Home | History | Annotate | Download | only in docs
      1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
      2                       "http://www.w3.org/TR/html4/strict.dtd">
      3 <html>
      4 <head>
      5   <title>LLVM's Analysis and Transform Passes</title>
      6   <link rel="stylesheet" href="llvm.css" type="text/css">
      7   <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
      8 </head>
      9 <body>
     10 
     11 <!--
     12 
     13 If Passes.html is up to date, the following "one-liner" should print
     14 an empty diff.
     15 
     16 egrep -e '^<tr><td><a href="#.*">-.*</a></td><td>.*</td></tr>$' \
     17       -e '^  <a name=".*">.*</a>$' < Passes.html >html; \
     18 perl >help <<'EOT' && diff -u help html; rm -f help html
     19 open HTML, "<Passes.html" or die "open: Passes.html: $!\n";
     20 while (<HTML>) {
     21   m:^<tr><td><a href="#(.*)">-.*</a></td><td>.*</td></tr>$: or next;
     22   $order{$1} = sprintf("%03d", 1 + int %order);
     23 }
     24 open HELP, "../Release/bin/opt -help|" or die "open: opt -help: $!\n";
     25 while (<HELP>) {
     26   m:^    -([^ ]+) +- (.*)$: or next;
     27   my $o = $order{$1};
     28   $o = "000" unless defined $o;
     29   push @x, "$o<tr><td><a href=\"#$1\">-$1</a></td><td>$2</td></tr>\n";
     30   push @y, "$o  <a name=\"$1\">-$1: $2</a>\n";
     31 }
     32 @x = map { s/^\d\d\d//; $_ } sort @x;
     33 @y = map { s/^\d\d\d//; $_ } sort @y;
     34 print @x, @y;
     35 EOT
     36 
     37 This (real) one-liner can also be helpful when converting comments to HTML:
     38 
     39 perl -e '$/ = undef; for (split(/\n/, <>)) { s:^ *///? ?::; print "  <p>\n" if !$on && $_ =~ /\S/; print "  </p>\n" if $on && $_ =~ /^\s*$/; print "  $_\n"; $on = ($_ =~ /\S/); } print "  </p>\n" if $on'
     40 
     41   -->
     42 
     43 <h1>LLVM's Analysis and Transform Passes</h1>
     44 
     45 <ol>
     46   <li><a href="#intro">Introduction</a></li>
     47   <li><a href="#analyses">Analysis Passes</a>
     48   <li><a href="#transforms">Transform Passes</a></li>
     49   <li><a href="#utilities">Utility Passes</a></li>
     50 </ol>
     51 
     52 <div class="doc_author">
     53   <p>Written by <a href="mailto:rspencer (a] x10sys.com">Reid Spencer</a>
     54             and Gordon Henriksen</p>
     55 </div>
     56 
     57 <!-- ======================================================================= -->
     58 <h2><a name="intro">Introduction</a></h2>
     59 <div>
     60   <p>This document serves as a high level summary of the optimization features 
     61   that LLVM provides. Optimizations are implemented as Passes that traverse some
     62   portion of a program to either collect information or transform the program.
     63   The table below divides the passes that LLVM provides into three categories.
     64   Analysis passes compute information that other passes can use or for debugging
     65   or program visualization purposes. Transform passes can use (or invalidate)
     66   the analysis passes. Transform passes all mutate the program in some way. 
     67   Utility passes provides some utility but don't otherwise fit categorization.
     68   For example passes to extract functions to bitcode or write a module to
     69   bitcode are neither analysis nor transform passes.
     70   <p>The table below provides a quick summary of each pass and links to the more
     71   complete pass description later in the document.</p>
     72 
     73 <table>
     74 <tr><th colspan="2"><b>ANALYSIS PASSES</b></th></tr>
     75 <tr><th>Option</th><th>Name</th></tr>
     76 <tr><td><a href="#aa-eval">-aa-eval</a></td><td>Exhaustive Alias Analysis Precision Evaluator</td></tr>
     77 <tr><td><a href="#basicaa">-basicaa</a></td><td>Basic Alias Analysis (stateless AA impl)</td></tr>
     78 <tr><td><a href="#basiccg">-basiccg</a></td><td>Basic CallGraph Construction</td></tr>
     79 <tr><td><a href="#count-aa">-count-aa</a></td><td>Count Alias Analysis Query Responses</td></tr>
     80 <tr><td><a href="#debug-aa">-debug-aa</a></td><td>AA use debugger</td></tr>
     81 <tr><td><a href="#domfrontier">-domfrontier</a></td><td>Dominance Frontier Construction</td></tr>
     82 <tr><td><a href="#domtree">-domtree</a></td><td>Dominator Tree Construction</td></tr>
     83 <tr><td><a href="#dot-callgraph">-dot-callgraph</a></td><td>Print Call Graph to 'dot' file</td></tr>
     84 <tr><td><a href="#dot-cfg">-dot-cfg</a></td><td>Print CFG of function to 'dot' file</td></tr>
     85 <tr><td><a href="#dot-cfg-only">-dot-cfg-only</a></td><td>Print CFG of function to 'dot' file (with no function bodies)</td></tr>
     86 <tr><td><a href="#dot-dom">-dot-dom</a></td><td>Print dominance tree of function to 'dot' file</td></tr>
     87 <tr><td><a href="#dot-dom-only">-dot-dom-only</a></td><td>Print dominance tree of function to 'dot' file (with no function bodies)</td></tr>
     88 <tr><td><a href="#dot-postdom">-dot-postdom</a></td><td>Print postdominance tree of function to 'dot' file</td></tr>
     89 <tr><td><a href="#dot-postdom-only">-dot-postdom-only</a></td><td>Print postdominance tree of function to 'dot' file (with no function bodies)</td></tr>
     90 <tr><td><a href="#globalsmodref-aa">-globalsmodref-aa</a></td><td>Simple mod/ref analysis for globals</td></tr>
     91 <tr><td><a href="#instcount">-instcount</a></td><td>Counts the various types of Instructions</td></tr>
     92 <tr><td><a href="#intervals">-intervals</a></td><td>Interval Partition Construction</td></tr>
     93 <tr><td><a href="#iv-users">-iv-users</a></td><td>Induction Variable Users</td></tr>
     94 <tr><td><a href="#lazy-value-info">-lazy-value-info</a></td><td>Lazy Value Information Analysis</td></tr>
     95 <tr><td><a href="#lda">-lda</a></td><td>Loop Dependence Analysis</td></tr>
     96 <tr><td><a href="#libcall-aa">-libcall-aa</a></td><td>LibCall Alias Analysis</td></tr>
     97 <tr><td><a href="#lint">-lint</a></td><td>Statically lint-checks LLVM IR</td></tr>
     98 <tr><td><a href="#loops">-loops</a></td><td>Natural Loop Information</td></tr>
     99 <tr><td><a href="#memdep">-memdep</a></td><td>Memory Dependence Analysis</td></tr>
    100 <tr><td><a href="#module-debuginfo">-module-debuginfo</a></td><td>Decodes module-level debug info</td></tr>
    101 <tr><td><a href="#no-aa">-no-aa</a></td><td>No Alias Analysis (always returns 'may' alias)</td></tr>
    102 <tr><td><a href="#no-profile">-no-profile</a></td><td>No Profile Information</td></tr>
    103 <tr><td><a href="#postdomfrontier">-postdomfrontier</a></td><td>Post-Dominance Frontier Construction</td></tr>
    104 <tr><td><a href="#postdomtree">-postdomtree</a></td><td>Post-Dominator Tree Construction</td></tr>
