Home | History | Annotate | Download | only in docs
      1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
      2                       "http://www.w3.org/TR/html4/strict.dtd">
      3 <html>
      4 <head>
      5   <title>LLVM Assembly Language Reference Manual</title>
      6   <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
      7   <meta name="author" content="Chris Lattner">
      8   <meta name="description"
      9   content="LLVM Assembly Language Reference Manual.">
     10   <link rel="stylesheet" href="llvm.css" type="text/css">
     11 </head>
     12 
     13 <body>
     14 
     15 <h1>LLVM Language Reference Manual</h1>
     16 <ol>
     17   <li><a href="#abstract">Abstract</a></li>
     18   <li><a href="#introduction">Introduction</a></li>
     19   <li><a href="#identifiers">Identifiers</a></li>
     20   <li><a href="#highlevel">High Level Structure</a>
     21     <ol>
     22       <li><a href="#modulestructure">Module Structure</a></li>
     23       <li><a href="#linkage">Linkage Types</a>
     24         <ol>
     25           <li><a href="#linkage_private">'<tt>private</tt>' Linkage</a></li>
     26           <li><a href="#linkage_linker_private">'<tt>linker_private</tt>' Linkage</a></li>
     27           <li><a href="#linkage_linker_private_weak">'<tt>linker_private_weak</tt>' Linkage</a></li>
     28           <li><a href="#linkage_linker_private_weak_def_auto">'<tt>linker_private_weak_def_auto</tt>' Linkage</a></li>
     29           <li><a href="#linkage_internal">'<tt>internal</tt>' Linkage</a></li>
     30           <li><a href="#linkage_available_externally">'<tt>available_externally</tt>' Linkage</a></li>
     31           <li><a href="#linkage_linkonce">'<tt>linkonce</tt>' Linkage</a></li>
     32           <li><a href="#linkage_common">'<tt>common</tt>' Linkage</a></li>
     33           <li><a href="#linkage_weak">'<tt>weak</tt>' Linkage</a></li>
     34           <li><a href="#linkage_appending">'<tt>appending</tt>' Linkage</a></li>
     35           <li><a href="#linkage_externweak">'<tt>extern_weak</tt>' Linkage</a></li>
     36           <li><a href="#linkage_linkonce_odr">'<tt>linkonce_odr</tt>' Linkage</a></li>
     37           <li><a href="#linkage_weak">'<tt>weak_odr</tt>' Linkage</a></li>
     38           <li><a href="#linkage_external">'<tt>external</tt>' Linkage</a></li>
     39           <li><a href="#linkage_dllimport">'<tt>dllimport</tt>' Linkage</a></li>
     40           <li><a href="#linkage_dllexport">'<tt>dllexport</tt>' Linkage</a></li>
     41         </ol>
     42       </li>
     43       <li><a href="#callingconv">Calling Conventions</a></li>
     44       <li><a href="#namedtypes">Named Types</a></li>
     45       <li><a href="#globalvars">Global Variables</a></li>
     46       <li><a href="#functionstructure">Functions</a></li>
     47       <li><a href="#aliasstructure">Aliases</a></li>
     48       <li><a href="#namedmetadatastructure">Named Metadata</a></li>
     49       <li><a href="#paramattrs">Parameter Attributes</a></li>
     50       <li><a href="#fnattrs">Function Attributes</a></li>
     51       <li><a href="#gc">Garbage Collector Names</a></li>
     52       <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
     53       <li><a href="#datalayout">Data Layout</a></li>
     54       <li><a href="#pointeraliasing">Pointer Aliasing Rules</a></li>
     55       <li><a href="#volatile">Volatile Memory Accesses</a></li>
     56       <li><a href="#memmodel">Memory Model for Concurrent Operations</a></li>
     57       <li><a href="#ordering">Atomic Memory Ordering Constraints</a></li>
     58     </ol>
     59   </li>
     60   <li><a href="#typesystem">Type System</a>
     61     <ol>
     62       <li><a href="#t_classifications">Type Classifications</a></li>
     63       <li><a href="#t_primitive">Primitive Types</a>
     64         <ol>
     65           <li><a href="#t_integer">Integer Type</a></li>
     66           <li><a href="#t_floating">Floating Point Types</a></li>
     67           <li><a href="#t_x86mmx">X86mmx Type</a></li>
     68           <li><a href="#t_void">Void Type</a></li>
     69           <li><a href="#t_label">Label Type</a></li>
     70           <li><a href="#t_metadata">Metadata Type</a></li>
     71         </ol>
     72       </li>
     73       <li><a href="#t_derived">Derived Types</a>
     74         <ol>
     75           <li><a href="#t_aggregate">Aggregate Types</a>
     76             <ol>
     77               <li><a href="#t_array">Array Type</a></li>
     78               <li><a href="#t_struct">Structure Type</a></li>
     79               <li><a href="#t_opaque">Opaque Structure Types</a></li>
     80               <li><a href="#t_vector">Vector Type</a></li>
     81             </ol>
     82           </li>
     83           <li><a href="#t_function">Function Type</a></li>
     84           <li><a href="#t_pointer">Pointer Type</a></li>
     85         </ol>
     86       </li>
     87     </ol>
     88   </li>
     89   <li><a href="#constants">Constants</a>
     90     <ol>
     91       <li><a href="#simpleconstants">Simple Constants</a></li>
     92       <li><a href="#complexconstants">Complex Constants</a></li>
     93       <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
     94       <li><a href="#undefvalues">Undefined Values</a></li>
     95       <li><a href="#trapvalues">Trap Values</a></li>
     96       <li><a href="#blockaddress">Addresses of Basic Blocks</a></li>
     97       <li><a href="#constantexprs">Constant Expressions</a></li>
     98     </ol>
     99   </li>
    100   <li><a href="#othervalues">Other Values</a>
    101     <ol>
    102       <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
    103       <li><a href="#metadata">Metadata Nodes and Metadata Strings</a></li>
    104     </ol>
    105   </li>
    106   <li><a href="#intrinsic_globals">Intrinsic Global Variables</a>
    107     <ol>
    108       <li><a href="#intg_used">The '<tt>llvm.used</tt>' Global Variable</a></li>
    109       <li><a href="#intg_compiler_used">The '<tt>llvm.compiler.used</tt>'
    110           Global Variable</a></li>
    111       <li><a href="#intg_global_ctors">The '<tt>llvm.global_ctors</tt>'
    112          Global Variable</a></li>
    113       <li><a href="#intg_global_dtors">The '<tt>llvm.global_dtors</tt>'
    114          Global Variable</a></li>
    115     </ol>
    116   </li>
    117   <li><a href="#instref">Instruction Reference</a>
    118     <ol>
    119       <li><a href="#terminators">Terminator Instructions</a>
    120         <ol>
    121           <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
    122           <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
    123           <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
    124           <li><a href="#i_indirectbr">'<tt>indirectbr</tt>' Instruction</a></li>
    125           <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
    126           <li><a href="#i_unwind">'<tt>unwind</tt>'  Instruction</a></li>
    127           <li><a href="#i_resume">'<tt>resume</tt>'  Instruction</a></li>
    128           <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
    129         </ol>
    130       </li>
    131       <li><a href="#binaryops">Binary Operations</a>
    132         <ol>
    133           <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
    134           <li><a href="#i_fadd">'<tt>fadd</tt>' Instruction</a></li>
    135           <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
    136           <li><a href="#i_fsub">'<tt>fsub</tt>' Instruction</a></li>
    137           <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
    138           <li><a href="#i_fmul">'<tt>fmul</tt>' Instruction</a></li>
    139           <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
    140           <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
    141           <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
    142           <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
    143           <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
    144           <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
    145         </ol>
    146       </li>
    147       <li><a href="#bitwiseops">Bitwise Binary Operations</a>
    148         <ol>
    149           <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
    150           <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
    151           <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
    152           <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
    153           <li><a href="#i_or">'<tt>or</tt>'  Instruction</a></li>
    154           <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
    155         </ol>
    156       </li>
    157       <li><a href="#vectorops">Vector Operations</a>
    158         <ol>
    159           <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
    160           <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
    161           <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
    162         </ol>
    163       </li>
    164       <li><a href="#aggregateops">Aggregate Operations</a>
    165         <ol>
    166           <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
    167           <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
    168         </ol>
    169       </li>
    170       <li><a href="#memoryops">Memory Access and Addressing Operations</a>
    171         <ol>
    172           <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
    173          <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
    174          <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
    175          <li><a href="#i_fence">'<tt>fence</tt>' Instruction</a></li>
    176          <li><a href="#i_cmpxchg">'<tt>cmpxchg</tt>' Instruction</a></li>
    177          <li><a href="#i_atomicrmw">'<tt>atomicrmw</tt>' Instruction</a></li>
    178          <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
    179         </ol>
    180       </li>
    181       <li><a href="#convertops">Conversion Operations</a>
    182         <ol>
    183           <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
    184           <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
    185           <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
    186           <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
    187           <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
    188           <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
    189           <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
    190           <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
    191           <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
    192           <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
    193           <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
    194           <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
    195         </ol>
    196       </li>
    197       <li><a href="#otherops">Other Operations</a>
    198         <ol>
    199           <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
    200           <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
    201           <li><a href="#i_phi">'<tt>phi</tt>'   Instruction</a></li>
    202           <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
    203           <li><a href="#i_call">'<tt>call</tt>'  Instruction</a></li>
    204           <li><a href="#i_va_arg">'<tt>va_arg</tt>'  Instruction</a></li>
    205           <li><a href="#i_landingpad">'<tt>landingpad</tt>' Instruction</a></li>
    206         </ol>
    207       </li>
    208     </ol>
    209   </li>
    210   <li><a href="#intrinsics">Intrinsic Functions</a>
    211     <ol>
    212       <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
    213         <ol>
    214           <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
    215           <li><a href="#int_va_end">'<tt>llvm.va_end</tt>'   Intrinsic</a></li>
    216           <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>'  Intrinsic</a></li>
    217         </ol>
    218       </li>
    219       <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
    220         <ol>
    221           <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
    222           <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
    223           <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
    224         </ol>
    225       </li>
    226       <li><a href="#int_codegen">Code Generator Intrinsics</a>
    227         <ol>
    228           <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
    229           <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>'   Intrinsic</a></li>
    230           <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
    231           <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
    232           <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
    233           <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
    234           <li><a href="#int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
    235         </ol>
    236       </li>
    237       <li><a href="#int_libc">Standard C Library Intrinsics</a>
    238         <ol>
    239           <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
    240           <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
    241           <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
    242           <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
    243           <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
    244           <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
    245           <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
    246           <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
    247           <li><a href="#int_exp">'<tt>llvm.exp.*</tt>' Intrinsic</a></li>
    248           <li><a href="#int_log">'<tt>llvm.log.*</tt>' Intrinsic</a></li>
    249           <li><a href="#int_fma">'<tt>llvm.fma.*</tt>' Intrinsic</a></li>
    250         </ol>
    251       </li>
    252       <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
    253         <ol>
    254           <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
    255           <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
    256           <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
    257           <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
    258         </ol>
    259       </li>
    260       <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
    261         <ol>
    262           <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
    263           <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
    264           <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
    265           <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
    266           <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
    267           <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
    268         </ol>
    269       </li>
    270       <li><a href="#int_fp16">Half Precision Floating Point Intrinsics</a>
    271         <ol>
    272           <li><a href="#int_convert_to_fp16">'<tt>llvm.convert.to.fp16</tt>' Intrinsic</a></li>
    273           <li><a href="#int_convert_from_fp16">'<tt>llvm.convert.from.fp16</tt>' Intrinsic</a></li>
    274         </ol>
    275       </li>
    276       <li><a href="#int_debugger">Debugger intrinsics</a></li>
    277       <li><a href="#int_eh">Exception Handling intrinsics</a></li>
    278       <li><a href="#int_trampoline">Trampoline Intrinsics</a>
    279         <ol>
    280           <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
    281           <li><a href="#int_at">'<tt>llvm.adjust.trampoline</tt>' Intrinsic</a></li>
    282         </ol>
    283       </li>
    284       <li><a href="#int_memorymarkers">Memory Use Markers</a>
    285         <ol>
    286           <li><a href="#int_lifetime_start"><tt>llvm.lifetime.start</tt></a></li>
    287           <li><a href="#int_lifetime_end"><tt>llvm.lifetime.end</tt></a></li>
    288           <li><a href="#int_invariant_start"><tt>llvm.invariant.start</tt></a></li>
    289           <li><a href="#int_invariant_end"><tt>llvm.invariant.end</tt></a></li>
    290         </ol>
    291       </li>
    292       <li><a href="#int_general">General intrinsics</a>
    293         <ol>
    294           <li><a href="#int_var_annotation">
    295             '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
    296           <li><a href="#int_annotation">
    297             '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
    298           <li><a href="#int_trap">
    299             '<tt>llvm.trap</tt>' Intrinsic</a></li>
    300           <li><a href="#int_stackprotector">
    301             '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
    302 	  <li><a href="#int_objectsize">
    303             '<tt>llvm.objectsize</tt>' Intrinsic</a></li>
    304         </ol>
    305       </li>
    306     </ol>
    307   </li>
    308 </ol>
    309 
    310 <div class="doc_author">
    311   <p>Written by <a href="mailto:sabre (a] nondot.org">Chris Lattner</a>
    312             and <a href="mailto:vadve (a] cs.uiuc.edu">Vikram Adve</a></p>
    313 </div>
    314 
    315 <!-- *********************************************************************** -->
    316 <h2><a name="abstract">Abstract</a></h2>
    317 <!-- *********************************************************************** -->
    318 
    319 <div>
    320 
    321 <p>This document is a reference manual for the LLVM assembly language. LLVM is
    322    a Static Single Assignment (SSA) based representation that provides type
    323    safety, low-level operations, flexibility, and the capability of representing
    324    'all' high-level languages cleanly.  It is the common code representation
    325    used throughout all phases of the LLVM compilation strategy.</p>
    326 
    327 </div>
    328 
    329 <!-- *********************************************************************** -->
    330 <h2><a name="introduction">Introduction</a></h2>
    331 <!-- *********************************************************************** -->
    332 
    333 <div>
    334 
    335 <p>The LLVM code representation is designed to be used in three different forms:
    336    as an in-memory compiler IR, as an on-disk bitcode representation (suitable
    337    for fast loading by a Just-In-Time compiler), and as a human readable
    338    assembly language representation.  This allows LLVM to provide a powerful
    339    intermediate representation for efficient compiler transformations and
    340    analysis, while providing a natural means to debug and visualize the
    341    transformations.  The three different forms of LLVM are all equivalent.  This
    342    document describes the human readable representation and notation.</p>
    343 
    344 <p>The LLVM representation aims to be light-weight and low-level while being
    345    expressive, typed, and extensible at the same time.  It aims to be a
    346    "universal IR" of sorts, by being at a low enough level that high-level ideas
    347    may be cleanly mapped to it (similar to how microprocessors are "universal
    348    IR's", allowing many source languages to be mapped to them).  By providing
    349    type information, LLVM can be used as the target of optimizations: for
    350    example, through pointer analysis, it can be proven that a C automatic
    351    variable is never accessed outside of the current function, allowing it to
    352    be promoted to a simple SSA value instead of a memory location.</p>
    353 
    354 <!-- _______________________________________________________________________ -->
    355 <h4>
    356   <a name="wellformed">Well-Formedness</a>
    357 </h4>
    358 
    359 <div>
    360 
    361 <p>It is important to note that this document describes 'well formed' LLVM
    362    assembly language.  There is a difference between what the parser accepts and
    363    what is considered 'well formed'.  For example, the following instruction is
    364    syntactically okay, but not well formed:</p>
    365 
    366 <pre class="doc_code">
    367 %x = <a href="#i_add">add</a> i32 1, %x
    368 </pre>
    369 
    370 <p>because the definition of <tt>%x</tt> does not dominate all of its uses. The
    371    LLVM infrastructure provides a verification pass that may be used to verify
    372    that an LLVM module is well formed.  This pass is automatically run by the
    373    parser after parsing input assembly and by the optimizer before it outputs
    374    bitcode.  The violations pointed out by the verifier pass indicate bugs in
    375    transformation passes or input to the parser.</p>
    376 
    377 </div>
    378 
    379 </div>
    380 
    381 <!-- Describe the typesetting conventions here. -->
    382 
    383 <!-- *********************************************************************** -->
    384 <h2><a name="identifiers">Identifiers</a></h2>
    385 <!-- *********************************************************************** -->
    386 
    387 <div>
    388 
    389 <p>LLVM identifiers come in two basic types: global and local. Global
    390    identifiers (functions, global variables) begin with the <tt>'@'</tt>
    391    character. Local identifiers (register names, types) begin with
    392    the <tt>'%'</tt> character. Additionally, there are three different formats
    393    for identifiers, for different purposes:</p>
    394 
    395 <ol>
    396   <li>Named values are represented as a string of characters with their prefix.
    397       For example, <tt>%foo</tt>, <tt>@DivisionByZero</tt>,
    398       <tt>%a.really.long.identifier</tt>. The actual regular expression used is
    399       '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.  Identifiers which require
    400       other characters in their names can be surrounded with quotes. Special
    401       characters may be escaped using <tt>"\xx"</tt> where <tt>xx</tt> is the
    402       ASCII code for the character in hexadecimal.  In this way, any character
    403       can be used in a name value, even quotes themselves.</li>
    404 
    405   <li>Unnamed values are represented as an unsigned numeric value with their
    406       prefix.  For example, <tt>%12</tt>, <tt>@2</tt>, <tt>%44</tt>.</li>
    407 
    408   <li>Constants, which are described in a <a href="#constants">section about
    409       constants</a>, below.</li>
    410 </ol>
    411 
    412 <p>LLVM requires that values start with a prefix for two reasons: Compilers
    413    don't need to worry about name clashes with reserved words, and the set of
    414    reserved words may be expanded in the future without penalty.  Additionally,
    415    unnamed identifiers allow a compiler to quickly come up with a temporary
    416    variable without having to avoid symbol table conflicts.</p>
    417 
    418 <p>Reserved words in LLVM are very similar to reserved words in other
    419    languages. There are keywords for different opcodes
    420    ('<tt><a href="#i_add">add</a></tt>',
    421    '<tt><a href="#i_bitcast">bitcast</a></tt>',
    422    '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names
    423    ('<tt><a href="#t_void">void</a></tt>',
    424    '<tt><a href="#t_primitive">i32</a></tt>', etc...), and others.  These
    425    reserved words cannot conflict with variable names, because none of them
    426    start with a prefix character (<tt>'%'</tt> or <tt>'@'</tt>).</p>
    427 
    428 <p>Here is an example of LLVM code to multiply the integer variable
    429    '<tt>%X</tt>' by 8:</p>
    430 
    431 <p>The easy way:</p>
    432 
    433 <pre class="doc_code">
    434 %result = <a href="#i_mul">mul</a> i32 %X, 8
    435 </pre>
    436 
    437 <p>After strength reduction:</p>
    438 
    439 <pre class="doc_code">
    440 %result = <a href="#i_shl">shl</a> i32 %X, i8 3
    441 </pre>
    442 
    443 <p>And the hard way:</p>
    444 
    445 <pre class="doc_code">
    446 %0 = <a href="#i_add">add</a> i32 %X, %X           <i>; yields {i32}:%0</i>
    447 %1 = <a href="#i_add">add</a> i32 %0, %0           <i>; yields {i32}:%1</i>
    448 %result = <a href="#i_add">add</a> i32 %1, %1
    449 </pre>
    450 
    451 <p>This last way of multiplying <tt>%X</tt> by 8 illustrates several important
    452    lexical features of LLVM:</p>
    453 
    454 <ol>
    455   <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
    456       line.</li>
    457 
    458   <li>Unnamed temporaries are created when the result of a computation is not
    459       assigned to a named value.</li>
    460 
    461   <li>Unnamed temporaries are numbered sequentially</li>
    462 </ol>
    463 
    464 <p>It also shows a convention that we follow in this document.  When
    465    demonstrating instructions, we will follow an instruction with a comment that
    466    defines the type and name of value produced.  Comments are shown in italic
    467    text.</p>
    468 
    469 </div>
    470 
    471 <!-- *********************************************************************** -->
    472 <h2><a name="highlevel">High Level Structure</a></h2>
    473 <!-- *********************************************************************** -->
    474 <div>
    475 <!-- ======================================================================= -->
    476 <h3>
    477   <a name="modulestructure">Module Structure</a>
    478 </h3>
    479 
    480 <div>
    481 
    482 <p>LLVM programs are composed of "Module"s, each of which is a translation unit
    483    of the input programs.  Each module consists of functions, global variables,
    484    and symbol table entries.  Modules may be combined together with the LLVM
    485    linker, which merges function (and global variable) definitions, resolves
    486    forward declarations, and merges symbol table entries. Here is an example of
    487    the "hello world" module:</p>
    488 
    489 <pre class="doc_code">
    490 <i>; Declare the string constant as a global constant.</i>&nbsp;
    491 <a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a>&nbsp;<a href="#globalvars">constant</a>&nbsp;<a href="#t_array">[13 x i8]</a> c"hello world\0A\00"      <i>; [13 x i8]*</i>&nbsp;
    492 
    493 <i>; External declaration of the puts function</i>&nbsp;
    494 <a href="#functionstructure">declare</a> i32 @puts(i8*)                                      <i>; i32 (i8*)* </i>&nbsp;
    495 
    496 <i>; Definition of main function</i>
    497 define i32 @main() {   <i>; i32()* </i>&nbsp;
    498   <i>; Convert [13 x i8]* to i8  *...</i>&nbsp;
    499   %cast210 = <a href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0   <i>; i8*</i>&nbsp;
    500 
    501   <i>; Call puts function to write out the string to stdout.</i>&nbsp;
    502   <a href="#i_call">call</a> i32 @puts(i8* %cast210)           <i>; i32</i>&nbsp;
    503   <a href="#i_ret">ret</a> i32 0&nbsp;
    504 }
    505 
    506 <i>; Named metadata</i>
    507 !1 = metadata !{i32 41}
    508 !foo = !{!1, null}
    509 </pre>
    510 
    511 <p>This example is made up of a <a href="#globalvars">global variable</a> named
    512    "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>" function,
    513    a <a href="#functionstructure">function definition</a> for
    514    "<tt>main</tt>" and <a href="#namedmetadatastructure">named metadata</a> 
    515    "<tt>foo"</tt>.</p>
    516 
    517 <p>In general, a module is made up of a list of global values, where both
    518    functions and global variables are global values.  Global values are
    519    represented by a pointer to a memory location (in this case, a pointer to an
    520    array of char, and a pointer to a function), and have one of the
    521    following <a href="#linkage">linkage types</a>.</p>
    522 
    523 </div>
    524 
    525 <!-- ======================================================================= -->
    526 <h3>
    527   <a name="linkage">Linkage Types</a>
    528 </h3>
    529 
    530 <div>
    531 
    532 <p>All Global Variables and Functions have one of the following types of
    533    linkage:</p>
    534 
    535 <dl>
    536   <dt><tt><b><a name="linkage_private">private</a></b></tt></dt>
    537   <dd>Global values with "<tt>private</tt>" linkage are only directly accessible
    538       by objects in the current module. In particular, linking code into a
    539       module with an private global value may cause the private to be renamed as
    540       necessary to avoid collisions.  Because the symbol is private to the
    541       module, all references can be updated. This doesn't show up in any symbol
    542       table in the object file.</dd>
    543 
    544   <dt><tt><b><a name="linkage_linker_private">linker_private</a></b></tt></dt>
    545   <dd>Similar to <tt>private</tt>, but the symbol is passed through the
    546       assembler and evaluated by the linker. Unlike normal strong symbols, they
    547       are removed by the linker from the final linked image (executable or
    548       dynamic library).</dd>
    549 
    550   <dt><tt><b><a name="linkage_linker_private_weak">linker_private_weak</a></b></tt></dt>
    551   <dd>Similar to "<tt>linker_private</tt>", but the symbol is weak. Note that
    552       <tt>linker_private_weak</tt> symbols are subject to coalescing by the
    553       linker. The symbols are removed by the linker from the final linked image
    554       (executable or dynamic library).</dd>
    555 
    556   <dt><tt><b><a name="linkage_linker_private_weak_def_auto">linker_private_weak_def_auto</a></b></tt></dt>
    557   <dd>Similar to "<tt>linker_private_weak</tt>", but it's known that the address
    558       of the object is not taken. For instance, functions that had an inline
    559       definition, but the compiler decided not to inline it. Note,
    560       unlike <tt>linker_private</tt> and <tt>linker_private_weak</tt>,
    561       <tt>linker_private_weak_def_auto</tt> may have only <tt>default</tt>
    562       visibility.  The symbols are removed by the linker from the final linked
    563       image (executable or dynamic library).</dd>
    564 
    565   <dt><tt><b><a name="linkage_internal">internal</a></b></tt></dt>
    566   <dd>Similar to private, but the value shows as a local symbol
    567       (<tt>STB_LOCAL</tt> in the case of ELF) in the object file. This
    568       corresponds to the notion of the '<tt>static</tt>' keyword in C.</dd>
    569 
    570   <dt><tt><b><a name="linkage_available_externally">available_externally</a></b></tt></dt>
    571   <dd>Globals with "<tt>available_externally</tt>" linkage are never emitted
    572       into the object file corresponding to the LLVM module.  They exist to
    573       allow inlining and other optimizations to take place given knowledge of
    574       the definition of the global, which is known to be somewhere outside the
    575       module.  Globals with <tt>available_externally</tt> linkage are allowed to
    576       be discarded at will, and are otherwise the same as <tt>linkonce_odr</tt>.
    577       This linkage type is only allowed on definitions, not declarations.</dd>
    578 
    579   <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt></dt>
    580   <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
    581       the same name when linkage occurs.  This can be used to implement
    582       some forms of inline functions, templates, or other code which must be
    583       generated in each translation unit that uses it, but where the body may
    584       be overridden with a more definitive definition later.  Unreferenced
    585       <tt>linkonce</tt> globals are allowed to be discarded.  Note that
    586       <tt>linkonce</tt> linkage does not actually allow the optimizer to
    587       inline the body of this function into callers because it doesn't know if
    588       this definition of the function is the definitive definition within the
    589       program or whether it will be overridden by a stronger definition.
    590       To enable inlining and other optimizations, use "<tt>linkonce_odr</tt>"
    591       linkage.</dd>
    592 
    593   <dt><tt><b><a name="linkage_weak">weak</a></b></tt></dt>
    594   <dd>"<tt>weak</tt>" linkage has the same merging semantics as
    595       <tt>linkonce</tt> linkage, except that unreferenced globals with
    596       <tt>weak</tt> linkage may not be discarded.  This is used for globals that
    597       are declared "weak" in C source code.</dd>
    598 
    599   <dt><tt><b><a name="linkage_common">common</a></b></tt></dt>
    600   <dd>"<tt>common</tt>" linkage is most similar to "<tt>weak</tt>" linkage, but
    601       they are used for tentative definitions in C, such as "<tt>int X;</tt>" at
    602       global scope.
    603       Symbols with "<tt>common</tt>" linkage are merged in the same way as
    604       <tt>weak symbols</tt>, and they may not be deleted if unreferenced.
    605       <tt>common</tt> symbols may not have an explicit section,
    606       must have a zero initializer, and may not be marked '<a
    607       href="#globalvars"><tt>constant</tt></a>'.  Functions and aliases may not
    608       have common linkage.</dd>
    609 
    610 
    611   <dt><tt><b><a name="linkage_appending">appending</a></b></tt></dt>
    612   <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
    613       pointer to array type.  When two global variables with appending linkage
    614       are linked together, the two global arrays are appended together.  This is
    615       the LLVM, typesafe, equivalent of having the system linker append together
    616       "sections" with identical names when .o files are linked.</dd>
    617 
    618   <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt></dt>
    619   <dd>The semantics of this linkage follow the ELF object file model: the symbol
    620       is weak until linked, if not linked, the symbol becomes null instead of
    621       being an undefined reference.</dd>
    622 
    623   <dt><tt><b><a name="linkage_linkonce_odr">linkonce_odr</a></b></tt></dt>
    624   <dt><tt><b><a name="linkage_weak_odr">weak_odr</a></b></tt></dt>
    625   <dd>Some languages allow differing globals to be merged, such as two functions
    626       with different semantics.  Other languages, such as <tt>C++</tt>, ensure
    627       that only equivalent globals are ever merged (the "one definition rule"
    628       &mdash; "ODR").  Such languages can use the <tt>linkonce_odr</tt>
    629       and <tt>weak_odr</tt> linkage types to indicate that the global will only
    630       be merged with equivalent globals.  These linkage types are otherwise the
    631       same as their non-<tt>odr</tt> versions.</dd>
    632 
    633   <dt><tt><b><a name="linkage_external">external</a></b></tt>:</dt>
    634   <dd>If none of the above identifiers are used, the global is externally
    635       visible, meaning that it participates in linkage and can be used to
    636       resolve external symbol references.</dd>
    637 </dl>
    638 
    639 <p>The next two types of linkage are targeted for Microsoft Windows platform
    640    only. They are designed to support importing (exporting) symbols from (to)
    641    DLLs (Dynamic Link Libraries).</p>
    642 
    643 <dl>
    644   <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt></dt>
    645   <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
    646       or variable via a global pointer to a pointer that is set up by the DLL
    647       exporting the symbol. On Microsoft Windows targets, the pointer name is
    648       formed by combining <code>__imp_</code> and the function or variable
    649       name.</dd>
    650 
    651   <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt></dt>
    652   <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
    653       pointer to a pointer in a DLL, so that it can be referenced with the
    654       <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
    655       name is formed by combining <code>__imp_</code> and the function or
    656       variable name.</dd>
    657 </dl>
    658 
    659 <p>For example, since the "<tt>.LC0</tt>" variable is defined to be internal, if
    660    another module defined a "<tt>.LC0</tt>" variable and was linked with this
    661    one, one of the two would be renamed, preventing a collision.  Since
    662    "<tt>main</tt>" and "<tt>puts</tt>" are external (i.e., lacking any linkage
    663    declarations), they are accessible outside of the current module.</p>
    664 
    665 <p>It is illegal for a function <i>declaration</i> to have any linkage type
    666    other than <tt>external</tt>, <tt>dllimport</tt>
    667   or <tt>extern_weak</tt>.</p>
    668 
    669 <p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt>
    670    or <tt>weak_odr</tt> linkages.</p>
    671 
    672 </div>
    673 
    674 <!-- ======================================================================= -->
    675 <h3>
    676   <a name="callingconv">Calling Conventions</a>
    677 </h3>
    678 
    679 <div>
    680 
    681 <p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
    682    and <a href="#i_invoke">invokes</a> can all have an optional calling
    683    convention specified for the call.  The calling convention of any pair of
    684    dynamic caller/callee must match, or the behavior of the program is
    685    undefined.  The following calling conventions are supported by LLVM, and more
    686    may be added in the future:</p>
    687 
    688 <dl>
    689   <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
    690   <dd>This calling convention (the default if no other calling convention is
    691       specified) matches the target C calling conventions.  This calling
    692       convention supports varargs function calls and tolerates some mismatch in
    693       the declared prototype and implemented declaration of the function (as
    694       does normal C).</dd>
    695 
    696   <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
    697   <dd>This calling convention attempts to make calls as fast as possible
    698       (e.g. by passing things in registers).  This calling convention allows the
    699       target to use whatever tricks it wants to produce fast code for the
    700       target, without having to conform to an externally specified ABI
    701       (Application Binary Interface).
    702       <a href="CodeGenerator.html#tailcallopt">Tail calls can only be optimized
    703       when this or the GHC convention is used.</a>  This calling convention
    704       does not support varargs and requires the prototype of all callees to
    705       exactly match the prototype of the function definition.</dd>
    706 
    707   <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
    708   <dd>This calling convention attempts to make code in the caller as efficient
    709       as possible under the assumption that the call is not commonly executed.
    710       As such, these calls often preserve all registers so that the call does
    711       not break any live ranges in the caller side.  This calling convention
    712       does not support varargs and requires the prototype of all callees to
    713       exactly match the prototype of the function definition.</dd>
    714 
    715   <dt><b>"<tt>cc <em>10</em></tt>" - GHC convention</b>:</dt>
    716   <dd>This calling convention has been implemented specifically for use by the
    717       <a href="http://www.haskell.org/ghc">Glasgow Haskell Compiler (GHC)</a>.
    718       It passes everything in registers, going to extremes to achieve this by
    719       disabling callee save registers. This calling convention should not be
    720       used lightly but only for specific situations such as an alternative to
    721       the <em>register pinning</em> performance technique often used when
    722       implementing functional programming languages.At the moment only X86
    723       supports this convention and it has the following limitations:
    724       <ul>
    725         <li>On <em>X86-32</em> only supports up to 4 bit type parameters. No
    726             floating point types are supported.</li>
    727         <li>On <em>X86-64</em> only supports up to 10 bit type parameters and
    728             6 floating point parameters.</li>
    729       </ul>
    730       This calling convention supports
    731       <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> but
    732       requires both the caller and callee are using it.
    733   </dd>
    734 
    735   <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
    736   <dd>Any calling convention may be specified by number, allowing
    737       target-specific calling conventions to be used.  Target specific calling
    738       conventions start at 64.</dd>
    739 </dl>
    740 
    741 <p>More calling conventions can be added/defined on an as-needed basis, to
    742    support Pascal conventions or any other well-known target-independent
    743    convention.</p>
    744 
    745 </div>
    746 
    747 <!-- ======================================================================= -->
    748 <h3>
    749   <a name="visibility">Visibility Styles</a>
    750 </h3>
    751 
    752 <div>
    753 
    754 <p>All Global Variables and Functions have one of the following visibility
    755    styles:</p>
    756 
    757 <dl>
    758   <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
    759   <dd>On targets that use the ELF object file format, default visibility means
    760       that the declaration is visible to other modules and, in shared libraries,
    761       means that the declared entity may be overridden. On Darwin, default
    762       visibility means that the declaration is visible to other modules. Default
    763       visibility corresponds to "external linkage" in the language.</dd>
    764 
    765   <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
    766   <dd>Two declarations of an object with hidden visibility refer to the same
    767       object if they are in the same shared object. Usually, hidden visibility
    768       indicates that the symbol will not be placed into the dynamic symbol
    769       table, so no other module (executable or shared library) can reference it
    770       directly.</dd>
    771 
    772   <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
    773   <dd>On ELF, protected visibility indicates that the symbol will be placed in
    774       the dynamic symbol table, but that references within the defining module
    775       will bind to the local symbol. That is, the symbol cannot be overridden by
    776       another module.</dd>
    777 </dl>
    778 
    779 </div>
    780 
    781 <!-- ======================================================================= -->
    782 <h3>
    783   <a name="namedtypes">Named Types</a>
    784 </h3>
    785 
    786 <div>
    787 
    788 <p>LLVM IR allows you to specify name aliases for certain types.  This can make
    789    it easier to read the IR and make the IR more condensed (particularly when
    790    recursive types are involved).  An example of a name specification is:</p>
    791 
    792 <pre class="doc_code">
    793 %mytype = type { %mytype*, i32 }
    794 </pre>
    795 
    796 <p>You may give a name to any <a href="#typesystem">type</a> except
    797    "<a href="#t_void">void</a>".  Type name aliases may be used anywhere a type
    798    is expected with the syntax "%mytype".</p>
    799 
    800 <p>Note that type names are aliases for the structural type that they indicate,
    801    and that you can therefore specify multiple names for the same type.  This
    802    often leads to confusing behavior when dumping out a .ll file.  Since LLVM IR
    803    uses structural typing, the name is not part of the type.  When printing out
    804    LLVM IR, the printer will pick <em>one name</em> to render all types of a
    805    particular shape.  This means that if you have code where two different
    806    source types end up having the same LLVM type, that the dumper will sometimes
    807    print the "wrong" or unexpected type.  This is an important design point and
    808    isn't going to change.</p>
    809 
    810 </div>
    811 
    812 <!-- ======================================================================= -->
    813 <h3>
    814   <a name="globalvars">Global Variables</a>
    815 </h3>
    816 
    817 <div>
    818 
    819 <p>Global variables define regions of memory allocated at compilation time
    820    instead of run-time.  Global variables may optionally be initialized, may
    821    have an explicit section to be placed in, and may have an optional explicit
    822    alignment specified.  A variable may be defined as "thread_local", which
    823    means that it will not be shared by threads (each thread will have a
    824    separated copy of the variable).  A variable may be defined as a global
    825    "constant," which indicates that the contents of the variable
    826    will <b>never</b> be modified (enabling better optimization, allowing the
    827    global data to be placed in the read-only section of an executable, etc).
    828    Note that variables that need runtime initialization cannot be marked
    829    "constant" as there is a store to the variable.</p>
    830 
    831 <p>LLVM explicitly allows <em>declarations</em> of global variables to be marked
    832    constant, even if the final definition of the global is not.  This capability
    833    can be used to enable slightly better optimization of the program, but
    834    requires the language definition to guarantee that optimizations based on the
    835    'constantness' are valid for the translation units that do not include the
    836    definition.</p>
    837 
    838 <p>As SSA values, global variables define pointer values that are in scope
    839    (i.e. they dominate) all basic blocks in the program.  Global variables
    840    always define a pointer to their "content" type because they describe a
    841    region of memory, and all memory objects in LLVM are accessed through
    842    pointers.</p>
    843 
    844 <p>Global variables can be marked with <tt>unnamed_addr</tt> which indicates
    845   that the address is not significant, only the content. Constants marked
    846   like this can be merged with other constants if they have the same
    847   initializer. Note that a constant with significant address <em>can</em>
    848   be merged with a <tt>unnamed_addr</tt> constant, the result being a
    849   constant whose address is significant.</p>
    850 
    851 <p>A global variable may be declared to reside in a target-specific numbered
    852    address space. For targets that support them, address spaces may affect how
    853    optimizations are performed and/or what target instructions are used to
    854    access the variable. The default address space is zero. The address space
    855    qualifier must precede any other attributes.</p>
    856 
    857 <p>LLVM allows an explicit section to be specified for globals.  If the target
    858    supports it, it will emit globals to the section specified.</p>
    859 
    860 <p>An explicit alignment may be specified for a global, which must be a power
    861    of 2.  If not present, or if the alignment is set to zero, the alignment of
    862    the global is set by the target to whatever it feels convenient.  If an
    863    explicit alignment is specified, the global is forced to have exactly that
    864    alignment.  Targets and optimizers are not allowed to over-align the global
    865    if the global has an assigned section.  In this case, the extra alignment
    866    could be observable: for example, code could assume that the globals are
    867    densely packed in their section and try to iterate over them as an array,
    868    alignment padding would break this iteration.</p>
    869 
    870 <p>For example, the following defines a global in a numbered address space with
    871    an initializer, section, and alignment:</p>
    872 
    873 <pre class="doc_code">
    874 @G = addrspace(5) constant float 1.0, section "foo", align 4
    875 </pre>
    876 
    877 </div>
    878 
    879 
    880 <!-- ======================================================================= -->
    881 <h3>
    882   <a name="functionstructure">Functions</a>
    883 </h3>
    884 
    885 <div>
    886 
    887 <p>LLVM function definitions consist of the "<tt>define</tt>" keyword, an
    888    optional <a href="#linkage">linkage type</a>, an optional
    889    <a href="#visibility">visibility style</a>, an optional
    890    <a href="#callingconv">calling convention</a>,
    891    an optional <tt>unnamed_addr</tt> attribute, a return type, an optional
    892    <a href="#paramattrs">parameter attribute</a> for the return type, a function
    893    name, a (possibly empty) argument list (each with optional
    894    <a href="#paramattrs">parameter attributes</a>), optional
    895    <a href="#fnattrs">function attributes</a>, an optional section, an optional
    896    alignment, an optional <a href="#gc">garbage collector name</a>, an opening
    897    curly brace, a list of basic blocks, and a closing curly brace.</p>
    898 
    899 <p>LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
    900    optional <a href="#linkage">linkage type</a>, an optional
    901    <a href="#visibility">visibility style</a>, an optional
    902    <a href="#callingconv">calling convention</a>,
    903    an optional <tt>unnamed_addr</tt> attribute, a return type, an optional
    904    <a href="#paramattrs">parameter attribute</a> for the return type, a function
    905    name, a possibly empty list of arguments, an optional alignment, and an
    906    optional <a href="#gc">garbage collector name</a>.</p>
    907 
    908 <p>A function definition contains a list of basic blocks, forming the CFG
    909    (Control Flow Graph) for the function.  Each basic block may optionally start
    910    with a label (giving the basic block a symbol table entry), contains a list
    911    of instructions, and ends with a <a href="#terminators">terminator</a>
    912    instruction (such as a branch or function return).</p>
    913 
    914 <p>The first basic block in a function is special in two ways: it is immediately
    915    executed on entrance to the function, and it is not allowed to have
    916    predecessor basic blocks (i.e. there can not be any branches to the entry
    917    block of a function).  Because the block can have no predecessors, it also
    918    cannot have any <a href="#i_phi">PHI nodes</a>.</p>
    919 
    920 <p>LLVM allows an explicit section to be specified for functions.  If the target
    921    supports it, it will emit functions to the section specified.</p>
    922 
    923 <p>An explicit alignment may be specified for a function.  If not present, or if
    924    the alignment is set to zero, the alignment of the function is set by the
    925    target to whatever it feels convenient.  If an explicit alignment is
    926    specified, the function is forced to have at least that much alignment.  All
    927    alignments must be a power of 2.</p>
    928 
    929 <p>If the <tt>unnamed_addr</tt> attribute is given, the address is know to not
    930   be significant and two identical functions can be merged</p>.
