1 /* 2 * Copyright 2006 The Android Open Source Project 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8 #include "SkEdge.h" 9 10 #include "SkFDot6.h" 11 #include "SkMathPriv.h" 12 #include "SkTo.h" 13 14 #include <utility> 15 16 /* 17 In setLine, setQuadratic, setCubic, the first thing we do is to convert 18 the points into FDot6. This is modulated by the shift parameter, which 19 will either be 0, or something like 2 for antialiasing. 20 21 In the float case, we want to turn the float into .6 by saying pt * 64, 22 or pt * 256 for antialiasing. This is implemented as 1 << (shift + 6). 23 24 In the fixed case, we want to turn the fixed into .6 by saying pt >> 10, 25 or pt >> 8 for antialiasing. This is implemented as pt >> (10 - shift). 26 */ 27 28 static inline SkFixed SkFDot6ToFixedDiv2(SkFDot6 value) { 29 // we want to return SkFDot6ToFixed(value >> 1), but we don't want to throw 30 // away data in value, so just perform a modify up-shift 31 return SkLeftShift(value, 16 - 6 - 1); 32 } 33 34 ///////////////////////////////////////////////////////////////////////// 35 36 int SkEdge::setLine(const SkPoint& p0, const SkPoint& p1, const SkIRect* clip, 37 int shift) { 38 SkFDot6 x0, y0, x1, y1; 39 40 { 41 #ifdef SK_RASTERIZE_EVEN_ROUNDING 42 x0 = SkScalarRoundToFDot6(p0.fX, shift); 43 y0 = SkScalarRoundToFDot6(p0.fY, shift); 44 x1 = SkScalarRoundToFDot6(p1.fX, shift); 45 y1 = SkScalarRoundToFDot6(p1.fY, shift); 46 #else 47 float scale = float(1 << (shift + 6)); 48 x0 = int(p0.fX * scale); 49 y0 = int(p0.fY * scale); 50 x1 = int(p1.fX * scale); 51 y1 = int(p1.fY * scale); 52 #endif 53 } 54 55 int winding = 1; 56 57 if (y0 > y1) { 58 using std::swap; 59 swap(x0, x1); 60 swap(y0, y1); 61 winding = -1; 62 } 63 64 int top = SkFDot6Round(y0); 65 int bot = SkFDot6Round(y1); 66 67 // are we a zero-height line? 68 if (top == bot) { 69 return 0; 70 } 71 // are we completely above or below the clip? 72 if (clip && (top >= clip->fBottom || bot <= clip->fTop)) { 73 return 0; 74 } 75 76 SkFixed slope = SkFDot6Div(x1 - x0, y1 - y0); 77 const SkFDot6 dy = SkEdge_Compute_DY(top, y0); 78 79 fX = SkFDot6ToFixed(x0 + SkFixedMul(slope, dy)); // + SK_Fixed1/2 80 fDX = slope; 81 fFirstY = top; 82 fLastY = bot - 1; 83 fCurveCount = 0; 84 fWinding = SkToS8(winding); 85 fCurveShift = 0; 86 87 if (clip) { 88 this->chopLineWithClip(*clip); 89 } 90 return 1; 91 } 92 93 // called from a curve subclass 94 int SkEdge::updateLine(SkFixed x0, SkFixed y0, SkFixed x1, SkFixed y1) 95 { 96 SkASSERT(fWinding == 1 || fWinding == -1); 97 SkASSERT(fCurveCount != 0); 98 // SkASSERT(fCurveShift != 0); 99 100 y0 >>= 10; 101 y1 >>= 10; 102 103 SkASSERT(y0 <= y1); 104 105 int top = SkFDot6Round(y0); 106 int bot = SkFDot6Round(y1); 107 108 // SkASSERT(top >= fFirstY); 109 110 // are we a zero-height line? 111 if (top == bot) 112 return 