerate(photofiles):
    117    ...     base, ext = os.path.splitext(filename)
    118    ...     newname = t.substitute(d=date, n=i, f=ext)
    119    ...     print('{0} --> {1}'.format(filename, newname))
    120 
    121    img_1074.jpg --> Ashley_0.jpg
    122    img_1076.jpg --> Ashley_1.jpg
    123    img_1077.jpg --> Ashley_2.jpg
    124 
    125 Another application for templating is separating program logic from the details
    126 of multiple output formats.  This makes it possible to substitute custom
    127 templates for XML files, plain text reports, and HTML web reports.
    128 
    129 
    130 .. _tut-binary-formats:
    131 
    132 Working with Binary Data Record Layouts
    133 =======================================
    134 
    135 The :mod:`struct` module provides :func:`~struct.pack` and
    136 :func:`~struct.unpack` functions for working with variable length binary
    137 record formats.  The following example shows
    138 how to loop through header information in a ZIP file without using the
    139 :mod:`zipfile` module.  Pack codes ``"H"`` and ``"I"`` represent two and four
    140 byte unsigned numbers respectively.  The ``"<"`` indicates that they are
    141 standard size and in little-endian byte order::
    142 
    143    import struct
    144 
    145    with open('myfile.zip', 'rb') as f:
    146        data = f.read()
    147 
    148    start = 0
    149    for i in range(3):                      # show the first 3 file headers
    150        start += 14
    151        fields = struct.unpack('<IIIHH', data[start:start+16])
    152        crc32, comp_size, uncomp_size, filenamesize, extra_size = fields
    153 
    154        start += 16
    155        filename = data[start:start+filenamesize]
    156        start += filenamesize
    157        extra = data[start:start+extra_size]
    158        print(filename, hex(crc32), comp_size, uncomp_size)
    159 
    160        start += extra_size + comp_size     # skip to the next header
    161 
    162 
    163 .. _tut-multi-threading:
    164 
    165 Multi-threading
    166 ===============
    167 
    168 Threading is a technique for decoupling tasks which are not sequentially
    169 dependent.  Threads can be used to improve the responsiveness of applications
    170 that accept user input while other tasks run in the background.  A related use
    171 case is running I/O in parallel with computations in another thread.
    172 
    173 The following code shows how the high level :mod:`threading` module can run
    174 tasks in background while the main program continues to run::
    175 
    176    import threading, zipfile
    177 
    178    class AsyncZip(threading.Thread):
    179        def __init__(self, infile, outfile):
    180            threading.Thread.__init__(self)
    181            self.infile = infile
    182            self.outfile = outfile
    183 
    184        def run(self):
    185            f = zipfile.ZipFile(self.outfile, 'w', zipfile.ZIP_DEFLATED)
    186            f.write(self.infile)
    187            f.close()
    188            print('Finished background zip of:', self.infile)
    189 
    190    background = AsyncZip('mydata.txt', 'myarchive.zip')
    191    background.start()
    192    print('The main program continues to run in foreground.')
    193 
    194    background.join()    # Wait for the background task to finish
    195    print('Main program waited until background was done.')
    196 
    197 The principal challenge of multi-threaded applications is coordinating threads
    198 that share data or other resources.  To that end, the threading module provides
    199 a number of synchronization primitives including locks, events, condition
    200 variables, and semaphores.
    201 
    202 While those tools are powerful, minor design errors can result in problems that
    203 are difficult to reproduce.  So, the preferred approach to task coordination is
    204 to concentrate all access to a resource in a single thread and then use the
    205 :mod:`queue` module to feed that thread with requests from other threads.
    206 Applications using :class:`~queue.Queue` objects for inter-thread communication and
    207 coordination are easier to design, more readable, and more reliable.