    931 
    932 <h5>Syntax:</h5>
    933 <pre class="doc_code">
    934 define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
    935        [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
    936        &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
    937        [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
    938        [<a href="#gc">gc</a>] { ... }
    939 </pre>
    940 
    941 </div>
    942 
    943 <!-- ======================================================================= -->
    944 <h3>
    945   <a name="aliasstructure">Aliases</a>
    946 </h3>
    947 
    948 <div>
    949 
    950 <p>Aliases act as "second name" for the aliasee value (which can be either
    951    function, global variable, another alias or bitcast of global value). Aliases
    952    may have an optional <a href="#linkage">linkage type</a>, and an
    953    optional <a href="#visibility">visibility style</a>.</p>
    954 
    955 <h5>Syntax:</h5>
    956 <pre class="doc_code">
    957 @&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
    958 </pre>
    959 
    960 </div>
    961 
    962 <!-- ======================================================================= -->
    963 <h3>
    964   <a name="namedmetadatastructure">Named Metadata</a>
    965 </h3>
    966 
    967 <div>
    968 
    969 <p>Named metadata is a collection of metadata. <a href="#metadata">Metadata
    970    nodes</a> (but not metadata strings) are the only valid operands for
    971    a named metadata.</p>
    972 
    973 <h5>Syntax:</h5>
    974 <pre class="doc_code">
    975 ; Some unnamed metadata nodes, which are referenced by the named metadata.
    976 !0 = metadata !{metadata !"zero"}
    977 !1 = metadata !{metadata !"one"}
    978 !2 = metadata !{metadata !"two"}
    979 ; A named metadata.
    980 !name = !{!0, !1, !2}
    981 </pre>
    982 
    983 </div>
    984 
    985 <!-- ======================================================================= -->
    986 <h3>
    987   <a name="paramattrs">Parameter Attributes</a>
    988 </h3>
    989 
    990 <div>
    991 
    992 <p>The return type and each parameter of a function type may have a set of
    993    <i>parameter attributes</i> associated with them. Parameter attributes are
    994    used to communicate additional information about the result or parameters of
    995    a function. Parameter attributes are considered to be part of the function,
    996    not of the function type, so functions with different parameter attributes
    997    can have the same function type.</p>
    998 
    999 <p>Parameter attributes are simple keywords that follow the type specified. If
   1000    multiple parameter attributes are needed, they are space separated. For
   1001    example:</p>
   1002 
   1003 <pre class="doc_code">
   1004 declare i32 @printf(i8* noalias nocapture, ...)
   1005 declare i32 @atoi(i8 zeroext)
   1006 declare signext i8 @returns_signed_char()
   1007 </pre>
   1008 
   1009 <p>Note that any attributes for the function result (<tt>nounwind</tt>,
   1010    <tt>readonly</tt>) come immediately after the argument list.</p>
   1011 
   1012 <p>Currently, only the following parameter attributes are defined:</p>
   1013 
   1014 <dl>
   1015   <dt><tt><b>zeroext</b></tt></dt>
   1016   <dd>This indicates to the code generator that the parameter or return value
   1017       should be zero-extended to the extent required by the target's ABI (which
   1018       is usually 32-bits, but is 8-bits for a i1 on x86-64) by the caller (for a
   1019       parameter) or the callee (for a return value).</dd>
   1020 
   1021   <dt><tt><b>signext</b></tt></dt>
   1022   <dd>This indicates to the code generator that the parameter or return value
   1023       should be sign-extended to the extent required by the target's ABI (which
   1024       is usually 32-bits) by the caller (for a parameter) or the callee (for a
   1025       return value).</dd>
   1026 
   1027   <dt><tt><b>inreg</b></tt></dt>
   1028   <dd>This indicates that this parameter or return value should be treated in a
   1029       special target-dependent fashion during while emitting code for a function
   1030       call or return (usually, by putting it in a register as opposed to memory,
   1031       though some targets use it to distinguish between two different kinds of
   1032       registers).  Use of this attribute is target-specific.</dd>
   1033 
   1034   <dt><tt><b><a name="byval">byval</a></b></tt></dt>
   1035   <dd><p>This indicates that the pointer parameter should really be passed by
   1036       value to the function.  The attribute implies that a hidden copy of the
   1037       pointee
   1038       is made between the caller and the callee, so the callee is unable to
   1039       modify the value in the callee.  This attribute is only valid on LLVM
   1040       pointer arguments.  It is generally used to pass structs and arrays by
   1041       value, but is also valid on pointers to scalars.  The copy is considered
   1042       to belong to the caller not the callee (for example,
   1043       <tt><a href="#readonly">readonly</a></tt> functions should not write to
   1044       <tt>byval</tt> parameters). This is not a valid attribute for return
   1045       values.</p>
   1046       
   1047       <p>The byval attribute also supports specifying an alignment with
   1048       the align attribute.  It indicates the alignment of the stack slot to
   1049       form and the known alignment of the pointer specified to the call site. If
   1050       the alignment is not specified, then the code generator makes a
   1051       target-specific assumption.</p></dd>
   1052 
   1053   <dt><tt><b><a name="sret">sret</a></b></tt></dt>
   1054   <dd>This indicates that the pointer parameter specifies the address of a
   1055       structure that is the return value of the function in the source program.
   1056       This pointer must be guaranteed by the caller to be valid: loads and
   1057       stores to the structure may be assumed by the callee to not to trap.  This
   1058       may only be applied to the first parameter. This is not a valid attribute
   1059       for return values. </dd>
   1060 
   1061   <dt><tt><b><a name="noalias">noalias</a></b></tt></dt>
   1062   <dd>This indicates that pointer values
   1063       <a href="#pointeraliasing"><i>based</i></a> on the argument or return
   1064       value do not alias pointer values which are not <i>based</i> on it,
   1065       ignoring certain "irrelevant" dependencies.
   1066       For a call to the parent function, dependencies between memory
   1067       references from before or after the call and from those during the call
   1068       are "irrelevant" to the <tt>noalias</tt> keyword for the arguments and
   1069       return value used in that call.
   1070       The caller shares the responsibility with the callee for ensuring that
   1071       these requirements are met.
   1072       For further details, please see the discussion of the NoAlias response in
   1073       <a href="AliasAnalysis.html#MustMayNo">alias analysis</a>.<br>
   1074 <br>
   1075       Note that this definition of <tt>noalias</tt> is intentionally
   1076       similar to the definition of <tt>restrict</tt> in C99 for function
   1077       arguments, though it is slightly weaker.
   1078 <br>
   1079       For function return values, C99's <tt>restrict</tt> is not meaningful,
   1080       while LLVM's <tt>noalias</tt> is.
   1081       </dd>
   1082 
   1083   <dt><tt><b><a name="nocapture">nocapture</a></b></tt></dt>
   1084   <dd>This indicates that the callee does not make any copies of the pointer
   1085       that outlive the callee itself. This is not a valid attribute for return
   1086       values.</dd>
   1087 
   1088   <dt><tt><b><a name="nest">nest</a></b></tt></dt>
   1089   <dd>This indicates that the pointer parameter can be excised using the
   1090       <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
   1091       attribute for return values.</dd>
   1092 </dl>
   1093 
   1094 </div>
   1095 
   1096 <!-- ======================================================================= -->
   1097 <h3>
   1098   <a name="gc">Garbage Collector Names</a>
   1099 </h3>
   1100 
   1101 <div>
   1102 
   1103 <p>Each function may specify a garbage collector name, which is simply a
   1104    string:</p>
   1105 
   1106 <pre class="doc_code">
   1107 define void @f() gc "name" { ... }
   1108 </pre>
   1109 
   1110 <p>The compiler declares the supported values of <i>name</i>. Specifying a
   1111    collector which will cause the compiler to alter its output in order to
   1112    support the named garbage collection algorithm.</p>
   1113 
   1114 </div>
   1115 
   1116 <!-- ======================================================================= -->
   1117 <h3>
   1118   <a name="fnattrs">Function Attributes</a>
   1119 </h3>
   1120 
   1121 <div>
   1122 
   1123 <p>Function attributes are set to communicate additional information about a
   1124    function. Function attributes are considered to be part of the function, not
   1125    of the function type, so functions with different parameter attributes can
   1126    have the same function type.</p>
   1127 
   1128 <p>Function attributes are simple keywords that follow the type specified. If
   1129    multiple attributes are needed, they are space separated. For example:</p>
   1130 
   1131 <pre class="doc_code">
   1132 define void @f() noinline { ... }
   1133 define void @f() alwaysinline { ... }
   1134 define void @f() alwaysinline optsize { ... }
   1135 define void @f() optsize { ... }
   1136 </pre>
   1137 
   1138 <dl>
   1139   <dt><tt><b>alignstack(&lt;<em>n</em>&gt;)</b></tt></dt>
   1140   <dd>This attribute indicates that, when emitting the prologue and epilogue,
   1141       the backend should forcibly align the stack pointer. Specify the
   1142       desired alignment, which must be a power of two, in parentheses.
   1143 
   1144   <dt><tt><b>alwaysinline</b></tt></dt>
   1145   <dd>This attribute indicates that the inliner should attempt to inline this
   1146       function into callers whenever possible, ignoring any active inlining size
   1147       threshold for this caller.</dd>
   1148 
   1149   <dt><tt><b>nonlazybind</b></tt></dt>
   1150   <dd>This attribute suppresses lazy symbol binding for the function. This
   1151       may make calls to the function faster, at the cost of extra program
   1152       startup time if the function is not called during program startup.</dd>
   1153 
   1154   <dt><tt><b>inlinehint</b></tt></dt>
   1155   <dd>This attribute indicates that the source code contained a hint that inlining
   1156       this function is desirable (such as the "inline" keyword in C/C++).  It
   1157       is just a hint; it imposes no requirements on the inliner.</dd>
   1158 
   1159   <dt><tt><b>naked</b></tt></dt>
   1160   <dd>This attribute disables prologue / epilogue emission for the function.
   1161       This can have very system-specific consequences.</dd>
   1162 
   1163   <dt><tt><b>noimplicitfloat</b></tt></dt>
   1164   <dd>This attributes disables implicit floating point instructions.</dd>
   1165 
   1166   <dt><tt><b>noinline</b></tt></dt>
   1167   <dd>This attribute indicates that the inliner should never inline this
   1168       function in any situation. This attribute may not be used together with
   1169       the <tt>alwaysinline</tt> attribute.</dd>
   1170 
   1171   <dt><tt><b>noredzone</b></tt></dt>
   1172   <dd>This attribute indicates that the code generator should not use a red
   1173       zone, even if the target-specific ABI normally permits it.</dd>
   1174 
   1175   <dt><tt><b>noreturn</b></tt></dt>
   1176   <dd>This function attribute indicates that the function never returns
   1177       normally.  This produces undefined behavior at runtime if the function
   1178       ever does dynamically return.</dd>
   1179 
   1180   <dt><tt><b>nounwind</b></tt></dt>
   1181   <dd>This function attribute indicates that the function never returns with an
   1182       unwind or exceptional control flow.  If the function does unwind, its
   1183       runtime behavior is undefined.</dd>
   1184 
   1185   <dt><tt><b>optsize</b></tt></dt>
   1186   <dd>This attribute suggests that optimization passes and code generator passes
   1187       make choices that keep the code size of this function low, and otherwise
   1188       do optimizations specifically to reduce code size.</dd>
   1189 
   1190   <dt><tt><b>readnone</b></tt></dt>
   1191   <dd>This attribute indicates that the function computes its result (or decides
   1192       to unwind an exception) based strictly on its arguments, without
   1193       dereferencing any pointer arguments or otherwise accessing any mutable
   1194       state (e.g. memory, control registers, etc) visible to caller functions.
   1195       It does not write through any pointer arguments
   1196       (including <tt><a href="#byval">byval</a></tt> arguments) and never
   1197       changes any state visible to callers.  This means that it cannot unwind
   1198       exceptions by calling the <tt>C++</tt> exception throwing methods, but
   1199       could use the <tt>unwind</tt> instruction.</dd>
   1200 
   1201   <dt><tt><b><a name="readonly">readonly</a></b></tt></dt>
   1202   <dd>This attribute indicates that the function does not write through any
   1203       pointer arguments (including <tt><a href="#byval">byval</a></tt>
   1204       arguments) or otherwise modify any state (e.g. memory, control registers,
   1205       etc) visible to caller functions.  It may dereference pointer arguments
   1206       and read state that may be set in the caller.  A readonly function always
   1207       returns the same value (or unwinds an exception identically) when called
   1208       with the same set of arguments and global state.  It cannot unwind an
   1209       exception by calling the <tt>C++</tt> exception throwing methods, but may
   1210       use the <tt>unwind</tt> instruction.</dd>
   1211 
   1212   <dt><tt><b><a name="ssp">ssp</a></b></tt></dt>
   1213   <dd>This attribute indicates that the function should emit a stack smashing
   1214       protector. It is in the form of a "canary"&mdash;a random value placed on
   1215       the stack before the local variables that's checked upon return from the
   1216       function to see if it has been overwritten. A heuristic is used to
   1217       determine if a function needs stack protectors or not.<br>
   1218 <br>
   1219       If a function that has an <tt>ssp</tt> attribute is inlined into a
   1220       function that doesn't have an <tt>ssp</tt> attribute, then the resulting
   1221       function will have an <tt>ssp</tt> attribute.</dd>
   1222 
   1223   <dt><tt><b>sspreq</b></tt></dt>
   1224   <dd>This attribute indicates that the function should <em>always</em> emit a
   1225       stack smashing protector. This overrides
   1226       the <tt><a href="#ssp">ssp</a></tt> function attribute.<br>
   1227 <br>
   1228       If a function that has an <tt>sspreq</tt> attribute is inlined into a
   1229       function that doesn't have an <tt>sspreq</tt> attribute or which has
   1230       an <tt>ssp</tt> attribute, then the resulting function will have
   1231       an <tt>sspreq</tt> attribute.</dd>
   1232 
   1233   <dt><tt><b><a name="uwtable">uwtable</a></b></tt></dt>
   1234   <dd>This attribute indicates that the ABI being targeted requires that
   1235       an unwind table entry be produce for this function even if we can
   1236       show that no exceptions passes by it. This is normally the case for
   1237       the ELF x86-64 abi, but it can be disabled for some compilation
   1238       units.</dd>
   1239 
   1240   <dt><tt><b><a name="returns_twice">returns_twice</a></b></tt></dt>
   1241   <dd>This attribute indicates that this function can return
   1242   twice. The C <code>setjmp</code> is an example of such a function.
   1243   The compiler disables some optimizations (like tail calls) in the caller of
   1244   these functions.</dd>
   1245 </dl>
   1246 
   1247 </div>
   1248 
   1249 <!-- ======================================================================= -->
   1250 <h3>
   1251   <a name="moduleasm">Module-Level Inline Assembly</a>
   1252 </h3>
   1253 
   1254 <div>
   1255 
   1256 <p>Modules may contain "module-level inline asm" blocks, which corresponds to
   1257    the GCC "file scope inline asm" blocks.  These blocks are internally
   1258    concatenated by LLVM and treated as a single unit, but may be separated in
   1259    the <tt>.ll</tt> file if desired.  The syntax is very simple:</p>
   1260 
   1261 <pre class="doc_code">
   1262 module asm "inline asm code goes here"
   1263 module asm "more can go here"
   1264 </pre>
   1265 
   1266 <p>The strings can contain any character by escaping non-printable characters.
   1267    The escape sequence used is simply "\xx" where "xx" is the two digit hex code
   1268    for the number.</p>
   1269 
   1270 <p>The inline asm code is simply printed to the machine code .s file when
   1271    assembly code is generated.</p>
   1272 
   1273 </div>
   1274 
   1275 <!-- ======================================================================= -->
   1276 <h3>
   1277   <a name="datalayout">Data Layout</a>
   1278 </h3>
   1279 
   1280 <div>
   1281 
   1282 <p>A module may specify a target specific data layout string that specifies how
   1283    data is to be laid out in memory. The syntax for the data layout is
   1284    simply:</p>
   1285 
   1286 <pre class="doc_code">
   1287 target datalayout = "<i>layout specification</i>"
   1288 </pre>
   1289 
   1290 <p>The <i>layout specification</i> consists of a list of specifications
   1291    separated by the minus sign character ('-').  Each specification starts with
   1292    a letter and may include other information after the letter to define some
   1293    aspect of the data layout.  The specifications accepted are as follows:</p>
   1294 
   1295 <dl>
   1296   <dt><tt>E</tt></dt>
   1297   <dd>Specifies that the target lays out data in big-endian form. That is, the
   1298       bits with the most significance have the lowest address location.</dd>
   1299 
   1300   <dt><tt>e</tt></dt>
   1301   <dd>Specifies that the target lays out data in little-endian form. That is,
   1302       the bits with the least significance have the lowest address
   1303       location.</dd>
   1304 
   1305   <dt><tt>S<i>size</i></tt></dt>
   1306   <dd>Specifies the natural alignment of the stack in bits. Alignment promotion
   1307       of stack variables is limited to the natural stack alignment to avoid
   1308       dynamic stack realignment. The stack alignment must be a multiple of
   1309       8-bits. If omitted, the natural stack alignment defaults to "unspecified",
   1310       which does not prevent any alignment promotions.</dd>
   1311 
   1312   <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
   1313   <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
   1314       <i>preferred</i> alignments. All sizes are in bits. Specifying
   1315       the <i>pref</i> alignment is optional. If omitted, the
   1316       preceding <tt>:</tt> should be omitted too.</dd>
   1317 
   1318   <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
   1319   <dd>This specifies the alignment for an integer type of a given bit
   1320       <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
   1321 
   1322   <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
   1323   <dd>This specifies the alignment for a vector type of a given bit
   1324       <i>size</i>.</dd>
   1325 
   1326   <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
   1327   <dd>This specifies the alignment for a floating point type of a given bit
   1328       <i>size</i>. Only values of <i>size</i> that are supported by the target
   1329       will work.  32 (float) and 64 (double) are supported on all targets;
   1330       80 or 128 (different flavors of long double) are also supported on some
   1331       targets.
   1332 
   1333   <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
   1334   <dd>This specifies the alignment for an aggregate type of a given bit
   1335       <i>size</i>.</dd>
   1336 
   1337   <dt><tt>s<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
   1338   <dd>This specifies the alignment for a stack object of a given bit
   1339       <i>size</i>.</dd>
   1340 
   1341   <dt><tt>n<i>size1</i>:<i>size2</i>:<i>size3</i>...</tt></dt>
   1342   <dd>This specifies a set of native integer widths for the target CPU
   1343       in bits.  For example, it might contain "n32" for 32-bit PowerPC,
   1344       "n32:64" for PowerPC 64, or "n8:16:32:64" for X86-64.  Elements of
   1345       this set are considered to support most general arithmetic
   1346       operations efficiently.</dd>
   1347 </dl>
   1348 
   1349 <p>When constructing the data layout for a given target, LLVM starts with a
   1350    default set of specifications which are then (possibly) overridden by the
   1351    specifications in the <tt>datalayout</tt> keyword. The default specifications
   1352    are given in this list:</p>
   1353 
   1354 <ul>
   1355   <li><tt>E</tt> - big endian</li>
   1356   <li><tt>p:64:64:64</tt> - 64-bit pointers with 64-bit alignment</li>
   1357   <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
   1358   <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
   1359   <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
   1360   <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
   1361   <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
   1362   alignment of 64-bits</li>
   1363   <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
   1364   <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
   1365   <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
   1366   <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
   1367   <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
   1368   <li><tt>s0:64:64</tt> - stack objects are 64-bit aligned</li>
   1369 </ul>
   1370 
   1371 <p>When LLVM is determining the alignment for a given type, it uses the
   1372    following rules:</p>
   1373 
   1374 <ol>
   1375   <li>If the type sought is an exact match for one of the specifications, that
   1376       specification is used.</li>
   1377 
   1378   <li>If no match is found, and the type sought is an integer type, then the
   1379       smallest integer type that is larger than the bitwidth of the sought type
   1380       is used. If none of the specifications are larger than the bitwidth then
   1381       the the largest integer type is used. For example, given the default
   1382       specifications above, the i7 type will use the alignment of i8 (next
   1383       largest) while both i65 and i256 will use the alignment of i64 (largest
   1384       specified).</li>
   1385 
   1386   <li>If no match is found, and the type sought is a vector type, then the
   1387       largest vector type that is smaller than the sought vector type will be
   1388       used as a fall back.  This happens because &lt;128 x double&gt; can be
   1389       implemented in terms of 64 &lt;2 x double&gt;, for example.</li>
   1390 </ol>
   1391 
   1392 <p>The function of the data layout string may not be what you expect.  Notably,
   1393    this is not a specification from the frontend of what alignment the code
   1394    generator should use.</p>
   1395 
   1396 <p>Instead, if specified, the target data layout is required to match what the 
   1397    ultimate <em>code generator</em> expects.  This string is used by the 
   1398    mid-level optimizers to
   1399    improve code, and this only works if it matches what the ultimate code 
   1400    generator uses.  If you would like to generate IR that does not embed this
   1401    target-specific detail into the IR, then you don't have to specify the 
   1402    string.  This will disable some optimizations that require precise layout
   1403    information, but this also prevents those optimizations from introducing
   1404    target specificity into the IR.</p>
   1405 
   1406 
   1407 
   1408 </div>
   1409 
   1410 <!-- ======================================================================= -->
   1411 <h3>
   1412   <a name="pointeraliasing">Pointer Aliasing Rules</a>
   1413 </h3>
   1414 
   1415 <div>
   1416 
   1417 <p>Any memory access must be done through a pointer value associated
   1418 with an address range of the memory access, otherwise the behavior
   1419 is undefined. Pointer values are associated with address ranges
   1420 according to the following rules:</p>
   1421 
   1422 <ul>
   1423   <li>A pointer value is associated with the addresses associated with
   1424       any value it is <i>based</i> on.
   1425   <li>An address of a global variable is associated with the address
   1426       range of the variable's storage.</li>
   1427   <li>The result value of an allocation instruction is associated with
   1428       the address range of the allocated storage.</li>
   1429   <li>A null pointer in the default address-space is associated with
   1430       no address.</li>
   1431   <li>An integer constant other than zero or a pointer value returned
   1432       from a function not defined within LLVM may be associated with address
   1433       ranges allocated through mechanisms other than those provided by
   1434       LLVM. Such ranges shall not overlap with any ranges of addresses
   1435       allocated by mechanisms provided by LLVM.</li>
   1436 </ul>
   1437 
   1438 <p>A pointer value is <i>based</i> on another pointer value according
   1439    to the following rules:</p>
   1440 
   1441 <ul>
   1442   <li>A pointer value formed from a
   1443       <tt><a href="#i_getelementptr">getelementptr</a></tt> operation
   1444       is <i>based</i> on the first operand of the <tt>getelementptr</tt>.</li>
   1445   <li>The result value of a
   1446       <tt><a href="#i_bitcast">bitcast</a></tt> is <i>based</i> on the operand
   1447       of the <tt>bitcast</tt>.</li>
   1448   <li>A pointer value formed by an
   1449       <tt><a href="#i_inttoptr">inttoptr</a></tt> is <i>based</i> on all
   1450       pointer values that contribute (directly or indirectly) to the
   1451       computation of the pointer's value.</li>
   1452   <li>The "<i>based</i> on" relationship is transitive.</li>
   1453 </ul>
   1454 
   1455 <p>Note that this definition of <i>"based"</i> is intentionally
   1456    similar to the definition of <i>"based"</i> in C99, though it is
   1457    slightly weaker.</p>
   1458 
   1459 <p>LLVM IR does not associate types with memory. The result type of a
   1460 <tt><a href="#i_load">load</a></tt> merely indicates the size and
   1461 alignment of the memory from which to load, as well as the
   1462 interpretation of the value. The first operand type of a
   1463 <tt><a href="#i_store">store</a></tt> similarly only indicates the size
   1464 and alignment of the store.</p>
   1465 
   1466 <p>Consequently, type-based alias analysis, aka TBAA, aka
   1467 <tt>-fstrict-aliasing</tt>, is not applicable to general unadorned
   1468 LLVM IR. <a href="#metadata">Metadata</a> may be used to encode
   1469 additional information which specialized optimization passes may use
   1470 to implement type-based alias analysis.</p>
   1471 
   1472 </div>
   1473 
   1474 <!-- ======================================================================= -->
   1475 <h3>
   1476   <a name="volatile">Volatile Memory Accesses</a>
   1477 </h3>
   1478 
   1479 <div>
   1480 
   1481 <p>Certain memory accesses, such as <a href="#i_load"><tt>load</tt></a>s, <a
   1482 href="#i_store"><tt>store</tt></a>s, and <a
   1483 href="#int_memcpy"><tt>llvm.memcpy</tt></a>s may be marked <tt>volatile</tt>.
   1484 The optimizers must not change the number of volatile operations or change their
   1485 order of execution relative to other volatile operations.  The optimizers
   1486 <i>may</i> change the order of volatile operations relative to non-volatile
   1487 operations.  This is not Java's "volatile" and has no cross-thread
   1488 synchronization behavior.</p>
   1489 
   1490 </div>
   1491 
   1492 <!-- ======================================================================= -->
   1493 <h3>
   1494   <a name="memmodel">Memory Model for Concurrent Operations</a>
   1495 </h3>
   1496 
   1497 <div>
   1498 
   1499 <p>The LLVM IR does not define any way to start parallel threads of execution
   1500 or to register signal handlers. Nonetheless, there are platform-specific
   1501 ways to create them, and we define LLVM IR's behavior in their presence. This
   1502 model is inspired by the C++0x memory model.</p>
   1503 
   1504 <p>For a more informal introduction to this model, see the
   1505 <a href="Atomics.html">LLVM Atomic Instructions and Concurrency Guide</a>.
   1506 
   1507 <p>We define a <i>happens-before</i> partial order as the least partial order
   1508 that</p>
   1509 <ul>
   1510   <li>Is a superset of single-thread program order, and</li>
   1511   <li>When a <i>synchronizes-with</i> <tt>b</tt>, includes an edge from
   1512       <tt>a</tt> to <tt>b</tt>. <i>Synchronizes-with</i> pairs are introduced
   1513       by platform-specific techniques, like pthread locks, thread
   1514       creation, thread joining, etc., and by atomic instructions.
   1515       (See also <a href="#ordering">Atomic Memory Ordering Constraints</a>).
   1516       </li>
   1517 </ul>
   1518 
   1519 <p>Note that program order does not introduce <i>happens-before</i> edges
   1520 between a thread and signals executing inside that thread.</p>
   1521 
   1522 <p>Every (defined) read operation (load instructions, memcpy, atomic
   1523 loads/read-modify-writes, etc.) <var>R</var> reads a series of bytes written by
   1524 (defined) write operations (store instructions, atomic
   1525 stores/read-modify-writes, memcpy, etc.). For the purposes of this section,
   1526 initialized globals are considered to have a write of the initializer which is
   1527 atomic and happens before any other read or write of the memory in question.
   1528 For each byte of a read <var>R</var>, <var>R<sub>byte</sub></var> may see
   1529 any write to the same byte, except:</p>
   1530 
   1531 <ul>
   1532   <li>If <var>write<sub>1</sub></var> happens before
   1533       <var>write<sub>2</sub></var>, and <var>write<sub>2</sub></var> happens
   1534       before <var>R<sub>byte</sub></var>, then <var>R<sub>byte</sub></var>
   1535       does not see <var>write<sub>1</sub></var>.
   1536   <li>If <var>R<sub>byte</sub></var> happens before
   1537       <var>write<sub>3</sub></var>, then <var>R<sub>byte</sub></var> does not
   1538       see <var>write<sub>3</sub></var>.
   1539 </ul>
   1540 
   1541 <p>Given that definition, <var>R<sub>byte</sub></var> is defined as follows:
   1542 <ul>
   1543   <li>If <var>R</var> is volatile, the result is target-dependent. (Volatile
   1544       is supposed to give guarantees which can support
   1545       <code>sig_atomic_t</code> in C/C++, and may be used for accesses to
   1546       addresses which do not behave like normal memory.  It does not generally
   1547       provide cross-thread synchronization.)
   1548   <li>Otherwise, if there is no write to the same byte that happens before
   1549     <var>R<sub>byte</sub></var>, <var>R<sub>byte</sub></var> returns 
   1550     <tt>undef</tt> for that byte.
   1551   <li>Otherwise, if <var>R<sub>byte</sub></var> may see exactly one write,
   1552       <var>R<sub>byte</sub></var> returns the value written by that
   1553       write.</li>
   1554   <li>Otherwise, if <var>R</var> is atomic, and all the writes
   1555       <var>R<sub>byte</sub></var> may see are atomic, it chooses one of the
   1556       values written.  See the <a href="#ordering">Atomic Memory Ordering
   1557       Constraints</a> section for additional constraints on how the choice
   1558       is made.
   1559   <li>Otherwise <var>R<sub>byte</sub></var> returns <tt>undef</tt>.</li>
   1560 </ul>
   1561 
   1562 <p><var>R</var> returns the value composed of the series of bytes it read.
   1563 This implies that some bytes within the value may be <tt>undef</tt>
   1564 <b>without</b> the entire value being <tt>undef</tt>. Note that this only
   1565 defines the semantics of the operation; it doesn't mean that targets will
   1566 emit more than one instruction to read the series of bytes.</p>
   1567 
   1568 <p>Note that in cases where none of the atomic intrinsics are used, this model
   1569 places only one restriction on IR transformations on top of what is required
   1570 for single-threaded execution: introducing a store to a byte which might not
   1571 otherwise be stored is not allowed in general.  (Specifically, in the case
   1572 where another thread might write to and read from an address, introducing a
   1573 store can change a load that may see exactly one write into a load that may
   1574 see multiple writes.)</p>
   1575 
   1576 <!-- FIXME: This model assumes all targets where concurrency is relevant have
   1577 a byte-size store which doesn't affect adjacent bytes.  As far as I can tell,
   1578 none of the backends currently in the tree fall into this category; however,
   1579 there might be targets which care.  If there are, we want a paragraph
   1580 like the following:
   1581 
   1582 Targets may specify that stores narrower than a certain width are not
   1583 available; on such a target, for the purposes of this model, treat any
   1584 non-atomic write with an alignment or width less than the minimum width
   1585 as if it writes to the relevant surrounding bytes.
   1586 -->
   1587 
   1588 </div>
   1589 
   1590 <!-- ======================================================================= -->
   1591 <h3>
   1592       <a name="ordering">Atomic Memory Ordering Constraints</a>
   1593 </h3>
   1594 
   1595 <div>
   1596 
   1597 <p>Atomic instructions (<a href="#i_cmpxchg"><code>cmpxchg</code></a>,
   1598 <a href="#i_atomicrmw"><code>atomicrmw</code></a>,
   1599 <a href="#i_fence"><code>fence</code></a>,
   1600 <a href="#i_load"><code>atomic load</code></a>, and
   1601 <a href="#i_store"><code>atomic store</code></a>) take an ordering parameter
   1602 that determines which other atomic instructions on the same address they
   1603 <i>synchronize with</i>.  These semantics are borrowed from Java and C++0x,
   1604 but are somewhat more colloquial. If these descriptions aren't precise enough,
   1605 check those specs (see spec references in the
   1606 <a href="Atomic.html#introduction">atomics guide</a>).
   1607 <a href="#i_fence"><code>fence</code></a> instructions
   1608 treat these orderings somewhat differently since they don't take an address.
   1609 See that instruction's documentation for details.</p>
   1610 
   1611 <p>For a simpler introduction to the ordering constraints, see the
   1612 <a href="Atomics.html">LLVM Atomic Instructions and Concurrency Guide</a>.</p>
   1613 
   1614 <dl>
   1615 <dt><code>unordered</code></dt>
   1616 <dd>The set of values that can be read is governed by the happens-before
   1617 partial order. A value cannot be read unless some operation wrote it.
   1618 This is intended to provide a guarantee strong enough to model Java's
   1619 non-volatile shared variables.  This ordering cannot be specified for
   1620 read-modify-write operations; it is not strong enough to make them atomic
   1621 in any interesting way.</dd>
   1622 <dt><code>monotonic</code></dt>
   1623 <dd>In addition to the guarantees of <code>unordered</code>, there is a single
   1624 total order for modifications by <code>monotonic</code> operations on each
   1625 address. All modification orders must be compatible with the happens-before
   1626 order. There is no guarantee that the modification orders can be combined to
   1627 a global total order for the whole program (and this often will not be
   1628 possible). The read in an atomic read-modify-write operation
   1629 (<a href="#i_cmpxchg"><code>cmpxchg</code></a> and
   1630 <a href="#i_atomicrmw"><code>atomicrmw</code></a>)
   1631 reads the value in the modification order immediately before the value it
   1632 writes. If one atomic read happens before another atomic read of the same
   1633 address, the later read must see the same value or a later value in the
   1634 address's modification order. This disallows reordering of
   1635 <code>monotonic</code> (or stronger) operations on the same address. If an
   1636 address is written <code>monotonic</code>ally by one thread, and other threads
   1637 <code>monotonic</code>ally read that address repeatedly, the other threads must
   1638 eventually see the write. This corresponds to the C++0x/C1x
   1639 <code>memory_order_relaxed</code>.</dd>
   1640 <dt><code>acquire</code></dt>
   1641 <dd>In addition to the guarantees of <code>monotonic</code>,
   1642 a <i>synchronizes-with</i> edge may be formed with a <code>release</code>
   1643 operation. This is intended to model C++'s <code>memory_order_acquire</code>.</dd>
   1644 <dt><code>release</code></dt>
   1645 <dd>In addition to the guarantees of <code>monotonic</code>, if this operation
   1646 writes a value which is subsequently read by an <code>acquire</code> operation,
   1647 it <i>synchronizes-with</i> that operation.  (This isn't a complete
   1648 description; see the C++0x definition of a release sequence.) This corresponds
   1649 to the C++0x/C1x <code>memory_order_release</code>.</dd>
   1650 <dt><code>acq_rel</code> (acquire+release)</dt><dd>Acts as both an
   1651 <code>acquire</code> and <code>release</code> operation on its address.
   1652 This corresponds to the C++0x/C1x <code>memory_order_acq_rel</code>.</dd>
   1653 <dt><code>seq_cst</code> (sequentially consistent)</dt><dd>
   1654 <dd>In addition to the guarantees of <code>acq_rel</code>
   1655 (<code>acquire</code> for an operation which only reads, <code>release</code>
   1656 for an operation which only writes), there is a global total order on all
   1657 sequentially-consistent operations on all addresses, which is consistent with
   1658 the <i>happens-before</i> partial order and with the modification orders of
   1659 all the affected addresses. Each sequentially-consistent read sees the last
   1660 preceding write to the same address in this global order. This corresponds
   1661 to the C++0x/C1x <code>memory_order_seq_cst</code> and Java volatile.</dd>
   1662 </dl>
   1663 
   1664 <p id="singlethread">If an atomic operation is marked <code>singlethread</code>,
   1665 it only <i>synchronizes with</i> or participates in modification and seq_cst
   1666 total orderings with other operations running in the same thread (for example,
   1667 in signal handlers).</p>
   1668 
   1669 </div>
   1670 
   1671 </div>
   1672 
   1673 <!-- *********************************************************************** -->
   1674 <h2><a name="typesystem">Type System</a></h2>
   1675 <!-- *********************************************************************** -->
   1676 
   1677 <div>
   1678 
   1679 <p>The LLVM type system is one of the most important features of the
   1680    intermediate representation.  Being typed enables a number of optimizations
   1681    to be performed on the intermediate representation directly, without having
   1682    to do extra analyses on the side before the transformation.  A strong type
   1683    system makes it easier to read the generated code and enables novel analyses
   1684    and transformations that are not feasible to perform on normal three address
   1685    code representations.</p>
   1686 
   1687 <!-- ======================================================================= -->
   1688 <h3>
   1689   <a name="t_classifications">Type Classifications</a>
   1690 </h3>
   1691 
   1692 <div>
   1693 
   1694 <p>The types fall into a few useful classifications:</p>
   1695 
   1696 <table border="1" cellspacing="0" cellpadding="4">
   1697   <tbody>
   1698     <tr><th>Classification</th><th>Types</th></tr>
   1699     <tr>
   1700       <td><a href="#t_integer">integer</a></td>
   1701       <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
   1702     </tr>
   1703     <tr>
   1704       <td><a href="#t_floating">floating point</a></td>
   1705       <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
   1706     </tr>
   1707     <tr>
   1708       <td><a name="t_firstclass">first class</a></td>
   1709       <td><a href="#t_integer">integer</a>,
   1710           <a href="#t_floating">floating point</a>,
   1711           <a href="#t_pointer">pointer</a>,
   1712           <a href="#t_vector">vector</a>,
   1713           <a href="#t_struct">structure</a>,
   1714           <a href="#t_array">array</a>,
   1715           <a href="#t_label">label</a>,
   1716           <a href="#t_metadata">metadata</a>.
   1717       </td>
   1718     </tr>
   1719     <tr>
   1720       <td><a href="#t_primitive">primitive</a></td>
   1721       <td><a href="#t_label">label</a>,
   1722           <a href="#t_void">void</a>,
   1723           <a href="#t_integer">integer</a>,
   1724           <a href="#t_floating">floating point</a>,
   1725           <a href="#t_x86mmx">x86mmx</a>,
   1726           <a href="#t_metadata">metadata</a>.</td>
   1727     </tr>
   1728     <tr>
   1729       <td><a href="#t_derived">derived</a></td>
   1730       <td><a href="#t_array">array</a>,
   1731           <a href="#t_function">function</a>,
   1732           <a href="#t_pointer">pointer</a>,
   1733           <a href="#t_struct">structure</a>,
   1734           <a href="#t_vector">vector</a>,
   1735           <a href="#t_opaque">opaque</a>.
   1736       </td>
   1737     </tr>
   1738   </tbody>
   1739 </table>
   1740 
   1741 <p>The <a href="#t_firstclass">first class</a> types are perhaps the most
   1742    important.  Values of these types are the only ones which can be produced by
   1743    instructions.</p>
   1744 
   1745 </div>
   1746 
   1747 <!-- ======================================================================= -->
   1748 <h3>
   1749   <a name="t_primitive">Primitive Types</a>
   1750 </h3>
   1751 
   1752 <div>
   1753 
   1754 <p>The primitive types are the fundamental building blocks of the LLVM
   1755    system.</p>
   1756 
   1757 <!-- _______________________________________________________________________ -->
   1758 <h4>
   1759   <a name="t_integer">Integer Type</a>
   1760 </h4>
   1761 
   1762 <div>
   1763 
   1764 <h5>Overview:</h5>
   1765 <p>The integer type is a very simple type that simply specifies an arbitrary
   1766    bit width for the integer type desired. Any bit width from 1 bit to
   1767    2<sup>23</sup>-1 (about 8 million) can be specified.</p>
   1768 
   1769 <h5>Syntax:</h5>
   1770 <pre>
   1771   iN
   1772 </pre>
   1773 
   1774 <p>The number of bits the integer will occupy is specified by the <tt>N</tt>
   1775    value.</p>
   1776 
   1777 <h5>Examples:</h5>
   1778 <table class="layout">
   1779   <tr class="layout">
   1780     <td class="left"><tt>i1</tt></td>
   1781     <td class="left">a single-bit integer.</td>
   1782   </tr>
   1783   <tr class="layout">
   1784     <td class="left"><tt>i32</tt></td>
   1785     <td class="left">a 32-bit integer.</td>
   1786   </tr>
   1787   <tr class="layout">
   1788     <td class="left"><tt>i1942652</tt></td>
   1789     <td class="left">a really big integer of over 1 million bits.</td>
   1790   </tr>
   1791 </table>
   1792 
   1793 </div>
   1794 
   1795 <!-- _______________________________________________________________________ -->
   1796 <h4>
   1797   <a name="t_floating">Floating Point Types</a>
   1798 </h4>
   1799 
   1800 <div>
   1801 
   1802 <table>
   1803   <tbody>
   1804     <tr><th>Type</th><th>Description</th></tr>
   1805     <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
   1806     <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
   1807     <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
   1808     <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
   1809     <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
   1810   </tbody>
   1811 </table>
   1812 
   1813 </div>
   1814 
   1815 <!-- _______________________________________________________________________ -->
   1816 <h4>
   1817   <a name="t_x86mmx">X86mmx Type</a>
   1818 </h4>
   1819 
   1820 <div>
   1821 
   1822 <h5>Overview:</h5>
   1823 <p>The x86mmx type represents a value held in an MMX register on an x86 machine.  The operations allowed on it are quite limited:  parameters and return values, load and store, and bitcast.  User-specified MMX instructions are represented as intrinsic or asm calls with arguments and/or results of this type.  There are no arrays, vectors or constants of this type.</p>
   1824 
   1825 <h5>Syntax:</h5>
   1826 <pre>
   1827   x86mmx
   1828 </pre>
   1829 
   1830 </div>
   1831 
   1832 <!-- _______________________________________________________________________ -->
   1833 <h4>
   1834   <a name="t_void">Void Type</a>
   1835 </h4>
   1836 
   1837 <div>
   1838 
   1839 <h5>Overview:</h5>
   1840 <p>The void type does not represent any value and has no size.</p>
   1841 
   1842 <h5>Syntax:</h5>
   1843 <pre>
   1844   void
   1845 </pre>
   1846 
   1847 </div>
   1848 
   1849 <!-- _______________________________________________________________________ -->
   1850 <h4>
   1851   <a name="t_label">Label Type</a>
   1852 </h4>
   1853 
   1854 <div>
   1855 
   1856 <h5>Overview:</h5>
   1857 <p>The label type represents code labels.</p>
   1858 
   1859 <h5>Syntax:</h5>
   1860 <pre>
   1861   label
   1862 </pre>
   1863 
   1864 </div>
   1865 
   1866 <!-- _______________________________________________________________________ -->
   1867 <h4>
   1868   <a name="t_metadata">Metadata Type</a>
   1869 </h4>
   1870 
   1871 <div>
   1872 
   1873 <h5>Overview:</h5>
   1874 <p>The metadata type represents embedded metadata. No derived types may be
   1875    created from metadata except for <a href="#t_function">function</a>
   1876    arguments.