0; 113 114 x0 >>= 10; 115 x1 >>= 10; 116 117 SkFixed slope = SkFDot6Div(x1 - x0, y1 - y0); 118 const SkFDot6 dy = SkEdge_Compute_DY(top, y0); 119 120 fX = SkFDot6ToFixed(x0 + SkFixedMul(slope, dy)); // + SK_Fixed1/2 121 fDX = slope; 122 fFirstY = top; 123 fLastY = bot - 1; 124 125 return 1; 126 } 127 128 void SkEdge::chopLineWithClip(const SkIRect& clip) 129 { 130 int top = fFirstY; 131 132 SkASSERT(top < clip.fBottom); 133 134 // clip the line to the top 135 if (top < clip.fTop) 136 { 137 SkASSERT(fLastY >= clip.fTop); 138 fX += fDX * (clip.fTop - top); 139 fFirstY = clip.fTop; 140 } 141 } 142 143 /////////////////////////////////////////////////////////////////////////////// 144 145 /* We store 1<<shift in a (signed) byte, so its maximum value is 1<<6 == 64. 146 Note that this limits the number of lines we use to approximate a curve. 147 If we need to increase this, we need to store fCurveCount in something 148 larger than int8_t. 149 */ 150 #define MAX_COEFF_SHIFT 6 151 152 static inline SkFDot6 cheap_distance(SkFDot6 dx, SkFDot6 dy) 153 { 154 dx = SkAbs32(dx); 155 dy = SkAbs32(dy); 156 // return max + min/2 157 if (dx > dy) 158 dx += dy >> 1; 159 else 160 dx = dy + (dx >> 1); 161 return dx; 162 } 163 164 static inline int diff_to_shift(SkFDot6 dx, SkFDot6 dy, int shiftAA = 2) 165 { 166 // cheap calc of distance from center of p0-p2 to the center of the curve 167 SkFDot6 dist = cheap_distance(dx, dy); 168 169 // shift down dist (it is currently in dot6) 170 // down by 3 should give us 1/8 pixel accuracy (assuming our dist is accurate...) 171 // this is chosen by heuristic: make it as big as possible (to minimize segments) 172 // ... but small enough so that our curves still look smooth 173 // When shift > 0, we're using AA and everything is scaled up so we can 174 // lower the accuracy. 175 dist = (dist + (1 << 4)) >> (3 + shiftAA); 176 177 // each subdivision (shift value) cuts this dist (error) by 1/4 178 return (32 - SkCLZ(dist)) >> 1; 179 } 180 181 bool SkQuadraticEdge::setQuadraticWithoutUpdate(const SkPoint pts[3], int shift) { 182 SkFDot6 x0, y0, x1, y1, x2, y2; 183 184 { 185 #ifdef SK_RASTERIZE_EVEN_ROUNDING 186 x0 = SkScalarRoundToFDot6(pts[0].fX, shift); 187 y0 = SkScalarRoundToFDot6(pts[0].fY, shift); 188 x1 = SkScalarRoundToFDot6(pts[1].fX, shift); 189 y1 = SkScalarRoundToFDot6(pts[1].fY, shift); 190 x2 = SkScalarRoundToFDot6(pts[2].fX, shift); 191 y2 = SkScalarRoundToFDot6(pts[2].fY, shift); 192 #else 193 float scale = float(1 << (shift + 6)); 194 x0 = int(pts[0].fX * scale); 195 y0 = int(pts[0].fY * scale); 196 x1 = int(pts[1].fX * scale); 197 y1 = int(pts[1].fY * scale); 198 x2 = int(pts[2].fX * scale); 199 y2 = int(pts[2].fY * scale); 200 #endif 201 } 202 203 int winding = 1; 204 if (y0 > y2) 205 { 206 using std::swap; 207 swap(x0, x2); 208 swap(y0, y2); 209 winding = -1; 210 } 211 SkASSERT(y0 <= y1 && y1 <= y2); 212 213 int top = SkFDot6Round(y0); 214 int bot = SkFDot6Round(y2); 215 216 // are we a zero-height quad (line)? 