1 <html><body> 2 <style> 3 4 body, h1, h2, h3, div, span, p, pre, a { 5 margin: 0; 6 padding: 0; 7 border: 0; 8 font-weight: inherit; 9 font-style: inherit; 10 font-size: 100%; 11 font-family: inherit; 12 vertical-align: baseline; 13 } 14 15 body { 16 font-size: 13px; 17 padding: 1em; 18 } 19 20 h1 { 21 font-size: 26px; 22 margin-bottom: 1em; 23 } 24 25 h2 { 26 font-size: 24px; 27 margin-bottom: 1em; 28 } 29 30 h3 { 31 font-size: 20px; 32 margin-bottom: 1em; 33 margin-top: 1em; 34 } 35 36 pre, code { 37 line-height: 1.5; 38 font-family: Monaco, 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', 'Lucida Console', monospace; 39 } 40 41 pre { 42 margin-top: 0.5em; 43 } 44 45 h1, h2, h3, p { 46 font-family: Arial, sans serif; 47 } 48 49 h1, h2, h3 { 50 border-bottom: solid #CCC 1px; 51 } 52 53 .toc_element { 54 margin-top: 0.5em; 55 } 56 57 .firstline { 58 margin-left: 2 em; 59 } 60 61 .method { 62 margin-top: 1em; 63 border: solid 1px #CCC; 64 padding: 1em; 65 background: #EEE; 66 } 67 68 .details { 69 font-weight: bold; 70 font-size: 14px; 71 } 72 73 </style> 74 75 <h1><a href="prediction_v1_5.html">Prediction API</a> . <a href="prediction_v1_5.trainedmodels.html">trainedmodels</a></h1> 76 <h2>Instance Methods</h2> 77 <p class="toc_element"> 78 <code><a href="#analyze">analyze(id)</a></code></p> 79 <p class="firstline">Get analysis of the model and the data the model was trained on.</p> 80 <p class="toc_element"> 81 <code><a href="#delete">delete(id)</a></code></p> 82 <p class="firstline">Delete a trained model.</p> 83 <p class="toc_element"> 84 <code><a href="#get">get(id)</a></code></p> 85 <p class="firstline">Check training status of your model.</p> 86 <p class="toc_element"> 87 <code><a href="#insert">insert(body)</a></code></p> 88 <p class="firstline">Begin training your model.</p> 89 <p class="toc_element"> 90 <code><a href="#list">list(pageToken=None, maxResults=None)</a></code></p> 91 <p class="firstline">List available models.</p> 92 <p class="toc_element"> 93 <code><a href="#list_next">list_next(previous_request, previous_response)</a></code></p> 94 <p class="firstline">Retrieves the next page of results.</p> 95 <p class="toc_element"> 96 <code><a href="#predict">predict(id, body)</a></code></p> 97 <p class="firstline">Submit model id and request a prediction.</p> 98 <p class="toc_element"> 99 <code><a href="#update">update(id, body)</a></code></p> 100 <p class="firstline">Add new data to a trained model.</p> 101 <h3>Method Details</h3> 102 <div class="method"> 103 <code class="details" id="analyze">analyze(id)</code> 104 <pre>Get analysis of the model and the data the model was trained on. 105 106 Args: 107 id: string, The unique name for the predictive model. (required) 108 109 Returns: 110 An object of the form: 111 112 { 113 "kind": "prediction#analyze", # What kind of resource this is. 114 "errors": [ # List of errors with the data. 115 { 116 "a_key": "A String", # Error level followed by a detailed error message. 117 }, 118 ], 119 "dataDescription": { # Description of the data the model was trained on. 120 "outputFeature": { # Description of the output value or label. 121 "text": [ # Description of the output labels in the data set. 122 { 123 "count": "A String", # Number of times the output label occurred in the data set. 124 "value": "A String", # The output label. 125 }, 126 ], 127 "numeric": { # Description of the output values in the data set. 128 "count": "A String", # Number of numeric output values in the data set. 129 "variance": 3.14, # Variance of the output values in the data set. 130 "mean": 3.14, # Mean of the output values in the data set. 131 }, 132 }, 133 "features": [ # Description of the input features in the data set. 134 { 135 "index": "A String", # The feature index. 136 "text": { # Description of multiple-word text values of this feature. 137 "count": "A String", # Number of multiple-word text values for this feature. 138 }, 139 "numeric": { # Description of the numeric values of this feature. 140 "count": "A String", # Number of numeric values for this feature in the data set. 141 "variance": 3.14, # Variance of the numeric values of this feature in the data set. 142 "mean": 3.14, # Mean of the numeric values of this feature in the data set. 143 }, 144 "categorical": { # Description of the categorical values of this feature. 145 "count": "A String", # Number of categorical values for this feature in the data. 146 "values": [ # List of all the categories for this feature in the data set. 147 { 148 "count": "A String", # Number of times this feature had this value. 149 "value": "A String", # The category name. 150 }, 151 ], 152 }, 153 }, 154 ], 155 }, 156 "modelDescription": { # Description of the model. 