Home | History | Annotate | Download | only in core
      1 /*
      2  * Copyright 2012 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #ifndef SkTLList_DEFINED
      9 #define SkTLList_DEFINED
     10 
     11 #include "SkMalloc.h"
     12 #include "SkTInternalLList.h"
     13 #include "SkTemplates.h"
     14 #include "SkTypes.h"
     15 #include <new>
     16 #include <utility>
     17 
     18 /** Doubly-linked list of objects. The objects' lifetimes are controlled by the list. I.e. the
     19     the list creates the objects and they are deleted upon removal. This class block-allocates
     20     space for entries based on a param passed to the constructor.
     21 
     22     Elements of the list can be constructed in place using the following macros:
     23         SkNEW_INSERT_IN_LLIST_BEFORE(list, location, type_name, args)
     24         SkNEW_INSERT_IN_LLIST_AFTER(list, location, type_name, args)
     25     where list is a SkTLList<type_name>*, location is an iterator, and args is the paren-surrounded
     26     constructor arguments for type_name. These macros behave like addBefore() and addAfter().
     27 
     28     allocCnt is the number of objects to allocate as a group. In the worst case fragmentation
     29     each object is using the space required for allocCnt unfragmented objects.
     30 */
     31 template <typename T, unsigned int N> class SkTLList : SkNoncopyable {
     32 private:
     33     struct Block;
     34     struct Node {
     35         SkAlignedSTStorage<1, T> fObj;
     36         SK_DECLARE_INTERNAL_LLIST_INTERFACE(Node);
     37         Block* fBlock; // owning block.
     38     };
     39     typedef SkTInternalLList<Node> NodeList;
     40 
     41 public:
     42     class Iter;
     43 
     44     // Having fCount initialized to -1 indicates that the first time we attempt to grab a free node
     45     // all the nodes in the pre-allocated first block need to be inserted into the free list. This
     46     // allows us to skip that loop in instances when the list is never populated.
     47     SkTLList() : fCount(-1) {}
     48 
     49     ~SkTLList() {
     50         this->validate();
     51         typename NodeList::Iter iter;
     52         Node* node = iter.init(fList, Iter::kHead_IterStart);
     53         while (node) {
     54             reinterpret_cast<T*>(node->fObj.get())->~T();
     55             Block* block = node->fBlock;
     56             node = iter.next();
     57             if (0 == --block->fNodesInUse) {
     58                 for (unsigned int i = 0; i < N; ++i) {
     59                     block->fNodes[i].~Node();
     60                 }
     61                 if (block != &fFirstBlock) {
     62                     sk_free(block);
     63                 }
     64             }
     65         }
     66     }
     67 
     68     /** Adds a new element to the list at the head. */
     69     template <typename... Args> T* addToHead(Args&&... args) {
     70         this->validate();
     71         Node* node = this->createNode();
     72         fList.addToHead(node);
     73         this->validate();
     74         return new (node->fObj.get())  T(std::forward<Args>(args)...);
     75     }
     76 
     77     /** Adds a new element to the list at the tail. */
     78     template <typename... Args> T* addToTail(Args&&... args) {
     79         this->validate();
     80         Node* node = this->createNode();
     81         fList.addToTail(node);
     82         this->validate();
     83         return new (node->fObj.get()) T(std::forward<Args>(args)...);
     84     }
     85 
     86     /** Adds a new element to the list before the location indicated by the iterator. If the
     87         iterator refers to a nullptr location then the new element is added at the tail */
     88     template <typename... Args> T* addBefore(Iter location, Args&&... args) {
     89         this->validate();
     90         Node* node = this->createNode();
     91         fList.addBefore(node, location.getNode());
     92         this->validate();
     93         return new (node->fObj.get()) T(std::forward<Args>(args)...);
     94     }
     95 
     96     /** Adds a new element to the list after the location indicated by the iterator. If the
     97         iterator refers to a nullptr location then the new element is added at the head */
     98     template <typename... Args> T* addAfter(Iter location, Args&&... args) {
     99         this->validate();
    100         Node* node = this->createNode();
    101         fList.addAfter(node, location.getNode());
    102         this->validate();
    103         return new (node->fObj.get()) T(std::forward<Args>(args)...);
    104     }
    105 
    106     /** Convenience methods for getting an iterator initialized to the head/tail of the list. */
    107     Iter headIter() const { return Iter(*this, Iter::kHead_IterStart); }
    108     Iter tailIter() const { return Iter(*this, Iter::kTail_IterStart); }
    109 
    110     T* head() { return Iter(*this, Iter::kHead_IterStart).get(); }
    111     T* tail() { return Iter(*this, Iter::kTail_IterStart).get(); }