    105 <tr><td><a href="#print-alias-sets">-print-alias-sets</a></td><td>Alias Set Printer</td></tr>
    106 <tr><td><a href="#print-callgraph">-print-callgraph</a></td><td>Print a call graph</td></tr>
    107 <tr><td><a href="#print-callgraph-sccs">-print-callgraph-sccs</a></td><td>Print SCCs of the Call Graph</td></tr>
    108 <tr><td><a href="#print-cfg-sccs">-print-cfg-sccs</a></td><td>Print SCCs of each function CFG</td></tr>
    109 <tr><td><a href="#print-dbginfo">-print-dbginfo</a></td><td>Print debug info in human readable form</td></tr>
    110 <tr><td><a href="#print-dom-info">-print-dom-info</a></td><td>Dominator Info Printer</td></tr>
    111 <tr><td><a href="#print-externalfnconstants">-print-externalfnconstants</a></td><td>Print external fn callsites passed constants</td></tr>
    112 <tr><td><a href="#print-function">-print-function</a></td><td>Print function to stderr</td></tr>
    113 <tr><td><a href="#print-module">-print-module</a></td><td>Print module to stderr</td></tr>
    114 <tr><td><a href="#print-used-types">-print-used-types</a></td><td>Find Used Types</td></tr>
    115 <tr><td><a href="#profile-estimator">-profile-estimator</a></td><td>Estimate profiling information</td></tr>
    116 <tr><td><a href="#profile-loader">-profile-loader</a></td><td>Load profile information from llvmprof.out</td></tr>
    117 <tr><td><a href="#profile-verifier">-profile-verifier</a></td><td>Verify profiling information</td></tr>
    118 <tr><td><a href="#regions">-regions</a></td><td>Detect single entry single exit regions</td></tr>
    119 <tr><td><a href="#scalar-evolution">-scalar-evolution</a></td><td>Scalar Evolution Analysis</td></tr>
    120 <tr><td><a href="#scev-aa">-scev-aa</a></td><td>ScalarEvolution-based Alias Analysis</td></tr>
    121 <tr><td><a href="#targetdata">-targetdata</a></td><td>Target Data Layout</td></tr>
    122 
    123 
    124 <tr><th colspan="2"><b>TRANSFORM PASSES</b></th></tr>
    125 <tr><th>Option</th><th>Name</th></tr>
    126 <tr><td><a href="#adce">-adce</a></td><td>Aggressive Dead Code Elimination</td></tr>
    127 <tr><td><a href="#always-inline">-always-inline</a></td><td>Inliner for always_inline functions</td></tr>
    128 <tr><td><a href="#argpromotion">-argpromotion</a></td><td>Promote 'by reference' arguments to scalars</td></tr>
    129 <tr><td><a href="#block-placement">-block-placement</a></td><td>Profile Guided Basic Block Placement</td></tr>
    130 <tr><td><a href="#break-crit-edges">-break-crit-edges</a></td><td>Break critical edges in CFG</td></tr>
    131 <tr><td><a href="#codegenprepare">-codegenprepare</a></td><td>Optimize for code generation</td></tr>
    132 <tr><td><a href="#constmerge">-constmerge</a></td><td>Merge Duplicate Global Constants</td></tr>
    133 <tr><td><a href="#constprop">-constprop</a></td><td>Simple constant propagation</td></tr>
    134 <tr><td><a href="#dce">-dce</a></td><td>Dead Code Elimination</td></tr>
    135 <tr><td><a href="#deadargelim">-deadargelim</a></td><td>Dead Argument Elimination</td></tr>
    136 <tr><td><a href="#deadtypeelim">-deadtypeelim</a></td><td>Dead Type Elimination</td></tr>
    137 <tr><td><a href="#die">-die</a></td><td>Dead Instruction Elimination</td></tr>
    138 <tr><td><a href="#dse">-dse</a></td><td>Dead Store Elimination</td></tr>
    139 <tr><td><a href="#functionattrs">-functionattrs</a></td><td>Deduce function attributes</td></tr>
    140 <tr><td><a href="#globaldce">-globaldce</a></td><td>Dead Global Elimination</td></tr>
    141 <tr><td><a href="#globalopt">-globalopt</a></td><td>Global Variable Optimizer</td></tr>
    142 <tr><td><a href="#gvn">-gvn</a></td><td>Global Value Numbering</td></tr>
    143 <tr><td><a href="#indvars">-indvars</a></td><td>Canonicalize Induction Variables</td></tr>
    144 <tr><td><a href="#inline">-inline</a></td><td>Function Integration/Inlining</td></tr>
    145 <tr><td><a href="#insert-edge-profiling">-insert-edge-profiling</a></td><td>Insert instrumentation for edge profiling</td></tr>
    146 <tr><td><a href="#insert-optimal-edge-profiling">-insert-optimal-edge-profiling</a></td><td>Insert optimal instrumentation for edge profiling</td></tr>
    147 <tr><td><a href="#instcombine">-instcombine</a></td><td>Combine redundant instructions</td></tr>
    148 <tr><td><a href="#internalize">-internalize</a></td><td>Internalize Global Symbols</td></tr>
    149 <tr><td><a href="#ipconstprop">-ipconstprop</a></td><td>Interprocedural constant propagation</td></tr>
    150 <tr><td><a href="#ipsccp">-ipsccp</a></td><td>Interprocedural Sparse Conditional Constant Propagation</td></tr>
    151 <tr><td><a href="#jump-threading">-jump-threading</a></td><td>Jump Threading</td></tr>
    152 <tr><td><a href="#lcssa">-lcssa</a></td><td>Loop-Closed SSA Form Pass</td></tr>
    153 <tr><td><a href="#licm">-licm</a></td><td>Loop Invariant Code Motion</td></tr>
    154 <tr><td><a href="#loop-deletion">-loop-deletion</a></td><td>Delete dead loops</td></tr>
    155 <tr><td><a href="#loop-extract">-loop-extract</a></td><td>Extract loops into new functions</td></tr>
    156 <tr><td><a href="#loop-extract-single">-loop-extract-single</a></td><td>Extract at most one loop into a new function</td></tr>
    157 <tr><td><a href="#loop-reduce">-loop-reduce</a></td><td>Loop Strength Reduction</td></tr>
    158 <tr><td><a href="#loop-rotate">-loop-rotate</a></td><td>Rotate Loops</td></tr>
    159 <tr><td><a href="#loop-simplify">-loop-simplify</a></td><td>Canonicalize natural loops</td></tr>
    160 <tr><td><a href="#loop-unroll">-loop-unroll</a></td><td>Unroll loops</td></tr>
    161 <tr><td><a href="#loop-unswitch">-loop-unswitch</a></td><td>Unswitch loops</td></tr>
    162 <tr><td><a href="#loweratomic">-loweratomic</a></td><td>Lower atomic intrinsics to non-atomic form</td></tr>
    163 <tr><td><a href="#lowerinvoke">-lowerinvoke</a></td><td>Lower invoke and unwind, for unwindless code generators</td></tr>
    164 <tr><td><a href="#lowerswitch">-lowerswitch</a></td><td>Lower SwitchInst's to branches</td></tr>
    165 <tr><td><a href="#mem2reg">-mem2reg</a></td><td>Promote Memory to Register</td></tr>
    166 <tr><td><a href="#memcpyopt">-memcpyopt</a></td><td>MemCpy Optimization</td></tr>
    167 <tr><td><a href="#mergefunc">-mergefunc</a></td><td>Merge Functions</td></tr>
    168 <tr><td><a href="#mergereturn">-mergereturn</a></td><td>Unify function exit nodes</td></tr>
    169 <tr><td><a href="#partial-inliner">-partial-inliner</a></td><td>Partial Inliner</td></tr>
    170 <tr><td><a href="#prune-eh">-prune-eh</a></td><td>Remove unused exception handling info</td></tr>
    171 <tr><td><a href="#reassociate">-reassociate</a></td><td>Reassociate expressions</td></tr>
    172 <tr><td><a href="#reg2mem">-reg2mem</a></td><td>Demote all values to stack slots</td></tr>