157 "confusionMatrixRowTotals": { # A list of the confusion matrix row totals 158 "a_key": 3.14, 159 }, 160 "confusionMatrix": { # An output confusion matrix. This shows an estimate for how this model will do in predictions. This is first indexed by the true class label. For each true class label, this provides a pair {predicted_label, count}, where count is the estimated number of times the model will predict the predicted label given the true label. Will not output if more then 100 classes [Categorical models only]. 161 "a_key": { 162 "a_key": 3.14, 163 }, 164 }, 165 "modelinfo": { # Basic information about the model. 166 "kind": "prediction#training", # What kind of resource this is. 167 "created": "A String", # Insert time of the model (as a RFC 3339 timestamp). 168 "trainingComplete": "A String", # Training completion time (as a RFC 3339 timestamp). 169 "storageDataLocation": "A String", # Google storage location of the training data file. 170 "modelType": "A String", # Type of predictive model (classification or regression) 171 "storagePMMLModelLocation": "A String", # Google storage location of the pmml model file. 172 "trainingStatus": "A String", # The current status of the training job. This can be one of following: RUNNING; DONE; ERROR; ERROR: TRAINING JOB NOT FOUND 173 "modelInfo": { # Model metadata. 174 "numberLabels": "A String", # Number of class labels in the trained model [Categorical models only]. 175 "meanSquaredError": 3.14, # An estimated mean squared error. The can be used to measure the quality of the predicted model [Regression models only]. 176 "modelType": "A String", # Type of predictive model (CLASSIFICATION or REGRESSION) 177 "numberInstances": "A String", # Number of valid data instances used in the trained model. 178 "classWeightedAccuracy": 3.14, # Estimated accuracy of model taking utility weights into account [Categorical models only]. 179 "classificationAccuracy": 3.14, # A number between 0.0 and 1.0, where 1.0 is 100% accurate. This is an estimate, based on the amount and quality of the training data, of the estimated prediction accuracy. You can use this is a guide to decide whether the results are accurate enough for your needs. This estimate will be more reliable if your real input data is similar to your training data [Categorical models only]. 180 }, 181 "storagePMMLLocation": "A String", # Google storage location of the preprocessing pmml file. 182 "trainingInstances": [ # Instances to train model on. 183 { 184 "output": "A String", # The generic output value - could be regression or class label 185 "csvInstance": [ # The input features for this instance 186 "", 187 ], 188 }, 189 ], 190 "id": "A String", # The unique name for the predictive model. 191 "selfLink": "A String", # A URL to re-request this resource. 192 "utility": [ # A class weighting function, which allows the importance weights for class labels to be specified [Categorical models only]. 193 { # Class label (string). 194 "a_key": 3.14, 195 }, 196 ], 197 }, 198 }, 199 "id": "A String", # The unique name for the predictive model. 200 "selfLink": "A String", # A URL to re-request this resource. 201 }</pre> 202 </div> 203 204 <div class="method"> 205 <code class="details" id="delete">delete(id)</code> 206 <pre>Delete a trained model. 207 208 Args: 209 id: string, The unique name for the predictive model. (required) 210 </pre> 211 </div> 212 213 <div class="method"> 214 <code class="details" id="get">get(id)</code> 215 <pre>Check training status of your model. 216 217 Args: 218 id: string, The unique name for the predictive model. (required) 219 220 Returns: 221 An object of the form: 222 223 { 224 "kind": "prediction#training", # What kind of resource this is. 225 "created": "A String", # Insert time of the model (as a RFC 3339 timestamp). 226 "trainingComplete": "A String", # Training completion time (as a RFC 3339 timestamp). 227 "storageDataLocation": "A String", # Google storage location of the training data file. 228 "modelType": "A String", # Type of predictive model (classification or regression) 229 "storagePMMLModelLocation": "A String", # Google storage location of the pmml model file. 230 "trainingStatus": "A String", # The current status of the training job. This can be one of following: RUNNING; DONE; ERROR; ERROR: TRAINING JOB NOT FOUND 231 "modelInfo": { # Model metadata. 232 "numberLabels": "A String", # Number of class labels in the trained model [Categorical models only]. 233 "meanSquaredError": 3.14, # An estimated mean squared error. The can be used to measure the quality of the predicted model [Regression models only]. 