217 if (top == bot) 218 return 0; 219 220 // compute number of steps needed (1 << shift) 221 { 222 SkFDot6 dx = (SkLeftShift(x1, 1) - x0 - x2) >> 2; 223 SkFDot6 dy = (SkLeftShift(y1, 1) - y0 - y2) >> 2; 224 // This is a little confusing: 225 // before this line, shift is the scale up factor for AA; 226 // after this line, shift is the fCurveShift. 227 shift = diff_to_shift(dx, dy, shift); 228 SkASSERT(shift >= 0); 229 } 230 // need at least 1 subdivision for our bias trick 231 if (shift == 0) { 232 shift = 1; 233 } else if (shift > MAX_COEFF_SHIFT) { 234 shift = MAX_COEFF_SHIFT; 235 } 236 237 fWinding = SkToS8(winding); 238 //fCubicDShift only set for cubics 239 fCurveCount = SkToS8(1 << shift); 240 241 /* 242 * We want to reformulate into polynomial form, to make it clear how we 243 * should forward-difference. 244 * 245 * p0 (1 - t)^2 + p1 t(1 - t) + p2 t^2 ==> At^2 + Bt + C 246 * 247 * A = p0 - 2p1 + p2 248 * B = 2(p1 - p0) 249 * C = p0 250 * 251 * Our caller must have constrained our inputs (p0..p2) to all fit into 252 * 16.16. However, as seen above, we sometimes compute values that can be 253 * larger (e.g. B = 2*(p1 - p0)). To guard against overflow, we will store 254 * A and B at 1/2 of their actual value, and just apply a 2x scale during 255 * application in updateQuadratic(). Hence we store (shift - 1) in 256 * fCurveShift. 257 */ 258 259 fCurveShift = SkToU8(shift - 1); 260 261 SkFixed A = SkFDot6ToFixedDiv2(x0 - x1 - x1 + x2); // 1/2 the real value 262 SkFixed B = SkFDot6ToFixed(x1 - x0); // 1/2 the real value 263 264 fQx = SkFDot6ToFixed(x0); 265 fQDx = B + (A >> shift); // biased by shift 266 fQDDx = A >> (shift - 1); // biased by shift 267 268 A = SkFDot6ToFixedDiv2(y0 - y1 - y1 + y2); // 1/2 the real value 269 B = SkFDot6ToFixed(y1 - y0); // 1/2 the real value 270 271 fQy = SkFDot6ToFixed(y0); 272 fQDy = B + (A >> shift); // biased by shift 273 fQDDy = A >> (shift - 1); // biased by shift 274 275 fQLastX = SkFDot6ToFixed(x2); 276 fQLastY = SkFDot6ToFixed(y2); 277 278 return true; 279 } 280 281 int SkQuadraticEdge::setQuadratic(const SkPoint pts[3], int shift) { 282 if (!setQuadraticWithoutUpdate(pts, shift)) { 283 return 0; 284 } 285 return this->updateQuadratic(); 286 } 287 288 int SkQuadraticEdge::updateQuadratic() 289 { 290 int success; 291 int count = fCurveCount; 292 SkFixed oldx = fQx; 293 SkFixed oldy = fQy; 294 SkFixed dx = fQDx; 295 SkFixed dy = fQDy; 296 SkFixed newx, newy; 297 int shift = fCurveShift; 298 299 SkASSERT(count > 0); 300 301 do { 302 if (--count > 0) 303 { 304 newx = oldx + (dx >> shift); 305 dx += fQDDx; 306 newy = oldy + (dy >> shift); 307 dy += fQDDy; 308 } 309 else // last segment 310 { 311 newx = fQLastX; 312 newy = fQLastY; 313 } 314 success = this->updateLine(oldx, oldy, newx, newy); 315 oldx = newx; 316 oldy = newy; 317 } while (count > 0 && !success); 318 319 fQx = newx; 320 fQy = newy; 321 fQDx = dx; 322 fQDy = dy; 323 fCurveCount = SkToS8(count); 324 return success; 325 } 326 327 ///////////////////////////////////////////////////////////////////////// 328 329 static inline int SkFDot6UpShift(SkFDot6 x, int upShift) { 330 SkASSERT((SkLeftShift(x, upShift) >> upShift) == x); 331 return SkLeftShift(x, upShift); 332 } 333 334 /* f(1/3) = (8a + 12b + 6c + d) / 27 335 f(2/3) = (a + 6b + 12c + 8d) / 27 336 337 f(1/3)-b = (8a - 15b + 6c + d) / 27 338 f(2/3)-c = (a + 6b - 15c + 8d) / 27 339 340 use 16/512 to approximate 1/27 341 */ 342 static SkFDot6 cubic_delta_from_line(SkFDot6 a, SkFDot6 b, SkFDot6 c, SkFDot6 d) 343 { 344 // since our parameters may be negative, we don't use << to avoid ASAN warnings 345 SkFDot6 oneThird = (a*8 - b*15 + 6*c + d) * 19 >> 9; 346 SkFDot6 twoThird = (a + 6*b - c*15 + d*8) * 19 >> 9; 347 348 return SkMax32(SkAbs32(oneThird), SkAbs32(twoThird)); 349 } 350 351 bool SkCubicEdge::setCubicWithoutUpdate(const SkPoint pts[4], int shift, bool sortY) { 352 SkFDot6 x0, y0, x1, y1, x2, y2, x3, y3; 353 354 { 355 #ifdef SK_RASTERIZE_EVEN_ROUNDING 356 x0 = SkScalarRoundToFDot6(pts[0].fX, shift); 357 y0 = SkScalarRoundToFDot6(pts[0].fY, shift); 358 x1 = SkScalarRoundToFDot6(pts[1].fX, shift); 359 y1 = SkScalarRoundToFDot6(pts[1].fY, shift); 360 x2 = SkScalarRoundToFDot6(pts[2].fX, shift); 361 y2 = SkScalarRoundToFDot6(pts[2].fY, shift); 362 x3 = SkScalarRoundToFDot6(pts[3].fX, shift); 363 y3 = SkScalarRoundToFDot6(pts[3].fY, shift); 364 #else 365 float scale = float(1 << (shift + 6)); 366 x0 = int(pts[0].fX * scale); 367 y0 = int(pts[0].fY * scale); 368 x1 = int(pts[1].fX * scale); 369 y1 = int(pts[1].fY * scale); 370 x2 = int(pts[2].fX * scale); 371 y2 = int(pts[2].fY * scale); 372 x3 = int(pts[3].fX * scale); 373 y3 = int(pts[3].fY * scale); 374 #endif 375 } 376 377 int winding = 1; 378 if (sortY && y0 > y3) 379 { 380 using std::swap; 381 swap(x0, x3); 382 swap(x1, x2); 383 swap(y0, y3); 384 swap(y1, y2); 385 winding = -1; 386 } 387 388 int top = SkFDot6Round(y0); 389 int bot = SkFDot6Round(y3); 390 391 // are we a zero-height cubic (line)? 392 if (sortY && top == bot) 393 return 0; 394 395 // compute number of steps needed (1 << shift) 396 { 397 // Can't use (center of curve - center of baseline), since center-of-curve 398 // need not be the max delta from the baseline (it could even be coincident) 399 // so we try just looking at the two off-curve points 400 SkFDot6 dx = cubic_delta_from_line(x0, x1, x2, x3); 401 SkFDot6 dy = cubic_delta_from_line(y0, y1, y2, y3); 402 // add 1 (by observation) 403 shift = diff_to_shift(dx, dy) + 1; 404 } 405 // need at least 1 