    208 
    209 
    210 .. _tut-logging:
    211 
    212 Logging
    213 =======
    214 
    215 The :mod:`logging` module offers a full featured and flexible logging system.
    216 At its simplest, log messages are sent to a file or to ``sys.stderr``::
    217 
    218    import logging
    219    logging.debug('Debugging information')
    220    logging.info('Informational message')
    221    logging.warning('Warning:config file %s not found', 'server.conf')
    222    logging.error('Error occurred')
    223    logging.critical('Critical error -- shutting down')
    224 
    225 This produces the following output:
    226 
    227 .. code-block:: none
    228 
    229    WARNING:root:Warning:config file server.conf not found
    230    ERROR:root:Error occurred
    231    CRITICAL:root:Critical error -- shutting down
    232 
    233 By default, informational and debugging messages are suppressed and the output
    234 is sent to standard error.  Other output options include routing messages
    235 through email, datagrams, sockets, or to an HTTP Server.  New filters can select
    236 different routing based on message priority: :const:`~logging.DEBUG`,
    237 :const:`~logging.INFO`, :const:`~logging.WARNING`, :const:`~logging.ERROR`,
    238 and :const:`~logging.CRITICAL`.
    239 
    240 The logging system can be configured directly from Python or can be loaded from
    241 a user editable configuration file for customized logging without altering the
    242 application.
    243 
    244 
    245 .. _tut-weak-references:
    246 
    247 Weak References
    248 ===============
    249 
    250 Python does automatic memory management (reference counting for most objects and
    251 :term:`garbage collection` to eliminate cycles).  The memory is freed shortly
    252 after the last reference to it has been eliminated.
    253 
    254 This approach works fine for most applications but occasionally there is a need
    255 to track objects only as long as they are being used by something else.
    256 Unfortunately, just tracking them creates a reference that makes them permanent.
    257 The :mod:`weakref` module provides tools for tracking objects without creating a
    258 reference.  When the object is no longer needed, it is automatically removed
    259 from a weakref table and a callback is triggered for weakref objects.  Typical
    260 applications include caching objects that are expensive to create::
    261 
    262    >>> import weakref, gc
    263    >>> class A:
    264    ...     def __init__(self, value):
    265    ...         self.value = value
    266    ...     def __repr__(self):
    267    ...         return str(self.value)
    268    ...
    269    >>> a = A(10)                   # create a reference
    270    >>> d = weakref.WeakValueDictionary()
    271    >>> d['primary'] = a            # does not create a reference
    272    >>> d['primary']                # fetch the object if it is still alive
    273    10
    274    >>> del a                       # remove the one reference
    275    >>> gc.collect()                # run garbage collection right away
    276    0
    277    >>> d['primary']                # entry was automatically removed
    278    Traceback (most recent call last):
    279      File "<stdin>", line 1, in <module>
    280        d['primary']                # entry was automatically removed
    281      File "C:/python37/lib/weakref.py", line 46, in __getitem__
    282        o = self.data[key]()
    283    KeyError: 'primary'
    284 
    285 
    286 .. _tut-list-tools:
    287 
    288 Tools for Working with Lists
    289 ============================
    290 
    291 Many data structure needs can be met with the built-in list type. However,
    292 sometimes there is a need for alternative implementations with different
    293 performance trade-offs.