   1877 
   1878 <h5>Syntax:</h5>
   1879 <pre>
   1880   metadata
   1881 </pre>
   1882 
   1883 </div>
   1884 
   1885 </div>
   1886 
   1887 <!-- ======================================================================= -->
   1888 <h3>
   1889   <a name="t_derived">Derived Types</a>
   1890 </h3>
   1891 
   1892 <div>
   1893 
   1894 <p>The real power in LLVM comes from the derived types in the system.  This is
   1895    what allows a programmer to represent arrays, functions, pointers, and other
   1896    useful types.  Each of these types contain one or more element types which
   1897    may be a primitive type, or another derived type.  For example, it is
   1898    possible to have a two dimensional array, using an array as the element type
   1899    of another array.</p>
   1900 
   1901 </div>
   1902   
   1903 
   1904 <!-- _______________________________________________________________________ -->
   1905 <h4>
   1906   <a name="t_aggregate">Aggregate Types</a>
   1907 </h4>
   1908 
   1909 <div>
   1910 
   1911 <p>Aggregate Types are a subset of derived types that can contain multiple
   1912   member types. <a href="#t_array">Arrays</a>,
   1913   <a href="#t_struct">structs</a>, and <a href="#t_vector">vectors</a> are
   1914   aggregate types.</p>
   1915 
   1916 </div>
   1917 
   1918 <!-- _______________________________________________________________________ -->
   1919 <h4>
   1920   <a name="t_array">Array Type</a>
   1921 </h4>
   1922 
   1923 <div>
   1924 
   1925 <h5>Overview:</h5>
   1926 <p>The array type is a very simple derived type that arranges elements
   1927    sequentially in memory.  The array type requires a size (number of elements)
   1928    and an underlying data type.</p>
   1929 
   1930 <h5>Syntax:</h5>
   1931 <pre>
   1932   [&lt;# elements&gt; x &lt;elementtype&gt;]
   1933 </pre>
   1934 
   1935 <p>The number of elements is a constant integer value; <tt>elementtype</tt> may
   1936    be any type with a size.</p>
   1937 
   1938 <h5>Examples:</h5>
   1939 <table class="layout">
   1940   <tr class="layout">
   1941     <td class="left"><tt>[40 x i32]</tt></td>
   1942     <td class="left">Array of 40 32-bit integer values.</td>
   1943   </tr>
   1944   <tr class="layout">
   1945     <td class="left"><tt>[41 x i32]</tt></td>
   1946     <td class="left">Array of 41 32-bit integer values.</td>
   1947   </tr>
   1948   <tr class="layout">
   1949     <td class="left"><tt>[4 x i8]</tt></td>
   1950     <td class="left">Array of 4 8-bit integer values.</td>
   1951   </tr>
   1952 </table>
   1953 <p>Here are some examples of multidimensional arrays:</p>
   1954 <table class="layout">
   1955   <tr class="layout">
   1956     <td class="left"><tt>[3 x [4 x i32]]</tt></td>
   1957     <td class="left">3x4 array of 32-bit integer values.</td>
   1958   </tr>
   1959   <tr class="layout">
   1960     <td class="left"><tt>[12 x [10 x float]]</tt></td>
   1961     <td class="left">12x10 array of single precision floating point values.</td>
   1962   </tr>
   1963   <tr class="layout">
   1964     <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
   1965     <td class="left">2x3x4 array of 16-bit integer  values.</td>
   1966   </tr>
   1967 </table>
   1968 
   1969 <p>There is no restriction on indexing beyond the end of the array implied by
   1970    a static type (though there are restrictions on indexing beyond the bounds
   1971    of an allocated object in some cases). This means that single-dimension
   1972    'variable sized array' addressing can be implemented in LLVM with a zero
   1973    length array type. An implementation of 'pascal style arrays' in LLVM could
   1974    use the type "<tt>{ i32, [0 x float]}</tt>", for example.</p>
   1975 
   1976 </div>
   1977 
   1978 <!-- _______________________________________________________________________ -->
   1979 <h4>
   1980   <a name="t_function">Function Type</a>
   1981 </h4>
   1982 
   1983 <div>
   1984 
   1985 <h5>Overview:</h5>
   1986 <p>The function type can be thought of as a function signature.  It consists of
   1987    a return type and a list of formal parameter types. The return type of a
   1988    function type is a first class type or a void type.</p>
   1989 
   1990 <h5>Syntax:</h5>
   1991 <pre>
   1992   &lt;returntype&gt; (&lt;parameter list&gt;)
   1993 </pre>
   1994 
   1995 <p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
   1996    specifiers.  Optionally, the parameter list may include a type <tt>...</tt>,
   1997    which indicates that the function takes a variable number of arguments.
   1998    Variable argument functions can access their arguments with
   1999    the <a href="#int_varargs">variable argument handling intrinsic</a>
   2000    functions.  '<tt>&lt;returntype&gt;</tt>' is any type except
   2001    <a href="#t_label">label</a>.</p>
   2002 
   2003 <h5>Examples:</h5>
   2004 <table class="layout">
   2005   <tr class="layout">
   2006     <td class="left"><tt>i32 (i32)</tt></td>
   2007     <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
   2008     </td>
   2009   </tr><tr class="layout">
   2010     <td class="left"><tt>float&nbsp;(i16,&nbsp;i32&nbsp;*)&nbsp;*
   2011     </tt></td>
   2012     <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
   2013       an <tt>i16</tt> and a <a href="#t_pointer">pointer</a> to <tt>i32</tt>,
   2014       returning <tt>float</tt>.
   2015     </td>
   2016   </tr><tr class="layout">
   2017     <td class="left"><tt>i32 (i8*, ...)</tt></td>
   2018     <td class="left">A vararg function that takes at least one
   2019       <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
   2020       which returns an integer.  This is the signature for <tt>printf</tt> in
   2021       LLVM.
   2022     </td>
   2023   </tr><tr class="layout">
   2024     <td class="left"><tt>{i32, i32} (i32)</tt></td>
   2025     <td class="left">A function taking an <tt>i32</tt>, returning a
   2026         <a href="#t_struct">structure</a> containing two <tt>i32</tt> values
   2027     </td>
   2028   </tr>
   2029 </table>
   2030 
   2031 </div>
   2032 
   2033 <!-- _______________________________________________________________________ -->
   2034 <h4>
   2035   <a name="t_struct">Structure Type</a>
   2036 </h4>
   2037 
   2038 <div>
   2039 
   2040 <h5>Overview:</h5>
   2041 <p>The structure type is used to represent a collection of data members together
   2042   in memory.  The elements of a structure may be any type that has a size.</p>
   2043 
   2044 <p>Structures in memory are accessed using '<tt><a href="#i_load">load</a></tt>'
   2045    and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field
   2046    with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
   2047    Structures in registers are accessed using the
   2048    '<tt><a href="#i_extractvalue">extractvalue</a></tt>' and
   2049    '<tt><a href="#i_insertvalue">insertvalue</a></tt>' instructions.</p>
   2050   
   2051 <p>Structures may optionally be "packed" structures, which indicate that the 
   2052   alignment of the struct is one byte, and that there is no padding between
   2053   the elements.  In non-packed structs, padding between field types is inserted
   2054   as defined by the TargetData string in the module, which is required to match
   2055   what the underlying code generator expects.</p>
   2056 
   2057 <p>Structures can either be "literal" or "identified".  A literal structure is
   2058   defined inline with other types (e.g. <tt>{i32, i32}*</tt>) whereas identified
   2059   types are always defined at the top level with a name.  Literal types are
   2060   uniqued by their contents and can never be recursive or opaque since there is
   2061   no way to write one.  Identified types can be recursive, can be opaqued, and are
   2062   never uniqued.
   2063 </p>
   2064   
   2065 <h5>Syntax:</h5>
   2066 <pre>
   2067   %T1 = type { &lt;type list&gt; }     <i>; Identified normal struct type</i>
   2068   %T2 = type &lt;{ &lt;type list&gt; }&gt;   <i>; Identified packed struct type</i>
   2069 </pre>
   2070   
   2071 <h5>Examples:</h5>
   2072 <table class="layout">
   2073   <tr class="layout">
   2074     <td class="left"><tt>{ i32, i32, i32 }</tt></td>
   2075     <td class="left">A triple of three <tt>i32</tt> values</td>
   2076   </tr>
   2077   <tr class="layout">
   2078     <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
   2079     <td class="left">A pair, where the first element is a <tt>float</tt> and the
   2080       second element is a <a href="#t_pointer">pointer</a> to a
   2081       <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
   2082       an <tt>i32</tt>.</td>
   2083   </tr>
   2084   <tr class="layout">
   2085     <td class="left"><tt>&lt;{ i8, i32 }&gt;</tt></td>
   2086     <td class="left">A packed struct known to be 5 bytes in size.</td>
   2087   </tr>
   2088 </table>
   2089 
   2090 </div>
   2091   
   2092 <!-- _______________________________________________________________________ -->
   2093 <h4>
   2094   <a name="t_opaque">Opaque Structure Types</a>
   2095 </h4>
   2096 
   2097 <div>
   2098 
   2099 <h5>Overview:</h5>
   2100 <p>Opaque structure types are used to represent named structure types that do
   2101    not have a body specified.  This corresponds (for example) to the C notion of
   2102    a forward declared structure.</p>
   2103 
   2104 <h5>Syntax:</h5>
   2105 <pre>
   2106   %X = type opaque
   2107   %52 = type opaque
   2108 </pre>
   2109 
   2110 <h5>Examples:</h5>
   2111 <table class="layout">
   2112   <tr class="layout">
   2113     <td class="left"><tt>opaque</tt></td>
   2114     <td class="left">An opaque type.</td>
   2115   </tr>
   2116 </table>
   2117 
   2118 </div>
   2119 
   2120 
   2121 
   2122 <!-- _______________________________________________________________________ -->
   2123 <h4>
   2124   <a name="t_pointer">Pointer Type</a>
   2125 </h4>
   2126 
   2127 <div>
   2128 
   2129 <h5>Overview:</h5>
   2130 <p>The pointer type is used to specify memory locations.
   2131    Pointers are commonly used to reference objects in memory.</p>
   2132    
   2133 <p>Pointer types may have an optional address space attribute defining the
   2134    numbered address space where the pointed-to object resides. The default
   2135    address space is number zero. The semantics of non-zero address
   2136    spaces are target-specific.</p>
   2137 
   2138 <p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does it
   2139    permit pointers to labels (<tt>label*</tt>).  Use <tt>i8*</tt> instead.</p>
   2140 
   2141 <h5>Syntax:</h5>
   2142 <pre>
   2143   &lt;type&gt; *
   2144 </pre>
   2145 
   2146 <h5>Examples:</h5>
   2147 <table class="layout">
   2148   <tr class="layout">
   2149     <td class="left"><tt>[4 x i32]*</tt></td>
   2150     <td class="left">A <a href="#t_pointer">pointer</a> to <a
   2151                     href="#t_array">array</a> of four <tt>i32</tt> values.</td>
   2152   </tr>
   2153   <tr class="layout">
   2154     <td class="left"><tt>i32 (i32*) *</tt></td>
   2155     <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
   2156       href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
   2157       <tt>i32</tt>.</td>
   2158   </tr>
   2159   <tr class="layout">
   2160     <td class="left"><tt>i32 addrspace(5)*</tt></td>
   2161     <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
   2162      that resides in address space #5.</td>
   2163   </tr>
   2164 </table>
   2165 
   2166 </div>
   2167 
   2168 <!-- _______________________________________________________________________ -->
   2169 <h4>
   2170   <a name="t_vector">Vector Type</a>
   2171 </h4>
   2172 
   2173 <div>
   2174 
   2175 <h5>Overview:</h5>
   2176 <p>A vector type is a simple derived type that represents a vector of elements.
   2177    Vector types are used when multiple primitive data are operated in parallel
   2178    using a single instruction (SIMD).  A vector type requires a size (number of
   2179    elements) and an underlying primitive data type.  Vector types are considered
   2180    <a href="#t_firstclass">first class</a>.</p>
   2181 
   2182 <h5>Syntax:</h5>
   2183 <pre>
   2184   &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
   2185 </pre>
   2186 
   2187 <p>The number of elements is a constant integer value larger than 0; elementtype
   2188    may be any integer or floating point type.  Vectors of size zero are not
   2189    allowed, and pointers are not allowed as the element type.</p>
   2190 
   2191 <h5>Examples:</h5>
   2192 <table class="layout">
   2193   <tr class="layout">
   2194     <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
   2195     <td class="left">Vector of 4 32-bit integer values.</td>
   2196   </tr>
   2197   <tr class="layout">
   2198     <td class="left"><tt>&lt;8 x float&gt;</tt></td>
   2199     <td class="left">Vector of 8 32-bit floating-point values.</td>
   2200   </tr>
   2201   <tr class="layout">
   2202     <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
   2203     <td class="left">Vector of 2 64-bit integer values.</td>
   2204   </tr>
   2205 </table>
   2206 
   2207 </div>
   2208 
   2209 </div>
   2210 
   2211 <!-- *********************************************************************** -->
   2212 <h2><a name="constants">Constants</a></h2>
   2213 <!-- *********************************************************************** -->
   2214 
   2215 <div>
   2216 
   2217 <p>LLVM has several different basic types of constants.  This section describes
   2218    them all and their syntax.</p>
   2219 
   2220 <!-- ======================================================================= -->
   2221 <h3>
   2222   <a name="simpleconstants">Simple Constants</a>
   2223 </h3>
   2224 
   2225 <div>
   2226 
   2227 <dl>
   2228   <dt><b>Boolean constants</b></dt>
   2229   <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
   2230       constants of the <tt><a href="#t_integer">i1</a></tt> type.</dd>
   2231 
   2232   <dt><b>Integer constants</b></dt>
   2233   <dd>Standard integers (such as '4') are constants of
   2234       the <a href="#t_integer">integer</a> type.  Negative numbers may be used
   2235       with integer types.</dd>
   2236 
   2237   <dt><b>Floating point constants</b></dt>
   2238   <dd>Floating point constants use standard decimal notation (e.g. 123.421),
   2239       exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
   2240       notation (see below).  The assembler requires the exact decimal value of a
   2241       floating-point constant.  For example, the assembler accepts 1.25 but
   2242       rejects 1.3 because 1.3 is a repeating decimal in binary.  Floating point
   2243       constants must have a <a href="#t_floating">floating point</a> type. </dd>
   2244 
   2245   <dt><b>Null pointer constants</b></dt>
   2246   <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
   2247       and must be of <a href="#t_pointer">pointer type</a>.</dd>
   2248 </dl>
   2249 
   2250 <p>The one non-intuitive notation for constants is the hexadecimal form of
   2251    floating point constants.  For example, the form '<tt>double
   2252    0x432ff973cafa8000</tt>' is equivalent to (but harder to read than)
   2253    '<tt>double 4.5e+15</tt>'.  The only time hexadecimal floating point
   2254    constants are required (and the only time that they are generated by the
   2255    disassembler) is when a floating point constant must be emitted but it cannot
   2256    be represented as a decimal floating point number in a reasonable number of
   2257    digits.  For example, NaN's, infinities, and other special values are
   2258    represented in their IEEE hexadecimal format so that assembly and disassembly
   2259    do not cause any bits to change in the constants.</p>
   2260 
   2261 <p>When using the hexadecimal form, constants of types float and double are
   2262    represented using the 16-digit form shown above (which matches the IEEE754
   2263    representation for double); float values must, however, be exactly
   2264    representable as IEE754 single precision.  Hexadecimal format is always used
   2265    for long double, and there are three forms of long double.  The 80-bit format
   2266    used by x86 is represented as <tt>0xK</tt> followed by 20 hexadecimal digits.
   2267    The 128-bit format used by PowerPC (two adjacent doubles) is represented
   2268    by <tt>0xM</tt> followed by 32 hexadecimal digits.  The IEEE 128-bit format
   2269    is represented by <tt>0xL</tt> followed by 32 hexadecimal digits; no
   2270    currently supported target uses this format.  Long doubles will only work if
   2271    they match the long double format on your target.  All hexadecimal formats
   2272    are big-endian (sign bit at the left).</p>
   2273 
   2274 <p>There are no constants of type x86mmx.</p>
   2275 </div>
   2276 
   2277 <!-- ======================================================================= -->
   2278 <h3>
   2279 <a name="aggregateconstants"></a> <!-- old anchor -->
   2280 <a name="complexconstants">Complex Constants</a>
   2281 </h3>
   2282 
   2283 <div>
   2284 
   2285 <p>Complex constants are a (potentially recursive) combination of simple
   2286    constants and smaller complex constants.</p>
   2287 
   2288 <dl>
   2289   <dt><b>Structure constants</b></dt>
   2290   <dd>Structure constants are represented with notation similar to structure
   2291       type definitions (a comma separated list of elements, surrounded by braces
   2292       (<tt>{}</tt>)).  For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
   2293       where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>".
   2294       Structure constants must have <a href="#t_struct">structure type</a>, and
   2295       the number and types of elements must match those specified by the
   2296       type.</dd>
   2297 
   2298   <dt><b>Array constants</b></dt>
   2299   <dd>Array constants are represented with notation similar to array type
   2300      definitions (a comma separated list of elements, surrounded by square
   2301      brackets (<tt>[]</tt>)).  For example: "<tt>[ i32 42, i32 11, i32 74
   2302      ]</tt>".  Array constants must have <a href="#t_array">array type</a>, and
   2303      the number and types of elements must match those specified by the
   2304      type.</dd>
   2305 
   2306   <dt><b>Vector constants</b></dt>
   2307   <dd>Vector constants are represented with notation similar to vector type
   2308       definitions (a comma separated list of elements, surrounded by
   2309       less-than/greater-than's (<tt>&lt;&gt;</tt>)).  For example: "<tt>&lt; i32
   2310       42, i32 11, i32 74, i32 100 &gt;</tt>".  Vector constants must
   2311       have <a href="#t_vector">vector type</a>, and the number and types of
   2312       elements must match those specified by the type.</dd>
   2313 
   2314   <dt><b>Zero initialization</b></dt>
   2315   <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
   2316       value to zero of <em>any</em> type, including scalar and
   2317       <a href="#t_aggregate">aggregate</a> types.
   2318       This is often used to avoid having to print large zero initializers
   2319       (e.g. for large arrays) and is always exactly equivalent to using explicit
   2320       zero initializers.</dd>
   2321 
   2322   <dt><b>Metadata node</b></dt>
   2323   <dd>A metadata node is a structure-like constant with
   2324       <a href="#t_metadata">metadata type</a>.  For example: "<tt>metadata !{
   2325       i32 0, metadata !"test" }</tt>".  Unlike other constants that are meant to
   2326       be interpreted as part of the instruction stream, metadata is a place to
   2327       attach additional information such as debug info.</dd>
   2328 </dl>
   2329 
   2330 </div>
   2331 
   2332 <!-- ======================================================================= -->
   2333 <h3>
   2334   <a name="globalconstants">Global Variable and Function Addresses</a>
   2335 </h3>
   2336 
   2337 <div>
   2338 
   2339 <p>The addresses of <a href="#globalvars">global variables</a>
   2340    and <a href="#functionstructure">functions</a> are always implicitly valid
   2341    (link-time) constants.  These constants are explicitly referenced when
   2342    the <a href="#identifiers">identifier for the global</a> is used and always
   2343    have <a href="#t_pointer">pointer</a> type. For example, the following is a
   2344    legal LLVM file:</p>
   2345 
   2346 <pre class="doc_code">
   2347 @X = global i32 17
   2348 @Y = global i32 42
   2349 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
   2350 </pre>
   2351 
   2352 </div>
   2353 
   2354 <!-- ======================================================================= -->
   2355 <h3>
   2356   <a name="undefvalues">Undefined Values</a>
   2357 </h3>
   2358 
   2359 <div>
   2360 
   2361 <p>The string '<tt>undef</tt>' can be used anywhere a constant is expected, and
   2362    indicates that the user of the value may receive an unspecified bit-pattern.
   2363    Undefined values may be of any type (other than '<tt>label</tt>'
   2364    or '<tt>void</tt>') and be used anywhere a constant is permitted.</p>
   2365 
   2366 <p>Undefined values are useful because they indicate to the compiler that the
   2367    program is well defined no matter what value is used.  This gives the
   2368    compiler more freedom to optimize.  Here are some examples of (potentially
   2369    surprising) transformations that are valid (in pseudo IR):</p>
   2370 
   2371 
   2372 <pre class="doc_code">
   2373   %A = add %X, undef
   2374   %B = sub %X, undef
   2375   %C = xor %X, undef
   2376 Safe:
   2377   %A = undef
   2378   %B = undef
   2379   %C = undef
   2380 </pre>
   2381 
   2382 <p>This is safe because all of the output bits are affected by the undef bits.
   2383    Any output bit can have a zero or one depending on the input bits.</p>
   2384 
   2385 <pre class="doc_code">
   2386   %A = or %X, undef
   2387   %B = and %X, undef
   2388 Safe:
   2389   %A = -1
   2390   %B = 0
   2391 Unsafe:
   2392   %A = undef
   2393   %B = undef
   2394 </pre>
   2395 
   2396 <p>These logical operations have bits that are not always affected by the input.
   2397    For example, if <tt>%X</tt> has a zero bit, then the output of the
   2398    '<tt>and</tt>' operation will always be a zero for that bit, no matter what
   2399    the corresponding bit from the '<tt>undef</tt>' is. As such, it is unsafe to
   2400    optimize or assume that the result of the '<tt>and</tt>' is '<tt>undef</tt>'.
   2401    However, it is safe to assume that all bits of the '<tt>undef</tt>' could be
   2402    0, and optimize the '<tt>and</tt>' to 0. Likewise, it is safe to assume that
   2403    all the bits of the '<tt>undef</tt>' operand to the '<tt>or</tt>' could be
   2404    set, allowing the '<tt>or</tt>' to be folded to -1.</p>
   2405 
   2406 <pre class="doc_code">
   2407   %A = select undef, %X, %Y
   2408   %B = select undef, 42, %Y
   2409   %C = select %X, %Y, undef
   2410 Safe:
   2411   %A = %X     (or %Y)
   2412   %B = 42     (or %Y)
   2413   %C = %Y
   2414 Unsafe:
   2415   %A = undef
   2416   %B = undef
   2417   %C = undef
   2418 </pre>
   2419 
   2420 <p>This set of examples shows that undefined '<tt>select</tt>' (and conditional
   2421    branch) conditions can go <em>either way</em>, but they have to come from one
   2422    of the two operands.  In the <tt>%A</tt> example, if <tt>%X</tt> and
   2423    <tt>%Y</tt> were both known to have a clear low bit, then <tt>%A</tt> would
   2424    have to have a cleared low bit. However, in the <tt>%C</tt> example, the
   2425    optimizer is allowed to assume that the '<tt>undef</tt>' operand could be the
   2426    same as <tt>%Y</tt>, allowing the whole '<tt>select</tt>' to be
   2427    eliminated.</p>
   2428 
   2429 <pre class="doc_code">
   2430   %A = xor undef, undef
   2431 
   2432   %B = undef
   2433   %C = xor %B, %B
   2434 
   2435   %D = undef
   2436   %E = icmp lt %D, 4
   2437   %F = icmp gte %D, 4
   2438 
   2439 Safe:
   2440   %A = undef
   2441   %B = undef
   2442   %C = undef
   2443   %D = undef
   2444   %E = undef
   2445   %F = undef
   2446 </pre>
   2447 
   2448 <p>This example points out that two '<tt>undef</tt>' operands are not
   2449    necessarily the same. This can be surprising to people (and also matches C
   2450    semantics) where they assume that "<tt>X^X</tt>" is always zero, even
   2451    if <tt>X</tt> is undefined. This isn't true for a number of reasons, but the
   2452    short answer is that an '<tt>undef</tt>' "variable" can arbitrarily change
   2453    its value over its "live range".  This is true because the variable doesn't
   2454    actually <em>have a live range</em>. Instead, the value is logically read
   2455    from arbitrary registers that happen to be around when needed, so the value
   2456    is not necessarily consistent over time. In fact, <tt>%A</tt> and <tt>%C</tt>
   2457    need to have the same semantics or the core LLVM "replace all uses with"
   2458    concept would not hold.</p>
   2459 
   2460 <pre class="doc_code">
   2461   %A = fdiv undef, %X
   2462   %B = fdiv %X, undef
   2463 Safe:
   2464   %A = undef
   2465 b: unreachable
   2466 </pre>
   2467 
   2468 <p>These examples show the crucial difference between an <em>undefined
   2469   value</em> and <em>undefined behavior</em>. An undefined value (like
   2470   '<tt>undef</tt>') is allowed to have an arbitrary bit-pattern. This means that
   2471   the <tt>%A</tt> operation can be constant folded to '<tt>undef</tt>', because
   2472   the '<tt>undef</tt>' could be an SNaN, and <tt>fdiv</tt> is not (currently)
   2473   defined on SNaN's. However, in the second example, we can make a more
   2474   aggressive assumption: because the <tt>undef</tt> is allowed to be an
   2475   arbitrary value, we are allowed to assume that it could be zero. Since a
   2476   divide by zero has <em>undefined behavior</em>, we are allowed to assume that
   2477   the operation does not execute at all. This allows us to delete the divide and
   2478   all code after it. Because the undefined operation "can't happen", the
   2479   optimizer can assume that it occurs in dead code.</p>
   2480 
   2481 <pre class="doc_code">
   2482 a:  store undef -> %X
   2483 b:  store %X -> undef
   2484 Safe:
   2485 a: &lt;deleted&gt;
   2486 b: unreachable
   2487 </pre>
   2488 
   2489 <p>These examples reiterate the <tt>fdiv</tt> example: a store <em>of</em> an
   2490    undefined value can be assumed to not have any effect; we can assume that the
   2491    value is overwritten with bits that happen to match what was already there.
   2492    However, a store <em>to</em> an undefined location could clobber arbitrary
   2493    memory, therefore, it has undefined behavior.</p>
   2494 
   2495 </div>
   2496 
   2497 <!-- ======================================================================= -->
   2498 <h3>
   2499   <a name="trapvalues">Trap Values</a>
   2500 </h3>
   2501 
   2502 <div>
   2503 
   2504 <p>Trap values are similar to <a href="#undefvalues">undef values</a>, however
   2505    instead of representing an unspecified bit pattern, they represent the
   2506    fact that an instruction or constant expression which cannot evoke side
   2507    effects has nevertheless detected a condition which results in undefined
   2508    behavior.</p>
   2509 
   2510 <p>There is currently no way of representing a trap value in the IR; they
   2511    only exist when produced by operations such as
   2512    <a href="#i_add"><tt>add</tt></a> with the <tt>nsw</tt> flag.</p>
   2513 
   2514 <p>Trap value behavior is defined in terms of value <i>dependence</i>:</p>
   2515 
   2516 <ul>
   2517 <li>Values other than <a href="#i_phi"><tt>phi</tt></a> nodes depend on
   2518     their operands.</li>
   2519 
   2520 <li><a href="#i_phi"><tt>Phi</tt></a> nodes depend on the operand corresponding
   2521     to their dynamic predecessor basic block.</li>
   2522 
   2523 <li>Function arguments depend on the corresponding actual argument values in
   2524     the dynamic callers of their functions.</li>
   2525 
   2526 <li><a href="#i_call"><tt>Call</tt></a> instructions depend on the
   2527     <a href="#i_ret"><tt>ret</tt></a> instructions that dynamically transfer
   2528     control back to them.</li>
   2529 
   2530 <li><a href="#i_invoke"><tt>Invoke</tt></a> instructions depend on the
   2531     <a href="#i_ret"><tt>ret</tt></a>, <a href="#i_unwind"><tt>unwind</tt></a>,
   2532     or exception-throwing call instructions that dynamically transfer control
   2533     back to them.</li>
   2534 
   2535 <li>Non-volatile loads and stores depend on the most recent stores to all of the
   2536     referenced memory addresses, following the order in the IR
   2537     (including loads and stores implied by intrinsics such as
   2538     <a href="#int_memcpy"><tt>@llvm.memcpy</tt></a>.)</li>
   2539 
   2540 <!-- TODO: In the case of multiple threads, this only applies if the store
   2541      "happens-before" the load or store. -->
   2542 
   2543 <!-- TODO: floating-point exception state -->
   2544 
   2545 <li>An instruction with externally visible side effects depends on the most
   2546     recent preceding instruction with externally visible side effects, following
   2547     the order in the IR. (This includes
   2548     <a href="#volatile">volatile operations</a>.)</li>
   2549 
   2550 <li>An instruction <i>control-depends</i> on a
   2551     <a href="#terminators">terminator instruction</a>
   2552     if the terminator instruction has multiple successors and the instruction
   2553     is always executed when control transfers to one of the successors, and
   2554     may not be executed when control is transferred to another.</li>
   2555 
   2556 <li>Additionally, an instruction also <i>control-depends</i> on a terminator
   2557     instruction if the set of instructions it otherwise depends on would be
   2558     different if the terminator had transferred control to a different
   2559     successor.</li>
   2560 
   2561 <li>Dependence is transitive.</li>
   2562 
   2563 </ul>
   2564 
   2565 <p>Whenever a trap value is generated, all values which depend on it evaluate
   2566    to trap. If they have side effects, they evoke their side effects as if each
   2567    operand with a trap value were undef. If they have externally-visible side
   2568    effects, the behavior is undefined.</p>
   2569 
   2570 <p>Here are some examples:</p>
   2571 
   2572 <pre class="doc_code">
   2573 entry:
   2574   %trap = sub nuw i32 0, 1           ; Results in a trap value.
   2575   %still_trap = and i32 %trap, 0     ; Whereas (and i32 undef, 0) would return 0.
   2576   %trap_yet_again = getelementptr i32* @h, i32 %still_trap
   2577   store i32 0, i32* %trap_yet_again  ; undefined behavior
   2578 
   2579   store i32 %trap, i32* @g           ; Trap value conceptually stored to memory.
   2580   %trap2 = load i32* @g              ; Returns a trap value, not just undef.
   2581 
   2582   volatile store i32 %trap, i32* @g  ; External observation; undefined behavior.
   2583 
   2584   %narrowaddr = bitcast i32* @g to i16*
   2585   %wideaddr = bitcast i32* @g to i64*
   2586   %trap3 = load i16* %narrowaddr     ; Returns a trap value.
   2587   %trap4 = load i64* %wideaddr       ; Returns a trap value.
   2588 
   2589   %cmp = icmp slt i32 %trap, 0       ; Returns a trap value.
   2590   br i1 %cmp, label %true, label %end ; Branch to either destination.
   2591 
   2592 true:
   2593   volatile store i32 0, i32* @g      ; This is control-dependent on %cmp, so
   2594                                      ; it has undefined behavior.
   2595   br label %end
   2596 
   2597 end:
   2598   %p = phi i32 [ 0, %entry ], [ 1, %true ]
   2599                                      ; Both edges into this PHI are
   2600                                      ; control-dependent on %cmp, so this
   2601                                      ; always results in a trap value.
   2602 
   2603   volatile store i32 0, i32* @g      ; This would depend on the store in %true
   2604                                      ; if %cmp is true, or the store in %entry
   2605                                      ; otherwise, so this is undefined behavior.
   2606 
   2607   br i1 %cmp, label %second_true, label %second_end
   2608                                      ; The same branch again, but this time the
   2609                                      ; true block doesn't have side effects.
   2610 
   2611 second_true:
   2612   ; No side effects!
   2613   ret void
   2614 
   2615 second_end:
   2616   volatile store i32 0, i32* @g      ; This time, the instruction always depends
   2617                                      ; on the store in %end. Also, it is
   2618                                      ; control-equivalent to %end, so this is
   2619                                      ; well-defined (again, ignoring earlier
   2620                                      ; undefined behavior in this example).
   2621 </pre>
   2622 
   2623 </div>
   2624 
   2625 <!-- ======================================================================= -->
   2626 <h3>
   2627   <a name="blockaddress">Addresses of Basic Blocks</a>
   2628 </h3>
   2629 
   2630 <div>
   2631 
   2632 <p><b><tt>blockaddress(@function, %block)</tt></b></p>
   2633 
   2634 <p>The '<tt>blockaddress</tt>' constant computes the address of the specified
   2635    basic block in the specified function, and always has an i8* type.  Taking
   2636    the address of the entry block is illegal.</p>
   2637 
   2638 <p>This value only has defined behavior when used as an operand to the
   2639    '<a href="#i_indirectbr"><tt>indirectbr</tt></a>' instruction, or for
   2640    comparisons against null. Pointer equality tests between labels addresses
   2641    results in undefined behavior &mdash; though, again, comparison against null
   2642    is ok, and no label is equal to the null pointer. This may be passed around
   2643    as an opaque pointer sized value as long as the bits are not inspected. This
   2644    allows <tt>ptrtoint</tt> and arithmetic to be performed on these values so
   2645    long as the original value is reconstituted before the <tt>indirectbr</tt>
   2646    instruction.</p>
   2647 
   2648 <p>Finally, some targets may provide defined semantics when using the value as
   2649    the operand to an inline assembly, but that is target specific.</p>
   2650 
   2651 </div>
   2652 
   2653 
   2654 <!-- ======================================================================= -->
   2655 <h3>
   2656   <a name="constantexprs">Constant Expressions</a>
   2657 </h3>
   2658 
   2659 <div>
   2660 
   2661 <p>Constant expressions are used to allow expressions involving other constants
   2662    to be used as constants.  Constant expressions may be of
   2663    any <a href="#t_firstclass">first class</a> type and may involve any LLVM
   2664    operation that does not have side effects (e.g. load and call are not
   2665    supported). The following is the syntax for constant expressions:</p>
   2666 
   2667 <dl>
   2668   <dt><b><tt>trunc (CST to TYPE)</tt></b></dt>
   2669   <dd>Truncate a constant to another type. The bit size of CST must be larger
   2670       than the bit size of TYPE. Both types must be integers.</dd>
   2671 
   2672   <dt><b><tt>zext (CST to TYPE)</tt></b></dt>
   2673   <dd>Zero extend a constant to another type. The bit size of CST must be
   2674       smaller than the bit size of TYPE.  Both types must be integers.</dd>
   2675 
   2676   <dt><b><tt>sext (CST to TYPE)</tt></b></dt>
   2677   <dd>Sign extend a constant to another type. The bit size of CST must be
   2678       smaller than the bit size of TYPE.  Both types must be integers.</dd>
   2679 
   2680   <dt><b><tt>fptrunc (CST to TYPE)</tt></b></dt>
   2681   <dd>Truncate a floating point constant to another floating point type. The
   2682       size of CST must be larger than the size of TYPE. Both types must be
   2683       floating point.</dd>
   2684 
   2685   <dt><b><tt>fpext (CST to TYPE)</tt></b></dt>
   2686   <dd>Floating point extend a constant to another type. The size of CST must be
   2687       smaller or equal to the size of TYPE. Both types must be floating
   2688       point.</dd>
   2689 
   2690   <dt><b><tt>fptoui (CST to TYPE)</tt></b></dt>
   2691   <dd>Convert a floating point constant to the corresponding unsigned integer
   2692       constant. TYPE must be a scalar or vector integer type. CST must be of
   2693       scalar or vector floating point type. Both CST and TYPE must be scalars,
   2694       or vectors of the same number of elements. If the value won't fit in the
   2695       integer type, the results are undefined.</dd>
   2696 
   2697   <dt><b><tt>fptosi (CST to TYPE)</tt></b></dt>
   2698   <dd>Convert a floating point constant to the corresponding signed integer
   2699       constant.  TYPE must be a scalar or vector integer type. CST must be of
   2700       scalar or vector floating point type. Both CST and TYPE must be scalars,
   2701       or vectors of the same number of elements. If the value won't fit in the
   2702       integer type, the results are undefined.</dd>
   2703 
   2704   <dt><b><tt>uitofp (CST to TYPE)</tt></b></dt>
   2705   <dd>Convert an unsigned integer constant to the corresponding floating point
   2706       constant. TYPE must be a scalar or vector floating point type. CST must be
   2707       of scalar or vector integer type. Both CST and TYPE must be scalars, or
   2708       vectors of the same number of elements. If the value won't fit in the
   2709       floating point type, the results are undefined.</dd>
   2710 
   2711   <dt><b><tt>sitofp (CST to TYPE)</tt></b></dt>
   2712   <dd>Convert a signed integer constant to the corresponding floating point
   2713       constant. TYPE must be a scalar or vector floating point type. CST must be
   2714       of scalar or vector integer type. Both CST and TYPE must be scalars, or
   2715       vectors of the same number of elements. If the value won't fit in the
   2716       floating point type, the results are undefined.</dd>
   2717 
   2718   <dt><b><tt>ptrtoint (CST to TYPE)</tt></b></dt>
   2719   <dd>Convert a pointer typed constant to the corresponding integer constant
   2720       <tt>TYPE</tt> must be an integer type. <tt>CST</tt> must be of pointer
   2721       type. The <tt>CST</tt> value is zero extended, truncated, or unchanged to
   2722       make it fit in <tt>TYPE</tt>.</dd>
   2723 
   2724   <dt><b><tt>inttoptr (CST to TYPE)</tt></b></dt>
   2725   <dd>Convert a integer constant to a pointer constant.  TYPE must be a pointer
   2726       type.  CST must be of integer type. The CST value is zero extended,
   2727       truncated, or unchanged to make it fit in a pointer size. This one is
   2728       <i>really</i> dangerous!</dd>
   2729 
   2730   <dt><b><tt>bitcast (CST to TYPE)</tt></b></dt>
   2731   <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
   2732       are the same as those for the <a href="#i_bitcast">bitcast
   2733       instruction</a>.</dd>
   2734 
   2735   <dt><b><tt>getelementptr (CSTPTR, IDX0, IDX1, ...)</tt></b></dt>
   2736   <dt><b><tt>getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)</tt></b></dt>
   2737   <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
   2738       constants.  As with the <a href="#i_getelementptr">getelementptr</a>
   2739       instruction, the index list may have zero or more indexes, which are
   2740       required to make sense for the type of "CSTPTR".</dd>
   2741 
   2742   <dt><b><tt>select (COND, VAL1, VAL2)</tt></b></dt>
   2743   <dd>Perform the <a href="#i_select">select operation</a> on constants.</dd>
   2744 
   2745   <dt><b><tt>icmp COND (VAL1, VAL2)</tt></b></dt>
   2746   <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
   2747 
   2748   <dt><b><tt>fcmp COND (VAL1, VAL2)</tt></b></dt>
   2749   <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
   2750 
   2751   <dt><b><tt>extractelement (VAL, IDX)</tt></b></dt>
   2752   <dd>Perform the <a href="#i_extractelement">extractelement operation</a> on
   2753       constants.</dd>
   2754 
   2755   <dt><b><tt>insertelement (VAL, ELT, IDX)</tt></b></dt>
   2756   <dd>Perform the <a href="#i_insertelement">insertelement operation</a> on
   2757     constants.</dd>
   2758 
   2759   <dt><b><tt>shufflevector (VEC1, VEC2, IDXMASK)</tt></b></dt>
   2760   <dd>Perform the <a href="#i_shufflevector">shufflevector operation</a> on
   2761       constants.</dd>
   2762 
   2763   <dt><b><tt>extractvalue (VAL, IDX0, IDX1, ...)</tt></b></dt>
   2764   <dd>Perform the <a href="#i_extractvalue">extractvalue operation</a> on
   2765     constants. The index list is interpreted in a similar manner as indices in
   2766     a '<a href="#i_getelementptr">getelementptr</a>' operation. At least one
   2767     index value must be specified.</dd>
   2768 
   2769   <dt><b><tt>insertvalue (VAL, ELT, IDX0, IDX1, ...)</tt></b></dt>
   2770   <dd>Perform the <a href="#i_insertvalue">insertvalue operation</a> on
   2771     constants. The index list is interpreted in a similar manner as indices in
   2772     a '<a href="#i_getelementptr">getelementptr</a>' operation. At least one
   2773     index value must be specified.</dd>
   2774 
   2775   <dt><b><tt>OPCODE (LHS, RHS)</tt></b></dt>
   2776   <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
   2777       be any of the <a href="#binaryops">binary</a>
   2778       or <a href="#bitwiseops">bitwise binary</a> operations.  The constraints
   2779       on operands are the same as those for the corresponding instruction
   2780       (e.g. no bitwise operations on floating point values are allowed).</dd>
   2781 </dl>
   2782 
   2783 </div>
   2784 
   2785 </div>
   2786 
   2787 <!-- *********************************************************************** -->
   2788 <h2><a name="othervalues">Other Values</a></h2>
   2789 <!-- *********************************************************************** -->
   2790 <div>
   2791 <!-- ======================================================================= -->
   2792 <h3>
   2793 <a name="inlineasm">Inline Assembler Expressions</a>
   2794 </h3>
   2795 
   2796 <div>
   2797 
   2798 <p>LLVM supports inline assembler expressions (as opposed
   2799    to <a href="#moduleasm"> Module-Level Inline Assembly</a>) through the use of
   2800    a special value.  This value represents the inline assembler as a string
   2801    (containing the instructions to emit), a list of operand constraints (stored
   2802    as a string), a flag that indicates whether or not the inline asm
   2803    expression has side effects, and a flag indicating whether the function
   2804    containing the asm needs to align its stack conservatively.  An example
   2805    inline assembler expression is:</p>
   2806 
   2807 <pre class="doc_code">
   2808 i32 (i32) asm "bswap $0", "=r,r"
   2809 </pre>
   2810 
   2811 <p>Inline assembler expressions may <b>only</b> be used as the callee operand of
   2812    a <a href="#i_call"><tt>call</tt> instruction</a>.  Thus, typically we
   2813    have:</p>
   2814 
   2815 <pre class="doc_code">
   2816 %X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
   2817 </pre>
   2818 
   2819 <p>Inline asms with side effects not visible in the constraint list must be
   2820    marked as having side effects.  This is done through the use of the
   2821    '<tt>sideeffect</tt>' keyword, like so:</p>
   2822 
   2823 <pre class="doc_code">
   2824 call void asm sideeffect "eieio", ""()
   2825 </pre>
   2826 
   2827 <p>In some cases inline asms will contain code that will not work unless the
   2828    stack is aligned in some way, such as calls or SSE instructions on x86,
   2829    yet will not contain code that does that alignment within the asm.