    173 <tr><td><a href="#scalarrepl">-scalarrepl</a></td><td>Scalar Replacement of Aggregates (DT)</td></tr>
    174 <tr><td><a href="#sccp">-sccp</a></td><td>Sparse Conditional Constant Propagation</td></tr>
    175 <tr><td><a href="#simplify-libcalls">-simplify-libcalls</a></td><td>Simplify well-known library calls</td></tr>
    176 <tr><td><a href="#simplifycfg">-simplifycfg</a></td><td>Simplify the CFG</td></tr>
    177 <tr><td><a href="#sink">-sink</a></td><td>Code sinking</td></tr>
    178 <tr><td><a href="#sretpromotion">-sretpromotion</a></td><td>Promote sret arguments to multiple ret values</td></tr>
    179 <tr><td><a href="#strip">-strip</a></td><td>Strip all symbols from a module</td></tr>
    180 <tr><td><a href="#strip-dead-debug-info">-strip-dead-debug-info</a></td><td>Strip debug info for unused symbols</td></tr>
    181 <tr><td><a href="#strip-dead-prototypes">-strip-dead-prototypes</a></td><td>Strip Unused Function Prototypes</td></tr>
    182 <tr><td><a href="#strip-debug-declare">-strip-debug-declare</a></td><td>Strip all llvm.dbg.declare intrinsics</td></tr>
    183 <tr><td><a href="#strip-nondebug">-strip-nondebug</a></td><td>Strip all symbols, except dbg symbols, from a module</td></tr>
    184 <tr><td><a href="#tailcallelim">-tailcallelim</a></td><td>Tail Call Elimination</td></tr>
    185 <tr><td><a href="#tailduplicate">-tailduplicate</a></td><td>Tail Duplication</td></tr>
    186 
    187 
    188 <tr><th colspan="2"><b>UTILITY PASSES</b></th></tr>
    189 <tr><th>Option</th><th>Name</th></tr>
    190 <tr><td><a href="#deadarghaX0r">-deadarghaX0r</a></td><td>Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)</td></tr>
    191 <tr><td><a href="#extract-blocks">-extract-blocks</a></td><td>Extract Basic Blocks From Module (for bugpoint use)</td></tr>
    192 <tr><td><a href="#instnamer">-instnamer</a></td><td>Assign names to anonymous instructions</td></tr>
    193 <tr><td><a href="#preverify">-preverify</a></td><td>Preliminary module verification</td></tr>
    194 <tr><td><a href="#verify">-verify</a></td><td>Module Verifier</td></tr>
    195 <tr><td><a href="#view-cfg">-view-cfg</a></td><td>View CFG of function</td></tr>
    196 <tr><td><a href="#view-cfg-only">-view-cfg-only</a></td><td>View CFG of function (with no function bodies)</td></tr>
    197 <tr><td><a href="#view-dom">-view-dom</a></td><td>View dominance tree of function</td></tr>
    198 <tr><td><a href="#view-dom-only">-view-dom-only</a></td><td>View dominance tree of function (with no function bodies)</td></tr>
    199 <tr><td><a href="#view-postdom">-view-postdom</a></td><td>View postdominance tree of function</td></tr>
    200 <tr><td><a href="#view-postdom-only">-view-postdom-only</a></td><td>View postdominance tree of function (with no function bodies)</td></tr>
    201 </table>
    202 
    203 </div>
    204 
    205 <!-- ======================================================================= -->
    206 <h2><a name="analyses">Analysis Passes</a></h2>
    207 <div>
    208   <p>This section describes the LLVM Analysis Passes.</p>
    209 
    210 <!-------------------------------------------------------------------------- -->
    211 <h3>
    212   <a name="aa-eval">-aa-eval: Exhaustive Alias Analysis Precision Evaluator</a>
    213 </h3>
    214 <div>
    215   <p>This is a simple N^2 alias analysis accuracy evaluator.
    216   Basically, for each function in the program, it simply queries to see how the
    217   alias analysis implementation answers alias queries between each pair of
    218   pointers in the function.</p>
    219 
    220   <p>This is inspired and adapted from code by: Naveen Neelakantam, Francesco
    221   Spadini, and Wojciech Stryjewski.</p>
    222 </div>
    223 
    224 <!-------------------------------------------------------------------------- -->
    225 <h3>
    226   <a name="basicaa">-basicaa: Basic Alias Analysis (stateless AA impl)</a>
    227 </h3>
    228 <div>
    229   <p>
    230   This is the default implementation of the Alias Analysis interface
    231   that simply implements a few identities (two different globals cannot alias,
    232   etc), but otherwise does no analysis.
    233   </p>
    234 </div>
    235 
    236 <!-------------------------------------------------------------------------- -->
    237 <h3>
    238   <a name="basiccg">-basiccg: Basic CallGraph Construction</a>
    239 </h3>
    240 <div>
    241   <p>Yet to be written.</p>
    242 </div>
    243 
    244 <!-------------------------------------------------------------------------- -->
    245 <h3>
    246   <a name="count-aa">-count-aa: Count Alias Analysis Query Responses</a>
    247 </h3>
    248 <div>
    249   <p>
    250   A pass which can be used to count how many alias queries
    251   are being made and how the alias analysis implementation being used responds.
    252   </p>
    253 </div>
    254 
    255 <!-------------------------------------------------------------------------- -->
    256 <h3>
    257   <a name="debug-aa">-debug-aa: AA use debugger</a>
    258 </h3>
    259 <div>
    260   <p>
    261   This simple pass checks alias analysis users to ensure that if they
    262   create a new value, they do not query AA without informing it of the value.
    263   It acts as a shim over any other AA pass you want.
    264   </p>
    265   
    266   <p>
    267   Yes keeping track of every value in the program is expensive, but this is 
    268   a debugging pass.
    269   </p>
    270 </div>
    271 
    272 <!-------------------------------------------------------------------------- -->
    273 <h3>
    274   <a name="domfrontier">-domfrontier: Dominance Frontier Construction</a>
    275 </h3>
    276 <div>
    277   <p>
    278   This pass is a simple dominator construction algorithm for finding forward
    279   dominator frontiers.
    280   </p>
    281 </div>
    282 
    283 <!-------------------------------------------------------------------------- -->
    284 <h3>
    285   <a name="domtree">-domtree: Dominator Tree Construction</a>
    286 </h3>
    287 <div>
    288   <p>
    289   This pass is a simple dominator construction algorithm for finding forward
    290   dominators.
    291   </p>
    292 </div>
    293 
    294 <!-------------------------------------------------------------------------- -->
    295 <h3>
    296   <a name="dot-callgraph">-dot-callgraph: Print Call Graph to 'dot' file</a>
    297 </h3>
    298 <div>
    299   <p>
    300   This pass, only available in <code>opt</code>, prints the call graph into a
    301   <code>.dot</code> graph.  This graph can then be processed with the "dot" tool
    302   to convert it to postscript or some other suitable format.
