1 <html><body> 2 <style> 3 4 body, h1, h2, h3, div, span, p, pre, a { 5 margin: 0; 6 padding: 0; 7 border: 0; 8 font-weight: inherit; 9 font-style: inherit; 10 font-size: 100%; 11 font-family: inherit; 12 vertical-align: baseline; 13 } 14 15 body { 16 font-size: 13px; 17 padding: 1em; 18 } 19 20 h1 { 21 font-size: 26px; 22 margin-bottom: 1em; 23 } 24 25 h2 { 26 font-size: 24px; 27 margin-bottom: 1em; 28 } 29 30 h3 { 31 font-size: 20px; 32 margin-bottom: 1em; 33 margin-top: 1em; 34 } 35 36 pre, code { 37 line-height: 1.5; 38 font-family: Monaco, 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', 'Lucida Console', monospace; 39 } 40 41 pre { 42 margin-top: 0.5em; 43 } 44 45 h1, h2, h3, p { 46 font-family: Arial, sans serif; 47 } 48 49 h1, h2, h3 { 50 border-bottom: solid #CCC 1px; 51 } 52 53 .toc_element { 54 margin-top: 0.5em; 55 } 56 57 .firstline { 58 margin-left: 2 em; 59 } 60 61 .method { 62 margin-top: 1em; 63 border: solid 1px #CCC; 64 padding: 1em; 65 background: #EEE; 66 } 67 68 .details { 69 font-weight: bold; 70 font-size: 14px; 71 } 72 73 </style> 74 75 <h1><a href="prediction_v1_3.html">Prediction API</a> . <a href="prediction_v1_3.training.html">training</a></h1> 76 <h2>Instance Methods</h2> 77 <p class="toc_element"> 78 <code><a href="#delete">delete(data)</a></code></p> 79 <p class="firstline">Delete a trained model</p> 80 <p class="toc_element"> 81 <code><a href="#get">get(data)</a></code></p> 82 <p class="firstline">Check training status of your model</p> 83 <p class="toc_element"> 84 <code><a href="#insert">insert(body)</a></code></p> 85 <p class="firstline">Begin training your model</p> 86 <p class="toc_element"> 87 <code><a href="#predict">predict(data, body)</a></code></p> 88 <p class="firstline">Submit data and request a prediction</p> 89 <p class="toc_element"> 90 <code><a href="#update">update(data, body)</a></code></p> 91 <p class="firstline">Add new data to a trained model</p> 92 <h3>Method Details</h3> 93 <div class="method"> 94 <code class="details" id="delete">delete(data)</code> 95 <pre>Delete a trained model 96 97 Args: 98 data: string, mybucket/mydata resource in Google Storage (required) 99 </pre> 100 </div> 101 102 <div class="method"> 103 <code class="details" id="get">get(data)</code> 104 <pre>Check training status of your model 105 106 Args: 107 data: string, mybucket/mydata resource in Google Storage (required) 108 109 Returns: 110 An object of the form: 111 112 { 113 "kind": "prediction#training", # What kind of resource this is. 114 "trainingStatus": "A String", # The current status of the training job. This can be one of following: RUNNING; DONE; ERROR; ERROR: TRAINING JOB NOT FOUND 115 "modelInfo": { # Model metadata. 116 "confusionMatrixRowTotals": { # A list of the confusion matrix row totals 117 "a_key": 3.14, # The true class associated with how many instances it had 118 }, 119 "confusionMatrix": { # An output confusion matrix. This shows an estimate for how this model will do in predictions. This is first indexed by the true class label. For each true class label, this provides a pair {predicted_label, count}, where count is the estimated number of times the model will predict the predicted label given the true label. Will not output if more then 100 classes [Categorical models only]. 120 "a_key": { # The true class label. 121 "a_key": 3.14, # The pair {predicted_label, count}. 122 }, 123 }, 124 "meanSquaredError": 3.14, # An estimated mean squared error. The can be used to measure the quality of the predicted model [Regression models only]. 125 "modelType": "A String", # Type of predictive model (CLASSIFICATION or REGRESSION) 126 "numberInstances": "A String", # Number of valid data instances used in the trained model. 127 "numberClasses": "A String", # Number of classes in the trained model [Categorical models only]. 128 "classWeightedAccuracy": 3.14, # Estimated accuracy of model taking utility weights into account [Categorical models only]. 129 "classificationAccuracy": 3.14, # A number between 0.0 and 1.0, where 1.0 is 100% accurate. This is an estimate, based on the amount and quality of the training data, of the estimated prediction accuracy. You can use this is a guide to decide whether the results are accurate enough for your needs. This estimate will be more reliable if your real input data is similar to your training data [Categorical models only]. 130 }, 131 "id": "A String", # The unique name for the predictive model. 132 "selfLink": "A String", # A URL to re-request this resource. 