   2830    The compiler should make conservative assumptions about what the asm might
   2831    contain and should generate its usual stack alignment code in the prologue
   2832    if the '<tt>alignstack</tt>' keyword is present:</p>
   2833 
   2834 <pre class="doc_code">
   2835 call void asm alignstack "eieio", ""()
   2836 </pre>
   2837 
   2838 <p>If both keywords appear the '<tt>sideeffect</tt>' keyword must come
   2839    first.</p>
   2840 
   2841 <p>TODO: The format of the asm and constraints string still need to be
   2842    documented here.  Constraints on what can be done (e.g. duplication, moving,
   2843    etc need to be documented).  This is probably best done by reference to
   2844    another document that covers inline asm from a holistic perspective.</p>
   2845 
   2846 <h4>
   2847 <a name="inlineasm_md">Inline Asm Metadata</a>
   2848 </h4>
   2849 
   2850 <div>
   2851 
   2852 <p>The call instructions that wrap inline asm nodes may have a "!srcloc" MDNode
   2853    attached to it that contains a list of constant integers.  If present, the
   2854   code generator will use the integer as the location cookie value when report
   2855    errors through the LLVMContext error reporting mechanisms.  This allows a
   2856    front-end to correlate backend errors that occur with inline asm back to the
   2857    source code that produced it.  For example:</p>
   2858 
   2859 <pre class="doc_code">
   2860 call void asm sideeffect "something bad", ""()<b>, !srcloc !42</b>
   2861 ...
   2862 !42 = !{ i32 1234567 }
   2863 </pre>
   2864 
   2865 <p>It is up to the front-end to make sense of the magic numbers it places in the
   2866    IR.  If the MDNode contains multiple constants, the code generator will use
   2867    the one that corresponds to the line of the asm that the error occurs on.</p>
   2868 
   2869 </div>
   2870 
   2871 </div>
   2872 
   2873 <!-- ======================================================================= -->
   2874 <h3>
   2875   <a name="metadata">Metadata Nodes and Metadata Strings</a>
   2876 </h3>
   2877 
   2878 <div>
   2879 
   2880 <p>LLVM IR allows metadata to be attached to instructions in the program that
   2881    can convey extra information about the code to the optimizers and code
   2882    generator.  One example application of metadata is source-level debug
   2883    information.  There are two metadata primitives: strings and nodes. All
   2884    metadata has the <tt>metadata</tt> type and is identified in syntax by a
   2885    preceding exclamation point ('<tt>!</tt>').</p>
   2886 
   2887 <p>A metadata string is a string surrounded by double quotes.  It can contain
   2888    any character by escaping non-printable characters with "\xx" where "xx" is
   2889    the two digit hex code.  For example: "<tt>!"test\00"</tt>".</p>
   2890 
   2891 <p>Metadata nodes are represented with notation similar to structure constants
   2892    (a comma separated list of elements, surrounded by braces and preceded by an
   2893    exclamation point).  For example: "<tt>!{ metadata !"test\00", i32
   2894    10}</tt>".  Metadata nodes can have any values as their operand.</p>
   2895 
   2896 <p>A <a href="#namedmetadatastructure">named metadata</a> is a collection of 
   2897    metadata nodes, which can be looked up in the module symbol table. For
   2898    example: "<tt>!foo =  metadata !{!4, !3}</tt>".
   2899 
   2900 <p>Metadata can be used as function arguments. Here <tt>llvm.dbg.value</tt> 
   2901    function is using two metadata arguments.</p>
   2902 
   2903 <div class="doc_code">
   2904 <pre>
   2905 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
   2906 </pre>
   2907 </div>
   2908 
   2909 <p>Metadata can be attached with an instruction. Here metadata <tt>!21</tt> is
   2910    attached with <tt>add</tt> instruction using <tt>!dbg</tt> identifier.</p>
   2911 
   2912 <div class="doc_code">
   2913 <pre>
   2914 %indvar.next = add i64 %indvar, 1, !dbg !21
   2915 </pre>
   2916 </div>
   2917 
   2918 </div>
   2919 
   2920 </div>
   2921 
   2922 <!-- *********************************************************************** -->
   2923 <h2>
   2924   <a name="intrinsic_globals">Intrinsic Global Variables</a>
   2925 </h2>
   2926 <!-- *********************************************************************** -->
   2927 <div>
   2928 <p>LLVM has a number of "magic" global variables that contain data that affect
   2929 code generation or other IR semantics.  These are documented here.  All globals
   2930 of this sort should have a section specified as "<tt>llvm.metadata</tt>".  This
   2931 section and all globals that start with "<tt>llvm.</tt>" are reserved for use
   2932 by LLVM.</p>
   2933 
   2934 <!-- ======================================================================= -->
   2935 <h3>
   2936 <a name="intg_used">The '<tt>llvm.used</tt>' Global Variable</a>
   2937 </h3>
   2938 
   2939 <div>
   2940 
   2941 <p>The <tt>@llvm.used</tt> global is an array with i8* element type which has <a
   2942 href="#linkage_appending">appending linkage</a>.  This array contains a list of
   2943 pointers to global variables and functions which may optionally have a pointer
   2944 cast formed of bitcast or getelementptr.  For example, a legal use of it is:</p>
   2945 
   2946 <pre>
   2947   @X = global i8 4
   2948   @Y = global i32 123
   2949 
   2950   @llvm.used = appending global [2 x i8*] [
   2951      i8* @X,
   2952      i8* bitcast (i32* @Y to i8*)
   2953   ], section "llvm.metadata"
   2954 </pre>
   2955 
   2956 <p>If a global variable appears in the <tt>@llvm.used</tt> list, then the
   2957 compiler, assembler, and linker are required to treat the symbol as if there is
   2958 a reference to the global that it cannot see.  For example, if a variable has
   2959 internal linkage and no references other than that from the <tt>@llvm.used</tt>
   2960 list, it cannot be deleted.  This is commonly used to represent references from
   2961 inline asms and other things the compiler cannot "see", and corresponds to
   2962 "attribute((used))" in GNU C.</p>
   2963 
   2964 <p>On some targets, the code generator must emit a directive to the assembler or
   2965 object file to prevent the assembler and linker from molesting the symbol.</p>
   2966 
   2967 </div>
   2968 
   2969 <!-- ======================================================================= -->
   2970 <h3>
   2971   <a name="intg_compiler_used">
   2972     The '<tt>llvm.compiler.used</tt>' Global Variable
   2973   </a>
   2974 </h3>
   2975 
   2976 <div>
   2977 
   2978 <p>The <tt>@llvm.compiler.used</tt> directive is the same as the
   2979 <tt>@llvm.used</tt> directive, except that it only prevents the compiler from
   2980 touching the symbol.  On targets that support it, this allows an intelligent
   2981 linker to optimize references to the symbol without being impeded as it would be
   2982 by <tt>@llvm.used</tt>.</p>
   2983 
   2984 <p>This is a rare construct that should only be used in rare circumstances, and
   2985 should not be exposed to source languages.</p>
   2986 
   2987 </div>
   2988 
   2989 <!-- ======================================================================= -->
   2990 <h3>
   2991 <a name="intg_global_ctors">The '<tt>llvm.global_ctors</tt>' Global Variable</a>
   2992 </h3>
   2993 
   2994 <div>
   2995 <pre>
   2996 %0 = type { i32, void ()* }
   2997 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
   2998 </pre>
   2999 <p>The <tt>@llvm.global_ctors</tt> array contains a list of constructor functions and associated priorities.  The functions referenced by this array will be called in ascending order of priority (i.e. lowest first) when the module is loaded.  The order of functions with the same priority is not defined.
   3000 </p>
   3001 
   3002 </div>
   3003 
   3004 <!-- ======================================================================= -->
   3005 <h3>
   3006 <a name="intg_global_dtors">The '<tt>llvm.global_dtors</tt>' Global Variable</a>
   3007 </h3>
   3008 
   3009 <div>
   3010 <pre>
   3011 %0 = type { i32, void ()* }
   3012 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
   3013 </pre>
   3014 
   3015 <p>The <tt>@llvm.global_dtors</tt> array contains a list of destructor functions and associated priorities.  The functions referenced by this array will be called in descending order of priority (i.e. highest first) when the module is loaded.  The order of functions with the same priority is not defined.
   3016 </p>
   3017 
   3018 </div>
   3019 
   3020 </div>
   3021 
   3022 <!-- *********************************************************************** -->
   3023 <h2><a name="instref">Instruction Reference</a></h2>
   3024 <!-- *********************************************************************** -->
   3025 
   3026 <div>
   3027 
   3028 <p>The LLVM instruction set consists of several different classifications of
   3029    instructions: <a href="#terminators">terminator
   3030    instructions</a>, <a href="#binaryops">binary instructions</a>,
   3031    <a href="#bitwiseops">bitwise binary instructions</a>,
   3032    <a href="#memoryops">memory instructions</a>, and
   3033    <a href="#otherops">other instructions</a>.</p>
   3034 
   3035 <!-- ======================================================================= -->
   3036 <h3>
   3037   <a name="terminators">Terminator Instructions</a>
   3038 </h3>
   3039 
   3040 <div>
   3041 
   3042 <p>As mentioned <a href="#functionstructure">previously</a>, every basic block
   3043    in a program ends with a "Terminator" instruction, which indicates which
   3044    block should be executed after the current block is finished. These
   3045    terminator instructions typically yield a '<tt>void</tt>' value: they produce
   3046    control flow, not values (the one exception being the
   3047    '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
   3048 
   3049 <p>The terminator instructions are: 
   3050    '<a href="#i_ret"><tt>ret</tt></a>', 
   3051    '<a href="#i_br"><tt>br</tt></a>',
   3052    '<a href="#i_switch"><tt>switch</tt></a>', 
   3053    '<a href="#i_indirectbr"><tt>indirectbr</tt></a>',
   3054    '<a href="#i_invoke"><tt>invoke</tt></a>', 
   3055    '<a href="#i_unwind"><tt>unwind</tt></a>',
   3056    '<a href="#i_resume"><tt>resume</tt></a>', and 
   3057    '<a href="#i_unreachable"><tt>unreachable</tt></a>'.</p>
   3058 
   3059 <!-- _______________________________________________________________________ -->
   3060 <h4>
   3061   <a name="i_ret">'<tt>ret</tt>' Instruction</a>
   3062 </h4>
   3063 
   3064 <div>
   3065 
   3066 <h5>Syntax:</h5>
   3067 <pre>
   3068   ret &lt;type&gt; &lt;value&gt;       <i>; Return a value from a non-void function</i>
   3069   ret void                 <i>; Return from void function</i>
   3070 </pre>
   3071 
   3072 <h5>Overview:</h5>
   3073 <p>The '<tt>ret</tt>' instruction is used to return control flow (and optionally
   3074    a value) from a function back to the caller.</p>
   3075 
   3076 <p>There are two forms of the '<tt>ret</tt>' instruction: one that returns a
   3077    value and then causes control flow, and one that just causes control flow to
   3078    occur.</p>
   3079 
   3080 <h5>Arguments:</h5>
   3081 <p>The '<tt>ret</tt>' instruction optionally accepts a single argument, the
   3082    return value. The type of the return value must be a
   3083    '<a href="#t_firstclass">first class</a>' type.</p>
   3084 
   3085 <p>A function is not <a href="#wellformed">well formed</a> if it it has a
   3086    non-void return type and contains a '<tt>ret</tt>' instruction with no return
   3087    value or a return value with a type that does not match its type, or if it
   3088    has a void return type and contains a '<tt>ret</tt>' instruction with a
   3089    return value.</p>
   3090 
   3091 <h5>Semantics:</h5>
   3092 <p>When the '<tt>ret</tt>' instruction is executed, control flow returns back to
   3093    the calling function's context.  If the caller is a
   3094    "<a href="#i_call"><tt>call</tt></a>" instruction, execution continues at the
   3095    instruction after the call.  If the caller was an
   3096    "<a href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues at
   3097    the beginning of the "normal" destination block.  If the instruction returns
   3098    a value, that value shall set the call or invoke instruction's return
   3099    value.</p>
   3100 
   3101 <h5>Example:</h5>
   3102 <pre>
   3103   ret i32 5                       <i>; Return an integer value of 5</i>
   3104   ret void                        <i>; Return from a void function</i>
   3105   ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i>
   3106 </pre>
   3107 
   3108 </div>
   3109 <!-- _______________________________________________________________________ -->
   3110 <h4>
   3111   <a name="i_br">'<tt>br</tt>' Instruction</a>
   3112 </h4>
   3113 
   3114 <div>
   3115 
   3116 <h5>Syntax:</h5>
   3117 <pre>
   3118   br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;
   3119   br label &lt;dest&gt;          <i>; Unconditional branch</i>
   3120 </pre>
   3121 
   3122 <h5>Overview:</h5>
   3123 <p>The '<tt>br</tt>' instruction is used to cause control flow to transfer to a
   3124    different basic block in the current function.  There are two forms of this
   3125    instruction, corresponding to a conditional branch and an unconditional
   3126    branch.</p>
   3127 
   3128 <h5>Arguments:</h5>
   3129 <p>The conditional branch form of the '<tt>br</tt>' instruction takes a single
   3130    '<tt>i1</tt>' value and two '<tt>label</tt>' values.  The unconditional form
   3131    of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>' value as a
   3132    target.</p>
   3133 
   3134 <h5>Semantics:</h5>
   3135 <p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
   3136    argument is evaluated.  If the value is <tt>true</tt>, control flows to the
   3137    '<tt>iftrue</tt>' <tt>label</tt> argument.  If "cond" is <tt>false</tt>,
   3138    control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
   3139 
   3140 <h5>Example:</h5>
   3141 <pre>
   3142 Test:
   3143   %cond = <a href="#i_icmp">icmp</a> eq i32 %a, %b
   3144   br i1 %cond, label %IfEqual, label %IfUnequal
   3145 IfEqual:
   3146   <a href="#i_ret">ret</a> i32 1
   3147 IfUnequal:
   3148   <a href="#i_ret">ret</a> i32 0
   3149 </pre>
   3150 
   3151 </div>
   3152 
   3153 <!-- _______________________________________________________________________ -->
   3154 <h4>
   3155    <a name="i_switch">'<tt>switch</tt>' Instruction</a>
   3156 </h4>
   3157 
   3158 <div>
   3159 
   3160 <h5>Syntax:</h5>
   3161 <pre>
   3162   switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
   3163 </pre>
   3164 
   3165 <h5>Overview:</h5>
   3166 <p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
   3167    several different places.  It is a generalization of the '<tt>br</tt>'
   3168    instruction, allowing a branch to occur to one of many possible
   3169    destinations.</p>
   3170 
   3171 <h5>Arguments:</h5>
   3172 <p>The '<tt>switch</tt>' instruction uses three parameters: an integer
   3173    comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination,
   3174    and an array of pairs of comparison value constants and '<tt>label</tt>'s.
   3175    The table is not allowed to contain duplicate constant entries.</p>
   3176 
   3177 <h5>Semantics:</h5>
   3178 <p>The <tt>switch</tt> instruction specifies a table of values and
   3179    destinations. When the '<tt>switch</tt>' instruction is executed, this table
   3180    is searched for the given value.  If the value is found, control flow is
   3181    transferred to the corresponding destination; otherwise, control flow is
   3182    transferred to the default destination.</p>
   3183 
   3184 <h5>Implementation:</h5>
   3185 <p>Depending on properties of the target machine and the particular
   3186    <tt>switch</tt> instruction, this instruction may be code generated in
   3187    different ways.  For example, it could be generated as a series of chained
   3188    conditional branches or with a lookup table.</p>
   3189 
   3190 <h5>Example:</h5>
   3191 <pre>
   3192  <i>; Emulate a conditional br instruction</i>
   3193  %Val = <a href="#i_zext">zext</a> i1 %value to i32
   3194  switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
   3195 
   3196  <i>; Emulate an unconditional br instruction</i>
   3197  switch i32 0, label %dest [ ]
   3198 
   3199  <i>; Implement a jump table:</i>
   3200  switch i32 %val, label %otherwise [ i32 0, label %onzero
   3201                                      i32 1, label %onone
   3202                                      i32 2, label %ontwo ]
   3203 </pre>
   3204 
   3205 </div>
   3206 
   3207 
   3208 <!-- _______________________________________________________________________ -->
   3209 <h4>
   3210    <a name="i_indirectbr">'<tt>indirectbr</tt>' Instruction</a>
   3211 </h4>
   3212 
   3213 <div>
   3214 
   3215 <h5>Syntax:</h5>
   3216 <pre>
   3217   indirectbr &lt;somety&gt;* &lt;address&gt;, [ label &lt;dest1&gt;, label &lt;dest2&gt;, ... ]
   3218 </pre>
   3219 
   3220 <h5>Overview:</h5>
   3221 
   3222 <p>The '<tt>indirectbr</tt>' instruction implements an indirect branch to a label
   3223    within the current function, whose address is specified by
   3224    "<tt>address</tt>".  Address must be derived from a <a
   3225    href="#blockaddress">blockaddress</a> constant.</p>
   3226 
   3227 <h5>Arguments:</h5>
   3228 
   3229 <p>The '<tt>address</tt>' argument is the address of the label to jump to.  The
   3230    rest of the arguments indicate the full set of possible destinations that the
   3231    address may point to.  Blocks are allowed to occur multiple times in the
   3232    destination list, though this isn't particularly useful.</p>
   3233 
   3234 <p>This destination list is required so that dataflow analysis has an accurate
   3235    understanding of the CFG.</p>
   3236 
   3237 <h5>Semantics:</h5>
   3238 
   3239 <p>Control transfers to the block specified in the address argument.  All
   3240    possible destination blocks must be listed in the label list, otherwise this
   3241    instruction has undefined behavior.  This implies that jumps to labels
   3242    defined in other functions have undefined behavior as well.</p>
   3243 
   3244 <h5>Implementation:</h5>
   3245 
   3246 <p>This is typically implemented with a jump through a register.</p>
   3247 
   3248 <h5>Example:</h5>
   3249 <pre>
   3250  indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
   3251 </pre>
   3252 
   3253 </div>
   3254 
   3255 
   3256 <!-- _______________________________________________________________________ -->
   3257 <h4>
   3258   <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
   3259 </h4>
   3260 
   3261 <div>
   3262 
   3263 <h5>Syntax:</h5>
   3264 <pre>
   3265   &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
   3266                 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
   3267 </pre>
   3268 
   3269 <h5>Overview:</h5>
   3270 <p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
   3271    function, with the possibility of control flow transfer to either the
   3272    '<tt>normal</tt>' label or the '<tt>exception</tt>' label.  If the callee
   3273    function returns with the "<tt><a href="#i_ret">ret</a></tt>" instruction,
   3274    control flow will return to the "normal" label.  If the callee (or any
   3275    indirect callees) returns with the "<a href="#i_unwind"><tt>unwind</tt></a>"
   3276    instruction, control is interrupted and continued at the dynamically nearest
   3277    "exception" label.</p>
   3278 
   3279 <p>The '<tt>exception</tt>' label is a
   3280    <i><a href="ExceptionHandling.html#overview">landing pad</a></i> for the
   3281    exception. As such, '<tt>exception</tt>' label is required to have the
   3282    "<a href="#i_landingpad"><tt>landingpad</tt></a>" instruction, which contains
   3283    the information about about the behavior of the program after unwinding
   3284    happens, as its first non-PHI instruction. The restrictions on the
   3285    "<tt>landingpad</tt>" instruction's tightly couples it to the
   3286    "<tt>invoke</tt>" instruction, so that the important information contained
   3287    within the "<tt>landingpad</tt>" instruction can't be lost through normal
   3288    code motion.</p>
   3289 
   3290 <h5>Arguments:</h5>
   3291 <p>This instruction requires several arguments:</p>
   3292 
   3293 <ol>
   3294   <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
   3295       convention</a> the call should use.  If none is specified, the call
   3296       defaults to using C calling conventions.</li>
   3297 
   3298   <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
   3299       return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
   3300       '<tt>inreg</tt>' attributes are valid here.</li>
   3301 
   3302   <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
   3303       function value being invoked.  In most cases, this is a direct function
   3304       invocation, but indirect <tt>invoke</tt>s are just as possible, branching
   3305       off an arbitrary pointer to function value.</li>
   3306 
   3307   <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
   3308       function to be invoked. </li>
   3309 
   3310   <li>'<tt>function args</tt>': argument list whose types match the function
   3311       signature argument types and parameter attributes. All arguments must be
   3312       of <a href="#t_firstclass">first class</a> type. If the function
   3313       signature indicates the function accepts a variable number of arguments,
   3314       the extra arguments can be specified.</li>
   3315 
   3316   <li>'<tt>normal label</tt>': the label reached when the called function
   3317       executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
   3318 
   3319   <li>'<tt>exception label</tt>': the label reached when a callee returns with
   3320       the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
   3321 
   3322   <li>The optional <a href="#fnattrs">function attributes</a> list. Only
   3323       '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
   3324       '<tt>readnone</tt>' attributes are valid here.</li>
   3325 </ol>
   3326 
   3327 <h5>Semantics:</h5>
   3328 <p>This instruction is designed to operate as a standard
   3329    '<tt><a href="#i_call">call</a></tt>' instruction in most regards.  The
   3330    primary difference is that it establishes an association with a label, which
   3331    is used by the runtime library to unwind the stack.</p>
   3332 
   3333 <p>This instruction is used in languages with destructors to ensure that proper
   3334    cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
   3335    exception.  Additionally, this is important for implementation of
   3336    '<tt>catch</tt>' clauses in high-level languages that support them.</p>
   3337 
   3338 <p>For the purposes of the SSA form, the definition of the value returned by the
   3339    '<tt>invoke</tt>' instruction is deemed to occur on the edge from the current
   3340    block to the "normal" label. If the callee unwinds then no return value is
   3341    available.</p>
   3342 
   3343 <p>Note that the code generator does not yet completely support unwind, and
   3344 that the invoke/unwind semantics are likely to change in future versions.</p>
   3345 
   3346 <h5>Example:</h5>
   3347 <pre>
   3348   %retval = invoke i32 @Test(i32 15) to label %Continue
   3349               unwind label %TestCleanup              <i>; {i32}:retval set</i>
   3350   %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
   3351               unwind label %TestCleanup              <i>; {i32}:retval set</i>
   3352 </pre>
   3353 
   3354 </div>
   3355 
   3356 <!-- _______________________________________________________________________ -->
   3357 
   3358 <h4>
   3359   <a name="i_unwind">'<tt>unwind</tt>' Instruction</a>
   3360 </h4>
   3361 
   3362 <div>
   3363 
   3364 <h5>Syntax:</h5>
   3365 <pre>
   3366   unwind
   3367 </pre>
   3368 
   3369 <h5>Overview:</h5>
   3370 <p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
   3371    at the first callee in the dynamic call stack which used
   3372    an <a href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call.
   3373    This is primarily used to implement exception handling.</p>
   3374 
   3375 <h5>Semantics:</h5>
   3376 <p>The '<tt>unwind</tt>' instruction causes execution of the current function to
   3377    immediately halt.  The dynamic call stack is then searched for the
   3378    first <a href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack.
   3379    Once found, execution continues at the "exceptional" destination block
   3380    specified by the <tt>invoke</tt> instruction.  If there is no <tt>invoke</tt>
   3381    instruction in the dynamic call chain, undefined behavior results.</p>
   3382 
   3383 <p>Note that the code generator does not yet completely support unwind, and
   3384 that the invoke/unwind semantics are likely to change in future versions.</p>
   3385 
   3386 </div>
   3387 
   3388  <!-- _______________________________________________________________________ -->
   3389  
   3390 <h4>
   3391   <a name="i_resume">'<tt>resume</tt>' Instruction</a>
   3392 </h4>
   3393 
   3394 <div>
   3395 
   3396 <h5>Syntax:</h5>
   3397 <pre>
   3398   resume &lt;type&gt; &lt;value&gt;
   3399 </pre>
   3400 
   3401 <h5>Overview:</h5>
   3402 <p>The '<tt>resume</tt>' instruction is a terminator instruction that has no
   3403    successors.</p>
   3404 
   3405 <h5>Arguments:</h5>
   3406 <p>The '<tt>resume</tt>' instruction requires one argument, which must have the
   3407    same type as the result of any '<tt>landingpad</tt>' instruction in the same
   3408    function.</p>
   3409 
   3410 <h5>Semantics:</h5>
   3411 <p>The '<tt>resume</tt>' instruction resumes propagation of an existing
   3412    (in-flight) exception whose unwinding was interrupted with
   3413    a <a href="#i_landingpad"><tt>landingpad</tt></a> instruction.</p>
   3414 
   3415 <h5>Example:</h5>
   3416 <pre>
   3417   resume { i8*, i32 } %exn
   3418 </pre>
   3419 
   3420 </div>
   3421 
   3422 <!-- _______________________________________________________________________ -->
   3423 
   3424 <h4>
   3425   <a name="i_unreachable">'<tt>unreachable</tt>' Instruction</a>
   3426 </h4>
   3427 
   3428 <div>
   3429 
   3430 <h5>Syntax:</h5>
   3431 <pre>
   3432   unreachable
   3433 </pre>
   3434 
   3435 <h5>Overview:</h5>
   3436 <p>The '<tt>unreachable</tt>' instruction has no defined semantics.  This
   3437    instruction is used to inform the optimizer that a particular portion of the
   3438    code is not reachable.  This can be used to indicate that the code after a
   3439    no-return function cannot be reached, and other facts.</p>
   3440 
   3441 <h5>Semantics:</h5>
   3442 <p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
   3443 
   3444 </div>
   3445 
   3446 </div>
   3447 
   3448 <!-- ======================================================================= -->
   3449 <h3>
   3450   <a name="binaryops">Binary Operations</a>
   3451 </h3>
   3452 
   3453 <div>
   3454 
   3455 <p>Binary operators are used to do most of the computation in a program.  They
   3456    require two operands of the same type, execute an operation on them, and
   3457    produce a single value.  The operands might represent multiple data, as is
   3458    the case with the <a href="#t_vector">vector</a> data type.  The result value
   3459    has the same type as its operands.</p>
   3460 
   3461 <p>There are several different binary operators:</p>
   3462 
   3463 <!-- _______________________________________________________________________ -->
   3464 <h4>
   3465   <a name="i_add">'<tt>add</tt>' Instruction</a>
   3466 </h4>
   3467 
   3468 <div>
   3469 
   3470 <h5>Syntax:</h5>
   3471 <pre>
   3472   &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;          <i>; yields {ty}:result</i>
   3473   &lt;result&gt; = add nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
   3474   &lt;result&gt; = add nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
   3475   &lt;result&gt; = add nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;  <i>; yields {ty}:result</i>
   3476 </pre>
   3477 
   3478 <h5>Overview:</h5>
   3479 <p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
   3480 
   3481 <h5>Arguments:</h5>
   3482 <p>The two arguments to the '<tt>add</tt>' instruction must
   3483    be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
   3484    integer values. Both arguments must have identical types.</p>
   3485 
   3486 <h5>Semantics:</h5>
   3487 <p>The value produced is the integer sum of the two operands.</p>
   3488 
   3489 <p>If the sum has unsigned overflow, the result returned is the mathematical
   3490    result modulo 2<sup>n</sup>, where n is the bit width of the result.</p>
   3491 
   3492 <p>Because LLVM integers use a two's complement representation, this instruction
   3493    is appropriate for both signed and unsigned integers.</p>
   3494 
   3495 <p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
   3496    and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
   3497    <tt>nsw</tt> keywords are present, the result value of the <tt>add</tt>
   3498    is a <a href="#trapvalues">trap value</a> if unsigned and/or signed overflow,
   3499    respectively, occurs.</p>
   3500 
   3501 <h5>Example:</h5>
   3502 <pre>
   3503   &lt;result&gt; = add i32 4, %var          <i>; yields {i32}:result = 4 + %var</i>
   3504 </pre>
   3505 
   3506 </div>
   3507 
   3508 <!-- _______________________________________________________________________ -->
   3509 <h4>
   3510   <a name="i_fadd">'<tt>fadd</tt>' Instruction</a>
   3511 </h4>
   3512 
   3513 <div>
   3514 
   3515 <h5>Syntax:</h5>
   3516 <pre>
   3517   &lt;result&gt; = fadd &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   3518 </pre>
   3519 
   3520 <h5>Overview:</h5>
   3521 <p>The '<tt>fadd</tt>' instruction returns the sum of its two operands.</p>
   3522 
   3523 <h5>Arguments:</h5>
   3524 <p>The two arguments to the '<tt>fadd</tt>' instruction must be
   3525    <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
   3526    floating point values. Both arguments must have identical types.</p>
   3527 
   3528 <h5>Semantics:</h5>
   3529 <p>The value produced is the floating point sum of the two operands.</p>
   3530 
   3531 <h5>Example:</h5>
   3532 <pre>
   3533   &lt;result&gt; = fadd float 4.0, %var          <i>; yields {float}:result = 4.0 + %var</i>
   3534 </pre>
   3535 
   3536 </div>
   3537 
   3538 <!-- _______________________________________________________________________ -->
   3539 <h4>
   3540    <a name="i_sub">'<tt>sub</tt>' Instruction</a>
   3541 </h4>
   3542 
   3543 <div>
   3544 
   3545 <h5>Syntax:</h5>
   3546 <pre>
   3547   &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;          <i>; yields {ty}:result</i>
   3548   &lt;result&gt; = sub nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
   3549   &lt;result&gt; = sub nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
   3550   &lt;result&gt; = sub nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;  <i>; yields {ty}:result</i>
   3551 </pre>
   3552 
   3553 <h5>Overview:</h5>
   3554 <p>The '<tt>sub</tt>' instruction returns the difference of its two
   3555    operands.</p>
   3556 
   3557 <p>Note that the '<tt>sub</tt>' instruction is used to represent the
   3558    '<tt>neg</tt>' instruction present in most other intermediate
   3559    representations.</p>
   3560 
   3561 <h5>Arguments:</h5>
   3562 <p>The two arguments to the '<tt>sub</tt>' instruction must
   3563    be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
   3564    integer values.  Both arguments must have identical types.</p>
   3565 
   3566 <h5>Semantics:</h5>
   3567 <p>The value produced is the integer difference of the two operands.</p>
   3568 
   3569 <p>If the difference has unsigned overflow, the result returned is the
   3570    mathematical result modulo 2<sup>n</sup>, where n is the bit width of the
   3571    result.</p>
   3572 
   3573 <p>Because LLVM integers use a two's complement representation, this instruction
   3574    is appropriate for both signed and unsigned integers.</p>
   3575 
   3576 <p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
   3577    and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
   3578    <tt>nsw</tt> keywords are present, the result value of the <tt>sub</tt>
   3579    is a <a href="#trapvalues">trap value</a> if unsigned and/or signed overflow,
   3580    respectively, occurs.</p>
   3581 
   3582 <h5>Example:</h5>
   3583 <pre>
   3584   &lt;result&gt; = sub i32 4, %var          <i>; yields {i32}:result = 4 - %var</i>
   3585   &lt;result&gt; = sub i32 0, %val          <i>; yields {i32}:result = -%var</i>
   3586 </pre>
   3587 
   3588 </div>
   3589 
   3590 <!-- _______________________________________________________________________ -->
   3591 <h4>
   3592    <a name="i_fsub">'<tt>fsub</tt>' Instruction</a>
   3593 </h4>
   3594 
   3595 <div>
   3596 
   3597 <h5>Syntax:</h5>
   3598 <pre>
   3599   &lt;result&gt; = fsub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   3600 </pre>
   3601 
   3602 <h5>Overview:</h5>
   3603 <p>The '<tt>fsub</tt>' instruction returns the difference of its two
   3604    operands.</p>
   3605 
   3606 <p>Note that the '<tt>fsub</tt>' instruction is used to represent the
   3607    '<tt>fneg</tt>' instruction present in most other intermediate
   3608    representations.</p>
   3609 
   3610 <h5>Arguments:</h5>
   3611 <p>The two arguments to the '<tt>fsub</tt>' instruction must be
   3612    <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
   3613    floating point values.  Both arguments must have identical types.</p>
   3614 
   3615 <h5>Semantics:</h5>
   3616 <p>The value produced is the floating point difference of the two operands.</p>
   3617 
   3618 <h5>Example:</h5>
   3619 <pre>
   3620   &lt;result&gt; = fsub float 4.0, %var           <i>; yields {float}:result = 4.0 - %var</i>
   3621   &lt;result&gt; = fsub float -0.0, %val          <i>; yields {float}:result = -%var</i>
   3622 </pre>
   3623 
   3624 </div>
   3625 
   3626 <!-- _______________________________________________________________________ -->
   3627 <h4>
   3628   <a name="i_mul">'<tt>mul</tt>' Instruction</a>
   3629 </h4>
   3630 
   3631 <div>
   3632 
   3633 <h5>Syntax:</h5>
   3634 <pre>
   3635   &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;          <i>; yields {ty}:result</i>
   3636   &lt;result&gt; = mul nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
   3637   &lt;result&gt; = mul nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
   3638   &lt;result&gt; = mul nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;  <i>; yields {ty}:result</i>
   3639 </pre>
   3640 
   3641 <h5>Overview:</h5>
   3642 <p>The '<tt>mul</tt>' instruction returns the product of its two operands.</p>
   3643 
   3644 <h5>Arguments:</h5>
   3645 <p>The two arguments to the '<tt>mul</tt>' instruction must
   3646    be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
   3647    integer values.  Both arguments must have identical types.</p>
   3648 
   3649 <h5>Semantics:</h5>
   3650 <p>The value produced is the integer product of the two operands.</p>
   3651 
   3652 <p>If the result of the multiplication has unsigned overflow, the result
   3653    returned is the mathematical result modulo 2<sup>n</sup>, where n is the bit
   3654    width of the result.</p>
   3655 
   3656 <p>Because LLVM integers use a two's complement representation, and the result
   3657    is the same width as the operands, this instruction returns the correct
   3658    result for both signed and unsigned integers.  If a full product
   3659    (e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands should
   3660    be sign-extended or zero-extended as appropriate to the width of the full
   3661    product.</p>
   3662 
   3663 <p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
   3664    and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
   3665    <tt>nsw</tt> keywords are present, the result value of the <tt>mul</tt>
   3666    is a <a href="#trapvalues">trap value</a> if unsigned and/or signed overflow,
   3667    respectively, occurs.</p>
   3668 
   3669 <h5>Example:</h5>
   3670 <pre>
   3671   &lt;result&gt; = mul i32 4, %var          <i>; yields {i32}:result = 4 * %var</i>
   3672 </pre>
   3673 
   3674 </div>
   3675 
   3676 <!-- _______________________________________________________________________ -->
   3677 <h4>
   3678   <a name="i_fmul">'<tt>fmul</tt>' Instruction</a>
   3679 </h4>
   3680 
   3681 <div>
   3682 
   3683 <h5>Syntax:</h5>
   3684 <pre>
   3685   &lt;result&gt; = fmul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   3686 </pre>
   3687 
   3688 <h5>Overview:</h5>
   3689 <p>The '<tt>fmul</tt>' instruction returns the product of its two operands.</p>
   3690 
   3691 <h5>Arguments:</h5>
   3692 <p>The two arguments to the '<tt>fmul</tt>' instruction must be
   3693    <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
   3694    floating point values.  Both arguments must have identical types.</p>
   3695 
   3696 <h5>Semantics:</h5>
   3697 <p>The value produced is the floating point product of the two operands.</p>
   3698 
   3699 <h5>Example:</h5>
   3700 <pre>
   3701   &lt;result&gt; = fmul float 4.0, %var          <i>; yields {float}:result = 4.0 * %var</i>
   3702 </pre>
   3703 
   3704 </div>
   3705 
   3706 <!-- _______________________________________________________________________ -->
   3707 <h4>
   3708   <a name="i_udiv">'<tt>udiv</tt>' Instruction</a>
   3709 </h4>
   3710 
   3711 <div>
   3712 
   3713 <h5>Syntax:</h5>
   3714 <pre>
   3715   &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;         <i>; yields {ty}:result</i>
   3716   &lt;result&gt; = udiv exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   3717 </pre>
   3718 
   3719 <h5>Overview:</h5>
   3720 <p>The '<tt>udiv</tt>' instruction returns the quotient of its two operands.</p>
   3721 
   3722 <h5>Arguments:</h5>
   3723 <p>The two arguments to the '<tt>udiv</tt>' instruction must be
   3724    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
   3725    values.  Both arguments must have identical types.</p>
   3726 
   3727 <h5>Semantics:</h5>
   3728 <p>The value produced is the unsigned integer quotient of the two operands.</p>
   3729 
   3730 <p>Note that unsigned integer division and signed integer division are distinct
   3731    operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
   3732 
   3733 <p>Division by zero leads to undefined behavior.</p>
   3734 
   3735 <p>If the <tt>exact</tt> keyword is present, the result value of the
   3736    <tt>udiv</tt> is a <a href="#trapvalues">trap value</a> if %op1 is not a
   3737   multiple of %op2 (as such, "((a udiv exact b) mul b) == a").</p>
   3738 
   3739 
   3740 <h5>Example:</h5>
   3741 <pre>
   3742   &lt;result&gt; = udiv i32 4, %var          <i>; yields {i32}:result = 4 / %var</i>
   3743 </pre>
   3744 
   3745 </div>
   3746 
   3747 <!-- _______________________________________________________________________ -->
   3748 <h4>
   3749   <a name="i_sdiv">'<tt>sdiv</tt>' Instruction</a>
   3750 </h4>
   3751 
   3752 <div>
   3753 
   3754 <h5>Syntax:</h5>
   3755 <pre>
   3756   &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;         <i>; yields {ty}:result</i>
   3757   &lt;result&gt; = sdiv exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   3758 </pre>
   3759 
   3760 <h5>Overview:</h5>
   3761 <p>The '<tt>sdiv</tt>' instruction returns the quotient of its two operands.</p>
   3762 
   3763 <h5>Arguments:</h5>
   3764 <p>The two arguments to the '<tt>sdiv</tt>' instruction must be
   3765    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
   3766    values.  Both arguments must have identical types.</p>
   3767 
   3768 <h5>Semantics:</h5>
   3769 <p>The value produced is the signed integer quotient of the two operands rounded
   3770    towards zero.</p>
   3771 
   3772 <p>Note that signed integer division and unsigned integer division are distinct
   3773    operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
   3774 
   3775 <p>Division by zero leads to undefined behavior. Overflow also leads to
   3776    undefined behavior; this is a rare case, but can occur, for example, by doing
   3777    a 32-bit division of -2147483648 by -1.</p>
   3778 
   3779 <p>If the <tt>exact</tt> keyword is present, the result value of the
   3780    <tt>sdiv</tt> is a <a href="#trapvalues">trap value</a> if the result would
   3781    be rounded.</p>
   3782 
   3783 <h5>Example:</h5>
   3784 <pre>
   3785   &lt;result&gt; = sdiv i32 4, %var          <i>; yields {i32}:result = 4 / %var</i>
   3786 </pre>
   3787 
   3788 </div>
   3789 
   3790 <!-- _______________________________________________________________________ -->
   3791 <h4>
   3792   <a name="i_fdiv">'<tt>fdiv</tt>' Instruction</a>
   3793 </h4>
   3794 
   3795 <div>
   3796 
   3797 <h5>Syntax:</h5>
   3798 <pre>
   3799   &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   3800 </pre>
   3801 
   3802 <h5>Overview:</h5>
   3803 <p>The '<tt>fdiv</tt>' instruction returns the quotient of its two operands.</p>
   3804 
   3805 <h5>Arguments:</h5>
   3806 <p>The two arguments to the '<tt>fdiv</tt>' instruction must be
   3807    <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
   3808    floating point values.  Both arguments must have identical types.</p>
   3809 
   3810 <h5>Semantics:</h5>
   3811 <p>The value produced is the floating point quotient of the two operands.</p>
   3812 
   3813 <h5>Example:</h5>
   3814 <pre>
   3815   &lt;result&gt; = fdiv float 4.0, %var          <i>; yields {float}:result = 4.0 / %var</i>
   3816 </pre>
   3817 
   3818 </div>
   3819 
   3820 <!-- _______________________________________________________________________ -->
   3821 <h4>
   3822   <a name="i_urem">'<tt>urem</tt>' Instruction</a>
   3823 </h4>
   3824 
   3825 <div>
   3826 
   3827 <h5>Syntax:</h5>
   3828 <pre>
   3829   &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   3830 </pre>
   3831 
   3832 <h5>Overview:</h5>
   3833 <p>The '<tt>urem</tt>' instruction returns the remainder from the unsigned
   3834    division of its two arguments.</p>
   3835 
   3836 <h5>Arguments:</h5>
   3837 <p>The two arguments to the '<tt>urem</tt>' instruction must be
   3838    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
   3839    values.  Both arguments must have identical types.</p>
   3840 
   3841 <h5>Semantics:</h5>
   3842 <p>This instruction returns the unsigned integer <i>remainder</i> of a division.
   3843    This instruction always performs an unsigned division to get the
   3844    remainder.</p>
   3845 
   3846 <p>Note that unsigned integer remainder and signed integer remainder are
   3847    distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
   3848 
   3849 <p>Taking the remainder of a division by zero leads to undefined behavior.</p>
   3850 
   3851 <h5>Example:</h5>
   3852 <pre>
   3853   &lt;result&gt; = urem i32 4, %var          <i>; yields {i32}:result = 4 % %var</i>
   3854 </pre>
   3855 
   3856 </div>
   3857 
   3858 <!-- _______________________________________________________________________ -->
   3859 <h4>
   3860   <a name="i_srem">'<tt>srem</tt>' Instruction</a>
   3861 </h4>
   3862 
   3863 <div>
   3864 
   3865 <h5>Syntax:</h5>
   3866 <pre>
   3867   &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   3868 </pre>
   3869 
   3870 <h5>Overview:</h5>
   3871 <p>The '<tt>srem</tt>' instruction returns the remainder from the signed
   3872    division of its two operands. This instruction can also take
   3873    <a href="#t_vector">vector</a> versions of the values in which case the
   3874    elements must be integers.</p>
   3875 
   3876 <h5>Arguments:</h5>
   3877 <p>The two arguments to the '<tt>srem</tt>' instruction must be
   3878    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
   3879    values.  Both arguments must have identical types.</p>
   3880 
   3881 <h5>Semantics:</h5>
   3882 <p>This instruction returns the <i>remainder</i> of a division (where the result
   3883    is either zero or has the same sign as the dividend, <tt>op1</tt>), not the
   3884    <i>modulo</i> operator (where the result is either zero or has the same sign
   3885    as the divisor, <tt>op2</tt>) of a value.
