Home | History | Annotate | Download | only in dyn
      1 <html><body>
      2 <style>
      3 
      4 body, h1, h2, h3, div, span, p, pre, a {
      5   margin: 0;
      6   padding: 0;
      7   border: 0;
      8   font-weight: inherit;
      9   font-style: inherit;
     10   font-size: 100%;
     11   font-family: inherit;
     12   vertical-align: baseline;
     13 }
     14 
     15 body {
     16   font-size: 13px;
     17   padding: 1em;
     18 }
     19 
     20 h1 {
     21   font-size: 26px;
     22   margin-bottom: 1em;
     23 }
     24 
     25 h2 {
     26   font-size: 24px;
     27   margin-bottom: 1em;
     28 }
     29 
     30 h3 {
     31   font-size: 20px;
     32   margin-bottom: 1em;
     33   margin-top: 1em;
     34 }
     35 
     36 pre, code {
     37   line-height: 1.5;
     38   font-family: Monaco, 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', 'Lucida Console', monospace;
     39 }
     40 
     41 pre {
     42   margin-top: 0.5em;
     43 }
     44 
     45 h1, h2, h3, p {
     46   font-family: Arial, sans serif;
     47 }
     48 
     49 h1, h2, h3 {
     50   border-bottom: solid #CCC 1px;
     51 }
     52 
     53 .toc_element {
     54   margin-top: 0.5em;
     55 }
     56 
     57 .firstline {
     58   margin-left: 2 em;
     59 }
     60 
     61 .method  {
     62   margin-top: 1em;
     63   border: solid 1px #CCC;
     64   padding: 1em;
     65   background: #EEE;
     66 }
     67 
     68 .details {
     69   font-weight: bold;
     70   font-size: 14px;
     71 }
     72 
     73 </style>
     74 
     75 <h1><a href="prediction_v1_3.html">Prediction API</a> . <a href="prediction_v1_3.training.html">training</a></h1>
     76 <h2>Instance Methods</h2>
     77 <p class="toc_element">
     78   <code><a href="#delete">delete(data)</a></code></p>
     79 <p class="firstline">Delete a trained model</p>
     80 <p class="toc_element">
     81   <code><a href="#get">get(data)</a></code></p>
     82 <p class="firstline">Check training status of your model</p>
     83 <p class="toc_element">
     84   <code><a href="#insert">insert(body)</a></code></p>
     85 <p class="firstline">Begin training your model</p>
     86 <p class="toc_element">
     87   <code><a href="#predict">predict(data, body)</a></code></p>
     88 <p class="firstline">Submit data and request a prediction</p>
     89 <p class="toc_element">
     90   <code><a href="#update">update(data, body)</a></code></p>
     91 <p class="firstline">Add new data to a trained model</p>
     92 <h3>Method Details</h3>
     93 <div class="method">
     94     <code class="details" id="delete">delete(data)</code>
     95   <pre>Delete a trained model
     96 
     97 Args:
     98   data: string, mybucket/mydata resource in Google Storage (required)
     99 </pre>
    100 </div>
    101 
    102 <div class="method">
    103     <code class="details" id="get">get(data)</code>
    104   <pre>Check training status of your model
    105 
    106 Args:
    107   data: string, mybucket/mydata resource in Google Storage (required)
    108 
    109 Returns:
    110   An object of the form:
    111 
    112     {
    113       "kind": "prediction#training", # What kind of resource this is.
    114       "trainingStatus": "A String", # The current status of the training job. This can be one of following: RUNNING; DONE; ERROR; ERROR: TRAINING JOB NOT FOUND
    115       "modelInfo": { # Model metadata.
    116         "confusionMatrixRowTotals": { # A list of the confusion matrix row totals
    117           "a_key": 3.14, # The true class associated with how many instances it had
    118         },
    119         "confusionMatrix": { # An output confusion matrix. This shows an estimate for how this model will do in predictions. This is first indexed by the true class label. For each true class label, this provides a pair {predicted_label, count}, where count is the estimated number of times the model will predict the predicted label given the true label. Will not output if more then 100 classes [Categorical models only].
    120           "a_key": { # The true class label.
    121             "a_key": 3.14, # The pair {predicted_label, count}.
    122           },
    123         },
    124         "meanSquaredError": 3.14, # An estimated mean squared error. The can be used to measure the quality of the predicted model [Regression models only].
    125         "modelType": "A String", # Type of predictive model (CLASSIFICATION or REGRESSION)
    126         "numberInstances": "A String", # Number of valid data instances used in the trained model.
    127         "numberClasses": "A String", # Number of classes in the trained model [Categorical models only].