    303   </p>
    304 </div>
    305 
    306 <!-------------------------------------------------------------------------- -->
    307 <h3>
    308   <a name="dot-cfg">-dot-cfg: Print CFG of function to 'dot' file</a>
    309 </h3>
    310 <div>
    311   <p>
    312   This pass, only available in <code>opt</code>, prints the control flow graph
    313   into a <code>.dot</code> graph.  This graph can then be processed with the
    314   "dot" tool to convert it to postscript or some other suitable format.
    315   </p>
    316 </div>
    317 
    318 <!-------------------------------------------------------------------------- -->
    319 <h3>
    320   <a name="dot-cfg-only">-dot-cfg-only: Print CFG of function to 'dot' file (with no function bodies)</a>
    321 </h3>
    322 <div>
    323   <p>
    324   This pass, only available in <code>opt</code>, prints the control flow graph
    325   into a <code>.dot</code> graph, omitting the function bodies.  This graph can
    326   then be processed with the "dot" tool to convert it to postscript or some
    327   other suitable format.
    328   </p>
    329 </div>
    330 
    331 <!-------------------------------------------------------------------------- -->
    332 <h3>
    333   <a name="dot-dom">-dot-dom: Print dominance tree of function to 'dot' file</a>
    334 </h3>
    335 <div>
    336   <p>
    337   This pass, only available in <code>opt</code>, prints the dominator tree
    338   into a <code>.dot</code> graph.  This graph can then be processed with the
    339   "dot" tool to convert it to postscript or some other suitable format.
    340   </p>
    341 </div>
    342 
    343 <!-------------------------------------------------------------------------- -->
    344 <h3>
    345   <a name="dot-dom-only">-dot-dom-only: Print dominance tree of function to 'dot' file (with no function bodies)</a>
    346 </h3>
    347 <div>
    348   <p>
    349   This pass, only available in <code>opt</code>, prints the dominator tree
    350   into a <code>.dot</code> graph, omitting the function bodies.  This graph can
    351   then be processed with the "dot" tool to convert it to postscript or some
    352   other suitable format.
    353   </p>
    354 </div>
    355 
    356 <!-------------------------------------------------------------------------- -->
    357 <h3>
    358   <a name="dot-postdom">-dot-postdom: Print postdominance tree of function to 'dot' file</a>
    359 </h3>
    360 <div>
    361   <p>
    362   This pass, only available in <code>opt</code>, prints the post dominator tree
    363   into a <code>.dot</code> graph.  This graph can then be processed with the
    364   "dot" tool to convert it to postscript or some other suitable format.
    365   </p>
    366 </div>
    367 
    368 <!-------------------------------------------------------------------------- -->
    369 <h3>
    370   <a name="dot-postdom-only">-dot-postdom-only: Print postdominance tree of function to 'dot' file (with no function bodies)</a>
    371 </h3>
    372 <div>
    373   <p>
    374   This pass, only available in <code>opt</code>, prints the post dominator tree
    375   into a <code>.dot</code> graph, omitting the function bodies.  This graph can
    376   then be processed with the "dot" tool to convert it to postscript or some
    377   other suitable format.
    378   </p>
    379 </div>
    380 
    381 <!-------------------------------------------------------------------------- -->
    382 <h3>
    383   <a name="globalsmodref-aa">-globalsmodref-aa: Simple mod/ref analysis for globals</a>
    384 </h3>
    385 <div>
    386   <p>
    387   This simple pass provides alias and mod/ref information for global values
    388   that do not have their address taken, and keeps track of whether functions
    389   read or write memory (are "pure").  For this simple (but very common) case,
    390   we can provide pretty accurate and useful information.
    391   </p>
    392 </div>
    393 
    394 <!-------------------------------------------------------------------------- -->
    395 <h3>
    396   <a name="instcount">-instcount: Counts the various types of Instructions</a>
    397 </h3>
    398 <div>
    399   <p>
    400   This pass collects the count of all instructions and reports them
    401   </p>
    402 </div>
    403 
    404 <!-------------------------------------------------------------------------- -->
    405 <h3>
    406   <a name="intervals">-intervals: Interval Partition Construction</a>
    407 </h3>
    408 <div>
    409   <p>
    410   This analysis calculates and represents the interval partition of a function,
    411   or a preexisting interval partition.
    412   </p>
    413   
    414   <p>
    415   In this way, the interval partition may be used to reduce a flow graph down
    416   to its degenerate single node interval partition (unless it is irreducible).
    417   </p>
    418 </div>
    419 
    420 <!-------------------------------------------------------------------------- -->
    421 <h3>
    422   <a name="iv-users">-iv-users: Induction Variable Users</a>
    423 </h3>
    424 <div>
    425   <p>Bookkeeping for "interesting" users of expressions computed from 
    426   induction variables.</p>
    427 </div>
    428 
    429 <!-------------------------------------------------------------------------- -->
    430 <h3>
    431   <a name="lazy-value-info">-lazy-value-info: Lazy Value Information Analysis</a>
    432 </h3>
    433 <div>
    434   <p>Interface for lazy computation of value constraint information.</p>
    435 </div>
    436 
    437 <!-------------------------------------------------------------------------- -->
    438 <h3>
    439   <a name="lda">-lda: Loop Dependence Analysis</a>
    440 </h3>
    441 <div>
    442   <p>Loop dependence analysis framework, which is used to detect dependences in
    443   memory accesses in loops.</p>
    444 </div>
    445 
    446 <!-------------------------------------------------------------------------- -->
    447 <h3>
    448   <a name="libcall-aa">-libcall-aa: LibCall Alias Analysis</a>
    449 </h3>
    450 <div>
    451   <p>LibCall Alias Analysis.</p>
    452 </div>
    453 
    454 <!-------------------------------------------------------------------------- -->
    455 <h3>
    456   <a name="lint">-lint: Statically lint-checks LLVM IR</a>
    457 </h3>
    458 <div>
    459   <p>This pass statically checks for common and easily-identified constructs
    460   which produce undefined or likely unintended behavior in LLVM IR.</p>
    461  
    462   <p>It is not a guarantee of correctness, in two ways. First, it isn't
    463   comprehensive. There are checks which could be done statically which are
    464   not yet implemented. Some of these are indicated by TODO comments, but
    465   those aren't comprehensive either. Second, many conditions cannot be
    466   checked statically. This pass does no dynamic instrumentation, so it
    467   can't check for all possible problems.</p>
    468   
    469   <p>Another limitation is that it assumes all code will be executed. A store
    470   through a null pointer in a basic block which is never reached is harmless,
    471   but this pass will warn about it anyway.</p>
    472  
    473   <p>Optimization passes may make conditions that this pass checks for more or
    474   less obvious. If an optimization pass appears to be introducing a warning,
    475   it may be that the optimization pass is merely exposing an existing
    476   condition in the code.</p>
    477   
    478   <p>This code may be run before instcombine. In many cases, instcombine checks
    479   for the same kinds of things and turns instructions with undefined behavior
    480   into unreachable (or equivalent). Because of this, this pass makes some
    481   effort to look through bitcasts and so on.
    482   </p>
    483 </div>
    484 
    485 <!-------------------------------------------------------------------------- -->
    486 <h3>
    487   <a name="loops">-loops: Natural Loop Information</a>
    488 </h3>
    489 <div>
    490   <p>
    491   This analysis is used to identify natural loops and determine the loop depth
    492   of various nodes of the CFG.  Note that the loops identified may actually be
    493   several natural loops that share the same header node... not just a single
    494   natural loop.