234 "modelType": "A String", # Type of predictive model (CLASSIFICATION or REGRESSION) 235 "numberInstances": "A String", # Number of valid data instances used in the trained model. 236 "classWeightedAccuracy": 3.14, # Estimated accuracy of model taking utility weights into account [Categorical models only]. 237 "classificationAccuracy": 3.14, # A number between 0.0 and 1.0, where 1.0 is 100% accurate. This is an estimate, based on the amount and quality of the training data, of the estimated prediction accuracy. You can use this is a guide to decide whether the results are accurate enough for your needs. This estimate will be more reliable if your real input data is similar to your training data [Categorical models only]. 238 }, 239 "storagePMMLLocation": "A String", # Google storage location of the preprocessing pmml file. 240 "trainingInstances": [ # Instances to train model on. 241 { 242 "output": "A String", # The generic output value - could be regression or class label 243 "csvInstance": [ # The input features for this instance 244 "", 245 ], 246 }, 247 ], 248 "id": "A String", # The unique name for the predictive model. 249 "selfLink": "A String", # A URL to re-request this resource. 250 "utility": [ # A class weighting function, which allows the importance weights for class labels to be specified [Categorical models only]. 251 { # Class label (string). 252 "a_key": 3.14, 253 }, 254 ], 255 }</pre> 256 </div> 257 258 <div class="method"> 259 <code class="details" id="insert">insert(body)</code> 260 <pre>Begin training your model. 261 262 Args: 263 body: object, The request body. (required) 264 The object takes the form of: 265 266 { 267 "kind": "prediction#training", # What kind of resource this is. 268 "created": "A String", # Insert time of the model (as a RFC 3339 timestamp). 269 "trainingComplete": "A String", # Training completion time (as a RFC 3339 timestamp). 270 "storageDataLocation": "A String", # Google storage location of the training data file. 271 "modelType": "A String", # Type of predictive model (classification or regression) 272 "storagePMMLModelLocation": "A String", # Google storage location of the pmml model file. 273 "trainingStatus": "A String", # The current status of the training job. This can be one of following: RUNNING; DONE; ERROR; ERROR: TRAINING JOB NOT FOUND 274 "modelInfo": { # Model metadata. 275 "numberLabels": "A String", # Number of class labels in the trained model [Categorical models only]. 276 "meanSquaredError": 3.14, # An estimated mean squared error. The can be used to measure the quality of the predicted model [Regression models only]. 277 "modelType": "A String", # Type of predictive model (CLASSIFICATION or REGRESSION) 278 "numberInstances": "A String", # Number of valid data instances used in the trained model. 279 "classWeightedAccuracy": 3.14, # Estimated accuracy of model taking utility weights into account [Categorical models only]. 280 "classificationAccuracy": 3.14, # A number between 0.0 and 1.0, where 1.0 is 100% accurate. This is an estimate, based on the amount and quality of the training data, of the estimated prediction accuracy. You can use this is a guide to decide whether the results are accurate enough for your needs. This estimate will be more reliable if your real input data is similar to your training data [Categorical models only]. 281 }, 282 "storagePMMLLocation": "A String", # Google storage location of the preprocessing pmml file. 283 "trainingInstances": [ # Instances to train model on. 284 { 285 "output": "A String", # The generic output value - could be regression or class label 286 "csvInstance": [ # The input features for this instance 287 "", 288 ], 289 }, 290 ], 291 "id": "A String", # The unique name for the predictive model. 292 "selfLink": "A String", # A URL to re-request this resource. 293 "utility": [ # A class weighting function, which allows the importance weights for class labels to be specified [Categorical models only]. 294 { # Class label (string). 295 "a_key": 3.14, 296 }, 297 ], 298 } 299 300 301 Returns: 302 An object of the form: 303 304 { 305 "kind": "prediction#training", # What kind of resource this is. 306 "created": "A String", # Insert time of the model (as a RFC 3339 timestamp). 307 "trainingComplete": "A String", # Training completion time (as a RFC 3339 timestamp). 308 "storageDataLocation": "A String", # Google storage location of the training data file. 309 "modelType": "A String", # Type of predictive model (classification or regression) 310 "storagePMMLModelLocation": "A String", # Google storage location of the pmml model file. 311 "trainingStatus": "A String", # The current status of the training job. This can be one of following: RUNNING; DONE; ERROR; ERROR: TRAINING JOB NOT FOUND 312 "modelInfo": { # Model metadata. 