    128         "classWeightedAccuracy": 3.14, # Estimated accuracy of model taking utility weights into account [Categorical models only].
    129         "classificationAccuracy": 3.14, # A number between 0.0 and 1.0, where 1.0 is 100% accurate. This is an estimate, based on the amount and quality of the training data, of the estimated prediction accuracy. You can use this is a guide to decide whether the results are accurate enough for your needs. This estimate will be more reliable if your real input data is similar to your training data [Categorical models only].
    130       },
    131       "id": "A String", # The unique name for the predictive model.
    132       "selfLink": "A String", # A URL to re-request this resource.
    133       "utility": [ # A class weighting function, which allows the importance weights for classes to be specified [Categorical models only].
    134         { # Class label (string).
    135           "a_key": 3.14,
    136         },
    137       ],
    138     }</pre>
    139 </div>
    140 
    141 <div class="method">
    142     <code class="details" id="insert">insert(body)</code>
    143   <pre>Begin training your model
    144 
    145 Args:
    146   body: object, The request body. (required)
    147     The object takes the form of:
    148 
    149 {
    150     "kind": "prediction#training", # What kind of resource this is.
    151     "trainingStatus": "A String", # The current status of the training job. This can be one of following: RUNNING; DONE; ERROR; ERROR: TRAINING JOB NOT FOUND
    152     "modelInfo": { # Model metadata.
    153       "confusionMatrixRowTotals": { # A list of the confusion matrix row totals
    154         "a_key": 3.14, # The true class associated with how many instances it had
    155       },
    156       "confusionMatrix": { # An output confusion matrix. This shows an estimate for how this model will do in predictions. This is first indexed by the true class label. For each true class label, this provides a pair {predicted_label, count}, where count is the estimated number of times the model will predict the predicted label given the true label. Will not output if more then 100 classes [Categorical models only].
    157         "a_key": { # The true class label.
    158           "a_key": 3.14, # The pair {predicted_label, count}.
    159         },
    160       },
    161       "meanSquaredError": 3.14, # An estimated mean squared error. The can be used to measure the quality of the predicted model [Regression models only].
    162       "modelType": "A String", # Type of predictive model (CLASSIFICATION or REGRESSION)
    163       "numberInstances": "A String", # Number of valid data instances used in the trained model.
    164       "numberClasses": "A String", # Number of classes in the trained model [Categorical models only].
    165       "classWeightedAccuracy": 3.14, # Estimated accuracy of model taking utility weights into account [Categorical models only].
    166       "classificationAccuracy": 3.14, # A number between 0.0 and 1.0, where 1.0 is 100% accurate. This is an estimate, based on the amount and quality of the training data, of the estimated prediction accuracy. You can use this is a guide to decide whether the results are accurate enough for your needs. This estimate will be more reliable if your real input data is similar to your training data [Categorical models only].
    167     },
    168     "id": "A String", # The unique name for the predictive model.
    169     "selfLink": "A String", # A URL to re-request this resource.
    170     "utility": [ # A class weighting function, which allows the importance weights for classes to be specified [Categorical models only].
    171       { # Class label (string).
    172         "a_key": 3.14,
    173       },
    174     ],
    175   }
    176 
    177 
    178 Returns:
    179   An object of the form:
    180 
    181     {
    182       "kind": "prediction#training", # What kind of resource this is.
    183       "trainingStatus": "A String", # The current status of the training job. This can be one of following: RUNNING; DONE; ERROR; ERROR: TRAINING JOB NOT FOUND
    184       "modelInfo": { # Model metadata.
    185         "confusionMatrixRowTotals": { # A list of the confusion matrix row totals
    186           "a_key": 3.14, # The true class associated with how many instances it had
    187         },
    188         "confusionMatrix": { # An output confusion matrix. This shows an estimate for how this model will do in predictions. This is first indexed by the true class label. For each true class label, this provides a pair {predicted_label, count}, where count is the estimated number of times the model will predict the predicted label given the true label. Will not output if more then 100 classes [Categorical models only].
    189           "a_key": { # The true class label.
    190             "a_key": 3.14, # The pair {predicted_label, count}.
    191           },
    192         },
    193         "meanSquaredError": 3.14, # An estimated mean squared error. The can be used to measure the quality of the predicted model [Regression models only].
    194         "modelType": "A String", # Type of predictive model (CLASSIFICATION or REGRESSION)
    195         "numberInstances": "A String", # Number of valid data instances used in the trained model.
    196         "numberClasses": "A String", # Number of classes in the trained model [Categorical models only].
    197         "classWeightedAccuracy": 3.14, # Estimated accuracy of model taking utility weights into account [Categorical models only].