    495   </p>
    496 </div>
    497 
    498 <!-------------------------------------------------------------------------- -->
    499 <h3>
    500   <a name="memdep">-memdep: Memory Dependence Analysis</a>
    501 </h3>
    502 <div>
    503   <p>
    504   An analysis that determines, for a given memory operation, what preceding 
    505   memory operations it depends on.  It builds on alias analysis information, and 
    506   tries to provide a lazy, caching interface to a common kind of alias 
    507   information query.
    508   </p>
    509 </div>
    510 
    511 <!-------------------------------------------------------------------------- -->
    512 <h3>
    513   <a name="module-debuginfo">-module-debuginfo: Decodes module-level debug info</a>
    514 </h3>
    515 <div>
    516   <p>This pass decodes the debug info metadata in a module and prints in a
    517  (sufficiently-prepared-) human-readable form.
    518 
    519  For example, run this pass from opt along with the -analyze option, and
    520  it'll print to standard output.
    521   </p>
    522 </div>
    523 
    524 <!-------------------------------------------------------------------------- -->
    525 <h3>
    526   <a name="no-aa">-no-aa: No Alias Analysis (always returns 'may' alias)</a>
    527 </h3>
    528 <div>
    529   <p>
    530   Always returns "I don't know" for alias queries.  NoAA is unlike other alias
    531   analysis implementations, in that it does not chain to a previous analysis. As
    532   such it doesn't follow many of the rules that other alias analyses must.
    533   </p>
    534 </div>
    535 
    536 <!-------------------------------------------------------------------------- -->
    537 <h3>
    538   <a name="no-profile">-no-profile: No Profile Information</a>
    539 </h3>
    540 <div>
    541   <p>
    542   The default "no profile" implementation of the abstract
    543   <code>ProfileInfo</code> interface.
    544   </p>
    545 </div>
    546 
    547 <!-------------------------------------------------------------------------- -->
    548 <h3>
    549   <a name="postdomfrontier">-postdomfrontier: Post-Dominance Frontier Construction</a>
    550 </h3>
    551 <div>
    552   <p>
    553   This pass is a simple post-dominator construction algorithm for finding
    554   post-dominator frontiers.
    555   </p>
    556 </div>
    557 
    558 <!-------------------------------------------------------------------------- -->
    559 <h3>
    560   <a name="postdomtree">-postdomtree: Post-Dominator Tree Construction</a>
    561 </h3>
    562 <div>
    563   <p>
    564   This pass is a simple post-dominator construction algorithm for finding
    565   post-dominators.
    566   </p>
    567 </div>
    568 
    569 <!-------------------------------------------------------------------------- -->
    570 <h3>
    571   <a name="print-alias-sets">-print-alias-sets: Alias Set Printer</a>
    572 </h3>
    573 <div>
    574   <p>Yet to be written.</p>
    575 </div>
    576 
    577 <!-------------------------------------------------------------------------- -->
    578 <h3>
    579   <a name="print-callgraph">-print-callgraph: Print a call graph</a>
    580 </h3>
    581 <div>
    582   <p>
    583   This pass, only available in <code>opt</code>, prints the call graph to
    584   standard error in a human-readable form.
    585   </p>
    586 </div>
    587 
    588 <!-------------------------------------------------------------------------- -->
    589 <h3>
    590   <a name="print-callgraph-sccs">-print-callgraph-sccs: Print SCCs of the Call Graph</a>
    591 </h3>
    592 <div>
    593   <p>
    594   This pass, only available in <code>opt</code>, prints the SCCs of the call
    595   graph to standard error in a human-readable form.
    596   </p>
    597 </div>
    598 
    599 <!-------------------------------------------------------------------------- -->
    600 <h3>
    601   <a name="print-cfg-sccs">-print-cfg-sccs: Print SCCs of each function CFG</a>
    602 </h3>
    603 <div>
    604   <p>
    605   This pass, only available in <code>opt</code>, prints the SCCs of each
    606   function CFG to standard error in a human-readable form.
    607   </p>
    608 </div>
    609 
    610 <!-------------------------------------------------------------------------- -->
    611 <h3>
    612   <a name="print-dbginfo">-print-dbginfo: Print debug info in human readable form</a>
    613 </h3>
    614 <div>
    615   <p>Pass that prints instructions, and associated debug info:</p>
    616   <ul>
    617   
    618   <li>source/line/col information</li>
    619   <li>original variable name</li>
    620   <li>original type name</li>
    621   </ul>
    622 </div>
    623 
    624 <!-------------------------------------------------------------------------- -->
    625 <h3>
    626   <a name="print-dom-info">-print-dom-info: Dominator Info Printer</a>
    627 </h3>
    628 <div>
    629   <p>Dominator Info Printer.</p>
    630 </div>
    631 
    632 <!-------------------------------------------------------------------------- -->
    633 <h3>
    634   <a name="print-externalfnconstants">-print-externalfnconstants: Print external fn callsites passed constants</a>
    635 </h3>
    636 <div>
    637   <p>
    638   This pass, only available in <code>opt</code>, prints out call sites to
    639   external functions that are called with constant arguments.  This can be
    640   useful when looking for standard library functions we should constant fold
    641   or handle in alias analyses.
    642   </p>
    643 </div>
    644 
    645 <!-------------------------------------------------------------------------- -->
    646 <h3>
    647   <a name="print-function">-print-function: Print function to stderr</a>
    648 </h3>
    649 <div>
    650   <p>
    651   The <code>PrintFunctionPass</code> class is designed to be pipelined with
    652   other <code>FunctionPass</code>es, and prints out the functions of the module
    653   as they are processed.
    654   </p>
    655 </div>
    656 
    657 <!-------------------------------------------------------------------------- -->
    658 <h3>
    659   <a name="print-module">-print-module: Print module to stderr</a>
    660 </h3>
    661 <div>
    662   <p>
    663   This pass simply prints out the entire module when it is executed.
    664   </p>
    665 </div>
    666 
    667 <!-------------------------------------------------------------------------- -->
    668 <h3>
    669   <a name="print-used-types">-print-used-types: Find Used Types</a>
    670 </h3>
    671 <div>
    672   <p>
    673   This pass is used to seek out all of the types in use by the program.  Note
    674   that this analysis explicitly does not include types only used by the symbol
    675   table.
    676 </div>
    677 
    678 <!-------------------------------------------------------------------------- -->
    679 <h3>
    680   <a name="profile-estimator">-profile-estimator: Estimate profiling information</a>
    681 </h3>
    682 <div>
    683   <p>Profiling information that estimates the profiling information 
    684   in a very crude and unimaginative way.
    685   </p>
    686 </div>
    687 
    688 <!-------------------------------------------------------------------------- -->
    689 <h3>
    690   <a name="profile-loader">-profile-loader: Load profile information from llvmprof.out</a>
    691 </h3>
    692 <div>
    693   <p>
    694   A concrete implementation of profiling information that loads the information
    695   from a profile dump file.
    696   </p>
    697 </div>
    698 
    699 <!-------------------------------------------------------------------------- -->
    700 <h3>
    701   <a name="profile-verifier">-profile-verifier: Verify profiling information</a>
    702 </h3>
    703 <div>
    704   <p>Pass that checks profiling information for plausibility.</p>
    705 </div>
    706 <h3>
    707   <a name="regions">-regions: Detect single entry single exit regions</a>
    708 </h3>
    709 <div>
    710   <p>
    711   The <code>RegionInfo</code> pass detects single entry single exit regions in a
    712   function, where a region is defined as any subgraph that is connected to the
    713   remaining graph at only two spots. Furthermore, an hierarchical region tree is
    714   built.