133 "utility": [ # A class weighting function, which allows the importance weights for classes to be specified [Categorical models only]. 134 { # Class label (string). 135 "a_key": 3.14, 136 }, 137 ], 138 }</pre> 139 </div> 140 141 <div class="method"> 142 <code class="details" id="insert">insert(body)</code> 143 <pre>Begin training your model 144 145 Args: 146 body: object, The request body. (required) 147 The object takes the form of: 148 149 { 150 "kind": "prediction#training", # What kind of resource this is. 151 "trainingStatus": "A String", # The current status of the training job. This can be one of following: RUNNING; DONE; ERROR; ERROR: TRAINING JOB NOT FOUND 152 "modelInfo": { # Model metadata. 153 "confusionMatrixRowTotals": { # A list of the confusion matrix row totals 154 "a_key": 3.14, # The true class associated with how many instances it had 155 }, 156 "confusionMatrix": { # An output confusion matrix. This shows an estimate for how this model will do in predictions. This is first indexed by the true class label. For each true class label, this provides a pair {predicted_label, count}, where count is the estimated number of times the model will predict the predicted label given the true label. Will not output if more then 100 classes [Categorical models only]. 157 "a_key": { # The true class label. 158 "a_key": 3.14, # The pair {predicted_label, count}. 159 }, 160 }, 161 "meanSquaredError": 3.14, # An estimated mean squared error. The can be used to measure the quality of the predicted model [Regression models only]. 162 "modelType": "A String", # Type of predictive model (CLASSIFICATION or REGRESSION) 163 "numberInstances": "A String", # Number of valid data instances used in the trained model. 164 "numberClasses": "A String", # Number of classes in the trained model [Categorical models only]. 165 "classWeightedAccuracy": 3.14, # Estimated accuracy of model taking utility weights into account [Categorical models only]. 166 "classificationAccuracy": 3.14, # A number between 0.0 and 1.0, where 1.0 is 100% accurate. This is an estimate, based on the amount and quality of the training data, of the estimated prediction accuracy. You can use this is a guide to decide whether the results are accurate enough for your needs. This estimate will be more reliable if your real input data is similar to your training data [Categorical models only]. 167 }, 168 "id": "A String", # The unique name for the predictive model. 169 "selfLink": "A String", # A URL to re-request this resource. 170 "utility": [ # A class weighting function, which allows the importance weights for classes to be specified [Categorical models only]. 171 { # Class label (string). 172 "a_key": 3.14, 173 }, 174 ], 175 } 176 177 178 Returns: 179 An object of the form: 180 181 { 182 "kind": "prediction#training", # What kind of resource this is. 183 "trainingStatus": "A String", # The current status of the training job. This can be one of following: RUNNING; DONE; ERROR; ERROR: TRAINING JOB NOT FOUND 184 "modelInfo": { # Model metadata. 185 "confusionMatrixRowTotals": { # A list of the confusion matrix row totals 186 "a_key": 3.14, # The true class associated with how many instances it had 187 }, 188 "confusionMatrix": { # An output confusion matrix. This shows an estimate for how this model will do in predictions. This is first indexed by the true class label. For each true class label, this provides a pair {predicted_label, count}, where count is the estimated number of times the model will predict the predicted label given the true label. Will not output if more then 100 classes [Categorical models only]. 189 "a_key": { # The true class label. 190 "a_key": 3.14, # The pair {predicted_label, count}. 191 }, 192 }, 193 "meanSquaredError": 3.14, # An estimated mean squared error. The can be used to measure the quality of the predicted model [Regression models only]. 194 "modelType": "A String", # Type of predictive model (CLASSIFICATION or REGRESSION) 195 "numberInstances": "A String", # Number of valid data instances used in the trained model. 196 "numberClasses": "A String", # Number of classes in the trained model [Categorical models only]. 197 "classWeightedAccuracy": 3.14, # Estimated accuracy of model taking utility weights into account [Categorical models only]. 198 "classificationAccuracy": 3.14, # A number between 0.0 and 1.0, where 1.0 is 100% accurate. This is an estimate, based on the amount and quality of the training data, of the estimated prediction accuracy. You can use this is a guide to decide whether the results are accurate enough for your needs. This estimate will be more reliable if your real input data is similar to your training data [Categorical models only]. 