   3886    For more information about the difference,
   3887    see <a href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
   3888    Math Forum</a>. For a table of how this is implemented in various languages,
   3889    please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
   3890    Wikipedia: modulo operation</a>.</p>
   3891 
   3892 <p>Note that signed integer remainder and unsigned integer remainder are
   3893    distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
   3894 
   3895 <p>Taking the remainder of a division by zero leads to undefined behavior.
   3896    Overflow also leads to undefined behavior; this is a rare case, but can
   3897    occur, for example, by taking the remainder of a 32-bit division of
   3898    -2147483648 by -1.  (The remainder doesn't actually overflow, but this rule
   3899    lets srem be implemented using instructions that return both the result of
   3900    the division and the remainder.)</p>
   3901 
   3902 <h5>Example:</h5>
   3903 <pre>
   3904   &lt;result&gt; = srem i32 4, %var          <i>; yields {i32}:result = 4 % %var</i>
   3905 </pre>
   3906 
   3907 </div>
   3908 
   3909 <!-- _______________________________________________________________________ -->
   3910 <h4>
   3911   <a name="i_frem">'<tt>frem</tt>' Instruction</a>
   3912 </h4>
   3913 
   3914 <div>
   3915 
   3916 <h5>Syntax:</h5>
   3917 <pre>
   3918   &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   3919 </pre>
   3920 
   3921 <h5>Overview:</h5>
   3922 <p>The '<tt>frem</tt>' instruction returns the remainder from the division of
   3923    its two operands.</p>
   3924 
   3925 <h5>Arguments:</h5>
   3926 <p>The two arguments to the '<tt>frem</tt>' instruction must be
   3927    <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
   3928    floating point values.  Both arguments must have identical types.</p>
   3929 
   3930 <h5>Semantics:</h5>
   3931 <p>This instruction returns the <i>remainder</i> of a division.  The remainder
   3932    has the same sign as the dividend.</p>
   3933 
   3934 <h5>Example:</h5>
   3935 <pre>
   3936   &lt;result&gt; = frem float 4.0, %var          <i>; yields {float}:result = 4.0 % %var</i>
   3937 </pre>
   3938 
   3939 </div>
   3940 
   3941 </div>
   3942 
   3943 <!-- ======================================================================= -->
   3944 <h3>
   3945   <a name="bitwiseops">Bitwise Binary Operations</a>
   3946 </h3>
   3947 
   3948 <div>
   3949 
   3950 <p>Bitwise binary operators are used to do various forms of bit-twiddling in a
   3951    program.  They are generally very efficient instructions and can commonly be
   3952    strength reduced from other instructions.  They require two operands of the
   3953    same type, execute an operation on them, and produce a single value.  The
   3954    resulting value is the same type as its operands.</p>
   3955 
   3956 <!-- _______________________________________________________________________ -->
   3957 <h4>
   3958   <a name="i_shl">'<tt>shl</tt>' Instruction</a>
   3959 </h4>
   3960 
   3961 <div>
   3962 
   3963 <h5>Syntax:</h5>
   3964 <pre>
   3965   &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;           <i>; yields {ty}:result</i>
   3966   &lt;result&gt; = shl nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;       <i>; yields {ty}:result</i>
   3967   &lt;result&gt; = shl nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;       <i>; yields {ty}:result</i>
   3968   &lt;result&gt; = shl nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   3969 </pre>
   3970 
   3971 <h5>Overview:</h5>
   3972 <p>The '<tt>shl</tt>' instruction returns the first operand shifted to the left
   3973    a specified number of bits.</p>
   3974 
   3975 <h5>Arguments:</h5>
   3976 <p>Both arguments to the '<tt>shl</tt>' instruction must be the
   3977     same <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
   3978     integer type.  '<tt>op2</tt>' is treated as an unsigned value.</p>
   3979 
   3980 <h5>Semantics:</h5>
   3981 <p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod
   3982    2<sup>n</sup>, where <tt>n</tt> is the width of the result.  If <tt>op2</tt>
   3983    is (statically or dynamically) negative or equal to or larger than the number
   3984    of bits in <tt>op1</tt>, the result is undefined.  If the arguments are
   3985    vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
   3986    shift amount in <tt>op2</tt>.</p>
   3987 
   3988 <p>If the <tt>nuw</tt> keyword is present, then the shift produces a 
   3989    <a href="#trapvalues">trap value</a> if it shifts out any non-zero bits.  If
   3990    the <tt>nsw</tt> keyword is present, then the shift produces a
   3991    <a href="#trapvalues">trap value</a> if it shifts out any bits that disagree
   3992    with the resultant sign bit.  As such, NUW/NSW have the same semantics as
   3993    they would if the shift were expressed as a mul instruction with the same
   3994    nsw/nuw bits in (mul %op1, (shl 1, %op2)).</p>
   3995 
   3996 <h5>Example:</h5>
   3997 <pre>
   3998   &lt;result&gt; = shl i32 4, %var   <i>; yields {i32}: 4 &lt;&lt; %var</i>
   3999   &lt;result&gt; = shl i32 4, 2      <i>; yields {i32}: 16</i>
   4000   &lt;result&gt; = shl i32 1, 10     <i>; yields {i32}: 1024</i>
   4001   &lt;result&gt; = shl i32 1, 32     <i>; undefined</i>
   4002   &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt;   <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
   4003 </pre>
   4004 
   4005 </div>
   4006 
   4007 <!-- _______________________________________________________________________ -->
   4008 <h4>
   4009   <a name="i_lshr">'<tt>lshr</tt>' Instruction</a>
   4010 </h4>
   4011 
   4012 <div>
   4013 
   4014 <h5>Syntax:</h5>
   4015 <pre>
   4016   &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;         <i>; yields {ty}:result</i>
   4017   &lt;result&gt; = lshr exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   4018 </pre>
   4019 
   4020 <h5>Overview:</h5>
   4021 <p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
   4022    operand shifted to the right a specified number of bits with zero fill.</p>
   4023 
   4024 <h5>Arguments:</h5>
   4025 <p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
   4026    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
   4027    type. '<tt>op2</tt>' is treated as an unsigned value.</p>
   4028 
   4029 <h5>Semantics:</h5>
   4030 <p>This instruction always performs a logical shift right operation. The most
   4031    significant bits of the result will be filled with zero bits after the shift.
   4032    If <tt>op2</tt> is (statically or dynamically) equal to or larger than the
   4033    number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
   4034    vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
   4035    shift amount in <tt>op2</tt>.</p>
   4036 
   4037 <p>If the <tt>exact</tt> keyword is present, the result value of the
   4038    <tt>lshr</tt> is a <a href="#trapvalues">trap value</a> if any of the bits
   4039    shifted out are non-zero.</p>
   4040 
   4041 
   4042 <h5>Example:</h5>
   4043 <pre>
   4044   &lt;result&gt; = lshr i32 4, 1   <i>; yields {i32}:result = 2</i>
   4045   &lt;result&gt; = lshr i32 4, 2   <i>; yields {i32}:result = 1</i>
   4046   &lt;result&gt; = lshr i8  4, 3   <i>; yields {i8}:result = 0</i>
   4047   &lt;result&gt; = lshr i8 -2, 1   <i>; yields {i8}:result = 0x7FFFFFFF </i>
   4048   &lt;result&gt; = lshr i32 1, 32  <i>; undefined</i>
   4049   &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt;   <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
   4050 </pre>
   4051 
   4052 </div>
   4053 
   4054 <!-- _______________________________________________________________________ -->
   4055 <h4>
   4056   <a name="i_ashr">'<tt>ashr</tt>' Instruction</a>
   4057 </h4>
   4058 
   4059 <div>
   4060 
   4061 <h5>Syntax:</h5>
   4062 <pre>
   4063   &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;         <i>; yields {ty}:result</i>
   4064   &lt;result&gt; = ashr exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   4065 </pre>
   4066 
   4067 <h5>Overview:</h5>
   4068 <p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
   4069    operand shifted to the right a specified number of bits with sign
   4070    extension.</p>
   4071 
   4072 <h5>Arguments:</h5>
   4073 <p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
   4074    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
   4075    type.  '<tt>op2</tt>' is treated as an unsigned value.</p>
   4076 
   4077 <h5>Semantics:</h5>
   4078 <p>This instruction always performs an arithmetic shift right operation, The
   4079    most significant bits of the result will be filled with the sign bit
   4080    of <tt>op1</tt>.  If <tt>op2</tt> is (statically or dynamically) equal to or
   4081    larger than the number of bits in <tt>op1</tt>, the result is undefined. If
   4082    the arguments are vectors, each vector element of <tt>op1</tt> is shifted by
   4083    the corresponding shift amount in <tt>op2</tt>.</p>
   4084 
   4085 <p>If the <tt>exact</tt> keyword is present, the result value of the
   4086    <tt>ashr</tt> is a <a href="#trapvalues">trap value</a> if any of the bits
   4087    shifted out are non-zero.</p>
   4088 
   4089 <h5>Example:</h5>
   4090 <pre>
   4091   &lt;result&gt; = ashr i32 4, 1   <i>; yields {i32}:result = 2</i>
   4092   &lt;result&gt; = ashr i32 4, 2   <i>; yields {i32}:result = 1</i>
   4093   &lt;result&gt; = ashr i8  4, 3   <i>; yields {i8}:result = 0</i>
   4094   &lt;result&gt; = ashr i8 -2, 1   <i>; yields {i8}:result = -1</i>
   4095   &lt;result&gt; = ashr i32 1, 32  <i>; undefined</i>
   4096   &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt;   <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
   4097 </pre>
   4098 
   4099 </div>
   4100 
   4101 <!-- _______________________________________________________________________ -->
   4102 <h4>
   4103   <a name="i_and">'<tt>and</tt>' Instruction</a>
   4104 </h4>
   4105 
   4106 <div>
   4107 
   4108 <h5>Syntax:</h5>
   4109 <pre>
   4110   &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   4111 </pre>
   4112 
   4113 <h5>Overview:</h5>
   4114 <p>The '<tt>and</tt>' instruction returns the bitwise logical and of its two
   4115    operands.</p>
   4116 
   4117 <h5>Arguments:</h5>
   4118 <p>The two arguments to the '<tt>and</tt>' instruction must be
   4119    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
   4120    values.  Both arguments must have identical types.</p>
   4121 
   4122 <h5>Semantics:</h5>
   4123 <p>The truth table used for the '<tt>and</tt>' instruction is:</p>
   4124 
   4125 <table border="1" cellspacing="0" cellpadding="4">
   4126   <tbody>
   4127     <tr>
   4128       <td>In0</td>
   4129       <td>In1</td>
   4130       <td>Out</td>
   4131     </tr>
   4132     <tr>
   4133       <td>0</td>
   4134       <td>0</td>
   4135       <td>0</td>
   4136     </tr>
   4137     <tr>
   4138       <td>0</td>
   4139       <td>1</td>
   4140       <td>0</td>
   4141     </tr>
   4142     <tr>
   4143       <td>1</td>
   4144       <td>0</td>
   4145       <td>0</td>
   4146     </tr>
   4147     <tr>
   4148       <td>1</td>
   4149       <td>1</td>
   4150       <td>1</td>
   4151     </tr>
   4152   </tbody>
   4153 </table>
   4154 
   4155 <h5>Example:</h5>
   4156 <pre>
   4157   &lt;result&gt; = and i32 4, %var         <i>; yields {i32}:result = 4 &amp; %var</i>
   4158   &lt;result&gt; = and i32 15, 40          <i>; yields {i32}:result = 8</i>
   4159   &lt;result&gt; = and i32 4, 8            <i>; yields {i32}:result = 0</i>
   4160 </pre>
   4161 </div>
   4162 <!-- _______________________________________________________________________ -->
   4163 <h4>
   4164   <a name="i_or">'<tt>or</tt>' Instruction</a>
   4165 </h4>
   4166 
   4167 <div>
   4168 
   4169 <h5>Syntax:</h5>
   4170 <pre>
   4171   &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   4172 </pre>
   4173 
   4174 <h5>Overview:</h5>
   4175 <p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive or of its
   4176    two operands.</p>
   4177 
   4178 <h5>Arguments:</h5>
   4179 <p>The two arguments to the '<tt>or</tt>' instruction must be
   4180    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
   4181    values.  Both arguments must have identical types.</p>
   4182 
   4183 <h5>Semantics:</h5>
   4184 <p>The truth table used for the '<tt>or</tt>' instruction is:</p>
   4185 
   4186 <table border="1" cellspacing="0" cellpadding="4">
   4187   <tbody>
   4188     <tr>
   4189       <td>In0</td>
   4190       <td>In1</td>
   4191       <td>Out</td>
   4192     </tr>
   4193     <tr>
   4194       <td>0</td>
   4195       <td>0</td>
   4196       <td>0</td>
   4197     </tr>
   4198     <tr>
   4199       <td>0</td>
   4200       <td>1</td>
   4201       <td>1</td>
   4202     </tr>
   4203     <tr>
   4204       <td>1</td>
   4205       <td>0</td>
   4206       <td>1</td>
   4207     </tr>
   4208     <tr>
   4209       <td>1</td>
   4210       <td>1</td>
   4211       <td>1</td>
   4212     </tr>
   4213   </tbody>
   4214 </table>
   4215 
   4216 <h5>Example:</h5>
   4217 <pre>
   4218   &lt;result&gt; = or i32 4, %var         <i>; yields {i32}:result = 4 | %var</i>
   4219   &lt;result&gt; = or i32 15, 40          <i>; yields {i32}:result = 47</i>
   4220   &lt;result&gt; = or i32 4, 8            <i>; yields {i32}:result = 12</i>
   4221 </pre>
   4222 
   4223 </div>
   4224 
   4225 <!-- _______________________________________________________________________ -->
   4226 <h4>
   4227   <a name="i_xor">'<tt>xor</tt>' Instruction</a>
   4228 </h4>
   4229 
   4230 <div>
   4231 
   4232 <h5>Syntax:</h5>
   4233 <pre>
   4234   &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
   4235 </pre>
   4236 
   4237 <h5>Overview:</h5>
   4238 <p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive or of
   4239    its two operands.  The <tt>xor</tt> is used to implement the "one's
   4240    complement" operation, which is the "~" operator in C.</p>
   4241 
   4242 <h5>Arguments:</h5>
   4243 <p>The two arguments to the '<tt>xor</tt>' instruction must be
   4244    <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
   4245    values.  Both arguments must have identical types.</p>
   4246 
   4247 <h5>Semantics:</h5>
   4248 <p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
   4249 
   4250 <table border="1" cellspacing="0" cellpadding="4">
   4251   <tbody>
   4252     <tr>
   4253       <td>In0</td>
   4254       <td>In1</td>
   4255       <td>Out</td>
   4256     </tr>
   4257     <tr>
   4258       <td>0</td>
   4259       <td>0</td>
   4260       <td>0</td>
   4261     </tr>
   4262     <tr>
   4263       <td>0</td>
   4264       <td>1</td>
   4265       <td>1</td>
   4266     </tr>
   4267     <tr>
   4268       <td>1</td>
   4269       <td>0</td>
   4270       <td>1</td>
   4271     </tr>
   4272     <tr>
   4273       <td>1</td>
   4274       <td>1</td>
   4275       <td>0</td>
   4276     </tr>
   4277   </tbody>
   4278 </table>
   4279 
   4280 <h5>Example:</h5>
   4281 <pre>
   4282   &lt;result&gt; = xor i32 4, %var         <i>; yields {i32}:result = 4 ^ %var</i>
   4283   &lt;result&gt; = xor i32 15, 40          <i>; yields {i32}:result = 39</i>
   4284   &lt;result&gt; = xor i32 4, 8            <i>; yields {i32}:result = 12</i>
   4285   &lt;result&gt; = xor i32 %V, -1          <i>; yields {i32}:result = ~%V</i>
   4286 </pre>
   4287 
   4288 </div>
   4289 
   4290 </div>
   4291 
   4292 <!-- ======================================================================= -->
   4293 <h3>
   4294   <a name="vectorops">Vector Operations</a>
   4295 </h3>
   4296 
   4297 <div>
   4298 
   4299 <p>LLVM supports several instructions to represent vector operations in a
   4300    target-independent manner.  These instructions cover the element-access and
   4301    vector-specific operations needed to process vectors effectively.  While LLVM
   4302    does directly support these vector operations, many sophisticated algorithms
   4303    will want to use target-specific intrinsics to take full advantage of a
   4304    specific target.</p>
   4305 
   4306 <!-- _______________________________________________________________________ -->
   4307 <h4>
   4308    <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
   4309 </h4>
   4310 
   4311 <div>
   4312 
   4313 <h5>Syntax:</h5>
   4314 <pre>
   4315   &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt;    <i>; yields &lt;ty&gt;</i>
   4316 </pre>
   4317 
   4318 <h5>Overview:</h5>
   4319 <p>The '<tt>extractelement</tt>' instruction extracts a single scalar element
   4320    from a vector at a specified index.</p>
   4321 
   4322 
   4323 <h5>Arguments:</h5>
   4324 <p>The first operand of an '<tt>extractelement</tt>' instruction is a value
   4325    of <a href="#t_vector">vector</a> type.  The second operand is an index
   4326    indicating the position from which to extract the element.  The index may be
   4327    a variable.</p>
   4328 
   4329 <h5>Semantics:</h5>
   4330 <p>The result is a scalar of the same type as the element type of
   4331    <tt>val</tt>.  Its value is the value at position <tt>idx</tt> of
   4332    <tt>val</tt>.  If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
   4333    results are undefined.</p>
   4334 
   4335 <h5>Example:</h5>
   4336 <pre>
   4337   &lt;result&gt; = extractelement &lt;4 x i32&gt; %vec, i32 0    <i>; yields i32</i>
   4338 </pre>
   4339 
   4340 </div>
   4341 
   4342 <!-- _______________________________________________________________________ -->
   4343 <h4>
   4344    <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
   4345 </h4>
   4346 
   4347 <div>
   4348 
   4349 <h5>Syntax:</h5>
   4350 <pre>
   4351   &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt;    <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
   4352 </pre>
   4353 
   4354 <h5>Overview:</h5>
   4355 <p>The '<tt>insertelement</tt>' instruction inserts a scalar element into a
   4356    vector at a specified index.</p>
   4357 
   4358 <h5>Arguments:</h5>
   4359 <p>The first operand of an '<tt>insertelement</tt>' instruction is a value
   4360    of <a href="#t_vector">vector</a> type.  The second operand is a scalar value
   4361    whose type must equal the element type of the first operand.  The third
   4362    operand is an index indicating the position at which to insert the value.
   4363    The index may be a variable.</p>
   4364 
   4365 <h5>Semantics:</h5>
   4366 <p>The result is a vector of the same type as <tt>val</tt>.  Its element values
   4367    are those of <tt>val</tt> except at position <tt>idx</tt>, where it gets the
   4368    value <tt>elt</tt>.  If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
   4369    results are undefined.</p>
   4370 
   4371 <h5>Example:</h5>
   4372 <pre>
   4373   &lt;result&gt; = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0    <i>; yields &lt;4 x i32&gt;</i>
   4374 </pre>
   4375 
   4376 </div>
   4377 
   4378 <!-- _______________________________________________________________________ -->
   4379 <h4>
   4380    <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
   4381 </h4>
   4382 
   4383 <div>
   4384 
   4385 <h5>Syntax:</h5>
   4386 <pre>
   4387   &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt;    <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
   4388 </pre>
   4389 
   4390 <h5>Overview:</h5>
   4391 <p>The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
   4392    from two input vectors, returning a vector with the same element type as the
   4393    input and length that is the same as the shuffle mask.</p>
   4394 
   4395 <h5>Arguments:</h5>
   4396 <p>The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
   4397    with types that match each other. The third argument is a shuffle mask whose
   4398    element type is always 'i32'.  The result of the instruction is a vector
   4399    whose length is the same as the shuffle mask and whose element type is the
   4400    same as the element type of the first two operands.</p>
   4401 
   4402 <p>The shuffle mask operand is required to be a constant vector with either
   4403    constant integer or undef values.</p>
   4404 
   4405 <h5>Semantics:</h5>
   4406 <p>The elements of the two input vectors are numbered from left to right across
   4407    both of the vectors.  The shuffle mask operand specifies, for each element of
   4408    the result vector, which element of the two input vectors the result element
   4409    gets.  The element selector may be undef (meaning "don't care") and the
   4410    second operand may be undef if performing a shuffle from only one vector.</p>
   4411 
   4412 <h5>Example:</h5>
   4413 <pre>
   4414   &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
   4415                           &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt;  <i>; yields &lt;4 x i32&gt;</i>
   4416   &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
   4417                           &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt;  <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
   4418   &lt;result&gt; = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
   4419                           &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt;  <i>; yields &lt;4 x i32&gt;</i>
   4420   &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
   4421                           &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt;  <i>; yields &lt;8 x i32&gt;</i>
   4422 </pre>
   4423 
   4424 </div>
   4425 
   4426 </div>
   4427 
   4428 <!-- ======================================================================= -->
   4429 <h3>
   4430   <a name="aggregateops">Aggregate Operations</a>
   4431 </h3>
   4432 
   4433 <div>
   4434 
   4435 <p>LLVM supports several instructions for working with
   4436   <a href="#t_aggregate">aggregate</a> values.</p>
   4437 
   4438 <!-- _______________________________________________________________________ -->
   4439 <h4>
   4440    <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
   4441 </h4>
   4442 
   4443 <div>
   4444 
   4445 <h5>Syntax:</h5>
   4446 <pre>
   4447   &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
   4448 </pre>
   4449 
   4450 <h5>Overview:</h5>
   4451 <p>The '<tt>extractvalue</tt>' instruction extracts the value of a member field
   4452    from an <a href="#t_aggregate">aggregate</a> value.</p>
   4453 
   4454 <h5>Arguments:</h5>
   4455 <p>The first operand of an '<tt>extractvalue</tt>' instruction is a value
   4456    of <a href="#t_struct">struct</a> or
   4457    <a href="#t_array">array</a> type.  The operands are constant indices to
   4458    specify which value to extract in a similar manner as indices in a
   4459    '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
   4460    <p>The major differences to <tt>getelementptr</tt> indexing are:</p>
   4461      <ul>
   4462        <li>Since the value being indexed is not a pointer, the first index is
   4463            omitted and assumed to be zero.</li>
   4464        <li>At least one index must be specified.</li>
   4465        <li>Not only struct indices but also array indices must be in
   4466            bounds.</li>
   4467      </ul>
   4468 
   4469 <h5>Semantics:</h5>
   4470 <p>The result is the value at the position in the aggregate specified by the
   4471    index operands.</p>
   4472 
   4473 <h5>Example:</h5>
   4474 <pre>
   4475   &lt;result&gt; = extractvalue {i32, float} %agg, 0    <i>; yields i32</i>
   4476 </pre>
   4477 
   4478 </div>
   4479 
   4480 <!-- _______________________________________________________________________ -->
   4481 <h4>
   4482    <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
   4483 </h4>
   4484 
   4485 <div>
   4486 
   4487 <h5>Syntax:</h5>
   4488 <pre>
   4489   &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, &lt;idx&gt;{, &lt;idx&gt;}*    <i>; yields &lt;aggregate type&gt;</i>
   4490 </pre>
   4491 
   4492 <h5>Overview:</h5>
   4493 <p>The '<tt>insertvalue</tt>' instruction inserts a value into a member field
   4494    in an <a href="#t_aggregate">aggregate</a> value.</p>
   4495 
   4496 <h5>Arguments:</h5>
   4497 <p>The first operand of an '<tt>insertvalue</tt>' instruction is a value
   4498    of <a href="#t_struct">struct</a> or
   4499    <a href="#t_array">array</a> type.  The second operand is a first-class
   4500    value to insert.  The following operands are constant indices indicating
   4501    the position at which to insert the value in a similar manner as indices in a
   4502    '<tt><a href="#i_extractvalue">extractvalue</a></tt>' instruction.  The
   4503    value to insert must have the same type as the value identified by the
   4504    indices.</p>
   4505 
   4506 <h5>Semantics:</h5>
   4507 <p>The result is an aggregate of the same type as <tt>val</tt>.  Its value is
   4508    that of <tt>val</tt> except that the value at the position specified by the
   4509    indices is that of <tt>elt</tt>.</p>
   4510 
   4511 <h5>Example:</h5>
   4512 <pre>
   4513   %agg1 = insertvalue {i32, float} undef, i32 1, 0              <i>; yields {i32 1, float undef}</i>
   4514   %agg2 = insertvalue {i32, float} %agg1, float %val, 1         <i>; yields {i32 1, float %val}</i>
   4515   %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0    <i>; yields {i32 1, float %val}</i>
   4516 </pre>
   4517 
   4518 </div>
   4519 
   4520 </div>
   4521 
   4522 <!-- ======================================================================= -->
   4523 <h3>
   4524   <a name="memoryops">Memory Access and Addressing Operations</a>
   4525 </h3>
   4526 
   4527 <div>
   4528 
   4529 <p>A key design point of an SSA-based representation is how it represents
   4530    memory.  In LLVM, no memory locations are in SSA form, which makes things
   4531    very simple.  This section describes how to read, write, and allocate
   4532    memory in LLVM.</p>
   4533 
   4534 <!-- _______________________________________________________________________ -->
   4535 <h4>
   4536   <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
   4537 </h4>
   4538 
   4539 <div>
   4540 
   4541 <h5>Syntax:</h5>
   4542 <pre>
   4543   &lt;result&gt; = alloca &lt;type&gt;[, &lt;ty&gt; &lt;NumElements&gt;][, align &lt;alignment&gt;]     <i>; yields {type*}:result</i>
   4544 </pre>
   4545 
   4546 <h5>Overview:</h5>
   4547 <p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
   4548    currently executing function, to be automatically released when this function
   4549    returns to its caller. The object is always allocated in the generic address
   4550    space (address space zero).</p>
   4551 
   4552 <h5>Arguments:</h5>
   4553 <p>The '<tt>alloca</tt>' instruction
   4554    allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt> bytes of memory on the
   4555    runtime stack, returning a pointer of the appropriate type to the program.
   4556    If "NumElements" is specified, it is the number of elements allocated,
   4557    otherwise "NumElements" is defaulted to be one.  If a constant alignment is
   4558    specified, the value result of the allocation is guaranteed to be aligned to
   4559    at least that boundary.  If not specified, or if zero, the target can choose
   4560    to align the allocation on any convenient boundary compatible with the
   4561    type.</p>
   4562 
   4563 <p>'<tt>type</tt>' may be any sized type.</p>
   4564 
   4565 <h5>Semantics:</h5>
   4566 <p>Memory is allocated; a pointer is returned.  The operation is undefined if
   4567    there is insufficient stack space for the allocation.  '<tt>alloca</tt>'d
   4568    memory is automatically released when the function returns.  The
   4569    '<tt>alloca</tt>' instruction is commonly used to represent automatic
   4570    variables that must have an address available.  When the function returns
   4571    (either with the <tt><a href="#i_ret">ret</a></tt>
   4572    or <tt><a href="#i_unwind">unwind</a></tt> instructions), the memory is
   4573    reclaimed.  Allocating zero bytes is legal, but the result is undefined.</p>
   4574 
   4575 <h5>Example:</h5>
   4576 <pre>
   4577   %ptr = alloca i32                             <i>; yields {i32*}:ptr</i>
   4578   %ptr = alloca i32, i32 4                      <i>; yields {i32*}:ptr</i>
   4579   %ptr = alloca i32, i32 4, align 1024          <i>; yields {i32*}:ptr</i>
   4580   %ptr = alloca i32, align 1024                 <i>; yields {i32*}:ptr</i>
   4581 </pre>
   4582 
   4583 </div>
   4584 
   4585 <!-- _______________________________________________________________________ -->
   4586 <h4>
   4587   <a name="i_load">'<tt>load</tt>' Instruction</a>
   4588 </h4>
   4589 
   4590 <div>
   4591 
   4592 <h5>Syntax:</h5>
   4593 <pre>
   4594   &lt;result&gt; = load [volatile] &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;]
   4595   &lt;result&gt; = load atomic [volatile] &lt;ty&gt;* &lt;pointer&gt; [singlethread] &lt;ordering&gt;, align &lt;alignment&gt;
   4596   !&lt;index&gt; = !{ i32 1 }
   4597 </pre>
   4598 
   4599 <h5>Overview:</h5>
   4600 <p>The '<tt>load</tt>' instruction is used to read from memory.</p>
   4601 
   4602 <h5>Arguments:</h5>
   4603 <p>The argument to the '<tt>load</tt>' instruction specifies the memory address
   4604    from which to load.  The pointer must point to
   4605    a <a href="#t_firstclass">first class</a> type.  If the <tt>load</tt> is
   4606    marked as <tt>volatile</tt>, then the optimizer is not allowed to modify the
   4607    number or order of execution of this <tt>load</tt> with other <a
   4608    href="#volatile">volatile operations</a>.</p>
   4609 
   4610 <p>If the <code>load</code> is marked as <code>atomic</code>, it takes an extra
   4611    <a href="#ordering">ordering</a> and optional <code>singlethread</code>
   4612    argument.  The <code>release</code> and <code>acq_rel</code> orderings are
   4613    not valid on <code>load</code> instructions.  Atomic loads produce <a
   4614    href="#memorymodel">defined</a> results when they may see multiple atomic
   4615    stores.  The type of the pointee must be an integer type whose bit width
   4616    is a power of two greater than or equal to eight and less than or equal
   4617    to a target-specific size limit. <code>align</code> must be explicitly 
   4618    specified on atomic loads, and the load has undefined behavior if the
   4619    alignment is not set to a value which is at least the size in bytes of
   4620    the pointee. <code>!nontemporal</code> does not have any defined semantics
   4621    for atomic loads.</p>
   4622 
   4623 <p>The optional constant <tt>align</tt> argument specifies the alignment of the
   4624    operation (that is, the alignment of the memory address). A value of 0 or an
   4625    omitted <tt>align</tt> argument means that the operation has the preferential
   4626    alignment for the target. It is the responsibility of the code emitter to
   4627    ensure that the alignment information is correct. Overestimating the
   4628    alignment results in undefined behavior. Underestimating the alignment may
   4629    produce less efficient code. An alignment of 1 is always safe.</p>
   4630 
   4631 <p>The optional <tt>!nontemporal</tt> metadata must reference a single
   4632    metatadata name &lt;index&gt; corresponding to a metadata node with
   4633    one <tt>i32</tt> entry of value 1.  The existence of
   4634    the <tt>!nontemporal</tt> metatadata on the instruction tells the optimizer
   4635    and code generator that this load is not expected to be reused in the cache.
   4636    The code generator may select special instructions to save cache bandwidth,
   4637    such as the <tt>MOVNT</tt> instruction on x86.</p>
   4638 
   4639 <h5>Semantics:</h5>
   4640 <p>The location of memory pointed to is loaded.  If the value being loaded is of
   4641    scalar type then the number of bytes read does not exceed the minimum number
   4642    of bytes needed to hold all bits of the type.  For example, loading an
   4643    <tt>i24</tt> reads at most three bytes.  When loading a value of a type like
   4644    <tt>i20</tt> with a size that is not an integral number of bytes, the result
   4645    is undefined if the value was not originally written using a store of the
   4646    same type.</p>
   4647 
   4648 <h5>Examples:</h5>
   4649 <pre>
   4650   %ptr = <a href="#i_alloca">alloca</a> i32                               <i>; yields {i32*}:ptr</i>
   4651   <a href="#i_store">store</a> i32 3, i32* %ptr                          <i>; yields {void}</i>
   4652   %val = load i32* %ptr                           <i>; yields {i32}:val = i32 3</i>
   4653 </pre>
   4654 
   4655 </div>
   4656 
   4657 <!-- _______________________________________________________________________ -->
   4658 <h4>
   4659   <a name="i_store">'<tt>store</tt>' Instruction</a>
   4660 </h4>
   4661 
   4662 <div>
   4663 
   4664 <h5>Syntax:</h5>
   4665 <pre>
   4666   store [volatile] &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;]                   <i>; yields {void}</i>
   4667   store atomic [volatile] &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt; [singlethread] &lt;ordering&gt;, align &lt;alignment&gt;             <i>; yields {void}</i>
   4668 </pre>
   4669 
   4670 <h5>Overview:</h5>
   4671 <p>The '<tt>store</tt>' instruction is used to write to memory.</p>
   4672 
   4673 <h5>Arguments:</h5>
   4674 <p>There are two arguments to the '<tt>store</tt>' instruction: a value to store
   4675    and an address at which to store it.  The type of the
   4676    '<tt>&lt;pointer&gt;</tt>' operand must be a pointer to
   4677    the <a href="#t_firstclass">first class</a> type of the
   4678    '<tt>&lt;value&gt;</tt>' operand. If the <tt>store</tt> is marked as
   4679    <tt>volatile</tt>, then the optimizer is not allowed to modify the number or
   4680    order of execution of this <tt>store</tt> with other <a
   4681    href="#volatile">volatile operations</a>.</p>
   4682 
   4683 <p>If the <code>store</code> is marked as <code>atomic</code>, it takes an extra
   4684    <a href="#ordering">ordering</a> and optional <code>singlethread</code>
   4685    argument.  The <code>acquire</code> and <code>acq_rel</code> orderings aren't
   4686    valid on <code>store</code> instructions.  Atomic loads produce <a
   4687    href="#memorymodel">defined</a> results when they may see multiple atomic
   4688    stores. The type of the pointee must be an integer type whose bit width
   4689    is a power of two greater than or equal to eight and less than or equal
   4690    to a target-specific size limit. <code>align</code> must be explicitly 
   4691    specified on atomic stores, and the store has undefined behavior if the
   4692    alignment is not set to a value which is at least the size in bytes of
   4693    the pointee. <code>!nontemporal</code> does not have any defined semantics
   4694    for atomic stores.</p>
   4695 
   4696 <p>The optional constant "align" argument specifies the alignment of the
   4697    operation (that is, the alignment of the memory address). A value of 0 or an
   4698    omitted "align" argument means that the operation has the preferential
   4699    alignment for the target. It is the responsibility of the code emitter to
   4700    ensure that the alignment information is correct. Overestimating the
   4701    alignment results in an undefined behavior. Underestimating the alignment may
   4702    produce less efficient code. An alignment of 1 is always safe.</p>
   4703 
   4704 <p>The optional !nontemporal metadata must reference a single metatadata
   4705    name &lt;index&gt; corresponding to a metadata node with one i32 entry of
   4706    value 1.  The existence of the !nontemporal metatadata on the
   4707    instruction tells the optimizer and code generator that this load is
   4708    not expected to be reused in the cache.  The code generator may
   4709    select special instructions to save cache bandwidth, such as the
   4710    MOVNT instruction on x86.</p>
   4711 
   4712 
   4713 <h5>Semantics:</h5>
   4714 <p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>' at the
   4715    location specified by the '<tt>&lt;pointer&gt;</tt>' operand.  If
   4716    '<tt>&lt;value&gt;</tt>' is of scalar type then the number of bytes written
   4717    does not exceed the minimum number of bytes needed to hold all bits of the
   4718    type.  For example, storing an <tt>i24</tt> writes at most three bytes.  When
   4719    writing a value of a type like <tt>i20</tt> with a size that is not an
   4720    integral number of bytes, it is unspecified what happens to the extra bits
   4721    that do not belong to the type, but they will typically be overwritten.</p>
   4722 
   4723 <h5>Example:</h5>
   4724 <pre>
   4725   %ptr = <a href="#i_alloca">alloca</a> i32                               <i>; yields {i32*}:ptr</i>
   4726   store i32 3, i32* %ptr                          <i>; yields {void}</i>
   4727   %val = <a href="#i_load">load</a> i32* %ptr                           <i>; yields {i32}:val = i32 3</i>
   4728 </pre>
   4729 
   4730 </div>
   4731 
   4732 <!-- _______________________________________________________________________ -->
   4733 <h4>
   4734 <a name="i_fence">'<tt>fence</tt>' Instruction</a>
   4735 </h4>
   4736 
   4737 <div>
   4738 
   4739 <h5>Syntax:</h5>
   4740 <pre>
   4741   fence [singlethread] &lt;ordering&gt;                   <i>; yields {void}</i>
   4742 </pre>
   4743 
   4744 <h5>Overview:</h5>
   4745 <p>The '<tt>fence</tt>' instruction is used to introduce happens-before edges
   4746 between operations.</p>
   4747 
   4748 <h5>Arguments:</h5> <p>'<code>fence</code>' instructions take an <a
   4749 href="#ordering">ordering</a> argument which defines what
   4750 <i>synchronizes-with</i> edges they add.  They can only be given
   4751 <code>acquire</code>, <code>release</code>, <code>acq_rel</code>, and
   4752 <code>seq_cst</code> orderings.</p>
   4753 
   4754 <h5>Semantics:</h5>
   4755 <p>A fence <var>A</var> which has (at least) <code>release</code> ordering
   4756 semantics <i>synchronizes with</i> a fence <var>B</var> with (at least)
   4757 <code>acquire</code> ordering semantics if and only if there exist atomic
   4758 operations <var>X</var> and <var>Y</var>, both operating on some atomic object
   4759 <var>M</var>, such that <var>A</var> is sequenced before <var>X</var>,
   4760 <var>X</var> modifies <var>M</var> (either directly or through some side effect
   4761 of a sequence headed by <var>X</var>), <var>Y</var> is sequenced before
   4762 <var>B</var>, and <var>Y</var> observes <var>M</var>. This provides a
   4763 <i>happens-before</i> dependency between <var>A</var> and <var>B</var>. Rather
   4764 than an explicit <code>fence</code>, one (but not both) of the atomic operations
   4765 <var>X</var> or <var>Y</var> might provide a <code>release</code> or
   4766 <code>acquire</code> (resp.) ordering constraint and still
   4767 <i>synchronize-with</i> the explicit <code>fence</code> and establish the
   4768 <i>happens-before</i> edge.</p>
   4769 
   4770 <p>A <code>fence</code> which has <code>seq_cst</code> ordering, in addition to
   4771 having both <code>acquire</code> and <code>release</code> semantics specified
   4772 above, participates in the global program order of other <code>seq_cst</code>
   4773 operations and/or fences.</p>
   4774 
   4775 <p>The optional "<a href="#singlethread"><code>singlethread</code></a>" argument
   4776 specifies that the fence only synchronizes with other fences in the same
   4777 thread.  (This is useful for interacting with signal handlers.)</p>
   4778 
   4779 <h5>Example:</h5>
   4780 <pre>
   4781   fence acquire                          <i>; yields {void}</i>
   4782   fence singlethread seq_cst             <i>; yields {void}</i>
   4783 </pre>
   4784 
   4785 </div>
   4786 
   4787 <!-- _______________________________________________________________________ -->
   4788 <h4>
   4789 <a name="i_cmpxchg">'<tt>cmpxchg</tt>' Instruction</a>
   4790 </h4>
   4791 
   4792 <div>
   4793 
   4794 <h5>Syntax:</h5>
   4795 <pre>
   4796   cmpxchg [volatile] &lt;ty&gt;* &lt;pointer&gt;, &lt;ty&gt; &lt;cmp&gt;, &lt;ty&gt; &lt;new&gt; [singlethread] &lt;ordering&gt;                   <i>; yields {ty}</i>
   4797 </pre>
   4798 
   4799 <h5>Overview:</h5>
   4800 <p>The '<tt>cmpxchg</tt>' instruction is used to atomically modify memory.
   4801 It loads a value in memory and compares it to a given value. If they are
   4802 equal, it stores a new value into the memory.</p>
   4803 
   4804 <h5>Arguments:</h5>
   4805 <p>There are three arguments to the '<code>cmpxchg</code>' instruction: an
   4806 address to operate on, a value to compare to the value currently be at that
   4807 address, and a new value to place at that address if the compared values are
   4808 equal.  The type of '<var>&lt;cmp&gt;</var>' must be an integer type whose
   4809 bit width is a power of two greater than or equal to eight and less than
   4810 or equal to a target-specific size limit. '<var>&lt;cmp&gt;</var>' and
   4811 '<var>&lt;new&gt;</var>' must have the same type, and the type of
   4812 '<var>&lt;pointer&gt;</var>' must be a pointer to that type. If the
   4813 <code>cmpxchg</code> is marked as <code>volatile</code>, then the
   4814 optimizer is not allowed to modify the number or order of execution
   4815 of this <code>cmpxchg</code> with other <a href="#volatile">volatile
   4816 operations</a>.</p>
   4817 
   4818 <!-- FIXME: Extend allowed types. -->
   4819 
   4820 <p>The <a href="#ordering"><var>ordering</var></a> argument specifies how this
   4821 <code>cmpxchg</code> synchronizes with other atomic operations.</p>
   4822 
   4823 <p>The optional "<code>singlethread</code>" argument declares that the
   4824 <code>cmpxchg</code> is only atomic with respect to code (usually signal
   4825 handlers) running in the same thread as the <code>cmpxchg</code>.  Otherwise the
   4826 cmpxchg is atomic with respect to all other code in the system.</p>
   4827 
   4828 <p>The pointer passed into cmpxchg must have alignment greater than or equal to
   4829 the size in memory of the operand.
   4830 
   4831 <h5>Semantics:</h5>
   4832 <p>The contents of memory at the location specified by the
   4833 '<tt>&lt;pointer&gt;</tt>' operand is read and compared to
   4834 '<tt>&lt;cmp&gt;</tt>'; if the read value is the equal,
   4835 '<tt>&lt;new&gt;</tt>' is written.  The original value at the location
   4836 is returned.