    112     const T* head() const { return Iter(*this, Iter::kHead_IterStart).get(); }
    113     const T* tail() const { return Iter(*this, Iter::kTail_IterStart).get(); }
    114 
    115     void popHead() {
    116         this->validate();
    117         Node* node = fList.head();
    118         if (node) {
    119             this->removeNode(node);
    120         }
    121         this->validate();
    122     }
    123 
    124     void popTail() {
    125         this->validate();
    126         Node* node = fList.head();
    127         if (node) {
    128             this->removeNode(node);
    129         }
    130         this->validate();
    131     }
    132 
    133     void remove(T* t) {
    134         this->validate();
    135         Node* node = reinterpret_cast<Node*>(t);
    136         SkASSERT(reinterpret_cast<T*>(node->fObj.get()) == t);
    137         this->removeNode(node);
    138         this->validate();
    139     }
    140 
    141     void reset() {
    142         this->validate();
    143         Iter iter(*this, Iter::kHead_IterStart);
    144         while (iter.get()) {
    145             Iter next = iter;
    146             next.next();
    147             this->remove(iter.get());
    148             iter = next;
    149         }
    150         SkASSERT(0 == fCount || -1 == fCount);
    151         this->validate();
    152     }
    153 
    154     int count() const { return SkTMax(fCount ,0); }
    155     bool isEmpty() const { this->validate(); return 0 == fCount || -1 == fCount; }
    156 
    157     bool operator== (const SkTLList& list) const {
    158         if (this == &list) {
    159             return true;
    160         }
    161         // Call count() rather than use fCount because an empty list may have fCount = 0 or -1.
    162         if (this->count() != list.count()) {
    163             return false;
    164         }
    165         for (Iter a(*this, Iter::kHead_IterStart), b(list, Iter::kHead_IterStart);
    166              a.get();
    167              a.next(), b.next()) {
    168             SkASSERT(b.get()); // already checked that counts match.
    169             if (!(*a.get() == *b.get())) {
    170                 return false;
    171             }
    172         }
    173         return true;
    174     }
    175     bool operator!= (const SkTLList& list) const { return !(*this == list); }
    176 
    177     /** The iterator becomes invalid if the element it refers to is removed from the list. */
    178     class Iter : private NodeList::Iter {
    179     private:
    180         typedef typename NodeList::Iter INHERITED;
    181 
    182     public:
    183         typedef typename INHERITED::IterStart IterStart;
    184         //!< Start the iterator at the head of the list.
    185         static const IterStart kHead_IterStart = INHERITED::kHead_IterStart;
    186         //!< Start the iterator at the tail of the list.
    187         static const IterStart kTail_IterStart = INHERITED::kTail_IterStart;
    188 
    189         Iter() {}
    190 
    191         Iter(const SkTLList& list, IterStart start = kHead_IterStart) {
    192             INHERITED::init(list.fList, start);
    193         }
    194 
    195         T* init(const SkTLList& list, IterStart start = kHead_IterStart) {
    196             return this->nodeToObj(INHERITED::init(list.fList, start));
    197         }
    198 
    199         T* get() { return this->nodeToObj(INHERITED::get()); }
    200 
    201         T* next() { return this->nodeToObj(INHERITED::next()); }
    202 
    203         T* prev() { return this->nodeToObj(INHERITED::prev()); }
    204 
    205         Iter& operator= (const Iter& iter) { INHERITED::operator=(iter); return *this; }
    206 
    207     private:
    208         friend class SkTLList;
    209         Node* getNode() { return INHERITED::get(); }
    210 
    211         T* nodeToObj(Node* node) {
    212             if (node) {
    213                 return reinterpret_cast<T*>(node->fObj.get());
    214             } else {
    215                 return nullptr;
    216             }
    217         }
    218     };
    219 
    220 private:
    221     struct Block {
    222         int fNodesInUse;
    223         Node fNodes[N];
    224     };
    225 
    226     void delayedInit() {
    227         SkASSERT(-1 == fCount);
    228         fFirstBlock.fNodesInUse = 0;
    229         for (unsigned int i = 0; i < N; ++i) {
    230             fFreeList.addToHead(fFirstBlock.fNodes + i);
    231             fFirstBlock.fNodes[i].fBlock = &fFirstBlock;
    232         }
    233         fCount = 0;
    234         this->validate();
    235     }
    236 
    237     Node* createNode() {
    238         if (-1 == fCount) {
    239             this->delayedInit();
    240         }
    241         Node* node = fFreeList.head();
    242         if (node) {
    243             fFreeList.remove(node);
    244             ++node->fBlock->fNodesInUse;
    245         } else {
    246             // Should not get here when count == 0 because we always have the preallocated first
    247             // block.