313 "numberLabels": "A String", # Number of class labels in the trained model [Categorical models only]. 314 "meanSquaredError": 3.14, # An estimated mean squared error. The can be used to measure the quality of the predicted model [Regression models only]. 315 "modelType": "A String", # Type of predictive model (CLASSIFICATION or REGRESSION) 316 "numberInstances": "A String", # Number of valid data instances used in the trained model. 317 "classWeightedAccuracy": 3.14, # Estimated accuracy of model taking utility weights into account [Categorical models only]. 318 "classificationAccuracy": 3.14, # A number between 0.0 and 1.0, where 1.0 is 100% accurate. This is an estimate, based on the amount and quality of the training data, of the estimated prediction accuracy. You can use this is a guide to decide whether the results are accurate enough for your needs. This estimate will be more reliable if your real input data is similar to your training data [Categorical models only]. 319 }, 320 "storagePMMLLocation": "A String", # Google storage location of the preprocessing pmml file. 321 "trainingInstances": [ # Instances to train model on. 322 { 323 "output": "A String", # The generic output value - could be regression or class label 324 "csvInstance": [ # The input features for this instance 325 "", 326 ], 327 }, 328 ], 329 "id": "A String", # The unique name for the predictive model. 330 "selfLink": "A String", # A URL to re-request this resource. 331 "utility": [ # A class weighting function, which allows the importance weights for class labels to be specified [Categorical models only]. 332 { # Class label (string). 333 "a_key": 3.14, 334 }, 335 ], 336 }</pre> 337 </div> 338 339 <div class="method"> 340 <code class="details" id="list">list(pageToken=None, maxResults=None)</code> 341 <pre>List available models. 342 343 Args: 344 pageToken: string, Pagination token 345 maxResults: integer, Maximum number of results to return 346 347 Returns: 348 An object of the form: 349 350 { 351 "nextPageToken": "A String", # Pagination token to fetch the next page, if one exists. 352 "items": [ # List of models. 353 { 354 "kind": "prediction#training", # What kind of resource this is. 355 "created": "A String", # Insert time of the model (as a RFC 3339 timestamp). 356 "trainingComplete": "A String", # Training completion time (as a RFC 3339 timestamp). 357 "storageDataLocation": "A String", # Google storage location of the training data file. 358 "modelType": "A String", # Type of predictive model (classification or regression) 359 "storagePMMLModelLocation": "A String", # Google storage location of the pmml model file. 360 "trainingStatus": "A String", # The current status of the training job. This can be one of following: RUNNING; DONE; ERROR; ERROR: TRAINING JOB NOT FOUND 361 "modelInfo": { # Model metadata. 362 "numberLabels": "A String", # Number of class labels in the trained model [Categorical models only]. 363 "meanSquaredError": 3.14, # An estimated mean squared error. The can be used to measure the quality of the predicted model [Regression models only]. 364 "modelType": "A String", # Type of predictive model (CLASSIFICATION or REGRESSION) 365 "numberInstances": "A String", # Number of valid data instances used in the trained model. 366 "classWeightedAccuracy": 3.14, # Estimated accuracy of model taking utility weights into account [Categorical models only]. 367 "classificationAccuracy": 3.14, # A number between 0.0 and 1.0, where 1.0 is 100% accurate. This is an estimate, based on the amount and quality of the training data, of the estimated prediction accuracy. You can use this is a guide to decide whether the results are accurate enough for your needs. This estimate will be more reliable if your real input data is similar to your training data [Categorical models only]. 368 }, 369 "storagePMMLLocation": "A String", # Google storage location of the preprocessing pmml file. 370 "trainingInstances": [ # Instances to train model on. 371 { 372 "output": "A String", # The generic output value - could be regression or class label 373 "csvInstance": [ # The input features for this instance 374 "", 375 ], 376 }, 377 ], 378 "id": "A String", # The unique name for the predictive model. 379 "selfLink": "A String", # A URL to re-request this resource. 380 "utility": [ # A class weighting function, which allows the importance weights for class labels to be specified [Categorical models only]. 381 { # Class label (string). 382 "a_key": 3.14, 383 }, 384 ], 385 }, 386 ], 387 "kind": "prediction#list", # What kind of resource this is. 388 "selfLink": "A String", # A URL to re-request this resource. 