subdivision for our bias trick 406 SkASSERT(shift > 0); 407 if (shift > MAX_COEFF_SHIFT) { 408 shift = MAX_COEFF_SHIFT; 409 } 410 411 /* Since our in coming data is initially shifted down by 10 (or 8 in 412 antialias). That means the most we can shift up is 8. However, we 413 compute coefficients with a 3*, so the safest upshift is really 6 414 */ 415 int upShift = 6; // largest safe value 416 int downShift = shift + upShift - 10; 417 if (downShift < 0) { 418 downShift = 0; 419 upShift = 10 - shift; 420 } 421 422 fWinding = SkToS8(winding); 423 fCurveCount = SkToS8(SkLeftShift(-1, shift)); 424 fCurveShift = SkToU8(shift); 425 fCubicDShift = SkToU8(downShift); 426 427 SkFixed B = SkFDot6UpShift(3 * (x1 - x0), upShift); 428 SkFixed C = SkFDot6UpShift(3 * (x0 - x1 - x1 + x2), upShift); 429 SkFixed D = SkFDot6UpShift(x3 + 3 * (x1 - x2) - x0, upShift); 430 431 fCx = SkFDot6ToFixed(x0); 432 fCDx = B + (C >> shift) + (D >> 2*shift); // biased by shift 433 fCDDx = 2*C + (3*D >> (shift - 1)); // biased by 2*shift 434 fCDDDx = 3*D >> (shift - 1); // biased by 2*shift 435 436 B = SkFDot6UpShift(3 * (y1 - y0), upShift); 437 C = SkFDot6UpShift(3 * (y0 - y1 - y1 + y2), upShift); 438 D = SkFDot6UpShift(y3 + 3 * (y1 - y2) - y0, upShift); 439 440 fCy = SkFDot6ToFixed(y0); 441 fCDy = B + (C >> shift) + (D >> 2*shift); // biased by shift 442 fCDDy = 2*C + (3*D >> (shift - 1)); // biased by 2*shift 443 fCDDDy = 3*D >> (shift - 1); // biased by 2*shift 444 445 fCLastX = SkFDot6ToFixed(x3); 446 fCLastY = SkFDot6ToFixed(y3); 447 448 return true; 449 } 450 451 int SkCubicEdge::setCubic(const SkPoint pts[4], int shift) { 452 if (!this->setCubicWithoutUpdate(pts, shift)) { 453 return 0; 454 } 455 return this->updateCubic(); 456 } 457 458 int SkCubicEdge::updateCubic() 459 { 460 int success; 461 int count = fCurveCount; 462 SkFixed oldx = fCx; 463 SkFixed oldy = fCy; 464 SkFixed newx, newy; 465 const int ddshift = fCurveShift; 466 const int dshift = fCubicDShift; 467 468 SkASSERT(count < 0); 469 470 do { 471 if (++count < 0) 472 { 473 newx = oldx + (fCDx >> dshift); 474 fCDx += fCDDx >> ddshift; 475 fCDDx += fCDDDx; 476 477 newy = oldy + (fCDy >> dshift); 478 fCDy += fCDDy >> ddshift; 479 fCDDy += fCDDDy; 480 } 481 else // last segment 482 { 483 // SkDebugf("LastX err=%d, LastY err=%d\n", (oldx + (fCDx >> shift) - fLastX), (oldy + (fCDy >> shift) - fLastY)); 484 newx = fCLastX; 485 newy = fCLastY; 486 } 487 488 // we want to say SkASSERT(oldy <= newy), but our finite fixedpoint 489 // doesn't always achieve that, so we have to explicitly pin it here. 490 if (newy < oldy) { 491 newy = oldy; 492 } 493 494 success = this->updateLine(oldx, oldy, newx, newy); 495 oldx = newx; 496 oldy = newy; 497 } while (count < 0 && !success); 498 499 fCx = newx; 500 fCy = newy; 501 fCurveCount = SkToS8(count); 502 return success; 503 } 504