    248             SkASSERT(fCount > 0);
    249             Block* block = reinterpret_cast<Block*>(sk_malloc_throw(sizeof(Block)));
    250             node = &block->fNodes[0];
    251             new (node) Node;
    252             node->fBlock = block;
    253             block->fNodesInUse = 1;
    254             for (unsigned int i = 1; i < N; ++i) {
    255                 new (block->fNodes + i) Node;
    256                 fFreeList.addToHead(block->fNodes + i);
    257                 block->fNodes[i].fBlock = block;
    258             }
    259         }
    260         ++fCount;
    261         return node;
    262     }
    263 
    264     void removeNode(Node* node) {
    265         SkASSERT(node);
    266         fList.remove(node);
    267         reinterpret_cast<T*>(node->fObj.get())->~T();
    268         Block* block = node->fBlock;
    269         // Don't ever elease the first block, just add its nodes to the free list
    270         if (0 == --block->fNodesInUse && block != &fFirstBlock) {
    271             for (unsigned int i = 0; i < N; ++i) {
    272                 if (block->fNodes + i != node) {
    273                     fFreeList.remove(block->fNodes + i);
    274                 }
    275                 block->fNodes[i].~Node();
    276             }
    277             sk_free(block);
    278         } else {
    279             fFreeList.addToHead(node);
    280         }
    281         --fCount;
    282         this->validate();
    283     }
    284 
    285     void validate() const {
    286 #ifdef SK_DEBUG
    287         bool isEmpty = false;
    288         if (-1 == fCount) {
    289             // We should not yet have initialized the free list.
    290             SkASSERT(fFreeList.isEmpty());
    291             isEmpty = true;
    292         } else if (0 == fCount) {
    293             // Should only have the nodes from the first block in the free list.
    294             SkASSERT(fFreeList.countEntries() == N);
    295             isEmpty = true;
    296         }
    297         SkASSERT(isEmpty == fList.isEmpty());
    298         fList.validate();
    299         fFreeList.validate();
    300         typename NodeList::Iter iter;
    301         Node* freeNode = iter.init(fFreeList, Iter::kHead_IterStart);
    302         while (freeNode) {
    303             SkASSERT(fFreeList.isInList(freeNode));
    304             Block* block = freeNode->fBlock;
    305             // Only the first block is allowed to have all its nodes in the free list.
    306             SkASSERT(block->fNodesInUse > 0 || block == &fFirstBlock);
    307             SkASSERT((unsigned)block->fNodesInUse < N);
    308             int activeCnt = 0;
    309             int freeCnt = 0;
    310             for (unsigned int i = 0; i < N; ++i) {
    311                 bool free = fFreeList.isInList(block->fNodes + i);
    312                 bool active = fList.isInList(block->fNodes + i);
    313                 SkASSERT(free != active);
    314                 activeCnt += active;
    315                 freeCnt += free;
    316             }
    317             SkASSERT(activeCnt == block->fNodesInUse);
    318             freeNode = iter.next();
    319         }
    320 
    321         int count = 0;
    322         Node* activeNode = iter.init(fList, Iter::kHead_IterStart);
    323         while (activeNode) {
    324             ++count;
    325             SkASSERT(fList.isInList(activeNode));
    326             Block* block = activeNode->fBlock;
    327             SkASSERT(block->fNodesInUse > 0 && (unsigned)block->fNodesInUse <= N);
    328 
    329             int activeCnt = 0;
    330             int freeCnt = 0;
    331             for (unsigned int i = 0; i < N; ++i) {
    332                 bool free = fFreeList.isInList(block->fNodes + i);
    333                 bool active = fList.isInList(block->fNodes + i);
    334                 SkASSERT(free != active);
    335                 activeCnt += active;
    336                 freeCnt += free;
    337             }
    338             SkASSERT(activeCnt == block->fNodesInUse);
    339             activeNode = iter.next();
    340         }
    341         SkASSERT(count == fCount || (0 == count && -1 == fCount));
    342 #endif
    343     }
    344 
    345     NodeList fList;
    346     NodeList fFreeList;
    347     Block    fFirstBlock;
    348     int fCount;
    349 };
    350 
    351 #endif
    352