    198         "classificationAccuracy": 3.14, # A number between 0.0 and 1.0, where 1.0 is 100% accurate. This is an estimate, based on the amount and quality of the training data, of the estimated prediction accuracy. You can use this is a guide to decide whether the results are accurate enough for your needs. This estimate will be more reliable if your real input data is similar to your training data [Categorical models only].
    199       },
    200       "id": "A String", # The unique name for the predictive model.
    201       "selfLink": "A String", # A URL to re-request this resource.
    202       "utility": [ # A class weighting function, which allows the importance weights for classes to be specified [Categorical models only].
    203         { # Class label (string).
    204           "a_key": 3.14,
    205         },
    206       ],
    207     }</pre>
    208 </div>
    209 
    210 <div class="method">
    211     <code class="details" id="predict">predict(data, body)</code>
    212   <pre>Submit data and request a prediction
    213 
    214 Args:
    215   data: string, mybucket/mydata resource in Google Storage (required)
    216   body: object, The request body. (required)
    217     The object takes the form of:
    218 
    219 {
    220     "input": { # Input to the model for a prediction
    221       "csvInstance": [ # A list of input features, these can be strings or doubles.
    222         "",
    223       ],
    224     },
    225   }
    226 
    227 
    228 Returns:
    229   An object of the form:
    230 
    231     {
    232     "kind": "prediction#output", # What kind of resource this is.
    233     "outputLabel": "A String", # The most likely class [Categorical models only].
    234     "id": "A String", # The unique name for the predictive model.
    235     "outputMulti": [ # A list of classes with their estimated probabilities [Categorical models only].
    236       {
    237         "score": 3.14, # The probability of the class.
    238         "label": "A String", # The class label.
    239       },
    240     ],
    241     "outputValue": 3.14, # The estimated regression value [Regression models only].
    242     "selfLink": "A String", # A URL to re-request this resource.
    243   }</pre>
    244 </div>
    245 
    246 <div class="method">
    247     <code class="details" id="update">update(data, body)</code>
    248   <pre>Add new data to a trained model
    249 
    250 Args:
    251   data: string, mybucket/mydata resource in Google Storage (required)
    252   body: object, The request body. (required)
    253     The object takes the form of:
    254 
    255 {
    256     "classLabel": "A String", # The true class label of this instance
    257     "csvInstance": [ # The input features for this instance
    258       "",
    259     ],
    260   }
    261 
    262 
    263 Returns:
    264   An object of the form:
    265 
    266     {
    267       "kind": "prediction#training", # What kind of resource this is.
    268       "trainingStatus": "A String", # The current status of the training job. This can be one of following: RUNNING; DONE; ERROR; ERROR: TRAINING JOB NOT FOUND
    269       "modelInfo": { # Model metadata.
    270         "confusionMatrixRowTotals": { # A list of the confusion matrix row totals
    271           "a_key": 3.14, # The true class associated with how many instances it had
    272         },
    273         "confusionMatrix": { # An output confusion matrix. This shows an estimate for how this model will do in predictions. This is first indexed by the true class label. For each true class label, this provides a pair {predicted_label, count}, where count is the estimated number of times the model will predict the predicted label given the true label. Will not output if more then 100 classes [Categorical models only].
    274           "a_key": { # The true class label.
    275             "a_key": 3.14, # The pair {predicted_label, count}.
    276           },
    277         },
    278         "meanSquaredError": 3.14, # An estimated mean squared error. The can be used to measure the quality of the predicted model [Regression models only].
    279         "modelType": "A String", # Type of predictive model (CLASSIFICATION or REGRESSION)
    280         "numberInstances": "A String", # Number of valid data instances used in the trained model.
    281         "numberClasses": "A String", # Number of classes in the trained model [Categorical models only].
    282         "classWeightedAccuracy": 3.14, # Estimated accuracy of model taking utility weights into account [Categorical models only].
    283         "classificationAccuracy": 3.14, # A number between 0.0 and 1.0, where 1.0 is 100% accurate. This is an estimate, based on the amount and quality of the training data, of the estimated prediction accuracy. You can use this is a guide to decide whether the results are accurate enough for your needs. This estimate will be more reliable if your real input data is similar to your training data [Categorical models only].
    284       },
    285       "id": "A String", # The unique name for the predictive model.
    286       "selfLink": "A String", # A URL to re-request this resource.
    287       "utility": [ # A class weighting function, which allows the importance weights for classes to be specified [Categorical models only].
    288         { # Class label (string).
    289           "a_key": 3.14,
    290         },
    291       ],
    292     }</pre>
    293 </div>
    294 
    295 </body></html>