   4837 
   4838 <p>A successful <code>cmpxchg</code> is a read-modify-write instruction for the
   4839 purpose of identifying <a href="#release_sequence">release sequences</a>.  A
   4840 failed <code>cmpxchg</code> is equivalent to an atomic load with an ordering
   4841 parameter determined by dropping any <code>release</code> part of the
   4842 <code>cmpxchg</code>'s ordering.</p>
   4843 
   4844 <!--
   4845 FIXME: Is compare_exchange_weak() necessary?  (Consider after we've done
   4846 optimization work on ARM.)
   4847 
   4848 FIXME: Is a weaker ordering constraint on failure helpful in practice?
   4849 -->
   4850 
   4851 <h5>Example:</h5>
   4852 <pre>
   4853 entry:
   4854   %orig = atomic <a href="#i_load">load</a> i32* %ptr unordered                       <i>; yields {i32}</i>
   4855   <a href="#i_br">br</a> label %loop
   4856 
   4857 loop:
   4858   %cmp = <a href="#i_phi">phi</a> i32 [ %orig, %entry ], [%old, %loop]
   4859   %squared = <a href="#i_mul">mul</a> i32 %cmp, %cmp
   4860   %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared                       <i>; yields {i32}</i>
   4861   %success = <a href="#i_icmp">icmp</a> eq i32 %cmp, %old
   4862   <a href="#i_br">br</a> i1 %success, label %done, label %loop
   4863 
   4864 done:
   4865   ...
   4866 </pre>
   4867 
   4868 </div>
   4869 
   4870 <!-- _______________________________________________________________________ -->
   4871 <h4>
   4872 <a name="i_atomicrmw">'<tt>atomicrmw</tt>' Instruction</a>
   4873 </h4>
   4874 
   4875 <div>
   4876 
   4877 <h5>Syntax:</h5>
   4878 <pre>
   4879   atomicrmw [volatile] &lt;operation&gt; &lt;ty&gt;* &lt;pointer&gt;, &lt;ty&gt; &lt;value&gt; [singlethread] &lt;ordering&gt;                   <i>; yields {ty}</i>
   4880 </pre>
   4881 
   4882 <h5>Overview:</h5>
   4883 <p>The '<tt>atomicrmw</tt>' instruction is used to atomically modify memory.</p>
   4884 
   4885 <h5>Arguments:</h5>
   4886 <p>There are three arguments to the '<code>atomicrmw</code>' instruction: an
   4887 operation to apply, an address whose value to modify, an argument to the
   4888 operation.  The operation must be one of the following keywords:</p>
   4889 <ul>
   4890   <li>xchg</li>
   4891   <li>add</li>
   4892   <li>sub</li>
   4893   <li>and</li>
   4894   <li>nand</li>
   4895   <li>or</li>
   4896   <li>xor</li>
   4897   <li>max</li>
   4898   <li>min</li>
   4899   <li>umax</li>
   4900   <li>umin</li>
   4901 </ul>
   4902 
   4903 <p>The type of '<var>&lt;value&gt;</var>' must be an integer type whose
   4904 bit width is a power of two greater than or equal to eight and less than
   4905 or equal to a target-specific size limit.  The type of the
   4906 '<code>&lt;pointer&gt;</code>' operand must be a pointer to that type.
   4907 If the <code>atomicrmw</code> is marked as <code>volatile</code>, then the
   4908 optimizer is not allowed to modify the number or order of execution of this
   4909 <code>atomicrmw</code> with other <a href="#volatile">volatile
   4910   operations</a>.</p>
   4911 
   4912 <!-- FIXME: Extend allowed types. -->
   4913 
   4914 <h5>Semantics:</h5>
   4915 <p>The contents of memory at the location specified by the
   4916 '<tt>&lt;pointer&gt;</tt>' operand are atomically read, modified, and written
   4917 back.  The original value at the location is returned.  The modification is
   4918 specified by the <var>operation</var> argument:</p>
   4919 
   4920 <ul>
   4921   <li>xchg: <code>*ptr = val</code></li>
   4922   <li>add: <code>*ptr = *ptr + val</code></li>
   4923   <li>sub: <code>*ptr = *ptr - val</code></li>
   4924   <li>and: <code>*ptr = *ptr &amp; val</code></li>
   4925   <li>nand: <code>*ptr = ~(*ptr &amp; val)</code></li>
   4926   <li>or: <code>*ptr = *ptr | val</code></li>
   4927   <li>xor: <code>*ptr = *ptr ^ val</code></li>
   4928   <li>max: <code>*ptr = *ptr &gt; val ? *ptr : val</code> (using a signed comparison)</li>
   4929   <li>min: <code>*ptr = *ptr &lt; val ? *ptr : val</code> (using a signed comparison)</li>
   4930   <li>umax: <code>*ptr = *ptr &gt; val ? *ptr : val</code> (using an unsigned comparison)</li>
   4931   <li>umin: <code>*ptr = *ptr &lt; val ? *ptr : val</code> (using an unsigned comparison)</li>
   4932 </ul>
   4933 
   4934 <h5>Example:</h5>
   4935 <pre>
   4936   %old = atomicrmw add i32* %ptr, i32 1 acquire                        <i>; yields {i32}</i>
   4937 </pre>
   4938 
   4939 </div>
   4940 
   4941 <!-- _______________________________________________________________________ -->
   4942 <h4>
   4943    <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
   4944 </h4>
   4945 
   4946 <div>
   4947 
   4948 <h5>Syntax:</h5>
   4949 <pre>
   4950   &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
   4951   &lt;result&gt; = getelementptr inbounds &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
   4952 </pre>
   4953 
   4954 <h5>Overview:</h5>
   4955 <p>The '<tt>getelementptr</tt>' instruction is used to get the address of a
   4956    subelement of an <a href="#t_aggregate">aggregate</a> data structure.
   4957    It performs address calculation only and does not access memory.</p>
   4958 
   4959 <h5>Arguments:</h5>
   4960 <p>The first argument is always a pointer, and forms the basis of the
   4961    calculation. The remaining arguments are indices that indicate which of the
   4962    elements of the aggregate object are indexed. The interpretation of each
   4963    index is dependent on the type being indexed into. The first index always
   4964    indexes the pointer value given as the first argument, the second index
   4965    indexes a value of the type pointed to (not necessarily the value directly
   4966    pointed to, since the first index can be non-zero), etc. The first type
   4967    indexed into must be a pointer value, subsequent types can be arrays,
   4968    vectors, and structs. Note that subsequent types being indexed into
   4969    can never be pointers, since that would require loading the pointer before
   4970    continuing calculation.</p>
   4971 
   4972 <p>The type of each index argument depends on the type it is indexing into.
   4973    When indexing into a (optionally packed) structure, only <tt>i32</tt>
   4974    integer <b>constants</b> are allowed.  When indexing into an array, pointer
   4975    or vector, integers of any width are allowed, and they are not required to be
   4976    constant.  These integers are treated as signed values where relevant.</p>
   4977 
   4978 <p>For example, let's consider a C code fragment and how it gets compiled to
   4979    LLVM:</p>
   4980 
   4981 <pre class="doc_code">
   4982 struct RT {
   4983   char A;
   4984   int B[10][20];
   4985   char C;
   4986 };
   4987 struct ST {
   4988   int X;
   4989   double Y;
   4990   struct RT Z;
   4991 };
   4992 
   4993 int *foo(struct ST *s) {
   4994   return &amp;s[1].Z.B[5][13];
   4995 }
   4996 </pre>
   4997 
   4998 <p>The LLVM code generated by the GCC frontend is:</p>
   4999 
   5000 <pre class="doc_code">
   5001 %RT = <a href="#namedtypes">type</a> { i8 , [10 x [20 x i32]], i8  }
   5002 %ST = <a href="#namedtypes">type</a> { i32, double, %RT }
   5003 
   5004 define i32* @foo(%ST* %s) {
   5005 entry:
   5006   %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
   5007   ret i32* %reg
   5008 }
   5009 </pre>
   5010 
   5011 <h5>Semantics:</h5>
   5012 <p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
   5013    type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
   5014    }</tt>' type, a structure.  The second index indexes into the third element
   5015    of the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
   5016    i8 }</tt>' type, another structure.  The third index indexes into the second
   5017    element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
   5018    array.  The two dimensions of the array are subscripted into, yielding an
   5019    '<tt>i32</tt>' type.  The '<tt>getelementptr</tt>' instruction returns a
   5020    pointer to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
   5021 
   5022 <p>Note that it is perfectly legal to index partially through a structure,
   5023    returning a pointer to an inner element.  Because of this, the LLVM code for
   5024    the given testcase is equivalent to:</p>
   5025 
   5026 <pre>
   5027   define i32* @foo(%ST* %s) {
   5028     %t1 = getelementptr %ST* %s, i32 1                        <i>; yields %ST*:%t1</i>
   5029     %t2 = getelementptr %ST* %t1, i32 0, i32 2                <i>; yields %RT*:%t2</i>
   5030     %t3 = getelementptr %RT* %t2, i32 0, i32 1                <i>; yields [10 x [20 x i32]]*:%t3</i>
   5031     %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5  <i>; yields [20 x i32]*:%t4</i>
   5032     %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13        <i>; yields i32*:%t5</i>
   5033     ret i32* %t5
   5034   }
   5035 </pre>
   5036 
   5037 <p>If the <tt>inbounds</tt> keyword is present, the result value of the
   5038    <tt>getelementptr</tt> is a <a href="#trapvalues">trap value</a> if the
   5039    base pointer is not an <i>in bounds</i> address of an allocated object,
   5040    or if any of the addresses that would be formed by successive addition of
   5041    the offsets implied by the indices to the base address with infinitely
   5042    precise signed arithmetic are not an <i>in bounds</i> address of that
   5043    allocated object. The <i>in bounds</i> addresses for an allocated object
   5044    are all the addresses that point into the object, plus the address one
   5045    byte past the end.</p>
   5046 
   5047 <p>If the <tt>inbounds</tt> keyword is not present, the offsets are added to
   5048    the base address with silently-wrapping two's complement arithmetic. If the
   5049    offsets have a different width from the pointer, they are sign-extended or
   5050    truncated to the width of the pointer. The result value of the
   5051    <tt>getelementptr</tt> may be outside the object pointed to by the base
   5052    pointer. The result value may not necessarily be used to access memory
   5053    though, even if it happens to point into allocated storage. See the
   5054    <a href="#pointeraliasing">Pointer Aliasing Rules</a> section for more
   5055    information.</p>
   5056 
   5057 <p>The getelementptr instruction is often confusing.  For some more insight into
   5058    how it works, see <a href="GetElementPtr.html">the getelementptr FAQ</a>.</p>
   5059 
   5060 <h5>Example:</h5>
   5061 <pre>
   5062     <i>; yields [12 x i8]*:aptr</i>
   5063     %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
   5064     <i>; yields i8*:vptr</i>
   5065     %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
   5066     <i>; yields i8*:eptr</i>
   5067     %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
   5068     <i>; yields i32*:iptr</i>
   5069     %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
   5070 </pre>
   5071 
   5072 </div>
   5073 
   5074 </div>
   5075 
   5076 <!-- ======================================================================= -->
   5077 <h3>
   5078   <a name="convertops">Conversion Operations</a>
   5079 </h3>
   5080 
   5081 <div>
   5082 
   5083 <p>The instructions in this category are the conversion instructions (casting)
   5084    which all take a single operand and a type. They perform various bit
   5085    conversions on the operand.</p>
   5086 
   5087 <!-- _______________________________________________________________________ -->
   5088 <h4>
   5089    <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
   5090 </h4>
   5091 
   5092 <div>
   5093 
   5094 <h5>Syntax:</h5>
   5095 <pre>
   5096   &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   5097 </pre>
   5098 
   5099 <h5>Overview:</h5>
   5100 <p>The '<tt>trunc</tt>' instruction truncates its operand to the
   5101    type <tt>ty2</tt>.</p>
   5102 
   5103 <h5>Arguments:</h5>
   5104 <p>The '<tt>trunc</tt>' instruction takes a value to trunc, and a type to trunc it to.
   5105    Both types must be of <a href="#t_integer">integer</a> types, or vectors
   5106    of the same number of integers.
   5107    The bit size of the <tt>value</tt> must be larger than
   5108    the bit size of the destination type, <tt>ty2</tt>.
   5109    Equal sized types are not allowed.</p>
   5110 
   5111 <h5>Semantics:</h5>
   5112 <p>The '<tt>trunc</tt>' instruction truncates the high order bits
   5113    in <tt>value</tt> and converts the remaining bits to <tt>ty2</tt>. Since the
   5114    source size must be larger than the destination size, <tt>trunc</tt> cannot
   5115    be a <i>no-op cast</i>.  It will always truncate bits.</p>
   5116 
   5117 <h5>Example:</h5>
   5118 <pre>
   5119   %X = trunc i32 257 to i8                        <i>; yields i8:1</i>
   5120   %Y = trunc i32 123 to i1                        <i>; yields i1:true</i>
   5121   %Z = trunc i32 122 to i1                        <i>; yields i1:false</i>
   5122   %W = trunc &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i8&gt; <i>; yields &lt;i8 8, i8 7&gt;</i>
   5123 </pre>
   5124 
   5125 </div>
   5126 
   5127 <!-- _______________________________________________________________________ -->
   5128 <h4>
   5129    <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
   5130 </h4>
   5131 
   5132 <div>
   5133 
   5134 <h5>Syntax:</h5>
   5135 <pre>
   5136   &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   5137 </pre>
   5138 
   5139 <h5>Overview:</h5>
   5140 <p>The '<tt>zext</tt>' instruction zero extends its operand to type
   5141    <tt>ty2</tt>.</p>
   5142 
   5143 
   5144 <h5>Arguments:</h5>
   5145 <p>The '<tt>zext</tt>' instruction takes a value to cast, and a type to cast it to.
   5146    Both types must be of <a href="#t_integer">integer</a> types, or vectors
   5147    of the same number of integers.
   5148    The bit size of the <tt>value</tt> must be smaller than
   5149    the bit size of the destination type,
   5150    <tt>ty2</tt>.</p>
   5151 
   5152 <h5>Semantics:</h5>
   5153 <p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
   5154    bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
   5155 
   5156 <p>When zero extending from i1, the result will always be either 0 or 1.</p>
   5157 
   5158 <h5>Example:</h5>
   5159 <pre>
   5160   %X = zext i32 257 to i64              <i>; yields i64:257</i>
   5161   %Y = zext i1 true to i32              <i>; yields i32:1</i>
   5162   %Z = zext &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i32&gt; <i>; yields &lt;i32 8, i32 7&gt;</i>
   5163 </pre>
   5164 
   5165 </div>
   5166 
   5167 <!-- _______________________________________________________________________ -->
   5168 <h4>
   5169    <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
   5170 </h4>
   5171 
   5172 <div>
   5173 
   5174 <h5>Syntax:</h5>
   5175 <pre>
   5176   &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   5177 </pre>
   5178 
   5179 <h5>Overview:</h5>
   5180 <p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
   5181 
   5182 <h5>Arguments:</h5>
   5183 <p>The '<tt>sext</tt>' instruction takes a value to cast, and a type to cast it to.
   5184    Both types must be of <a href="#t_integer">integer</a> types, or vectors
   5185    of the same number of integers.
   5186    The bit size of the <tt>value</tt> must be smaller than
   5187    the bit size of the destination type,
   5188    <tt>ty2</tt>.</p>
   5189 
   5190 <h5>Semantics:</h5>
   5191 <p>The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
   5192    bit (highest order bit) of the <tt>value</tt> until it reaches the bit size
   5193    of the type <tt>ty2</tt>.</p>
   5194 
   5195 <p>When sign extending from i1, the extension always results in -1 or 0.</p>
   5196 
   5197 <h5>Example:</h5>
   5198 <pre>
   5199   %X = sext i8  -1 to i16              <i>; yields i16   :65535</i>
   5200   %Y = sext i1 true to i32             <i>; yields i32:-1</i>
   5201   %Z = sext &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i32&gt; <i>; yields &lt;i32 8, i32 7&gt;</i>
   5202 </pre>
   5203 
   5204 </div>
   5205 
   5206 <!-- _______________________________________________________________________ -->
   5207 <h4>
   5208    <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
   5209 </h4>
   5210 
   5211 <div>
   5212 
   5213 <h5>Syntax:</h5>
   5214 <pre>
   5215   &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   5216 </pre>
   5217 
   5218 <h5>Overview:</h5>
   5219 <p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
   5220    <tt>ty2</tt>.</p>
   5221 
   5222 <h5>Arguments:</h5>
   5223 <p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
   5224    point</a> value to cast and a <a href="#t_floating">floating point</a> type
   5225    to cast it to. The size of <tt>value</tt> must be larger than the size of
   5226    <tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
   5227    <i>no-op cast</i>.</p>
   5228 
   5229 <h5>Semantics:</h5>
   5230 <p>The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
   5231    <a href="#t_floating">floating point</a> type to a smaller
   5232    <a href="#t_floating">floating point</a> type.  If the value cannot fit
   5233    within the destination type, <tt>ty2</tt>, then the results are
   5234    undefined.</p>
   5235 
   5236 <h5>Example:</h5>
   5237 <pre>
   5238   %X = fptrunc double 123.0 to float         <i>; yields float:123.0</i>
   5239   %Y = fptrunc double 1.0E+300 to float      <i>; yields undefined</i>
   5240 </pre>
   5241 
   5242 </div>
   5243 
   5244 <!-- _______________________________________________________________________ -->
   5245 <h4>
   5246    <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
   5247 </h4>
   5248 
   5249 <div>
   5250 
   5251 <h5>Syntax:</h5>
   5252 <pre>
   5253   &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   5254 </pre>
   5255 
   5256 <h5>Overview:</h5>
   5257 <p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
   5258    floating point value.</p>
   5259 
   5260 <h5>Arguments:</h5>
   5261 <p>The '<tt>fpext</tt>' instruction takes a
   5262    <a href="#t_floating">floating point</a> <tt>value</tt> to cast, and
   5263    a <a href="#t_floating">floating point</a> type to cast it to. The source
   5264    type must be smaller than the destination type.</p>
   5265 
   5266 <h5>Semantics:</h5>
   5267 <p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
   5268    <a href="#t_floating">floating point</a> type to a larger
   5269    <a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
   5270    used to make a <i>no-op cast</i> because it always changes bits. Use
   5271    <tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
   5272 
   5273 <h5>Example:</h5>
   5274 <pre>
   5275   %X = fpext float 3.125 to double         <i>; yields double:3.125000e+00</i>
   5276   %Y = fpext double %X to fp128            <i>; yields fp128:0xL00000000000000004000900000000000</i>
   5277 </pre>
   5278 
   5279 </div>
   5280 
   5281 <!-- _______________________________________________________________________ -->
   5282 <h4>
   5283    <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
   5284 </h4>
   5285 
   5286 <div>
   5287 
   5288 <h5>Syntax:</h5>
   5289 <pre>
   5290   &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   5291 </pre>
   5292 
   5293 <h5>Overview:</h5>
   5294 <p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
   5295    unsigned integer equivalent of type <tt>ty2</tt>.</p>
   5296 
   5297 <h5>Arguments:</h5>
   5298 <p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
   5299    scalar or vector <a href="#t_floating">floating point</a> value, and a type
   5300    to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
   5301    type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
   5302    vector integer type with the same number of elements as <tt>ty</tt></p>
   5303 
   5304 <h5>Semantics:</h5>
   5305 <p>The '<tt>fptoui</tt>' instruction converts its
   5306    <a href="#t_floating">floating point</a> operand into the nearest (rounding
   5307    towards zero) unsigned integer value. If the value cannot fit
   5308    in <tt>ty2</tt>, the results are undefined.</p>
   5309 
   5310 <h5>Example:</h5>
   5311 <pre>
   5312   %X = fptoui double 123.0 to i32      <i>; yields i32:123</i>
   5313   %Y = fptoui float 1.0E+300 to i1     <i>; yields undefined:1</i>
   5314   %Z = fptoui float 1.04E+17 to i8     <i>; yields undefined:1</i>
   5315 </pre>
   5316 
   5317 </div>
   5318 
   5319 <!-- _______________________________________________________________________ -->
   5320 <h4>
   5321    <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
   5322 </h4>
   5323 
   5324 <div>
   5325 
   5326 <h5>Syntax:</h5>
   5327 <pre>
   5328   &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   5329 </pre>
   5330 
   5331 <h5>Overview:</h5>
   5332 <p>The '<tt>fptosi</tt>' instruction converts
   5333    <a href="#t_floating">floating point</a> <tt>value</tt> to
   5334    type <tt>ty2</tt>.</p>
   5335 
   5336 <h5>Arguments:</h5>
   5337 <p>The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
   5338    scalar or vector <a href="#t_floating">floating point</a> value, and a type
   5339    to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
   5340    type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
   5341    vector integer type with the same number of elements as <tt>ty</tt></p>
   5342 
   5343 <h5>Semantics:</h5>
   5344 <p>The '<tt>fptosi</tt>' instruction converts its
   5345    <a href="#t_floating">floating point</a> operand into the nearest (rounding
   5346    towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
   5347    the results are undefined.</p>
   5348 
   5349 <h5>Example:</h5>
   5350 <pre>
   5351   %X = fptosi double -123.0 to i32      <i>; yields i32:-123</i>
   5352   %Y = fptosi float 1.0E-247 to i1      <i>; yields undefined:1</i>
   5353   %Z = fptosi float 1.04E+17 to i8      <i>; yields undefined:1</i>
   5354 </pre>
   5355 
   5356 </div>
   5357 
   5358 <!-- _______________________________________________________________________ -->
   5359 <h4>
   5360    <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
   5361 </h4>
   5362 
   5363 <div>
   5364 
   5365 <h5>Syntax:</h5>
   5366 <pre>
   5367   &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   5368 </pre>
   5369 
   5370 <h5>Overview:</h5>
   5371 <p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
   5372    integer and converts that value to the <tt>ty2</tt> type.</p>
   5373 
   5374 <h5>Arguments:</h5>
   5375 <p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
   5376    scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
   5377    it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
   5378    type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
   5379    floating point type with the same number of elements as <tt>ty</tt></p>
   5380 
   5381 <h5>Semantics:</h5>
   5382 <p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
   5383    integer quantity and converts it to the corresponding floating point
   5384    value. If the value cannot fit in the floating point value, the results are
   5385    undefined.</p>
   5386 
   5387 <h5>Example:</h5>
   5388 <pre>
   5389   %X = uitofp i32 257 to float         <i>; yields float:257.0</i>
   5390   %Y = uitofp i8 -1 to double          <i>; yields double:255.0</i>
   5391 </pre>
   5392 
   5393 </div>
   5394 
   5395 <!-- _______________________________________________________________________ -->
   5396 <h4>
   5397    <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
   5398 </h4>
   5399 
   5400 <div>
   5401 
   5402 <h5>Syntax:</h5>
   5403 <pre>
   5404   &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   5405 </pre>
   5406 
   5407 <h5>Overview:</h5>
   5408 <p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed integer
   5409    and converts that value to the <tt>ty2</tt> type.</p>
   5410 
   5411 <h5>Arguments:</h5>
   5412 <p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
   5413    scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
   5414    it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
   5415    type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
   5416    floating point type with the same number of elements as <tt>ty</tt></p>
   5417 
   5418 <h5>Semantics:</h5>
   5419 <p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed integer
   5420    quantity and converts it to the corresponding floating point value. If the
   5421    value cannot fit in the floating point value, the results are undefined.</p>
   5422 
   5423 <h5>Example:</h5>
   5424 <pre>
   5425   %X = sitofp i32 257 to float         <i>; yields float:257.0</i>
   5426   %Y = sitofp i8 -1 to double          <i>; yields double:-1.0</i>
   5427 </pre>
   5428 
   5429 </div>
   5430 
   5431 <!-- _______________________________________________________________________ -->
   5432 <h4>
   5433    <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
   5434 </h4>
   5435 
   5436 <div>
   5437 
   5438 <h5>Syntax:</h5>
   5439 <pre>
   5440   &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   5441 </pre>
   5442 
   5443 <h5>Overview:</h5>
   5444 <p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
   5445    the integer type <tt>ty2</tt>.</p>
   5446 
   5447 <h5>Arguments:</h5>
   5448 <p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
   5449    must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
   5450    <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
   5451 
   5452 <h5>Semantics:</h5>
   5453 <p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
   5454    <tt>ty2</tt> by interpreting the pointer value as an integer and either
   5455    truncating or zero extending that value to the size of the integer type. If
   5456    <tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
   5457    <tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
   5458    are the same size, then nothing is done (<i>no-op cast</i>) other than a type
   5459    change.</p>
   5460 
   5461 <h5>Example:</h5>
   5462 <pre>
   5463   %X = ptrtoint i32* %X to i8           <i>; yields truncation on 32-bit architecture</i>
   5464   %Y = ptrtoint i32* %x to i64          <i>; yields zero extension on 32-bit architecture</i>
   5465 </pre>
   5466 
   5467 </div>
   5468 
   5469 <!-- _______________________________________________________________________ -->
   5470 <h4>
   5471    <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
   5472 </h4>
   5473 
   5474 <div>
   5475 
   5476 <h5>Syntax:</h5>
   5477 <pre>
   5478   &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   5479 </pre>
   5480 
   5481 <h5>Overview:</h5>
   5482 <p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to a
   5483    pointer type, <tt>ty2</tt>.</p>
   5484 
   5485 <h5>Arguments:</h5>
   5486 <p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
   5487    value to cast, and a type to cast it to, which must be a
   5488    <a href="#t_pointer">pointer</a> type.</p>
   5489 
   5490 <h5>Semantics:</h5>
   5491 <p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
   5492    <tt>ty2</tt> by applying either a zero extension or a truncation depending on
   5493    the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
   5494    size of a pointer then a truncation is done. If <tt>value</tt> is smaller
   5495    than the size of a pointer then a zero extension is done. If they are the
   5496    same size, nothing is done (<i>no-op cast</i>).</p>
   5497 
   5498 <h5>Example:</h5>
   5499 <pre>
   5500   %X = inttoptr i32 255 to i32*          <i>; yields zero extension on 64-bit architecture</i>
   5501   %Y = inttoptr i32 255 to i32*          <i>; yields no-op on 32-bit architecture</i>
   5502   %Z = inttoptr i64 0 to i32*            <i>; yields truncation on 32-bit architecture</i>
   5503 </pre>
   5504 
   5505 </div>
   5506 
   5507 <!-- _______________________________________________________________________ -->
   5508 <h4>
   5509    <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
   5510 </h4>
   5511 
   5512 <div>
   5513 
   5514 <h5>Syntax:</h5>
   5515 <pre>
   5516   &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
   5517 </pre>
   5518 
   5519 <h5>Overview:</h5>
   5520 <p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
   5521    <tt>ty2</tt> without changing any bits.</p>
   5522 
   5523 <h5>Arguments:</h5>
   5524 <p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be a
   5525    non-aggregate first class value, and a type to cast it to, which must also be
   5526    a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes
   5527    of <tt>value</tt> and the destination type, <tt>ty2</tt>, must be
   5528    identical. If the source type is a pointer, the destination type must also be
   5529    a pointer.  This instruction supports bitwise conversion of vectors to
   5530    integers and to vectors of other types (as long as they have the same
   5531    size).</p>
   5532 
   5533 <h5>Semantics:</h5>
   5534 <p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
   5535    <tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
   5536    this conversion.  The conversion is done as if the <tt>value</tt> had been
   5537    stored to memory and read back as type <tt>ty2</tt>. Pointer types may only
   5538    be converted to other pointer types with this instruction. To convert
   5539    pointers to other types, use the <a href="#i_inttoptr">inttoptr</a> or
   5540    <a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
   5541 
   5542 <h5>Example:</h5>
   5543 <pre>
   5544   %X = bitcast i8 255 to i8              <i>; yields i8 :-1</i>
   5545   %Y = bitcast i32* %x to sint*          <i>; yields sint*:%x</i>
   5546   %Z = bitcast &lt;2 x int&gt; %V to i64;      <i>; yields i64: %V</i>
   5547 </pre>
   5548 
   5549 </div>
   5550 
   5551 </div>
   5552 
   5553 <!-- ======================================================================= -->
   5554 <h3>
   5555   <a name="otherops">Other Operations</a>
   5556 </h3>
   5557 
   5558 <div>
   5559 
   5560 <p>The instructions in this category are the "miscellaneous" instructions, which
   5561    defy better classification.</p>
   5562 
   5563 <!-- _______________________________________________________________________ -->
   5564 <h4>
   5565   <a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
   5566 </h4>
   5567 
   5568 <div>
   5569 
   5570 <h5>Syntax:</h5>
   5571 <pre>
   5572   &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
   5573 </pre>
   5574 
   5575 <h5>Overview:</h5>
   5576 <p>The '<tt>icmp</tt>' instruction returns a boolean value or a vector of
   5577    boolean values based on comparison of its two integer, integer vector, or
   5578    pointer operands.</p>
   5579 
   5580 <h5>Arguments:</h5>
   5581 <p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
   5582    the condition code indicating the kind of comparison to perform. It is not a
   5583    value, just a keyword. The possible condition code are:</p>
   5584 
   5585 <ol>
   5586   <li><tt>eq</tt>: equal</li>
   5587   <li><tt>ne</tt>: not equal </li>
   5588   <li><tt>ugt</tt>: unsigned greater than</li>
   5589   <li><tt>uge</tt>: unsigned greater or equal</li>
   5590   <li><tt>ult</tt>: unsigned less than</li>
   5591   <li><tt>ule</tt>: unsigned less or equal</li>
   5592   <li><tt>sgt</tt>: signed greater than</li>
   5593   <li><tt>sge</tt>: signed greater or equal</li>
   5594   <li><tt>slt</tt>: signed less than</li>
   5595   <li><tt>sle</tt>: signed less or equal</li>
   5596 </ol>
   5597 
   5598 <p>The remaining two arguments must be <a href="#t_integer">integer</a> or
   5599    <a href="#t_pointer">pointer</a> or integer <a href="#t_vector">vector</a>
   5600    typed.  They must also be identical types.</p>
   5601 
   5602 <h5>Semantics:</h5>
   5603 <p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to the
   5604    condition code given as <tt>cond</tt>. The comparison performed always yields
   5605    either an <a href="#t_integer"><tt>i1</tt></a> or vector of <tt>i1</tt>
   5606    result, as follows:</p>
   5607 
   5608 <ol>
   5609   <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
   5610       <tt>false</tt> otherwise. No sign interpretation is necessary or
   5611       performed.</li>
   5612 
   5613   <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
   5614       <tt>false</tt> otherwise. No sign interpretation is necessary or
   5615       performed.</li>
   5616 
   5617   <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
   5618       <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
   5619 
   5620   <li><tt>uge</tt>: interprets the operands as unsigned values and yields
   5621       <tt>true</tt> if <tt>op1</tt> is greater than or equal
   5622       to <tt>op2</tt>.</li>
   5623 
   5624   <li><tt>ult</tt>: interprets the operands as unsigned values and yields
   5625       <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
   5626 
   5627   <li><tt>ule</tt>: interprets the operands as unsigned values and yields
   5628       <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
   5629 
   5630   <li><tt>sgt</tt>: interprets the operands as signed values and yields
   5631       <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
   5632 
   5633   <li><tt>sge</tt>: interprets the operands as signed values and yields
   5634       <tt>true</tt> if <tt>op1</tt> is greater than or equal
   5635       to <tt>op2</tt>.</li>
   5636 
   5637   <li><tt>slt</tt>: interprets the operands as signed values and yields
   5638       <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
   5639 
   5640   <li><tt>sle</tt>: interprets the operands as signed values and yields
   5641       <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
   5642 </ol>
   5643 
   5644 <p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
   5645    values are compared as if they were integers.</p>
   5646 
   5647 <p>If the operands are integer vectors, then they are compared element by
   5648    element. The result is an <tt>i1</tt> vector with the same number of elements
   5649    as the values being compared.  Otherwise, the result is an <tt>i1</tt>.</p>
   5650 
   5651 <h5>Example:</h5>
   5652 <pre>
   5653   &lt;result&gt; = icmp eq i32 4, 5          <i>; yields: result=false</i>
   5654   &lt;result&gt; = icmp ne float* %X, %X     <i>; yields: result=false</i>
   5655   &lt;result&gt; = icmp ult i16  4, 5        <i>; yields: result=true</i>
   5656   &lt;result&gt; = icmp sgt i16  4, 5        <i>; yields: result=false</i>
   5657   &lt;result&gt; = icmp ule i16 -4, 5        <i>; yields: result=false</i>
   5658   &lt;result&gt; = icmp sge i16  4, 5        <i>; yields: result=false</i>
   5659 </pre>
   5660 
   5661 <p>Note that the code generator does not yet support vector types with
   5662    the <tt>icmp</tt> instruction.</p>
   5663 
   5664 </div>
   5665 
   5666 <!-- _______________________________________________________________________ -->
   5667 <h4>
   5668   <a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
   5669 </h4>
   5670 
   5671 <div>
   5672 
   5673 <h5>Syntax:</h5>
   5674 <pre>
   5675   &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;     <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
   5676 </pre>
   5677 
   5678 <h5>Overview:</h5>
   5679 <p>The '<tt>fcmp</tt>' instruction returns a boolean value or vector of boolean
   5680    values based on comparison of its operands.</p>
   5681 
   5682 <p>If the operands are floating point scalars, then the result type is a boolean
   5683 (<a href="#t_integer"><tt>i1</tt></a>).</p>
   5684 
   5685 <p>If the operands are floating point vectors, then the result type is a vector
   5686    of boolean with the same number of elements as the operands being
   5687    compared.</p>
   5688 
   5689 <h5>Arguments:</h5>
   5690 <p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
   5691    the condition code indicating the kind of comparison to perform. It is not a
   5692    value, just a keyword. The possible condition code are:</p>
   5693 
   5694 <ol>
   5695   <li><tt>false</tt>: no comparison, always returns false</li>
   5696   <li><tt>oeq</tt>: ordered and equal</li>
   5697   <li><tt>ogt</tt>: ordered and greater than </li>
   5698   <li><tt>oge</tt>: ordered and greater than or equal</li>
   5699   <li><tt>olt</tt>: ordered and less than </li>
   5700   <li><tt>ole</tt>: ordered and less than or equal</li>
   5701   <li><tt>one</tt>: ordered and not equal</li>
   5702   <li><tt>ord</tt>: ordered (no nans)</li>
   5703   <li><tt>ueq</tt>: unordered or equal</li>
   5704   <li><tt>ugt</tt>: unordered or greater than </li>
   5705   <li><tt>uge</tt>: unordered or greater than or equal</li>
   5706   <li><tt>ult</tt>: unordered or less than </li>
   5707   <li><tt>ule</tt>: unordered or less than or equal</li>
   5708   <li><tt>une</tt>: unordered or not equal</li>
   5709   <li><tt>uno</tt>: unordered (either nans)</li>
   5710   <li><tt>true</tt>: no comparison, always returns true</li>
   5711 </ol>
   5712 
   5713 <p><i>Ordered</i> means that neither operand is a QNAN while
   5714    <i>unordered</i> means that either operand may be a QNAN.</p>
   5715 
   5716 <p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be either
   5717    a <a href="#t_floating">floating point</a> type or
   5718    a <a href="#t_vector">vector</a> of floating point type.  They must have
   5719    identical types.</p>
   5720 
   5721 <h5>Semantics:</h5>
   5722 <p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
   5723    according to the condition code given as <tt>cond</tt>.  If the operands are
   5724    vectors, then the vectors are compared element by element.  Each comparison
   5725    performed always yields an <a href="#t_integer">i1</a> result, as
   5726    follows:</p>
   5727 
   5728 <ol>
   5729   <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
   5730 
   5731   <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
   5732       <tt>op1</tt> is equal to <tt>op2</tt>.</li>
   5733 
   5734   <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
   5735       <tt>op1</tt> is greater than <tt>op2</tt>.</li>
   5736 
   5737   <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
   5738       <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
   5739 
   5740   <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
   5741       <tt>op1</tt> is less than <tt>op2</tt>.</li>
   5742 
   5743   <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
   5744       <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
   5745 
   5746   <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
   5747       <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
   5748 
   5749   <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
   5750 
   5751   <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
   5752       <tt>op1</tt> is equal to <tt>op2</tt>.</li>
   5753 
   5754   <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
   5755       <tt>op1</tt> is greater than <tt>op2</tt>.</li>
   5756 
   5757   <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
   5758       <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
   5759 
   5760   <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
   5761       <tt>op1</tt> is less than <tt>op2</tt>.</li>
   5762 
   5763   <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
   5764       <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
   5765 
   5766   <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
   5767       <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
   5768 
   5769   <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
   5770 
   5771   <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
   5772 </ol>
   5773 
   5774 <h5>Example:</h5>
   5775 <pre>
   5776   &lt;result&gt; = fcmp oeq float 4.0, 5.0    <i>; yields: result=false</i>
   5777   &lt;result&gt; = fcmp one float 4.0, 5.0    <i>; yields: result=true</i>
   5778   &lt;result&gt; = fcmp olt float 4.0, 5.0    <i>; yields: result=true</i>
   5779   &lt;result&gt; = fcmp ueq double 1.0, 2.0   <i>; yields: result=false</i>
   5780 </pre>
   5781 
   5782 <p>Note that the code generator does not yet support vector types with
   5783    the <tt>fcmp</tt> instruction.</p>
   5784 
   5785 </div>
   5786 
   5787 <!-- _______________________________________________________________________ -->
   5788 <h4>
   5789   <a name="i_phi">'<tt>phi</tt>' Instruction</a>
   5790 </h4>
   5791 
   5792 <div>
   5793 
   5794 <h5>Syntax:</h5>
   5795 <pre>
   5796   &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...