389 }</pre> 390 </div> 391 392 <div class="method"> 393 <code class="details" id="list_next">list_next(previous_request, previous_response)</code> 394 <pre>Retrieves the next page of results. 395 396 Args: 397 previous_request: The request for the previous page. (required) 398 previous_response: The response from the request for the previous page. (required) 399 400 Returns: 401 A request object that you can call 'execute()' on to request the next 402 page. Returns None if there are no more items in the collection. 403 </pre> 404 </div> 405 406 <div class="method"> 407 <code class="details" id="predict">predict(id, body)</code> 408 <pre>Submit model id and request a prediction. 409 410 Args: 411 id: string, The unique name for the predictive model. (required) 412 body: object, The request body. (required) 413 The object takes the form of: 414 415 { 416 "input": { # Input to the model for a prediction 417 "csvInstance": [ # A list of input features, these can be strings or doubles. 418 "", 419 ], 420 }, 421 } 422 423 424 Returns: 425 An object of the form: 426 427 { 428 "kind": "prediction#output", # What kind of resource this is. 429 "outputLabel": "A String", # The most likely class label [Categorical models only]. 430 "id": "A String", # The unique name for the predictive model. 431 "outputMulti": [ # A list of class labels with their estimated probabilities [Categorical models only]. 432 { 433 "score": 3.14, # The probability of the class label. 434 "label": "A String", # The class label. 435 }, 436 ], 437 "outputValue": 3.14, # The estimated regression value [Regression models only]. 438 "selfLink": "A String", # A URL to re-request this resource. 439 }</pre> 440 </div> 441 442 <div class="method"> 443 <code class="details" id="update">update(id, body)</code> 444 <pre>Add new data to a trained model. 445 446 Args: 447 id: string, The unique name for the predictive model. (required) 448 body: object, The request body. (required) 449 The object takes the form of: 450 451 { 452 "output": "A String", # The generic output value - could be regression value or class label 453 "csvInstance": [ # The input features for this instance 454 "", 455 ], 456 "label": "A String", # The class label of this instance 457 } 458 459 460 Returns: 461 An object of the form: 462 463 { 464 "kind": "prediction#training", # What kind of resource this is. 465 "created": "A String", # Insert time of the model (as a RFC 3339 timestamp). 466 "trainingComplete": "A String", # Training completion time (as a RFC 3339 timestamp). 467 "storageDataLocation": "A String", # Google storage location of the training data file. 468 "modelType": "A String", # Type of predictive model (classification or regression) 469 "storagePMMLModelLocation": "A String", # Google storage location of the pmml model file. 470 "trainingStatus": "A String", # The current status of the training job. This can be one of following: RUNNING; DONE; ERROR; ERROR: TRAINING JOB NOT FOUND 471 "modelInfo": { # Model metadata. 472 "numberLabels": "A String", # Number of class labels in the trained model [Categorical models only]. 473 "meanSquaredError": 3.14, # An estimated mean squared error. The can be used to measure the quality of the predicted model [Regression models only]. 474 "modelType": "A String", # Type of predictive model (CLASSIFICATION or REGRESSION) 475 "numberInstances": "A String", # Number of valid data instances used in the trained model. 476 "classWeightedAccuracy": 3.14, # Estimated accuracy of model taking utility weights into account [Categorical models only]. 477 "classificationAccuracy": 3.14, # A number between 0.0 and 1.0, where 1.0 is 100% accurate. This is an estimate, based on the amount and quality of the training data, of the estimated prediction accuracy. You can use this is a guide to decide whether the results are accurate enough for your needs. This estimate will be more reliable if your real input data is similar to your training data [Categorical models only]. 478 }, 479 "storagePMMLLocation": "A String", # Google storage location of the preprocessing pmml file. 480 "trainingInstances": [ # Instances to train model on. 481 { 482 "output": "A String", # The generic output value - could be regression or class label 483 "csvInstance": [ # The input features for this instance 484 "", 485 ], 486 }, 487 ], 488 "id": "A String", # The unique name for the predictive model. 489 "selfLink": "A String", # A URL to re-request this resource. 490 "utility": [ # A class weighting function, which allows the importance weights for class labels to be specified [Categorical models only]. 491 { # Class label (string). 492 "a_key": 3.14, 493 }, 494 ], 495 }</pre> 496 </div> 497 498 </body></html>