199 }, 200 "id": "A String", # The unique name for the predictive model. 201 "selfLink": "A String", # A URL to re-request this resource. 202 "utility": [ # A class weighting function, which allows the importance weights for classes to be specified [Categorical models only]. 203 { # Class label (string). 204 "a_key": 3.14, 205 }, 206 ], 207 }</pre> 208 </div> 209 210 <div class="method"> 211 <code class="details" id="predict">predict(data, body)</code> 212 <pre>Submit data and request a prediction 213 214 Args: 215 data: string, mybucket/mydata resource in Google Storage (required) 216 body: object, The request body. (required) 217 The object takes the form of: 218 219 { 220 "input": { # Input to the model for a prediction 221 "csvInstance": [ # A list of input features, these can be strings or doubles. 222 "", 223 ], 224 }, 225 } 226 227 228 Returns: 229 An object of the form: 230 231 { 232 "kind": "prediction#output", # What kind of resource this is. 233 "outputLabel": "A String", # The most likely class [Categorical models only]. 234 "id": "A String", # The unique name for the predictive model. 235 "outputMulti": [ # A list of classes with their estimated probabilities [Categorical models only]. 236 { 237 "score": 3.14, # The probability of the class. 238 "label": "A String", # The class label. 239 }, 240 ], 241 "outputValue": 3.14, # The estimated regression value [Regression models only]. 242 "selfLink": "A String", # A URL to re-request this resource. 243 }</pre> 244 </div> 245 246 <div class="method"> 247 <code class="details" id="update">update(data, body)</code> 248 <pre>Add new data to a trained model 249 250 Args: 251 data: string, mybucket/mydata resource in Google Storage (required) 252 body: object, The request body. (required) 253 The object takes the form of: 254 255 { 256 "classLabel": "A String", # The true class label of this instance 257 "csvInstance": [ # The input features for this instance 258 "", 259 ], 260 } 261 262 263 Returns: 264 An object of the form: 265 266 { 267 "kind": "prediction#training", # What kind of resource this is. 268 "trainingStatus": "A String", # The current status of the training job. This can be one of following: RUNNING; DONE; ERROR; ERROR: TRAINING JOB NOT FOUND 269 "modelInfo": { # Model metadata. 270 "confusionMatrixRowTotals": { # A list of the confusion matrix row totals 271 "a_key": 3.14, # The true class associated with how many instances it had 272 }, 273 "confusionMatrix": { # An output confusion matrix. This shows an estimate for how this model will do in predictions. This is first indexed by the true class label. For each true class label, this provides a pair {predicted_label, count}, where count is the estimated number of times the model will predict the predicted label given the true label. Will not output if more then 100 classes [Categorical models only]. 274 "a_key": { # The true class label. 275 "a_key": 3.14, # The pair {predicted_label, count}. 276 }, 277 }, 278 "meanSquaredError": 3.14, # An estimated mean squared error. The can be used to measure the quality of the predicted model [Regression models only]. 279 "modelType": "A String", # Type of predictive model (CLASSIFICATION or REGRESSION) 280 "numberInstances": "A String", # Number of valid data instances used in the trained model. 281 "numberClasses": "A String", # Number of classes in the trained model [Categorical models only]. 282 "classWeightedAccuracy": 3.14, # Estimated accuracy of model taking utility weights into account [Categorical models only]. 283 "classificationAccuracy": 3.14, # A number between 0.0 and 1.0, where 1.0 is 100% accurate. This is an estimate, based on the amount and quality of the training data, of the estimated prediction accuracy. You can use this is a guide to decide whether the results are accurate enough for your needs. This estimate will be more reliable if your real input data is similar to your training data [Categorical models only]. 284 }, 285 "id": "A String", # The unique name for the predictive model. 286 "selfLink": "A String", # A URL to re-request this resource. 287 "utility": [ # A class weighting function, which allows the importance weights for classes to be specified [Categorical models only]. 288 { # Class label (string). 289 "a_key": 3.14, 290 }, 291 ], 292 }</pre> 293 </div> 294 295 </body></html>