   5797 </pre>
   5798 
   5799 <h5>Overview:</h5>
   5800 <p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in the
   5801    SSA graph representing the function.</p>
   5802 
   5803 <h5>Arguments:</h5>
   5804 <p>The type of the incoming values is specified with the first type field. After
   5805    this, the '<tt>phi</tt>' instruction takes a list of pairs as arguments, with
   5806    one pair for each predecessor basic block of the current block.  Only values
   5807    of <a href="#t_firstclass">first class</a> type may be used as the value
   5808    arguments to the PHI node.  Only labels may be used as the label
   5809    arguments.</p>
   5810 
   5811 <p>There must be no non-phi instructions between the start of a basic block and
   5812    the PHI instructions: i.e. PHI instructions must be first in a basic
   5813    block.</p>
   5814 
   5815 <p>For the purposes of the SSA form, the use of each incoming value is deemed to
   5816    occur on the edge from the corresponding predecessor block to the current
   5817    block (but after any definition of an '<tt>invoke</tt>' instruction's return
   5818    value on the same edge).</p>
   5819 
   5820 <h5>Semantics:</h5>
   5821 <p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
   5822    specified by the pair corresponding to the predecessor basic block that
   5823    executed just prior to the current block.</p>
   5824 
   5825 <h5>Example:</h5>
   5826 <pre>
   5827 Loop:       ; Infinite loop that counts from 0 on up...
   5828   %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
   5829   %nextindvar = add i32 %indvar, 1
   5830   br label %Loop
   5831 </pre>
   5832 
   5833 </div>
   5834 
   5835 <!-- _______________________________________________________________________ -->
   5836 <h4>
   5837    <a name="i_select">'<tt>select</tt>' Instruction</a>
   5838 </h4>
   5839 
   5840 <div>
   5841 
   5842 <h5>Syntax:</h5>
   5843 <pre>
   5844   &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt;             <i>; yields ty</i>
   5845 
   5846   <i>selty</i> is either i1 or {&lt;N x i1&gt;}
   5847 </pre>
   5848 
   5849 <h5>Overview:</h5>
   5850 <p>The '<tt>select</tt>' instruction is used to choose one value based on a
   5851    condition, without branching.</p>
   5852 
   5853 
   5854 <h5>Arguments:</h5>
   5855 <p>The '<tt>select</tt>' instruction requires an 'i1' value or a vector of 'i1'
   5856    values indicating the condition, and two values of the
   5857    same <a href="#t_firstclass">first class</a> type.  If the val1/val2 are
   5858    vectors and the condition is a scalar, then entire vectors are selected, not
   5859    individual elements.</p>
   5860 
   5861 <h5>Semantics:</h5>
   5862 <p>If the condition is an i1 and it evaluates to 1, the instruction returns the
   5863    first value argument; otherwise, it returns the second value argument.</p>
   5864 
   5865 <p>If the condition is a vector of i1, then the value arguments must be vectors
   5866    of the same size, and the selection is done element by element.</p>
   5867 
   5868 <h5>Example:</h5>
   5869 <pre>
   5870   %X = select i1 true, i8 17, i8 42          <i>; yields i8:17</i>
   5871 </pre>
   5872 
   5873 <p>Note that the code generator does not yet support conditions
   5874    with vector type.</p>
   5875 
   5876 </div>
   5877 
   5878 <!-- _______________________________________________________________________ -->
   5879 <h4>
   5880   <a name="i_call">'<tt>call</tt>' Instruction</a>
   5881 </h4>
   5882 
   5883 <div>
   5884 
   5885 <h5>Syntax:</h5>
   5886 <pre>
   5887   &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
   5888 </pre>
   5889 
   5890 <h5>Overview:</h5>
   5891 <p>The '<tt>call</tt>' instruction represents a simple function call.</p>
   5892 
   5893 <h5>Arguments:</h5>
   5894 <p>This instruction requires several arguments:</p>
   5895 
   5896 <ol>
   5897   <li>The optional "tail" marker indicates that the callee function does not
   5898       access any allocas or varargs in the caller.  Note that calls may be
   5899       marked "tail" even if they do not occur before
   5900       a <a href="#i_ret"><tt>ret</tt></a> instruction.  If the "tail" marker is
   5901       present, the function call is eligible for tail call optimization,
   5902       but <a href="CodeGenerator.html#tailcallopt">might not in fact be
   5903       optimized into a jump</a>.  The code generator may optimize calls marked
   5904       "tail" with either 1) automatic <a href="CodeGenerator.html#sibcallopt">
   5905       sibling call optimization</a> when the caller and callee have
   5906       matching signatures, or 2) forced tail call optimization when the
   5907       following extra requirements are met:
   5908       <ul>
   5909         <li>Caller and callee both have the calling
   5910             convention <tt>fastcc</tt>.</li>
   5911         <li>The call is in tail position (ret immediately follows call and ret
   5912             uses value of call or is void).</li>
   5913         <li>Option <tt>-tailcallopt</tt> is enabled,
   5914             or <code>llvm::GuaranteedTailCallOpt</code> is <code>true</code>.</li>
   5915         <li><a href="CodeGenerator.html#tailcallopt">Platform specific
   5916             constraints are met.</a></li>
   5917       </ul>
   5918   </li>
   5919 
   5920   <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
   5921       convention</a> the call should use.  If none is specified, the call
   5922       defaults to using C calling conventions.  The calling convention of the
   5923       call must match the calling convention of the target function, or else the
   5924       behavior is undefined.</li>
   5925 
   5926   <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
   5927       return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
   5928       '<tt>inreg</tt>' attributes are valid here.</li>
   5929 
   5930   <li>'<tt>ty</tt>': the type of the call instruction itself which is also the
   5931       type of the return value.  Functions that return no value are marked
   5932       <tt><a href="#t_void">void</a></tt>.</li>
   5933 
   5934   <li>'<tt>fnty</tt>': shall be the signature of the pointer to function value
   5935       being invoked.  The argument types must match the types implied by this
   5936       signature.  This type can be omitted if the function is not varargs and if
   5937       the function type does not return a pointer to a function.</li>
   5938 
   5939   <li>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
   5940       be invoked. In most cases, this is a direct function invocation, but
   5941       indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
   5942       to function value.</li>
   5943 
   5944   <li>'<tt>function args</tt>': argument list whose types match the function
   5945       signature argument types and parameter attributes. All arguments must be
   5946       of <a href="#t_firstclass">first class</a> type. If the function
   5947       signature indicates the function accepts a variable number of arguments,
   5948       the extra arguments can be specified.</li>
   5949 
   5950   <li>The optional <a href="#fnattrs">function attributes</a> list. Only
   5951       '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
   5952       '<tt>readnone</tt>' attributes are valid here.</li>
   5953 </ol>
   5954 
   5955 <h5>Semantics:</h5>
   5956 <p>The '<tt>call</tt>' instruction is used to cause control flow to transfer to
   5957    a specified function, with its incoming arguments bound to the specified
   5958    values. Upon a '<tt><a href="#i_ret">ret</a></tt>' instruction in the called
   5959    function, control flow continues with the instruction after the function
   5960    call, and the return value of the function is bound to the result
   5961    argument.</p>
   5962 
   5963 <h5>Example:</h5>
   5964 <pre>
   5965   %retval = call i32 @test(i32 %argc)
   5966   call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42)        <i>; yields i32</i>
   5967   %X = tail call i32 @foo()                                    <i>; yields i32</i>
   5968   %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo()  <i>; yields i32</i>
   5969   call void %foo(i8 97 signext)
   5970 
   5971   %struct.A = type { i32, i8 }
   5972   %r = call %struct.A @foo()                        <i>; yields { 32, i8 }</i>
   5973   %gr = extractvalue %struct.A %r, 0                <i>; yields i32</i>
   5974   %gr1 = extractvalue %struct.A %r, 1               <i>; yields i8</i>
   5975   %Z = call void @foo() noreturn                    <i>; indicates that %foo never returns normally</i>
   5976   %ZZ = call zeroext i32 @bar()                     <i>; Return value is %zero extended</i>
   5977 </pre>
   5978 
   5979 <p>llvm treats calls to some functions with names and arguments that match the
   5980 standard C99 library as being the C99 library functions, and may perform
   5981 optimizations or generate code for them under that assumption.  This is
   5982 something we'd like to change in the future to provide better support for
   5983 freestanding environments and non-C-based languages.</p>
   5984 
   5985 </div>
   5986 
   5987 <!-- _______________________________________________________________________ -->
   5988 <h4>
   5989   <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
   5990 </h4>
   5991 
   5992 <div>
   5993 
   5994 <h5>Syntax:</h5>
   5995 <pre>
   5996   &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
   5997 </pre>
   5998 
   5999 <h5>Overview:</h5>
   6000 <p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
   6001    the "variable argument" area of a function call.  It is used to implement the
   6002    <tt>va_arg</tt> macro in C.</p>
   6003 
   6004 <h5>Arguments:</h5>
   6005 <p>This instruction takes a <tt>va_list*</tt> value and the type of the
   6006    argument. It returns a value of the specified argument type and increments
   6007    the <tt>va_list</tt> to point to the next argument.  The actual type
   6008    of <tt>va_list</tt> is target specific.</p>
   6009 
   6010 <h5>Semantics:</h5>
   6011 <p>The '<tt>va_arg</tt>' instruction loads an argument of the specified type
   6012    from the specified <tt>va_list</tt> and causes the <tt>va_list</tt> to point
   6013    to the next argument.  For more information, see the variable argument
   6014    handling <a href="#int_varargs">Intrinsic Functions</a>.</p>
   6015 
   6016 <p>It is legal for this instruction to be called in a function which does not
   6017    take a variable number of arguments, for example, the <tt>vfprintf</tt>
   6018    function.</p>
   6019 
   6020 <p><tt>va_arg</tt> is an LLVM instruction instead of
   6021    an <a href="#intrinsics">intrinsic function</a> because it takes a type as an
   6022    argument.</p>
   6023 
   6024 <h5>Example:</h5>
   6025 <p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
   6026 
   6027 <p>Note that the code generator does not yet fully support va_arg on many
   6028    targets. Also, it does not currently support va_arg with aggregate types on
   6029    any target.</p>
   6030 
   6031 </div>
   6032 
   6033 <!-- _______________________________________________________________________ -->
   6034 <h4>
   6035   <a name="i_landingpad">'<tt>landingpad</tt>' Instruction</a>
   6036 </h4>
   6037 
   6038 <div>
   6039 
   6040 <h5>Syntax:</h5>
   6041 <pre>
   6042   &lt;resultval&gt; = landingpad &lt;somety&gt; personality &lt;type&gt; &lt;pers_fn&gt; &lt;clause&gt;+
   6043   &lt;resultval&gt; = landingpad &lt;somety&gt; personality &lt;type&gt; &lt;pers_fn&gt; cleanup &lt;clause&gt;*
   6044 
   6045   &lt;clause&gt; := catch &lt;type&gt; &lt;value&gt;
   6046   &lt;clause&gt; := filter &lt;array constant type&gt; &lt;array constant&gt;
   6047 </pre>
   6048 
   6049 <h5>Overview:</h5>
   6050 <p>The '<tt>landingpad</tt>' instruction is used by
   6051    <a href="ExceptionHandling.html#overview">LLVM's exception handling
   6052    system</a> to specify that a basic block is a landing pad &mdash; one where
   6053    the exception lands, and corresponds to the code found in the
   6054    <i><tt>catch</tt></i> portion of a <i><tt>try/catch</tt></i> sequence. It
   6055    defines values supplied by the personality function (<tt>pers_fn</tt>) upon
   6056    re-entry to the function. The <tt>resultval</tt> has the
   6057    type <tt>somety</tt>.</p>
   6058 
   6059 <h5>Arguments:</h5>
   6060 <p>This instruction takes a <tt>pers_fn</tt> value. This is the personality
   6061    function associated with the unwinding mechanism. The optional
   6062    <tt>cleanup</tt> flag indicates that the landing pad block is a cleanup.</p>
   6063 
   6064 <p>A <tt>clause</tt> begins with the clause type &mdash; <tt>catch</tt>
   6065    or <tt>filter</tt> &mdash; and contains the global variable representing the
   6066    "type" that may be caught or filtered respectively. Unlike the
   6067    <tt>catch</tt> clause, the <tt>filter</tt> clause takes an array constant as
   6068    its argument. Use "<tt>[0 x i8**] undef</tt>" for a filter which cannot
   6069    throw. The '<tt>landingpad</tt>' instruction must contain <em>at least</em>
   6070    one <tt>clause</tt> or the <tt>cleanup</tt> flag.</p>
   6071 
   6072 <h5>Semantics:</h5>
   6073 <p>The '<tt>landingpad</tt>' instruction defines the values which are set by the
   6074    personality function (<tt>pers_fn</tt>) upon re-entry to the function, and
   6075    therefore the "result type" of the <tt>landingpad</tt> instruction. As with
   6076    calling conventions, how the personality function results are represented in
   6077    LLVM IR is target specific.</p>
   6078 
   6079 <p>The clauses are applied in order from top to bottom. If two
   6080    <tt>landingpad</tt> instructions are merged together through inlining, the
   6081    clauses from the calling function are appended to the list of clauses.</p>
   6082 
   6083 <p>The <tt>landingpad</tt> instruction has several restrictions:</p>
   6084 
   6085 <ul>
   6086   <li>A landing pad block is a basic block which is the unwind destination of an
   6087       '<tt>invoke</tt>' instruction.</li>
   6088   <li>A landing pad block must have a '<tt>landingpad</tt>' instruction as its
   6089       first non-PHI instruction.</li>
   6090   <li>There can be only one '<tt>landingpad</tt>' instruction within the landing
   6091       pad block.</li>
   6092   <li>A basic block that is not a landing pad block may not include a
   6093       '<tt>landingpad</tt>' instruction.</li>
   6094   <li>All '<tt>landingpad</tt>' instructions in a function must have the same
   6095       personality function.</li>
   6096 </ul>
   6097 
   6098 <h5>Example:</h5>
   6099 <pre>
   6100   ;; A landing pad which can catch an integer.
   6101   %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
   6102            catch i8** @_ZTIi
   6103   ;; A landing pad that is a cleanup.
   6104   %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
   6105            cleanup
   6106   ;; A landing pad which can catch an integer and can only throw a double.
   6107   %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
   6108            catch i8** @_ZTIi
   6109            filter [1 x i8**] [@_ZTId]
   6110 </pre>
   6111 
   6112 </div>
   6113 
   6114 </div>
   6115 
   6116 </div>
   6117 
   6118 <!-- *********************************************************************** -->
   6119 <h2><a name="intrinsics">Intrinsic Functions</a></h2>
   6120 <!-- *********************************************************************** -->
   6121 
   6122 <div>
   6123 
   6124 <p>LLVM supports the notion of an "intrinsic function".  These functions have
   6125    well known names and semantics and are required to follow certain
   6126    restrictions.  Overall, these intrinsics represent an extension mechanism for
   6127    the LLVM language that does not require changing all of the transformations
   6128    in LLVM when adding to the language (or the bitcode reader/writer, the
   6129    parser, etc...).</p>
   6130 
   6131 <p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
   6132    prefix is reserved in LLVM for intrinsic names; thus, function names may not
   6133    begin with this prefix.  Intrinsic functions must always be external
   6134    functions: you cannot define the body of intrinsic functions.  Intrinsic
   6135    functions may only be used in call or invoke instructions: it is illegal to
   6136    take the address of an intrinsic function.  Additionally, because intrinsic
   6137    functions are part of the LLVM language, it is required if any are added that
   6138    they be documented here.</p>
   6139 
   6140 <p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents a
   6141    family of functions that perform the same operation but on different data
   6142    types. Because LLVM can represent over 8 million different integer types,
   6143    overloading is used commonly to allow an intrinsic function to operate on any
   6144    integer type. One or more of the argument types or the result type can be
   6145    overloaded to accept any integer type. Argument types may also be defined as
   6146    exactly matching a previous argument's type or the result type. This allows
   6147    an intrinsic function which accepts multiple arguments, but needs all of them
   6148    to be of the same type, to only be overloaded with respect to a single
   6149    argument or the result.</p>
   6150 
   6151 <p>Overloaded intrinsics will have the names of its overloaded argument types
   6152    encoded into its function name, each preceded by a period. Only those types
   6153    which are overloaded result in a name suffix. Arguments whose type is matched
   6154    against another type do not. For example, the <tt>llvm.ctpop</tt> function
   6155    can take an integer of any width and returns an integer of exactly the same
   6156    integer width. This leads to a family of functions such as
   6157    <tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29
   6158    %val)</tt>.  Only one type, the return type, is overloaded, and only one type
   6159    suffix is required. Because the argument's type is matched against the return
   6160    type, it does not require its own name suffix.</p>
   6161 
   6162 <p>To learn how to add an intrinsic function, please see the
   6163    <a href="ExtendingLLVM.html">Extending LLVM Guide</a>.</p>
   6164 
   6165 <!-- ======================================================================= -->
   6166 <h3>
   6167   <a name="int_varargs">Variable Argument Handling Intrinsics</a>
   6168 </h3>
   6169 
   6170 <div>
   6171 
   6172 <p>Variable argument support is defined in LLVM with
   6173    the <a href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
   6174    intrinsic functions.  These functions are related to the similarly named
   6175    macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
   6176 
   6177 <p>All of these functions operate on arguments that use a target-specific value
   6178    type "<tt>va_list</tt>".  The LLVM assembly language reference manual does
   6179    not define what this type is, so all transformations should be prepared to
   6180    handle these functions regardless of the type used.</p>
   6181 
   6182 <p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
   6183    instruction and the variable argument handling intrinsic functions are
   6184    used.</p>
   6185 
   6186 <pre class="doc_code">
   6187 define i32 @test(i32 %X, ...) {
   6188   ; Initialize variable argument processing
   6189   %ap = alloca i8*
   6190   %ap2 = bitcast i8** %ap to i8*
   6191   call void @llvm.va_start(i8* %ap2)
   6192 
   6193   ; Read a single integer argument
   6194   %tmp = va_arg i8** %ap, i32
   6195 
   6196   ; Demonstrate usage of llvm.va_copy and llvm.va_end
   6197   %aq = alloca i8*
   6198   %aq2 = bitcast i8** %aq to i8*
   6199   call void @llvm.va_copy(i8* %aq2, i8* %ap2)
   6200   call void @llvm.va_end(i8* %aq2)
   6201 
   6202   ; Stop processing of arguments.
   6203   call void @llvm.va_end(i8* %ap2)
   6204   ret i32 %tmp
   6205 }
   6206 
   6207 declare void @llvm.va_start(i8*)
   6208 declare void @llvm.va_copy(i8*, i8*)
   6209 declare void @llvm.va_end(i8*)
   6210 </pre>
   6211 
   6212 <!-- _______________________________________________________________________ -->
   6213 <h4>
   6214   <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
   6215 </h4>
   6216 
   6217 
   6218 <div>
   6219 
   6220 <h5>Syntax:</h5>
   6221 <pre>
   6222   declare void %llvm.va_start(i8* &lt;arglist&gt;)
   6223 </pre>
   6224 
   6225 <h5>Overview:</h5>
   6226 <p>The '<tt>llvm.va_start</tt>' intrinsic initializes <tt>*&lt;arglist&gt;</tt>
   6227    for subsequent use by <tt><a href="#i_va_arg">va_arg</a></tt>.</p>
   6228 
   6229 <h5>Arguments:</h5>
   6230 <p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
   6231 
   6232 <h5>Semantics:</h5>
   6233 <p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
   6234    macro available in C.  In a target-dependent way, it initializes
   6235    the <tt>va_list</tt> element to which the argument points, so that the next
   6236    call to <tt>va_arg</tt> will produce the first variable argument passed to
   6237    the function.  Unlike the C <tt>va_start</tt> macro, this intrinsic does not
   6238    need to know the last argument of the function as the compiler can figure
   6239    that out.</p>
   6240 
   6241 </div>
   6242 
   6243 <!-- _______________________________________________________________________ -->
   6244 <h4>
   6245  <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
   6246 </h4>
   6247 
   6248 <div>
   6249 
   6250 <h5>Syntax:</h5>
   6251 <pre>
   6252   declare void @llvm.va_end(i8* &lt;arglist&gt;)
   6253 </pre>
   6254 
   6255 <h5>Overview:</h5>
   6256 <p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
   6257    which has been initialized previously
   6258    with <tt><a href="#int_va_start">llvm.va_start</a></tt>
   6259    or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
   6260 
   6261 <h5>Arguments:</h5>
   6262 <p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
   6263 
   6264 <h5>Semantics:</h5>
   6265 <p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
   6266    macro available in C.  In a target-dependent way, it destroys
   6267    the <tt>va_list</tt> element to which the argument points.  Calls
   6268    to <a href="#int_va_start"><tt>llvm.va_start</tt></a>
   6269    and <a href="#int_va_copy"> <tt>llvm.va_copy</tt></a> must be matched exactly
   6270    with calls to <tt>llvm.va_end</tt>.</p>
   6271 
   6272 </div>
   6273 
   6274 <!-- _______________________________________________________________________ -->
   6275 <h4>
   6276   <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
   6277 </h4>
   6278 
   6279 <div>
   6280 
   6281 <h5>Syntax:</h5>
   6282 <pre>
   6283   declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
   6284 </pre>
   6285 
   6286 <h5>Overview:</h5>
   6287 <p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
   6288    from the source argument list to the destination argument list.</p>
   6289 
   6290 <h5>Arguments:</h5>
   6291 <p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
   6292    The second argument is a pointer to a <tt>va_list</tt> element to copy
   6293    from.</p>
   6294 
   6295 <h5>Semantics:</h5>
   6296 <p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
   6297    macro available in C.  In a target-dependent way, it copies the
   6298    source <tt>va_list</tt> element into the destination <tt>va_list</tt>
   6299    element.  This intrinsic is necessary because
   6300    the <tt><a href="#int_va_start"> llvm.va_start</a></tt> intrinsic may be
   6301    arbitrarily complex and require, for example, memory allocation.</p>
   6302 
   6303 </div>
   6304 
   6305 </div>
   6306 
   6307 </div>
   6308 
   6309 <!-- ======================================================================= -->
   6310 <h3>
   6311   <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
   6312 </h3>
   6313 
   6314 <div>
   6315 
   6316 <p>LLVM support for <a href="GarbageCollection.html">Accurate Garbage
   6317 Collection</a> (GC) requires the implementation and generation of these
   6318 intrinsics. These intrinsics allow identification of <a href="#int_gcroot">GC
   6319 roots on the stack</a>, as well as garbage collector implementations that
   6320 require <a href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a>
   6321 barriers.  Front-ends for type-safe garbage collected languages should generate
   6322 these intrinsics to make use of the LLVM garbage collectors.  For more details,
   6323 see <a href="GarbageCollection.html">Accurate Garbage Collection with
   6324 LLVM</a>.</p>
   6325 
   6326 <p>The garbage collection intrinsics only operate on objects in the generic
   6327    address space (address space zero).</p>
   6328 
   6329 <!-- _______________________________________________________________________ -->
   6330 <h4>
   6331   <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
   6332 </h4>
   6333 
   6334 <div>
   6335 
   6336 <h5>Syntax:</h5>
   6337 <pre>
   6338   declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
   6339 </pre>
   6340 
   6341 <h5>Overview:</h5>
   6342 <p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
   6343    the code generator, and allows some metadata to be associated with it.</p>
   6344 
   6345 <h5>Arguments:</h5>
   6346 <p>The first argument specifies the address of a stack object that contains the
   6347    root pointer.  The second pointer (which must be either a constant or a
   6348    global value address) contains the meta-data to be associated with the
   6349    root.</p>
   6350 
   6351 <h5>Semantics:</h5>
   6352 <p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
   6353    location.  At compile-time, the code generator generates information to allow
   6354    the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
   6355    intrinsic may only be used in a function which <a href="#gc">specifies a GC
   6356    algorithm</a>.</p>
   6357 
   6358 </div>
   6359 
   6360 <!-- _______________________________________________________________________ -->
   6361 <h4>
   6362   <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
   6363 </h4>
   6364 
   6365 <div>
   6366 
   6367 <h5>Syntax:</h5>
   6368 <pre>
   6369   declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
   6370 </pre>
   6371 
   6372 <h5>Overview:</h5>
   6373 <p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
   6374    locations, allowing garbage collector implementations that require read
   6375    barriers.</p>
   6376 
   6377 <h5>Arguments:</h5>
   6378 <p>The second argument is the address to read from, which should be an address
   6379    allocated from the garbage collector.  The first object is a pointer to the
   6380    start of the referenced object, if needed by the language runtime (otherwise
   6381    null).</p>
   6382 
   6383 <h5>Semantics:</h5>
   6384 <p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
   6385    instruction, but may be replaced with substantially more complex code by the
   6386    garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
   6387    may only be used in a function which <a href="#gc">specifies a GC
   6388    algorithm</a>.</p>
   6389 
   6390 </div>
   6391 
   6392 <!-- _______________________________________________________________________ -->
   6393 <h4>
   6394   <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
   6395 </h4>
   6396 
   6397 <div>
   6398 
   6399 <h5>Syntax:</h5>
   6400 <pre>
   6401   declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
   6402 </pre>
   6403 
   6404 <h5>Overview:</h5>
   6405 <p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
   6406    locations, allowing garbage collector implementations that require write
   6407    barriers (such as generational or reference counting collectors).</p>
   6408 
   6409 <h5>Arguments:</h5>
   6410 <p>The first argument is the reference to store, the second is the start of the
   6411    object to store it to, and the third is the address of the field of Obj to
   6412    store to.  If the runtime does not require a pointer to the object, Obj may
   6413    be null.</p>
   6414 
   6415 <h5>Semantics:</h5>
   6416 <p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
   6417    instruction, but may be replaced with substantially more complex code by the
   6418    garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
   6419    may only be used in a function which <a href="#gc">specifies a GC
   6420    algorithm</a>.</p>
   6421 
   6422 </div>
   6423 
   6424 </div>
   6425 
   6426 <!-- ======================================================================= -->
   6427 <h3>
   6428   <a name="int_codegen">Code Generator Intrinsics</a>
   6429 </h3>
   6430 
   6431 <div>
   6432 
   6433 <p>These intrinsics are provided by LLVM to expose special features that may
   6434    only be implemented with code generator support.</p>
   6435 
   6436 <!-- _______________________________________________________________________ -->
   6437 <h4>
   6438   <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
   6439 </h4>
   6440 
   6441 <div>
   6442 
   6443 <h5>Syntax:</h5>
   6444 <pre>
   6445   declare i8  *@llvm.returnaddress(i32 &lt;level&gt;)
   6446 </pre>
   6447 
   6448 <h5>Overview:</h5>
   6449 <p>The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
   6450    target-specific value indicating the return address of the current function
   6451    or one of its callers.</p>
   6452 
   6453 <h5>Arguments:</h5>
   6454 <p>The argument to this intrinsic indicates which function to return the address
   6455    for.  Zero indicates the calling function, one indicates its caller, etc.
   6456    The argument is <b>required</b> to be a constant integer value.</p>
   6457 
   6458 <h5>Semantics:</h5>
   6459 <p>The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer
   6460    indicating the return address of the specified call frame, or zero if it
   6461    cannot be identified.  The value returned by this intrinsic is likely to be
   6462    incorrect or 0 for arguments other than zero, so it should only be used for
   6463    debugging purposes.</p>
   6464 
   6465 <p>Note that calling this intrinsic does not prevent function inlining or other
   6466    aggressive transformations, so the value returned may not be that of the
   6467    obvious source-language caller.</p>
   6468 
   6469 </div>
   6470 
   6471 <!-- _______________________________________________________________________ -->
   6472 <h4>
   6473   <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
   6474 </h4>
   6475 
   6476 <div>
   6477 
   6478 <h5>Syntax:</h5>
   6479 <pre>
   6480   declare i8* @llvm.frameaddress(i32 &lt;level&gt;)
   6481 </pre>
   6482 
   6483 <h5>Overview:</h5>
   6484 <p>The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
   6485    target-specific frame pointer value for the specified stack frame.</p>
   6486 
   6487 <h5>Arguments:</h5>
   6488 <p>The argument to this intrinsic indicates which function to return the frame
   6489    pointer for.  Zero indicates the calling function, one indicates its caller,
   6490    etc.  The argument is <b>required</b> to be a constant integer value.</p>
   6491 
   6492 <h5>Semantics:</h5>
   6493 <p>The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer
   6494    indicating the frame address of the specified call frame, or zero if it
   6495    cannot be identified.  The value returned by this intrinsic is likely to be
   6496    incorrect or 0 for arguments other than zero, so it should only be used for
   6497    debugging purposes.</p>
   6498 
   6499 <p>Note that calling this intrinsic does not prevent function inlining or other
   6500    aggressive transformations, so the value returned may not be that of the
   6501    obvious source-language caller.</p>
   6502 
   6503 </div>
   6504 
   6505 <!-- _______________________________________________________________________ -->
   6506 <h4>
   6507   <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
   6508 </h4>
   6509 
   6510 <div>
   6511 
   6512 <h5>Syntax:</h5>
   6513 <pre>
   6514   declare i8* @llvm.stacksave()
   6515 </pre>
   6516 
   6517 <h5>Overview:</h5>
   6518 <p>The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state
   6519    of the function stack, for use
   6520    with <a href="#int_stackrestore"> <tt>llvm.stackrestore</tt></a>.  This is
   6521    useful for implementing language features like scoped automatic variable
   6522    sized arrays in C99.</p>
   6523 
   6524 <h5>Semantics:</h5>
   6525 <p>This intrinsic returns a opaque pointer value that can be passed
   6526    to <a href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>.  When
   6527    an <tt>llvm.stackrestore</tt> intrinsic is executed with a value saved
   6528    from <tt>llvm.stacksave</tt>, it effectively restores the state of the stack
   6529    to the state it was in when the <tt>llvm.stacksave</tt> intrinsic executed.
   6530    In practice, this pops any <a href="#i_alloca">alloca</a> blocks from the
   6531    stack that were allocated after the <tt>llvm.stacksave</tt> was executed.</p>
   6532 
   6533 </div>
   6534 
   6535 <!-- _______________________________________________________________________ -->
   6536 <h4>
   6537   <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
   6538 </h4>
   6539 
   6540 <div>
   6541 
   6542 <h5>Syntax:</h5>
   6543 <pre>
   6544   declare void @llvm.stackrestore(i8* %ptr)
   6545 </pre>
   6546 
   6547 <h5>Overview:</h5>
   6548 <p>The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
   6549    the function stack to the state it was in when the
   6550    corresponding <a href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic
   6551    executed.  This is useful for implementing language features like scoped
   6552    automatic variable sized arrays in C99.</p>
   6553 
   6554 <h5>Semantics:</h5>
   6555 <p>See the description
   6556    for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.</p>
   6557 
   6558 </div>
   6559 
   6560 <!-- _______________________________________________________________________ -->
   6561 <h4>
   6562   <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
   6563 </h4>
   6564 
   6565 <div>
   6566 
   6567 <h5>Syntax:</h5>
   6568 <pre>
   6569   declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;, i32 &lt;cache type&gt;)
   6570 </pre>
   6571 
   6572 <h5>Overview:</h5>
   6573 <p>The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to
   6574    insert a prefetch instruction if supported; otherwise, it is a noop.
   6575    Prefetches have no effect on the behavior of the program but can change its
   6576    performance characteristics.</p>
   6577 
   6578 <h5>Arguments:</h5>
   6579 <p><tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the
   6580    specifier determining if the fetch should be for a read (0) or write (1),
   6581    and <tt>locality</tt> is a temporal locality specifier ranging from (0) - no
   6582    locality, to (3) - extremely local keep in cache. The <tt>cache type</tt>
   6583    specifies whether the prefetch is performed on the data (1) or instruction (0)
   6584    cache. The <tt>rw</tt>, <tt>locality</tt> and <tt>cache type</tt> arguments
   6585    must be constant integers.</p>
   6586 
   6587 <h5>Semantics:</h5>
   6588 <p>This intrinsic does not modify the behavior of the program.  In particular,
   6589    prefetches cannot trap and do not produce a value.  On targets that support
   6590    this intrinsic, the prefetch can provide hints to the processor cache for
   6591    better performance.</p>
   6592 
   6593 </div>
   6594 
   6595 <!-- _______________________________________________________________________ -->
   6596 <h4>
   6597   <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
   6598 </h4>
   6599 
   6600 <div>
   6601 
   6602 <h5>Syntax:</h5>
   6603 <pre>
   6604   declare void @llvm.pcmarker(i32 &lt;id&gt;)
   6605 </pre>
   6606 
   6607 <h5>Overview:</h5>
   6608 <p>The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program
   6609    Counter (PC) in a region of code to simulators and other tools.  The method
   6610    is target specific, but it is expected that the marker will use exported
   6611    symbols to transmit the PC of the marker.  The marker makes no guarantees
   6612    that it will remain with any specific instruction after optimizations.  It is
   6613    possible that the presence of a marker will inhibit optimizations.  The
   6614    intended use is to be inserted after optimizations to allow correlations of
   6615    simulation runs.</p>
   6616 
   6617 <h5>Arguments:</h5>
   6618 <p><tt>id</tt> is a numerical id identifying the marker.</p>
   6619 
   6620 <h5>Semantics:</h5>
   6621 <p>This intrinsic does not modify the behavior of the program.  Backends that do
   6622    not support this intrinsic may ignore it.</p>
   6623 
   6624 </div>
   6625 
   6626 <!-- _______________________________________________________________________ -->
   6627 <h4>
   6628   <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
   6629 </h4>
   6630 
   6631 <div>
   6632 
   6633 <h5>Syntax:</h5>
   6634 <pre>
   6635   declare i64 @llvm.readcyclecounter()
   6636 </pre>
   6637 
   6638 <h5>Overview:</h5>
   6639 <p>The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
   6640    counter register (or similar low latency, high accuracy clocks) on those
   6641    targets that support it.  On X86, it should map to RDTSC.  On Alpha, it
   6642    should map to RPCC.  As the backing counters overflow quickly (on the order
   6643    of 9 seconds on alpha), this should only be used for small timings.</p>
   6644 
   6645 <h5>Semantics:</h5>
   6646 <p>When directly supported, reading the cycle counter should not modify any
   6647    memory.  Implementations are allowed to either return a application specific
   6648    value or a system wide value.  On backends without support, this is lowered
   6649    to a constant 0.</p>
   6650 
   6651 </div>
   6652 
   6653 </div>
   6654 
   6655 <!-- ======================================================================= -->
   6656 <h3>
   6657   <a name="int_libc">Standard C Library Intrinsics</a>
   6658 </h3>
   6659 
   6660 <div>
   6661 
   6662 <p>LLVM provides intrinsics for a few important standard C library functions.
   6663    These intrinsics allow source-language front-ends to pass information about
   6664    the alignment of the pointer arguments to the code generator, providing
   6665    opportunity for more efficient code generation.</p>
   6666 
   6667 <!-- _______________________________________________________________________ -->
   6668 <h4>
   6669   <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
   6670 </h4>
   6671 
   6672 <div>
   6673 
   6674 <h5>Syntax:</h5>
   6675 <p>This is an overloaded intrinsic. You can use <tt>llvm.memcpy</tt> on any
   6676    integer bit width and for different address spaces. Not all targets support
   6677    all bit widths however.</p>
   6678 
   6679 <pre>
   6680   declare void @llvm.memcpy.p0i8.p0i8.i32(i8* &lt;dest&gt;, i8* &lt;src&gt;,
   6681                                           i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
   6682   declare void @llvm.memcpy.p0i8.p0i8.i64(i8* &lt;dest&gt;, i8* &lt;src&gt;,
   6683                                           i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
   6684 </pre>
   6685 
   6686 <h5>Overview:</h5>
   6687 <p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
   6688    source location to the destination location.</p>
   6689 
   6690 <p>Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
   6691    intrinsics do not return a value, takes extra alignment/isvolatile arguments
   6692    and the pointers can be in specified address spaces.</p>
   6693 
   6694 <h5>Arguments:</h5>
   6695 
   6696 <p>The first argument is a pointer to the destination, the second is a pointer
   6697    to the source.  The third argument is an integer argument specifying the
   6698    number of bytes to copy, the fourth argument is the alignment of the
   6699    source and destination locations, and the fifth is a boolean indicating a
   6700    volatile access.</p>
   6701 
   6702 <p>If the call to this intrinsic has an alignment value that is not 0 or 1,
   6703    then the caller guarantees that both the source and destination pointers are
   6704    aligned to that boundary.</p>
   6705 
   6706 <p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
   6707    <tt>llvm.memcpy</tt> call is a <a href="#volatile">volatile operation</a>.
   6708    The detailed access behavior is not very cleanly specified and it is unwise
   6709    to depend on it.</p>
   6710 
   6711 <h5>Semantics:</h5>
   6712 
   6713 <p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
   6714    source location to the destination location, which are not allowed to
   6715    overlap.  It copies "len" bytes of memory over.  If the argument is known to
   6716    be aligned to some boundary, this can be specified as the fourth argument,
   6717    otherwise it should be set to 0 or 1.</p>
   6718 
   6719 </div>
   6720 
   6721 <!-- _______________________________________________________________________ -->
   6722 <h4>
   6723   <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
   6724 </h4>
   6725 
   6726 <div>
   6727 
   6728 <h5>Syntax:</h5>
   6729 <p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
   6730    width and for different address space. Not all targets support all bit
   6731    widths however.</p>
   6732 
   6733 <pre>
   6734   declare void @llvm.memmove.p0i8.p0i8.i32(i8* &lt;dest&gt;, i8* &lt;src&gt;,
   6735                                            i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
   6736   declare void @llvm.memmove.p0i8.p0i8.i64(i8* &lt;dest&gt;, i8* &lt;src&gt;,
   6737                                            i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
   6738 </pre>
   6739 
   6740 <h5>Overview:</h5>
   6741 <p>The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the
   6742    source location to the destination location. It is similar to the
   6743    '<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to
   6744    overlap.</p>
   6745 
   6746 <p>Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
   6747    intrinsics do not return a value, takes extra alignment/isvolatile arguments
   6748    and the pointers can be in specified address spaces.</p>
   6749 
   6750 <h5>Arguments:</h5>
   6751 
   6752 <p>The first argument is a pointer to the destination, the second is a pointer
   6753    to the source.  The third argument is an integer argument specifying the
   6754    number of bytes to copy, the fourth argument is the alignment of the
   6755    source and destination locations, and the fifth is a boolean indicating a
   6756    volatile access.</p>
   6757 
   6758 <p>If the call to this intrinsic has an alignment value that is not 0 or 1,
   6759    then the caller guarantees that the source and destination pointers are
   6760    aligned to that boundary.</p>
   6761 
   6762 <p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
   6763    <tt>llvm.memmove</tt> call is a <a href="#volatile">volatile operation</a>.
   6764    The detailed access behavior is not very cleanly specified and it is unwise
   6765    to depend on it.</p>
   6766 
   6767 <h5>Semantics:</h5>
   6768 
   6769 <p>The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the
   6770    source location to the destination location, which may overlap.  It copies
   6771    "len" bytes of memory over.  If the argument is known to be aligned to some
   6772    boundary, this can be specified as the fourth argument, otherwise it should
   6773    be set to 0 or 1.</p>
   6774 
   6775 </div>
   6776 
   6777 <!-- _______________________________________________________________________ -->
   6778 <h4>
   6779   <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
   6780 </h4>
   6781 
   6782 <div>
   6783 
   6784 <h5>Syntax:</h5>
   6785 <p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
   6786    width and for different address spaces. However, not all targets support all
   6787    bit widths.</p>
   6788 
   6789 <pre>
   6790   declare void @llvm.memset.p0i8.i32(i8* &lt;dest&gt;, i8 &lt;val&gt;,
   6791                                      i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
   6792   declare void @llvm.memset.p0i8.i64(i8* &lt;dest&gt;, i8 &lt;val&gt;,
   6793                                      i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
   6794 </pre>
   6795 
   6796 <h5>Overview:</h5>
   6797 <p>The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a
   6798    particular byte value.</p>
   6799 
   6800 <p>Note that, unlike the standard libc function, the <tt>llvm.memset</tt>
   6801    intrinsic does not return a value and takes extra alignment/volatile
   6802    arguments.  Also, the destination can be in an arbitrary address space.</p>
   6803 
   6804 <h5>Arguments:</h5>
   6805 <p>The first argument is a pointer to the destination to fill, the second is the
   6806    byte value with which to fill it, the third argument is an integer argument
   6807    specifying the number of bytes to fill, and the fourth argument is the known
   6808    alignment of the destination location.</p>
   6809 
   6810 <p>If the call to this intrinsic has an alignment value that is not 0 or 1,
   6811    then the caller guarantees that the destination pointer is aligned to that
   6812    boundary.</p>
   6813 
   6814 <p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
   6815    <tt>llvm.memset</tt> call is a <a href="#volatile">volatile operation</a>.
   6816    The detailed access behavior is not very cleanly specified and it is unwise
   6817    to depend on it.</p>
   6818 
   6819 <h5>Semantics:</h5>
   6820 <p>The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting
   6821    at the destination location.  If the argument is known to be aligned to some
   6822    boundary, this can be specified as the fourth argument, otherwise it should
   6823    be set to 0 or 1.</p>
   6824 
   6825 </div>
   6826 
   6827 <!-- _______________________________________________________________________ -->
   6828 <h4>
   6829   <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
   6830 </h4>
   6831 
   6832 <div>
   6833 
   6834 <h5>Syntax:</h5>
   6835 <p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
   6836    floating point or vector of floating point type. Not all targets support all
   6837    types however.</p>
   6838 
   6839 <pre>
   6840   declare float     @llvm.sqrt.f32(float %Val)
   6841   declare double    @llvm.sqrt.f64(double %Val)
   6842   declare x86_fp80  @llvm.sqrt.f80(x86_fp80 %Val)
   6843   declare fp128     @llvm.sqrt.f128(fp128 %Val)
   6844   declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
   6845 </pre>
   6846 
   6847 <h5>Overview:</h5>
   6848 <p>The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
   6849    returning the same value as the libm '<tt>sqrt</tt>' functions would.