    715   </p>
    716 </div>
    717 
    718 <!-------------------------------------------------------------------------- -->
    719 <h3>
    720   <a name="scalar-evolution">-scalar-evolution: Scalar Evolution Analysis</a>
    721 </h3>
    722 <div>
    723   <p>
    724   The <code>ScalarEvolution</code> analysis can be used to analyze and
    725   catagorize scalar expressions in loops.  It specializes in recognizing general
    726   induction variables, representing them with the abstract and opaque
    727   <code>SCEV</code> class.  Given this analysis, trip counts of loops and other
    728   important properties can be obtained.
    729   </p>
    730   
    731   <p>
    732   This analysis is primarily useful for induction variable substitution and
    733   strength reduction.
    734   </p>
    735 </div>
    736 
    737 <!-------------------------------------------------------------------------- -->
    738 <h3>
    739   <a name="scev-aa">-scev-aa: ScalarEvolution-based Alias Analysis</a>
    740 </h3>
    741 <div>
    742   <p>Simple alias analysis implemented in terms of ScalarEvolution queries.
    743  
    744   This differs from traditional loop dependence analysis in that it tests
    745   for dependencies within a single iteration of a loop, rather than
    746   dependencies between different iterations.
    747  
    748   ScalarEvolution has a more complete understanding of pointer arithmetic
    749   than BasicAliasAnalysis' collection of ad-hoc analyses.
    750   </p>
    751 </div>
    752 
    753 <!-------------------------------------------------------------------------- -->
    754 <h3>
    755   <a name="targetdata">-targetdata: Target Data Layout</a>
    756 </h3>
    757 <div>
    758   <p>Provides other passes access to information on how the size and alignment
    759   required by the the target ABI for various data types.</p>
    760 </div>
    761 
    762 </div>
    763 
    764 <!-- ======================================================================= -->
    765 <h2><a name="transforms">Transform Passes</a></h2>
    766 <div>
    767   <p>This section describes the LLVM Transform Passes.</p>
    768 
    769 <!-------------------------------------------------------------------------- -->
    770 <h3>
    771   <a name="adce">-adce: Aggressive Dead Code Elimination</a>
    772 </h3>
    773 <div>
    774   <p>ADCE aggressively tries to eliminate code. This pass is similar to
    775   <a href="#dce">DCE</a> but it assumes that values are dead until proven 
    776   otherwise. This is similar to <a href="#sccp">SCCP</a>, except applied to 
    777   the liveness of values.</p>
    778 </div>
    779 
    780 <!-------------------------------------------------------------------------- -->
    781 <h3>
    782   <a name="always-inline">-always-inline: Inliner for always_inline functions</a>
    783 </h3>
    784 <div>
    785   <p>A custom inliner that handles only functions that are marked as 
    786   "always inline".</p>
    787 </div>
    788 
    789 <!-------------------------------------------------------------------------- -->
    790 <h3>
    791   <a name="argpromotion">-argpromotion: Promote 'by reference' arguments to scalars</a>
    792 </h3>
    793 <div>
    794   <p>
    795   This pass promotes "by reference" arguments to be "by value" arguments.  In
    796   practice, this means looking for internal functions that have pointer
    797   arguments.  If it can prove, through the use of alias analysis, that an
    798   argument is *only* loaded, then it can pass the value into the function
    799   instead of the address of the value.  This can cause recursive simplification
    800   of code and lead to the elimination of allocas (especially in C++ template
    801   code like the STL).
    802   </p>
    803   
    804   <p>
    805   This pass also handles aggregate arguments that are passed into a function,
    806   scalarizing them if the elements of the aggregate are only loaded.  Note that
    807   it refuses to scalarize aggregates which would require passing in more than
    808   three operands to the function, because passing thousands of operands for a
    809   large array or structure is unprofitable!
    810   </p>
    811   
    812   <p>
    813   Note that this transformation could also be done for arguments that are only
    814   stored to (returning the value instead), but does not currently.  This case
    815   would be best handled when and if LLVM starts supporting multiple return
    816   values from functions.
    817   </p>
    818 </div>
    819 
    820 <!-------------------------------------------------------------------------- -->
    821 <h3>
    822   <a name="block-placement">-block-placement: Profile Guided Basic Block Placement</a>
    823 </h3>
    824 <div>
    825   <p>This pass is a very simple profile guided basic block placement algorithm.
    826   The idea is to put frequently executed blocks together at the start of the
    827   function and hopefully increase the number of fall-through conditional
    828   branches.  If there is no profile information for a particular function, this
    829   pass basically orders blocks in depth-first order.</p>
    830 </div>
    831 
    832 <!-------------------------------------------------------------------------- -->
    833 <h3>
    834   <a name="break-crit-edges">-break-crit-edges: Break critical edges in CFG</a>
    835 </h3>
    836 <div>
    837   <p>
    838   Break all of the critical edges in the CFG by inserting a dummy basic block.
    839   It may be "required" by passes that cannot deal with critical edges. This
    840   transformation obviously invalidates the CFG, but can update forward dominator
    841   (set, immediate dominators, tree, and frontier) information.
    842   </p>
    843 </div>
    844 
    845 <!-------------------------------------------------------------------------- -->
    846 <h3>
    847   <a name="codegenprepare">-codegenprepare: Optimize for code generation</a>
    848 </h3>
    849 <div>
    850   This pass munges the code in the input function to better prepare it for
    851   SelectionDAG-based code generation. This works around limitations in it's
    852   basic-block-at-a-time approach. It should eventually be removed.
    853 </div>
    854 
    855 <!-------------------------------------------------------------------------- -->
    856 <h3>
    857   <a name="constmerge">-constmerge: Merge Duplicate Global Constants</a>
    858 </h3>
    859 <div>
    860   <p>
    861   Merges duplicate global constants together into a single constant that is
    862   shared.  This is useful because some passes (ie TraceValues) insert a lot of
    863   string constants into the program, regardless of whether or not an existing
    864   string is available.
    865   </p>
    866 </div>
    867 
    868 <!-------------------------------------------------------------------------- -->
    869 <h3>
    870   <a name="constprop">-constprop: Simple constant propagation</a>
    871 </h3>
    872 <div>
    873   <p>This file implements constant propagation and merging. It looks for
    874   instructions involving only constant operands and replaces them with a
    875   constant value instead of an instruction. For example:</p>
    876   <blockquote><pre>add i32 1, 2</pre></blockquote>
    877   <p>becomes</p>
    878   <blockquote><pre>i32 3</pre></blockquote>
    879   <p>NOTE: this pass has a habit of making definitions be dead.  It is a good 
    880   idea to to run a <a href="#die">DIE</a> (Dead Instruction Elimination) pass 
    881   sometime after running this pass.</p>
    882 </div>
    883 
    884 <!-------------------------------------------------------------------------- -->
    885 <h3>
    886   <a name="dce">-dce: Dead Code Elimination</a>
    887 </h3>
    888 <div>
    889   <p>
    890   Dead code elimination is similar to <a href="#die">dead instruction
    891   elimination</a>, but it rechecks instructions that were used by removed
    892   instructions to see if they are newly dead.
    893   </p>
    894 </div>
    895 
    896 <!-------------------------------------------------------------------------- -->
    897 <h3>
    898   <a name="deadargelim">-deadargelim: Dead Argument Elimination</a>
    899 </h3>
    900 <div>
    901   <p>
    902   This pass deletes dead arguments from internal functions.  Dead argument
    903   elimination removes arguments which are directly dead, as well as arguments
    904   only passed into function calls as dead arguments of other functions.  This
    905   pass also deletes dead arguments in a similar way.
