Home | History | Annotate | Download | only in pathops
      1 /*
      2  * Copyright 2015 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 /*
      9 http://stackoverflow.com/questions/2009160/how-do-i-convert-the-2-control-points-of-a-cubic-curve-to-the-single-control-poi
     10 */
     11 
     12 /*
     13 Let's call the control points of the cubic Q0..Q3 and the control points of the quadratic P0..P2.
     14 Then for degree elevation, the equations are:
     15 
     16 Q0 = P0
     17 Q1 = 1/3 P0 + 2/3 P1
     18 Q2 = 2/3 P1 + 1/3 P2
     19 Q3 = P2
     20 In your case you have Q0..Q3 and you're solving for P0..P2. There are two ways to compute P1 from
     21  the equations above:
     22 
     23 P1 = 3/2 Q1 - 1/2 Q0
     24 P1 = 3/2 Q2 - 1/2 Q3
     25 If this is a degree-elevated cubic, then both equations will give the same answer for P1. Since
     26  it's likely not, your best bet is to average them. So,
     27 
     28 P1 = -1/4 Q0 + 3/4 Q1 + 3/4 Q2 - 1/4 Q3
     29 */
     30 
     31 #include "SkPathOpsCubic.h"
     32 #include "SkPathOpsQuad.h"
     33 
     34 // used for testing only
     35 SkDQuad SkDCubic::toQuad() const {
     36     SkDQuad quad;
     37     quad[0] = fPts[0];
     38     const SkDPoint fromC1 = {(3 * fPts[1].fX - fPts[0].fX) / 2, (3 * fPts[1].fY - fPts[0].fY) / 2};
     39     const SkDPoint fromC2 = {(3 * fPts[2].fX - fPts[3].fX) / 2, (3 * fPts[2].fY - fPts[3].fY) / 2};
     40     quad[1].fX = (fromC1.fX + fromC2.fX) / 2;
     41     quad[1].fY = (fromC1.fY + fromC2.fY) / 2;
     42     quad[2] = fPts[3];
     43     return quad;
     44 }
     45