   6850    Unlike <tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined
   6851    behavior for negative numbers other than -0.0 (which allows for better
   6852    optimization, because there is no need to worry about errno being
   6853    set).  <tt>llvm.sqrt(-0.0)</tt> is defined to return -0.0 like IEEE sqrt.</p>
   6854 
   6855 <h5>Arguments:</h5>
   6856 <p>The argument and return value are floating point numbers of the same
   6857    type.</p>
   6858 
   6859 <h5>Semantics:</h5>
   6860 <p>This function returns the sqrt of the specified operand if it is a
   6861    nonnegative floating point number.</p>
   6862 
   6863 </div>
   6864 
   6865 <!-- _______________________________________________________________________ -->
   6866 <h4>
   6867   <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
   6868 </h4>
   6869 
   6870 <div>
   6871 
   6872 <h5>Syntax:</h5>
   6873 <p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
   6874    floating point or vector of floating point type. Not all targets support all
   6875    types however.</p>
   6876 
   6877 <pre>
   6878   declare float     @llvm.powi.f32(float  %Val, i32 %power)
   6879   declare double    @llvm.powi.f64(double %Val, i32 %power)
   6880   declare x86_fp80  @llvm.powi.f80(x86_fp80  %Val, i32 %power)
   6881   declare fp128     @llvm.powi.f128(fp128 %Val, i32 %power)
   6882   declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128  %Val, i32 %power)
   6883 </pre>
   6884 
   6885 <h5>Overview:</h5>
   6886 <p>The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
   6887    specified (positive or negative) power.  The order of evaluation of
   6888    multiplications is not defined.  When a vector of floating point type is
   6889    used, the second argument remains a scalar integer value.</p>
   6890 
   6891 <h5>Arguments:</h5>
   6892 <p>The second argument is an integer power, and the first is a value to raise to
   6893    that power.</p>
   6894 
   6895 <h5>Semantics:</h5>
   6896 <p>This function returns the first value raised to the second power with an
   6897    unspecified sequence of rounding operations.</p>
   6898 
   6899 </div>
   6900 
   6901 <!-- _______________________________________________________________________ -->
   6902 <h4>
   6903   <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
   6904 </h4>
   6905 
   6906 <div>
   6907 
   6908 <h5>Syntax:</h5>
   6909 <p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
   6910    floating point or vector of floating point type. Not all targets support all
   6911    types however.</p>
   6912 
   6913 <pre>
   6914   declare float     @llvm.sin.f32(float  %Val)
   6915   declare double    @llvm.sin.f64(double %Val)
   6916   declare x86_fp80  @llvm.sin.f80(x86_fp80  %Val)
   6917   declare fp128     @llvm.sin.f128(fp128 %Val)
   6918   declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128  %Val)
   6919 </pre>
   6920 
   6921 <h5>Overview:</h5>
   6922 <p>The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.</p>
   6923 
   6924 <h5>Arguments:</h5>
   6925 <p>The argument and return value are floating point numbers of the same
   6926    type.</p>
   6927 
   6928 <h5>Semantics:</h5>
   6929 <p>This function returns the sine of the specified operand, returning the same
   6930    values as the libm <tt>sin</tt> functions would, and handles error conditions
   6931    in the same way.</p>
   6932 
   6933 </div>
   6934 
   6935 <!-- _______________________________________________________________________ -->
   6936 <h4>
   6937   <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
   6938 </h4>
   6939 
   6940 <div>
   6941 
   6942 <h5>Syntax:</h5>
   6943 <p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
   6944    floating point or vector of floating point type. Not all targets support all
   6945    types however.</p>
   6946 
   6947 <pre>
   6948   declare float     @llvm.cos.f32(float  %Val)
   6949   declare double    @llvm.cos.f64(double %Val)
   6950   declare x86_fp80  @llvm.cos.f80(x86_fp80  %Val)
   6951   declare fp128     @llvm.cos.f128(fp128 %Val)
   6952   declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128  %Val)
   6953 </pre>
   6954 
   6955 <h5>Overview:</h5>
   6956 <p>The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.</p>
   6957 
   6958 <h5>Arguments:</h5>
   6959 <p>The argument and return value are floating point numbers of the same
   6960    type.</p>
   6961 
   6962 <h5>Semantics:</h5>
   6963 <p>This function returns the cosine of the specified operand, returning the same
   6964    values as the libm <tt>cos</tt> functions would, and handles error conditions
   6965    in the same way.</p>
   6966 
   6967 </div>
   6968 
   6969 <!-- _______________________________________________________________________ -->
   6970 <h4>
   6971   <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
   6972 </h4>
   6973 
   6974 <div>
   6975 
   6976 <h5>Syntax:</h5>
   6977 <p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
   6978    floating point or vector of floating point type. Not all targets support all
   6979    types however.</p>
   6980 
   6981 <pre>
   6982   declare float     @llvm.pow.f32(float  %Val, float %Power)
   6983   declare double    @llvm.pow.f64(double %Val, double %Power)
   6984   declare x86_fp80  @llvm.pow.f80(x86_fp80  %Val, x86_fp80 %Power)
   6985   declare fp128     @llvm.pow.f128(fp128 %Val, fp128 %Power)
   6986   declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128  %Val, ppc_fp128 Power)
   6987 </pre>
   6988 
   6989 <h5>Overview:</h5>
   6990 <p>The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
   6991    specified (positive or negative) power.</p>
   6992 
   6993 <h5>Arguments:</h5>
   6994 <p>The second argument is a floating point power, and the first is a value to
   6995    raise to that power.</p>
   6996 
   6997 <h5>Semantics:</h5>
   6998 <p>This function returns the first value raised to the second power, returning
   6999    the same values as the libm <tt>pow</tt> functions would, and handles error
   7000    conditions in the same way.</p>
   7001 
   7002 </div>
   7003 
   7004 </div>
   7005 
   7006 <!-- _______________________________________________________________________ -->
   7007 <h4>
   7008   <a name="int_exp">'<tt>llvm.exp.*</tt>' Intrinsic</a>
   7009 </h4>
   7010 
   7011 <div>
   7012 
   7013 <h5>Syntax:</h5>
   7014 <p>This is an overloaded intrinsic. You can use <tt>llvm.exp</tt> on any
   7015    floating point or vector of floating point type. Not all targets support all
   7016    types however.</p>
   7017 
   7018 <pre>
   7019   declare float     @llvm.exp.f32(float  %Val)
   7020   declare double    @llvm.exp.f64(double %Val)
   7021   declare x86_fp80  @llvm.exp.f80(x86_fp80  %Val)
   7022   declare fp128     @llvm.exp.f128(fp128 %Val)
   7023   declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128  %Val)
   7024 </pre>
   7025 
   7026 <h5>Overview:</h5>
   7027 <p>The '<tt>llvm.exp.*</tt>' intrinsics perform the exp function.</p>
   7028 
   7029 <h5>Arguments:</h5>
   7030 <p>The argument and return value are floating point numbers of the same
   7031    type.</p>
   7032 
   7033 <h5>Semantics:</h5>
   7034 <p>This function returns the same values as the libm <tt>exp</tt> functions
   7035    would, and handles error conditions in the same way.</p>
   7036 
   7037 </div>
   7038 
   7039 <!-- _______________________________________________________________________ -->
   7040 <h4>
   7041   <a name="int_log">'<tt>llvm.log.*</tt>' Intrinsic</a>
   7042 </h4>
   7043 
   7044 <div>
   7045 
   7046 <h5>Syntax:</h5>
   7047 <p>This is an overloaded intrinsic. You can use <tt>llvm.log</tt> on any
   7048    floating point or vector of floating point type. Not all targets support all
   7049    types however.</p>
   7050 
   7051 <pre>
   7052   declare float     @llvm.log.f32(float  %Val)
   7053   declare double    @llvm.log.f64(double %Val)
   7054   declare x86_fp80  @llvm.log.f80(x86_fp80  %Val)
   7055   declare fp128     @llvm.log.f128(fp128 %Val)
   7056   declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128  %Val)
   7057 </pre>
   7058 
   7059 <h5>Overview:</h5>
   7060 <p>The '<tt>llvm.log.*</tt>' intrinsics perform the log function.</p>
   7061 
   7062 <h5>Arguments:</h5>
   7063 <p>The argument and return value are floating point numbers of the same
   7064    type.</p>
   7065 
   7066 <h5>Semantics:</h5>
   7067 <p>This function returns the same values as the libm <tt>log</tt> functions
   7068    would, and handles error conditions in the same way.</p>
   7069 
   7070 <h4>
   7071   <a name="int_fma">'<tt>llvm.fma.*</tt>' Intrinsic</a>
   7072 </h4>
   7073 
   7074 <div>
   7075 
   7076 <h5>Syntax:</h5>
   7077 <p>This is an overloaded intrinsic. You can use <tt>llvm.fma</tt> on any
   7078    floating point or vector of floating point type. Not all targets support all
   7079    types however.</p>
   7080 
   7081 <pre>
   7082   declare float     @llvm.fma.f32(float  %a, float  %b, float  %c)
   7083   declare double    @llvm.fma.f64(double %a, double %b, double %c)
   7084   declare x86_fp80  @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
   7085   declare fp128     @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
   7086   declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
   7087 </pre>
   7088 
   7089 <h5>Overview:</h5>
   7090 <p>The '<tt>llvm.fma.*</tt>' intrinsics perform the fused multiply-add
   7091    operation.</p>
   7092 
   7093 <h5>Arguments:</h5>
   7094 <p>The argument and return value are floating point numbers of the same
   7095    type.</p>
   7096 
   7097 <h5>Semantics:</h5>
   7098 <p>This function returns the same values as the libm <tt>fma</tt> functions
   7099    would.</p>
   7100 
   7101 </div>
   7102 
   7103 <!-- ======================================================================= -->
   7104 <h3>
   7105   <a name="int_manip">Bit Manipulation Intrinsics</a>
   7106 </h3>
   7107 
   7108 <div>
   7109 
   7110 <p>LLVM provides intrinsics for a few important bit manipulation operations.
   7111    These allow efficient code generation for some algorithms.</p>
   7112 
   7113 <!-- _______________________________________________________________________ -->
   7114 <h4>
   7115   <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
   7116 </h4>
   7117 
   7118 <div>
   7119 
   7120 <h5>Syntax:</h5>
   7121 <p>This is an overloaded intrinsic function. You can use bswap on any integer
   7122    type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
   7123 
   7124 <pre>
   7125   declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
   7126   declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
   7127   declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
   7128 </pre>
   7129 
   7130 <h5>Overview:</h5>
   7131 <p>The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
   7132    values with an even number of bytes (positive multiple of 16 bits).  These
   7133    are useful for performing operations on data that is not in the target's
   7134    native byte order.</p>
   7135 
   7136 <h5>Semantics:</h5>
   7137 <p>The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
   7138    and low byte of the input i16 swapped.  Similarly,
   7139    the <tt>llvm.bswap.i32</tt> intrinsic returns an i32 value that has the four
   7140    bytes of the input i32 swapped, so that if the input bytes are numbered 0, 1,
   7141    2, 3 then the returned i32 will have its bytes in 3, 2, 1, 0 order.
   7142    The <tt>llvm.bswap.i48</tt>, <tt>llvm.bswap.i64</tt> and other intrinsics
   7143    extend this concept to additional even-byte lengths (6 bytes, 8 bytes and
   7144    more, respectively).</p>
   7145 
   7146 </div>
   7147 
   7148 <!-- _______________________________________________________________________ -->
   7149 <h4>
   7150   <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
   7151 </h4>
   7152 
   7153 <div>
   7154 
   7155 <h5>Syntax:</h5>
   7156 <p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
   7157    width, or on any vector with integer elements. Not all targets support all
   7158   bit widths or vector types, however.</p>
   7159 
   7160 <pre>
   7161   declare i8 @llvm.ctpop.i8(i8  &lt;src&gt;)
   7162   declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
   7163   declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
   7164   declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
   7165   declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
   7166   declare &lt;2 x i32&gt; @llvm.ctpop.v2i32(&lt;2 x i32&gt; &lt;src&gt;)
   7167 </pre>
   7168 
   7169 <h5>Overview:</h5>
   7170 <p>The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set
   7171    in a value.</p>
   7172 
   7173 <h5>Arguments:</h5>
   7174 <p>The only argument is the value to be counted.  The argument may be of any
   7175    integer type, or a vector with integer elements.
   7176    The return type must match the argument type.</p>
   7177 
   7178 <h5>Semantics:</h5>
   7179 <p>The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable, or within each
   7180    element of a vector.</p>
   7181 
   7182 </div>
   7183 
   7184 <!-- _______________________________________________________________________ -->
   7185 <h4>
   7186   <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
   7187 </h4>
   7188 
   7189 <div>
   7190 
   7191 <h5>Syntax:</h5>
   7192 <p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
   7193    integer bit width, or any vector whose elements are integers. Not all
   7194    targets support all bit widths or vector types, however.</p>
   7195 
   7196 <pre>
   7197   declare i8 @llvm.ctlz.i8 (i8  &lt;src&gt;)
   7198   declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
   7199   declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
   7200   declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
   7201   declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
   7202   declare &lt;2 x i32&gt; @llvm.ctlz.v2i32(&lt;2 x i32&gt; &lt;src;gt)
   7203 </pre>
   7204 
   7205 <h5>Overview:</h5>
   7206 <p>The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
   7207    leading zeros in a variable.</p>
   7208 
   7209 <h5>Arguments:</h5>
   7210 <p>The only argument is the value to be counted.  The argument may be of any
   7211    integer type, or any vector type with integer element type.
   7212    The return type must match the argument type.</p>
   7213 
   7214 <h5>Semantics:</h5>
   7215 <p>The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant)
   7216    zeros in a variable, or within each element of the vector if the operation
   7217    is of vector type.  If the src == 0 then the result is the size in bits of
   7218    the type of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.</p>
   7219 
   7220 </div>
   7221 
   7222 <!-- _______________________________________________________________________ -->
   7223 <h4>
   7224   <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
   7225 </h4>
   7226 
   7227 <div>
   7228 
   7229 <h5>Syntax:</h5>
   7230 <p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
   7231    integer bit width, or any vector of integer elements. Not all targets
   7232    support all bit widths or vector types, however.</p>
   7233 
   7234 <pre>
   7235   declare i8 @llvm.cttz.i8 (i8  &lt;src&gt;)
   7236   declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
   7237   declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
   7238   declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
   7239   declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
   7240   declase &lt;2 x i32&gt; @llvm.cttz.v2i32(&lt;2 x i32&gt; &lt;src&gt;)
   7241 </pre>
   7242 
   7243 <h5>Overview:</h5>
   7244 <p>The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
   7245    trailing zeros.</p>
   7246 
   7247 <h5>Arguments:</h5>
   7248 <p>The only argument is the value to be counted.  The argument may be of any
   7249    integer type, or a vectory with integer element type..  The return type
   7250    must match the argument type.</p>
   7251 
   7252 <h5>Semantics:</h5>
   7253 <p>The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant)
   7254    zeros in a variable, or within each element of a vector.
   7255    If the src == 0 then the result is the size in bits of
   7256    the type of src.  For example, <tt>llvm.cttz(2) = 1</tt>.</p>
   7257 
   7258 </div>
   7259 
   7260 </div>
   7261 
   7262 <!-- ======================================================================= -->
   7263 <h3>
   7264   <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
   7265 </h3>
   7266 
   7267 <div>
   7268 
   7269 <p>LLVM provides intrinsics for some arithmetic with overflow operations.</p>
   7270 
   7271 <!-- _______________________________________________________________________ -->
   7272 <h4>
   7273   <a name="int_sadd_overflow">
   7274     '<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics
   7275   </a>
   7276 </h4>
   7277 
   7278 <div>
   7279 
   7280 <h5>Syntax:</h5>
   7281 <p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
   7282    on any integer bit width.</p>
   7283 
   7284 <pre>
   7285   declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
   7286   declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
   7287   declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
   7288 </pre>
   7289 
   7290 <h5>Overview:</h5>
   7291 <p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
   7292    a signed addition of the two arguments, and indicate whether an overflow
   7293    occurred during the signed summation.</p>
   7294 
   7295 <h5>Arguments:</h5>
   7296 <p>The arguments (%a and %b) and the first element of the result structure may
   7297    be of integer types of any bit width, but they must have the same bit
   7298    width. The second element of the result structure must be of
   7299    type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
   7300    undergo signed addition.</p>
   7301 
   7302 <h5>Semantics:</h5>
   7303 <p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
   7304    a signed addition of the two variables. They return a structure &mdash; the
   7305    first element of which is the signed summation, and the second element of
   7306    which is a bit specifying if the signed summation resulted in an
   7307    overflow.</p>
   7308 
   7309 <h5>Examples:</h5>
   7310 <pre>
   7311   %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
   7312   %sum = extractvalue {i32, i1} %res, 0
   7313   %obit = extractvalue {i32, i1} %res, 1
   7314   br i1 %obit, label %overflow, label %normal
   7315 </pre>
   7316 
   7317 </div>
   7318 
   7319 <!-- _______________________________________________________________________ -->
   7320 <h4>
   7321   <a name="int_uadd_overflow">
   7322     '<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics
   7323   </a>
   7324 </h4>
   7325 
   7326 <div>
   7327 
   7328 <h5>Syntax:</h5>
   7329 <p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
   7330    on any integer bit width.</p>
   7331 
   7332 <pre>
   7333   declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
   7334   declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
   7335   declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
   7336 </pre>
   7337 
   7338 <h5>Overview:</h5>
   7339 <p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
   7340    an unsigned addition of the two arguments, and indicate whether a carry
   7341    occurred during the unsigned summation.</p>
   7342 
   7343 <h5>Arguments:</h5>
   7344 <p>The arguments (%a and %b) and the first element of the result structure may
   7345    be of integer types of any bit width, but they must have the same bit
   7346    width. The second element of the result structure must be of
   7347    type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
   7348    undergo unsigned addition.</p>
   7349 
   7350 <h5>Semantics:</h5>
   7351 <p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
   7352    an unsigned addition of the two arguments. They return a structure &mdash;
   7353    the first element of which is the sum, and the second element of which is a
   7354    bit specifying if the unsigned summation resulted in a carry.</p>
   7355 
   7356 <h5>Examples:</h5>
   7357 <pre>
   7358   %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
   7359   %sum = extractvalue {i32, i1} %res, 0
   7360   %obit = extractvalue {i32, i1} %res, 1
   7361   br i1 %obit, label %carry, label %normal
   7362 </pre>
   7363 
   7364 </div>
   7365 
   7366 <!-- _______________________________________________________________________ -->
   7367 <h4>
   7368   <a name="int_ssub_overflow">
   7369     '<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics
   7370   </a>
   7371 </h4>
   7372 
   7373 <div>
   7374 
   7375 <h5>Syntax:</h5>
   7376 <p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
   7377    on any integer bit width.</p>
   7378 
   7379 <pre>
   7380   declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
   7381   declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
   7382   declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
   7383 </pre>
   7384 
   7385 <h5>Overview:</h5>
   7386 <p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
   7387    a signed subtraction of the two arguments, and indicate whether an overflow
   7388    occurred during the signed subtraction.</p>
   7389 
   7390 <h5>Arguments:</h5>
   7391 <p>The arguments (%a and %b) and the first element of the result structure may
   7392    be of integer types of any bit width, but they must have the same bit
   7393    width. The second element of the result structure must be of
   7394    type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
   7395    undergo signed subtraction.</p>
   7396 
   7397 <h5>Semantics:</h5>
   7398 <p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
   7399    a signed subtraction of the two arguments. They return a structure &mdash;
   7400    the first element of which is the subtraction, and the second element of
   7401    which is a bit specifying if the signed subtraction resulted in an
   7402    overflow.</p>
   7403 
   7404 <h5>Examples:</h5>
   7405 <pre>
   7406   %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
   7407   %sum = extractvalue {i32, i1} %res, 0
   7408   %obit = extractvalue {i32, i1} %res, 1
   7409   br i1 %obit, label %overflow, label %normal
   7410 </pre>
   7411 
   7412 </div>
   7413 
   7414 <!-- _______________________________________________________________________ -->
   7415 <h4>
   7416   <a name="int_usub_overflow">
   7417     '<tt>llvm.usub.with.overflow.*</tt>' Intrinsics
   7418   </a>
   7419 </h4>
   7420 
   7421 <div>
   7422 
   7423 <h5>Syntax:</h5>
   7424 <p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
   7425    on any integer bit width.</p>
   7426 
   7427 <pre>
   7428   declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
   7429   declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
   7430   declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
   7431 </pre>
   7432 
   7433 <h5>Overview:</h5>
   7434 <p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
   7435    an unsigned subtraction of the two arguments, and indicate whether an
   7436    overflow occurred during the unsigned subtraction.</p>
   7437 
   7438 <h5>Arguments:</h5>
   7439 <p>The arguments (%a and %b) and the first element of the result structure may
   7440    be of integer types of any bit width, but they must have the same bit
   7441    width. The second element of the result structure must be of
   7442    type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
   7443    undergo unsigned subtraction.</p>
   7444 
   7445 <h5>Semantics:</h5>
   7446 <p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
   7447    an unsigned subtraction of the two arguments. They return a structure &mdash;
   7448    the first element of which is the subtraction, and the second element of
   7449    which is a bit specifying if the unsigned subtraction resulted in an
   7450    overflow.</p>
   7451 
   7452 <h5>Examples:</h5>
   7453 <pre>
   7454   %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
   7455   %sum = extractvalue {i32, i1} %res, 0
   7456   %obit = extractvalue {i32, i1} %res, 1
   7457   br i1 %obit, label %overflow, label %normal
   7458 </pre>
   7459 
   7460 </div>
   7461 
   7462 <!-- _______________________________________________________________________ -->
   7463 <h4>
   7464   <a name="int_smul_overflow">
   7465     '<tt>llvm.smul.with.overflow.*</tt>' Intrinsics
   7466   </a>
   7467 </h4>
   7468 
   7469 <div>
   7470 
   7471 <h5>Syntax:</h5>
   7472 <p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
   7473    on any integer bit width.</p>
   7474 
   7475 <pre>
   7476   declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
   7477   declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
   7478   declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
   7479 </pre>
   7480 
   7481 <h5>Overview:</h5>
   7482 
   7483 <p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
   7484    a signed multiplication of the two arguments, and indicate whether an
   7485    overflow occurred during the signed multiplication.</p>
   7486 
   7487 <h5>Arguments:</h5>
   7488 <p>The arguments (%a and %b) and the first element of the result structure may
   7489    be of integer types of any bit width, but they must have the same bit
   7490    width. The second element of the result structure must be of
   7491    type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
   7492    undergo signed multiplication.</p>
   7493 
   7494 <h5>Semantics:</h5>
   7495 <p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
   7496    a signed multiplication of the two arguments. They return a structure &mdash;
   7497    the first element of which is the multiplication, and the second element of
   7498    which is a bit specifying if the signed multiplication resulted in an
   7499    overflow.</p>
   7500 
   7501 <h5>Examples:</h5>
   7502 <pre>
   7503   %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
   7504   %sum = extractvalue {i32, i1} %res, 0
   7505   %obit = extractvalue {i32, i1} %res, 1
   7506   br i1 %obit, label %overflow, label %normal
   7507 </pre>
   7508 
   7509 </div>
   7510 
   7511 <!-- _______________________________________________________________________ -->
   7512 <h4>
   7513   <a name="int_umul_overflow">
   7514     '<tt>llvm.umul.with.overflow.*</tt>' Intrinsics
   7515   </a>
   7516 </h4>
   7517 
   7518 <div>
   7519 
   7520 <h5>Syntax:</h5>
   7521 <p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
   7522    on any integer bit width.</p>
   7523 
   7524 <pre>
   7525   declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
   7526   declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
   7527   declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
   7528 </pre>
   7529 
   7530 <h5>Overview:</h5>
   7531 <p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
   7532    a unsigned multiplication of the two arguments, and indicate whether an
   7533    overflow occurred during the unsigned multiplication.</p>
   7534 
   7535 <h5>Arguments:</h5>
   7536 <p>The arguments (%a and %b) and the first element of the result structure may
   7537    be of integer types of any bit width, but they must have the same bit
   7538    width. The second element of the result structure must be of
   7539    type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
   7540    undergo unsigned multiplication.</p>
   7541 
   7542 <h5>Semantics:</h5>
   7543 <p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
   7544    an unsigned multiplication of the two arguments. They return a structure
   7545    &mdash; the first element of which is the multiplication, and the second
   7546    element of which is a bit specifying if the unsigned multiplication resulted
   7547    in an overflow.</p>
   7548 
   7549 <h5>Examples:</h5>
   7550 <pre>
   7551   %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
   7552   %sum = extractvalue {i32, i1} %res, 0
   7553   %obit = extractvalue {i32, i1} %res, 1
   7554   br i1 %obit, label %overflow, label %normal
   7555 </pre>
   7556 
   7557 </div>
   7558 
   7559 </div>
   7560 
   7561 <!-- ======================================================================= -->
   7562 <h3>
   7563   <a name="int_fp16">Half Precision Floating Point Intrinsics</a>
   7564 </h3>
   7565 
   7566 <div>
   7567 
   7568 <p>Half precision floating point is a storage-only format. This means that it is
   7569    a dense encoding (in memory) but does not support computation in the
   7570    format.</p>
   7571    
   7572 <p>This means that code must first load the half-precision floating point
   7573    value as an i16, then convert it to float with <a
   7574    href="#int_convert_from_fp16"><tt>llvm.convert.from.fp16</tt></a>.
   7575    Computation can then be performed on the float value (including extending to
   7576    double etc).  To store the value back to memory, it is first converted to
   7577    float if needed, then converted to i16 with
   7578    <a href="#int_convert_to_fp16"><tt>llvm.convert.to.fp16</tt></a>, then
   7579    storing as an i16 value.</p>
   7580 
   7581 <!-- _______________________________________________________________________ -->
   7582 <h4>
   7583   <a name="int_convert_to_fp16">
   7584     '<tt>llvm.convert.to.fp16</tt>' Intrinsic
   7585   </a>
   7586 </h4>
   7587 
   7588 <div>
   7589 
   7590 <h5>Syntax:</h5>
   7591 <pre>
   7592   declare i16 @llvm.convert.to.fp16(f32 %a)
   7593 </pre>
   7594 
   7595 <h5>Overview:</h5>
   7596 <p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs
   7597    a conversion from single precision floating point format to half precision
   7598    floating point format.</p>
   7599 
   7600 <h5>Arguments:</h5>
   7601 <p>The intrinsic function contains single argument - the value to be
   7602    converted.</p>
   7603 
   7604 <h5>Semantics:</h5>
   7605 <p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs
   7606    a conversion from single precision floating point format to half precision
   7607    floating point format. The return value is an <tt>i16</tt> which
   7608    contains the converted number.</p>
   7609 
   7610 <h5>Examples:</h5>
   7611 <pre>
   7612   %res = call i16 @llvm.convert.to.fp16(f32 %a)
   7613   store i16 %res, i16* @x, align 2
   7614 </pre>
   7615 
   7616 </div>
   7617 
   7618 <!-- _______________________________________________________________________ -->
   7619 <h4>
   7620   <a name="int_convert_from_fp16">
   7621     '<tt>llvm.convert.from.fp16</tt>' Intrinsic
   7622   </a>
   7623 </h4>
   7624 
   7625 <div>
   7626 
   7627 <h5>Syntax:</h5>
   7628 <pre>
   7629   declare f32 @llvm.convert.from.fp16(i16 %a)
   7630 </pre>
   7631 
   7632 <h5>Overview:</h5>
   7633 <p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs
   7634    a conversion from half precision floating point format to single precision
   7635    floating point format.</p>
   7636 
   7637 <h5>Arguments:</h5>
   7638 <p>The intrinsic function contains single argument - the value to be
   7639    converted.</p>
   7640 
   7641 <h5>Semantics:</h5>
   7642 <p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs a
   7643    conversion from half single precision floating point format to single
   7644    precision floating point format. The input half-float value is represented by
   7645    an <tt>i16</tt> value.</p>
   7646 
   7647 <h5>Examples:</h5>
   7648 <pre>
   7649   %a = load i16* @x, align 2
   7650   %res = call f32 @llvm.convert.from.fp16(i16 %a)
   7651 </pre>
   7652 
   7653 </div>
   7654 
   7655 </div>
   7656 
   7657 <!-- ======================================================================= -->
   7658 <h3>
   7659   <a name="int_debugger">Debugger Intrinsics</a>
   7660 </h3>
   7661 
   7662 <div>
   7663 
   7664 <p>The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt>
   7665    prefix), are described in
   7666    the <a href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source
   7667    Level Debugging</a> document.</p>
   7668 
   7669 </div>
   7670 
   7671 <!-- ======================================================================= -->
   7672 <h3>
   7673   <a name="int_eh">Exception Handling Intrinsics</a>
   7674 </h3>
   7675 
   7676 <div>
   7677 
   7678 <p>The LLVM exception handling intrinsics (which all start with
   7679    <tt>llvm.eh.</tt> prefix), are described in
   7680    the <a href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
   7681    Handling</a> document.</p>
   7682 
   7683 </div>
   7684 
   7685 <!-- ======================================================================= -->
   7686 <h3>
   7687   <a name="int_trampoline">Trampoline Intrinsics</a>
   7688 </h3>
   7689 
   7690 <div>
   7691 
   7692 <p>These intrinsics make it possible to excise one parameter, marked with
   7693    the <a href="#nest"><tt>nest</tt></a> attribute, from a function.
   7694    The result is a callable
   7695    function pointer lacking the nest parameter - the caller does not need to
   7696    provide a value for it.  Instead, the value to use is stored in advance in a
   7697    "trampoline", a block of memory usually allocated on the stack, which also
   7698    contains code to splice the nest value into the argument list.  This is used
   7699    to implement the GCC nested function address extension.</p>
   7700 
   7701 <p>For example, if the function is
   7702    <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
   7703    pointer has signature <tt>i32 (i32, i32)*</tt>.  It can be created as
   7704    follows:</p>
   7705 
   7706 <pre class="doc_code">
   7707   %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
   7708   %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
   7709   call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
   7710   %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
   7711   %fp = bitcast i8* %p to i32 (i32, i32)*
   7712 </pre>
   7713 
   7714 <p>The call <tt>%val = call i32 %fp(i32 %x, i32 %y)</tt> is then equivalent
   7715    to <tt>%val = call i32 %f(i8* %nval, i32 %x, i32 %y)</tt>.</p>
   7716 
   7717 <!-- _______________________________________________________________________ -->
   7718 <h4>
   7719   <a name="int_it">
   7720     '<tt>llvm.init.trampoline</tt>' Intrinsic
   7721   </a>
   7722 </h4>
   7723 
   7724 <div>
   7725 
   7726 <h5>Syntax:</h5>
   7727 <pre>
   7728   declare void @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
   7729 </pre>
   7730 
   7731 <h5>Overview:</h5>
   7732 <p>This fills the memory pointed to by <tt>tramp</tt> with executable code,
   7733    turning it into a trampoline.</p>
   7734 
   7735 <h5>Arguments:</h5>
   7736 <p>The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
   7737    pointers.  The <tt>tramp</tt> argument must point to a sufficiently large and
   7738    sufficiently aligned block of memory; this memory is written to by the
   7739    intrinsic.  Note that the size and the alignment are target-specific - LLVM
   7740    currently provides no portable way of determining them, so a front-end that
   7741    generates this intrinsic needs to have some target-specific knowledge.
   7742    The <tt>func</tt> argument must hold a function bitcast to
   7743    an <tt>i8*</tt>.</p>
   7744 
   7745 <h5>Semantics:</h5>
   7746 <p>The block of memory pointed to by <tt>tramp</tt> is filled with target
   7747    dependent code, turning it into a function.  Then <tt>tramp</tt> needs to be
   7748    passed to <a href="#int_at">llvm.adjust.trampoline</a> to get a pointer
   7749    which can be <a href="#int_trampoline">bitcast (to a new function) and
   7750    called</a>.  The new function's signature is the same as that of
   7751    <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
   7752    removed.  At most one such <tt>nest</tt> argument is allowed, and it must be of
   7753    pointer type.  Calling the new function is equivalent to calling <tt>func</tt>
   7754    with the same argument list, but with <tt>nval</tt> used for the missing
   7755    <tt>nest</tt> argument.  If, after calling <tt>llvm.init.trampoline</tt>, the
   7756    memory pointed to by <tt>tramp</tt> is modified, then the effect of any later call
   7757    to the returned function pointer is undefined.</p>
   7758 </div>
   7759 
   7760 <!-- _______________________________________________________________________ -->
   7761 <h4>
   7762   <a name="int_at">
   7763     '<tt>llvm.adjust.trampoline</tt>' Intrinsic
   7764   </a>
   7765 </h4>
   7766 
   7767 <div>
   7768 
   7769 <h5>Syntax:</h5>
   7770 <pre>
   7771   declare i8* @llvm.adjust.trampoline(i8* &lt;tramp&gt;)
   7772 </pre>
   7773 
   7774 <h5>Overview:</h5>
   7775 <p>This performs any required machine-specific adjustment to the address of a
   7776    trampoline (passed as <tt>tramp</tt>).</p>
   7777 
   7778 <h5>Arguments:</h5>
   7779 <p><tt>tramp</tt> must point to a block of memory which already has trampoline code
   7780    filled in by a previous call to <a href="#int_it"><tt>llvm.init.trampoline</tt>
   7781    </a>.</p>
   7782 
   7783 <h5>Semantics:</h5>
   7784 <p>On some architectures the address of the code to be executed needs to be
   7785    different to the address where the trampoline is actually stored.  This
   7786    intrinsic returns the executable address corresponding to <tt>tramp</tt>
   7787    after performing the required machine specific adjustments.
   7788    The pointer returned can then be <a href="#int_trampoline"> bitcast and
   7789    executed</a>.
   7790 </p>
   7791 
   7792 </div>
   7793 
   7794 </div>
   7795 
   7796 <!-- ======================================================================= -->
   7797 <h3>
   7798   <a name="int_memorymarkers">Memory Use Markers</a>
   7799 </h3>
   7800 
   7801 <div>
   7802 
   7803 <p>This class of intrinsics exists to information about the lifetime of memory
   7804    objects and ranges where variables are immutable.</p>
   7805 
   7806 <!-- _______________________________________________________________________ -->
   7807 <h4>
   7808   <a name="int_lifetime_start">'<tt>llvm.lifetime.start</tt>' Intrinsic</a>
   7809 </h4>
   7810 
   7811 <div>
   7812 
   7813 <h5>Syntax:</h5>
   7814 <pre>
   7815   declare void @llvm.lifetime.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
   7816 </pre>
   7817 
   7818 <h5>Overview:</h5>
   7819 <p>The '<tt>llvm.lifetime.start</tt>' intrinsic specifies the start of a memory
   7820    object's lifetime.</p>
   7821 
   7822 <h5>Arguments:</h5>
   7823 <p>The first argument is a constant integer representing the size of the
   7824    object, or -1 if it is variable sized.  The second argument is a pointer to
   7825    the object.</p>
   7826 
   7827 <h5>Semantics:</h5>
   7828 <p>This intrinsic indicates that before this point in the code, the value of the
   7829    memory pointed to by <tt>ptr</tt> is dead.  This means that it is known to
   7830    never be used and has an undefined value.  A load from the pointer that
   7831    precedes this intrinsic can be replaced with
   7832    <tt>'<a href="#undefvalues">undef</a>'</tt>.</p>
   7833 
   7834 </div>
   7835 
   7836 <!-- _______________________________________________________________________ -->
   7837 <h4>
   7838   <a name="int_lifetime_end">'<tt>llvm.lifetime.end</tt>' Intrinsic</a>
   7839 </h4>
   7840 
   7841 <div>
   7842 
   7843 <h5>Syntax:</h5>
   7844 <pre>
   7845   declare void @llvm.lifetime.end(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
   7846 </pre>
   7847 
   7848 <h5>Overview:</h5>
   7849 <p>The '<tt>llvm.lifetime.end</tt>' intrinsic specifies the end of a memory
   7850    object's lifetime.</p>
   7851 
   7852 <h5>Arguments:</h5>
   7853 <p>The first argument is a constant integer representing the size of the
   7854    object, or -1 if it is variable sized.  The second argument is a pointer to
   7855    the object.</p>
   7856 
   7857 <h5>Semantics:</h5>
   7858 <p>This intrinsic indicates that after this point in the code, the value of the
   7859    memory pointed to by <tt>ptr</tt> is dead.  This means that it is known to
   7860    never be used and has an undefined value.  Any stores into the memory object
   7861    following this intrinsic may be removed as dead.
   7862 
   7863 </div>
   7864 
   7865 <!-- _______________________________________________________________________ -->
   7866 <h4>
   7867   <a name="int_invariant_start">'<tt>llvm.invariant.start</tt>' Intrinsic</a>
   7868 </h4>
   7869 
   7870 <div>
   7871 
   7872 <h5>Syntax:</h5>
   7873 <pre>
   7874   declare {}* @llvm.invariant.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
   7875 </pre>
   7876 
   7877 <h5>Overview:</h5>
   7878 <p>The '<tt>llvm.invariant.start</tt>' intrinsic specifies that the contents of
   7879    a memory object will not change.</p>
   7880 
   7881 <h5>Arguments:</h5>
   7882 <p>The first argument is a constant integer representing the size of the
   7883    object, or -1 if it is variable sized.  The second argument is a pointer to
   7884    the object.</p>
   7885 
   7886 <h5>Semantics:</h5>
   7887 <p>This intrinsic indicates that until an <tt>llvm.invariant.end</tt> that uses
   7888    the return value, the referenced memory location is constant and
   7889    unchanging.</p>
   7890 
   7891 </div>
   7892 
   7893 <!-- _______________________________________________________________________ -->
   7894 <h4>
   7895   <a name="int_invariant_end">'<tt>llvm.invariant.end</tt>' Intrinsic</a>
   7896 </h4>
   7897 
   7898 <div>
   7899 
   7900 <h5>Syntax:</h5>
   7901 <pre>
   7902   declare void @llvm.invariant.end({}* &lt;start&gt;, i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
   7903 </pre>
   7904 
   7905 <h5>Overview:</h5>
   7906 <p>The '<tt>llvm.invariant.end</tt>' intrinsic specifies that the contents of
   7907    a memory object are mutable.</p>
   7908 
   7909 <h5>Arguments:</h5>
   7910 <p>The first argument is the matching <tt>llvm.invariant.start</tt> intrinsic.
   7911    The second argument is a constant integer representing the size of the
   7912    object, or -1 if it is variable sized and the third argument is a pointer
   7913    to the object.</p>
   7914 
   7915 <h5>Semantics:</h5>
   7916 <p>This intrinsic indicates that the memory is mutable again.</p>
   7917 
   7918 </div>
   7919 
   7920 </div>
   7921 
   7922 <!-- ======================================================================= -->
   7923 <h3>
   7924   <a name="int_general">General Intrinsics</a>
   7925 </h3>
   7926 
   7927 <div>
   7928 
   7929 <p>This class of intrinsics is designed to be generic and has no specific
   7930    purpose.</p>
   7931 
   7932 <!-- _______________________________________________________________________ -->
   7933 <h4>
   7934   <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
   7935 </h4>
   7936 
   7937 <div>
   7938 
   7939 <h5>Syntax:</h5>
   7940 <pre>
   7941   declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt;)
   7942 </pre>
   7943 
   7944 <h5>Overview:</h5>
   7945 <p>The '<tt>llvm.var.annotation</tt>' intrinsic.</p>
   7946 
   7947 <h5>Arguments:</h5>
   7948 <p>The first argument is a pointer to a value, the second is a pointer to a
   7949    global string, the third is a pointer to a global string which is the source
   7950    file name, and the last argument is the line number.</p>
   7951 
   7952 <h5>Semantics:</h5>
   7953 <p>This intrinsic allows annotation of local variables with arbitrary strings.
   7954    This can be useful for special purpose optimizations that want to look for
   7955    these annotations.  These have no other defined use; they are ignored by code
   7956    generation and optimization.</p>
   7957 
   7958 </div>
   7959 
   7960 <!-- _______________________________________________________________________ -->
   7961 <h4>
   7962   <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
   7963 </h4>
   7964 
   7965 <div>
   7966 
   7967 <h5>Syntax:</h5>
   7968 <p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
   7969    any integer bit width.</p>
   7970 
   7971 <pre>
   7972   declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt;)
   7973   declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt;)
   7974   declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt;)
   7975   declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt;)
   7976   declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt;)
   7977 </pre>
   7978 
   7979 <h5>Overview:</h5>
   7980 <p>The '<tt>llvm.annotation</tt>' intrinsic.</p>
   7981 
   7982 <h5>Arguments:</h5>
   7983 <p>The first argument is an integer value (result of some expression), the
   7984    second is a pointer to a global string, the third is a pointer to a global
   7985    string which is the source file name, and the last argument is the line
   7986    number.  It returns the value of the first argument.</p>
   7987 
   7988 <h5>Semantics:</h5>
   7989 <p>This intrinsic allows annotations to be put on arbitrary expressions with
   7990    arbitrary strings.  This can be useful for special purpose optimizations that
   7991    want to look for these annotations.  These have no other defined use; they
   7992    are ignored by code generation and optimization.</p>
   7993 
   7994 </div>
   7995 
   7996 <!-- _______________________________________________________________________ -->
   7997 <h4>
   7998   <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
   7999 </h4>
   8000 
   8001 <div>
   8002 
   8003 <h5>Syntax:</h5>
   8004 <pre>
   8005   declare void @llvm.trap()
   8006 </pre>
   8007 
   8008 <h5>Overview:</h5>
   8009 <p>The '<tt>llvm.trap</tt>' intrinsic.</p>
   8010 
   8011 <h5>Arguments:</h5>
   8012 <p>None.</p>
   8013 
   8014 <h5>Semantics:</h5>
   8015 <p>This intrinsics is lowered to the target dependent trap instruction. If the
   8016    target does not have a trap instruction, this intrinsic will be lowered to
   8017    the call of the <tt>abort()</tt> function.</p>
   8018 
   8019 </div>
   8020 
   8021 <!-- _______________________________________________________________________ -->
   8022 <h4>
   8023   <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
   8024 </h4>
   8025 
   8026 <div>
   8027 
   8028 <h5>Syntax:</h5>
   8029 <pre>
   8030   declare void @llvm.stackprotector(i8* &lt;guard&gt;, i8** &lt;slot&gt;)
   8031 </pre>
   8032 
   8033 <h5>Overview:</h5>
   8034 <p>The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and
   8035    stores it onto the stack at <tt>slot</tt>. The stack slot is adjusted to
   8036    ensure that it is placed on the stack before local variables.</p>
   8037 
   8038 <h5>Arguments:</h5>
   8039 <p>The <tt>llvm.stackprotector</tt> intrinsic requires two pointer
   8040    arguments. The first argument is the value loaded from the stack
   8041    guard <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt>
   8042    that has enough space to hold the value of the guard.</p>
   8043 
   8044 <h5>Semantics:</h5>
   8045 <p>This intrinsic causes the prologue/epilogue inserter to force the position of
   8046    the <tt>AllocaInst</tt> stack slot to be before local variables on the
   8047    stack. This is to ensure that if a local variable on the stack is
   8048    overwritten, it will destroy the value of the guard. When the function exits,
   8049    the guard on the stack is checked against the original guard. If they are
   8050    different, then the program aborts by calling the <tt>__stack_chk_fail()</tt>
   8051    function.</p>
   8052 
   8053 </div>
   8054 
   8055 <!-- _______________________________________________________________________ -->
   8056 <h4>
   8057   <a name="int_objectsize">'<tt>llvm.objectsize</tt>' Intrinsic</a>
   8058 </h4>
   8059 
   8060 <div>
   8061 
   8062 <h5>Syntax:</h5>
   8063 <pre>
   8064   declare i32 @llvm.objectsize.i32(i8* &lt;object&gt;, i1 &lt;type&gt;)
   8065   declare i64 @llvm.objectsize.i64(i8* &lt;object&gt;, i1 &lt;type&gt;)
   8066 </pre>
   8067 
   8068 <h5>Overview:</h5>
   8069 <p>The <tt>llvm.objectsize</tt> intrinsic is designed to provide information to
   8070    the optimizers to determine at compile time whether a) an operation (like
   8071    memcpy) will overflow a buffer that corresponds to an object, or b) that a
   8072    runtime check for overflow isn't necessary. An object in this context means
   8073    an allocation of a specific class, structure, array, or other object.</p>
   8074 
   8075 <h5>Arguments:</h5>
   8076 <p>The <tt>llvm.objectsize</tt> intrinsic takes two arguments. The first
   8077    argument is a pointer to or into the <tt>object</tt>. The second argument
   8078    is a boolean 0 or 1. This argument determines whether you want the 
   8079    maximum (0) or minimum (1) bytes remaining. This needs to be a literal 0 or
   8080    1, variables are not allowed.</p>
   8081    
   8082 <h5>Semantics:</h5>
   8083 <p>The <tt>llvm.objectsize</tt> intrinsic is lowered to either a constant
   8084    representing the size of the object concerned, or <tt>i32/i64 -1 or 0</tt>,
   8085    depending on the <tt>type</tt> argument, if the size cannot be determined at
   8086    compile time.</p>
   8087 
   8088 </div>
   8089 
   8090 </div>
   8091 
   8092 </div>
   8093 
   8094 <!-- *********************************************************************** -->
   8095 <hr>
   8096 <address>
   8097   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
   8098   src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
   8099   <a href="http://validator.w3.org/check/referer"><img
   8100   src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
   8101 
   8102   <a href="mailto:sabre (a] nondot.org">Chris Lattner</a><br>
   8103   <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
   8104   Last modified: $Date: 2011-10-26 18:35:59 -0400 (Wed, 26 Oct 2011) $
   8105 </address>
   8106 
   8107 </body>
   8108 </html>
   8109