    906   </p>
    907   
    908   <p>
    909   This pass is often useful as a cleanup pass to run after aggressive
    910   interprocedural passes, which add possibly-dead arguments.
    911   </p>
    912 </div>
    913 
    914 <!-------------------------------------------------------------------------- -->
    915 <h3>
    916   <a name="deadtypeelim">-deadtypeelim: Dead Type Elimination</a>
    917 </h3>
    918 <div>
    919   <p>
    920   This pass is used to cleanup the output of GCC.  It eliminate names for types
    921   that are unused in the entire translation unit, using the <a
    922   href="#findusedtypes">find used types</a> pass.
    923   </p>
    924 </div>
    925 
    926 <!-------------------------------------------------------------------------- -->
    927 <h3>
    928   <a name="die">-die: Dead Instruction Elimination</a>
    929 </h3>
    930 <div>
    931   <p>
    932   Dead instruction elimination performs a single pass over the function,
    933   removing instructions that are obviously dead.
    934   </p>
    935 </div>
    936 
    937 <!-------------------------------------------------------------------------- -->
    938 <h3>
    939   <a name="dse">-dse: Dead Store Elimination</a>
    940 </h3>
    941 <div>
    942   <p>
    943   A trivial dead store elimination that only considers basic-block local
    944   redundant stores.
    945   </p>
    946 </div>
    947 
    948 <!-------------------------------------------------------------------------- -->
    949 <h3>
    950   <a name="functionattrs">-functionattrs: Deduce function attributes</a>
    951 </h3>
    952 <div>
    953   <p>A simple interprocedural pass which walks the call-graph, looking for 
    954   functions which do not access or only read non-local memory, and marking them 
    955   readnone/readonly.  In addition, it marks function arguments (of pointer type) 
    956   'nocapture' if a call to the function does not create any copies of the pointer 
    957   value that outlive the call. This more or less means that the pointer is only
    958   dereferenced, and not returned from the function or stored in a global.
    959   This pass is implemented as a bottom-up traversal of the call-graph.
    960   </p>
    961 </div>
    962 
    963 <!-------------------------------------------------------------------------- -->
    964 <h3>
    965   <a name="globaldce">-globaldce: Dead Global Elimination</a>
    966 </h3>
    967 <div>
    968   <p>
    969   This transform is designed to eliminate unreachable internal globals from the
    970   program.  It uses an aggressive algorithm, searching out globals that are
    971   known to be alive.  After it finds all of the globals which are needed, it
    972   deletes whatever is left over.  This allows it to delete recursive chunks of
    973   the program which are unreachable.
    974   </p>
    975 </div>
    976 
    977 <!-------------------------------------------------------------------------- -->
    978 <h3>
    979   <a name="globalopt">-globalopt: Global Variable Optimizer</a>
    980 </h3>
    981 <div>
    982   <p>
    983   This pass transforms simple global variables that never have their address
    984   taken.  If obviously true, it marks read/write globals as constant, deletes
    985   variables only stored to, etc.
    986   </p>
    987 </div>
    988 
    989 <!-------------------------------------------------------------------------- -->
    990 <h3>
    991   <a name="gvn">-gvn: Global Value Numbering</a>
    992 </h3>
    993 <div>
    994   <p>
    995   This pass performs global value numbering to eliminate fully and partially
    996   redundant instructions.  It also performs redundant load elimination.
    997   </p>
    998 </div>
    999 
   1000 <!-------------------------------------------------------------------------- -->
   1001 <h3>
   1002   <a name="indvars">-indvars: Canonicalize Induction Variables</a>
   1003 </h3>
   1004 <div>
   1005   <p>
   1006   This transformation analyzes and transforms the induction variables (and
   1007   computations derived from them) into simpler forms suitable for subsequent
   1008   analysis and transformation.
   1009   </p>
   1010   
   1011   <p>
   1012   This transformation makes the following changes to each loop with an
   1013   identifiable induction variable:
   1014   </p>
   1015   
   1016   <ol>
   1017     <li>All loops are transformed to have a <em>single</em> canonical
   1018         induction variable which starts at zero and steps by one.</li>
   1019     <li>The canonical induction variable is guaranteed to be the first PHI node
   1020         in the loop header block.</li>
   1021     <li>Any pointer arithmetic recurrences are raised to use array
   1022         subscripts.</li>
   1023   </ol>
   1024   
   1025   <p>
   1026   If the trip count of a loop is computable, this pass also makes the following
   1027   changes:
   1028   </p>
   1029   
   1030   <ol>
   1031     <li>The exit condition for the loop is canonicalized to compare the
   1032         induction value against the exit value.  This turns loops like:
   1033         <blockquote><pre>for (i = 7; i*i < 1000; ++i)</pre></blockquote>
   1034         into
   1035         <blockquote><pre>for (i = 0; i != 25; ++i)</pre></blockquote></li>
   1036     <li>Any use outside of the loop of an expression derived from the indvar
   1037         is changed to compute the derived value outside of the loop, eliminating
   1038         the dependence on the exit value of the induction variable.  If the only
   1039         purpose of the loop is to compute the exit value of some derived
   1040         expression, this transformation will make the loop dead.</li>
   1041   </ol>
   1042   
   1043   <p>
   1044   This transformation should be followed by strength reduction after all of the
   1045   desired loop transformations have been performed.  Additionally, on targets
   1046   where it is profitable, the loop could be transformed to count down to zero
   1047   (the "do loop" optimization).
   1048   </p>
   1049 </div>
   1050 
   1051 <!-------------------------------------------------------------------------- -->
   1052 <h3>
   1053   <a name="inline">-inline: Function Integration/Inlining</a>
   1054 </h3>
   1055 <div>
   1056   <p>
   1057   Bottom-up inlining of functions into callees.
   1058   </p>
   1059 </div>
   1060 
   1061 <!-------------------------------------------------------------------------- -->
   1062 <h3>
   1063   <a name="insert-edge-profiling">-insert-edge-profiling: Insert instrumentation for edge profiling</a>
   1064 </h3>
   1065 <div>
   1066   <p>
   1067   This pass instruments the specified program with counters for edge profiling.
   1068   Edge profiling can give a reasonable approximation of the hot paths through a
   1069   program, and is used for a wide variety of program transformations.
   1070   </p>
   1071   
   1072   <p>
   1073   Note that this implementation is very nave.  It inserts a counter for
   1074   <em>every</em> edge in the program, instead of using control flow information
   1075   to prune the number of counters inserted.
   1076   </p>
   1077 </div>
   1078 
   1079 <!-------------------------------------------------------------------------- -->
   1080 <h3>
   1081   <a name="insert-optimal-edge-profiling">-insert-optimal-edge-profiling: Insert optimal instrumentation for edge profiling</a>
   1082 </h3>
   1083 <div>
   1084   <p>This pass instruments the specified program with counters for edge profiling.
   1085   Edge profiling can give a reasonable approximation of the hot paths through a
   1086   program, and is used for a wide variety of program transformations.
   1087   </p>
   1088 </div>
   1089 
   1090 <!-------------------------------------------------------------------------- -->
   1091 <h3>
   1092   <a name="instcombine">-instcombine: Combine redundant instructions</a>
   1093 </h3>
   1094 <div>
   1095   <p>
   1096   Combine instructions to form fewer, simple
   1097   instructions.  This pass does not modify the CFG This pass is where algebraic
   1098   simplification happens.