    294 
    295 The :mod:`array` module provides an :class:`~array.array()` object that is like
    296 a list that stores only homogeneous data and stores it more compactly.  The
    297 following example shows an array of numbers stored as two byte unsigned binary
    298 numbers (typecode ``"H"``) rather than the usual 16 bytes per entry for regular
    299 lists of Python int objects::
    300 
    301    >>> from array import array
    302    >>> a = array('H', [4000, 10, 700, 22222])
    303    >>> sum(a)
    304    26932
    305    >>> a[1:3]
    306    array('H', [10, 700])
    307 
    308 The :mod:`collections` module provides a :class:`~collections.deque()` object
    309 that is like a list with faster appends and pops from the left side but slower
    310 lookups in the middle. These objects are well suited for implementing queues
    311 and breadth first tree searches::
    312 
    313    >>> from collections import deque
    314    >>> d = deque(["task1", "task2", "task3"])
    315    >>> d.append("task4")
    316    >>> print("Handling", d.popleft())
    317    Handling task1
    318 
    319 ::
    320 
    321    unsearched = deque([starting_node])
    322    def breadth_first_search(unsearched):
    323        node = unsearched.popleft()
    324        for m in gen_moves(node):
    325            if is_goal(m):
    326                return m
    327            unsearched.append(m)
    328 
    329 In addition to alternative list implementations, the library also offers other
    330 tools such as the :mod:`bisect` module with functions for manipulating sorted
    331 lists::
    332 
    333    >>> import bisect
    334    >>> scores = [(100, 'perl'), (200, 'tcl'), (400, 'lua'), (500, 'python')]
    335    >>> bisect.insort(scores, (300, 'ruby'))
    336    >>> scores
    337    [(100, 'perl'), (200, 'tcl'), (300, 'ruby'), (400, 'lua'), (500, 'python')]
    338 
    339 The :mod:`heapq` module provides functions for implementing heaps based on
    340 regular lists.  The lowest valued entry is always kept at position zero.  This
    341 is useful for applications which repeatedly access the smallest element but do
    342 not want to run a full list sort::
    343 
    344    >>> from heapq import heapify, heappop, heappush
    345    >>> data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
    346    >>> heapify(data)                      # rearrange the list into heap order
    347    >>> heappush(data, -5)                 # add a new entry
    348    >>> [heappop(data) for i in range(3)]  # fetch the three smallest entries
    349    [-5, 0, 1]
    350 
    351 
    352 .. _tut-decimal-fp:
    353 
    354 Decimal Floating Point Arithmetic
    355 =================================
    356 
    357 The :mod:`decimal` module offers a :class:`~decimal.Decimal` datatype for
    358 decimal floating point arithmetic.  Compared to the built-in :class:`float`
    359 implementation of binary floating point, the class is especially helpful for
    360 
    361 * financial applications and other uses which require exact decimal
    362   representation,
    363 * control over precision,
    364 * control over rounding to meet legal or regulatory requirements,
    365 * tracking of significant decimal places, or
    366 * applications where the user expects the results to match calculations done by
    367   hand.
    368 
    369 For example, calculating a 5% tax on a 70 cent phone charge gives different
    370 results in decimal floating point and binary floating point. The difference
    371 becomes significant if the results are rounded to the nearest cent::
    372 
    373    >>> from decimal import *
    374    >>> round(Decimal('0.70') * Decimal('1.05'), 2)
    375    Decimal('0.74')
    376    >>> round(.70 * 1.05, 2)
    377    0.73
    378 
    379 The :class:`~decimal.Decimal` result keeps a trailing zero, automatically
    380 inferring four place significance from multiplicands with two place
    381 significance.  Decimal reproduces mathematics as done by hand and avoids
    382 issues that can arise when binary floating point cannot exactly represent
    383 decimal quantities.
    384 
    385 Exact representation enables the :class:`~decimal.Decimal` class to perform
    386 modulo calculations and equality tests that are unsuitable for binary floating
    387 point::
    388 
    389    >>> Decimal('1.00') % Decimal('.10')
    390    Decimal('0.00')
    391    >>> 1.00 % 0.10
    392    0.09999999999999995
    393 
    394    >>> sum([Decimal('0.1')]*10) == Decimal('1.0')
    395    True
    396    >>> sum([0.1]*10) == 1.0
    397    False
    398 
    399 The :mod:`decimal` module provides arithmetic with as much precision as needed::
    400 
    401    >>> getcontext().prec = 36
    402    >>> Decimal(1) / Decimal(7)
    403    Decimal('0.142857142857142857142857142857142857')
    404 
    405 
    406