   1099   </p>
   1100   
   1101   <p>
   1102   This pass combines things like:
   1103   </p>
   1104   
   1105 <blockquote><pre
   1106 >%Y = add i32 %X, 1
   1107 %Z = add i32 %Y, 1</pre></blockquote>
   1108   
   1109   <p>
   1110   into:
   1111   </p>
   1112 
   1113 <blockquote><pre
   1114 >%Z = add i32 %X, 2</pre></blockquote>
   1115   
   1116   <p>
   1117   This is a simple worklist driven algorithm.
   1118   </p>
   1119   
   1120   <p>
   1121   This pass guarantees that the following canonicalizations are performed on
   1122   the program:
   1123   </p>
   1124 
   1125   <ul>
   1126     <li>If a binary operator has a constant operand, it is moved to the right-
   1127         hand side.</li>
   1128     <li>Bitwise operators with constant operands are always grouped so that
   1129         shifts are performed first, then <code>or</code>s, then
   1130         <code>and</code>s, then <code>xor</code>s.</li>
   1131     <li>Compare instructions are converted from <code>&lt;</code>,
   1132         <code>&gt;</code>, <code></code>, or <code></code> to
   1133         <code>=</code> or <code></code> if possible.</li>
   1134     <li>All <code>cmp</code> instructions on boolean values are replaced with
   1135         logical operations.</li>
   1136     <li><code>add <var>X</var>, <var>X</var></code> is represented as
   1137         <code>mul <var>X</var>, 2</code>  <code>shl <var>X</var>, 1</code></li>
   1138     <li>Multiplies with a constant power-of-two argument are transformed into
   1139         shifts.</li>
   1140     <li> etc.</li>
   1141   </ul>
   1142 </div>
   1143 
   1144 <!-------------------------------------------------------------------------- -->
   1145 <h3>
   1146   <a name="internalize">-internalize: Internalize Global Symbols</a>
   1147 </h3>
   1148 <div>
   1149   <p>
   1150   This pass loops over all of the functions in the input module, looking for a
   1151   main function.  If a main function is found, all other functions and all
   1152   global variables with initializers are marked as internal.
   1153   </p>
   1154 </div>
   1155 
   1156 <!-------------------------------------------------------------------------- -->
   1157 <h3>
   1158   <a name="ipconstprop">-ipconstprop: Interprocedural constant propagation</a>
   1159 </h3>
   1160 <div>
   1161   <p>
   1162   This pass implements an <em>extremely</em> simple interprocedural constant
   1163   propagation pass.  It could certainly be improved in many different ways,
   1164   like using a worklist.  This pass makes arguments dead, but does not remove
   1165   them.  The existing dead argument elimination pass should be run after this
   1166   to clean up the mess.
   1167   </p>
   1168 </div>
   1169 
   1170 <!-------------------------------------------------------------------------- -->
   1171 <h3>
   1172   <a name="ipsccp">-ipsccp: Interprocedural Sparse Conditional Constant Propagation</a>
   1173 </h3>
   1174 <div>
   1175   <p>
   1176   An interprocedural variant of <a href="#sccp">Sparse Conditional Constant 
   1177   Propagation</a>.
   1178   </p>
   1179 </div>
   1180 
   1181 <!-------------------------------------------------------------------------- -->
   1182 <h3>
   1183   <a name="jump-threading">-jump-threading: Jump Threading</a>
   1184 </h3>
   1185 <div>
   1186   <p>
   1187   Jump threading tries to find distinct threads of control flow running through
   1188   a basic block. This pass looks at blocks that have multiple predecessors and
   1189   multiple successors.  If one or more of the predecessors of the block can be
   1190   proven to always cause a jump to one of the successors, we forward the edge
   1191   from the predecessor to the successor by duplicating the contents of this
   1192   block.
   1193   </p>
   1194   <p>
   1195   An example of when this can occur is code like this:
   1196   </p>
   1197 
   1198   <pre
   1199 >if () { ...
   1200   X = 4;
   1201 }
   1202 if (X &lt; 3) {</pre>
   1203 
   1204   <p>
   1205   In this case, the unconditional branch at the end of the first if can be
   1206   revectored to the false side of the second if.
   1207   </p>
   1208 </div>
   1209 
   1210 <!-------------------------------------------------------------------------- -->
   1211 <h3>
   1212   <a name="lcssa">-lcssa: Loop-Closed SSA Form Pass</a>
   1213 </h3>
   1214 <div>
   1215   <p>
   1216   This pass transforms loops by placing phi nodes at the end of the loops for
   1217   all values that are live across the loop boundary.  For example, it turns
   1218   the left into the right code:
   1219   </p>
   1220   
   1221   <pre
   1222 >for (...)                for (...)
   1223   if (c)                   if (c)
   1224     X1 = ...                 X1 = ...
   1225   else                     else
   1226     X2 = ...                 X2 = ...
   1227   X3 = phi(X1, X2)         X3 = phi(X1, X2)
   1228 ... = X3 + 4              X4 = phi(X3)
   1229                           ... = X4 + 4</pre>
   1230   
   1231   <p>
   1232   This is still valid LLVM; the extra phi nodes are purely redundant, and will
   1233   be trivially eliminated by <code>InstCombine</code>.  The major benefit of
   1234   this transformation is that it makes many other loop optimizations, such as 
   1235   LoopUnswitching, simpler.
   1236   </p>
   1237 </div>
   1238 
   1239 <!-------------------------------------------------------------------------- -->
   1240 <h3>
   1241   <a name="licm">-licm: Loop Invariant Code Motion</a>
   1242 </h3>
   1243 <div>
   1244   <p>
   1245   This pass performs loop invariant code motion, attempting to remove as much
   1246   code from the body of a loop as possible.  It does this by either hoisting
   1247   code into the preheader block, or by sinking code to the exit blocks if it is
   1248   safe.  This pass also promotes must-aliased memory locations in the loop to
   1249   live in registers, thus hoisting and sinking "invariant" loads and stores.
   1250   </p>
   1251   
   1252   <p>
   1253   This pass uses alias analysis for two purposes:
   1254   </p>
   1255   
   1256   <ul>
   1257     <li>Moving loop invariant loads and calls out of loops.  If we can determine
   1258         that a load or call inside of a loop never aliases anything stored to,
   1259         we can hoist it or sink it like any other instruction.</li>
   1260     <li>Scalar Promotion of Memory - If there is a store instruction inside of
   1261         the loop, we try to move the store to happen AFTER the loop instead of
   1262         inside of the loop.  This can only happen if a few conditions are true:
   1263         <ul>
   1264           <li>The pointer stored through is loop invariant.</li>
   1265           <li>There are no stores or loads in the loop which <em>may</em> alias
   1266               the pointer.  There are no calls in the loop which mod/ref the
   1267               pointer.</li>
   1268         </ul>
   1269         If these conditions are true, we can promote the loads and stores in the
   1270         loop of the pointer to use a temporary alloca'd variable.  We then use
   1271         the mem2reg functionality to construct the appropriate SSA form for the
   1272         variable.</li>
   1273   </ul>
   1274 </div>
   1275 
   1276 <!-------------------------------------------------------------------------- -->
   1277 <h3>
   1278   <a name="loop-deletion">-loop-deletion: Delete dead loops</a>
   1279 </h3>
   1280 <div>
   1281   <p>
   1282   This file implements the Dead Loop Deletion Pass.  This pass is responsible
   1283   for eliminating loops with non-infinite computable trip counts that have no
   1284   side effects or volatile instructions, and do not contribute to the
   1285   computation of the function's return value.
   1286   </p>
   1287 </div>
   1288 
   1289 <!-------------------------------------------------------------------------- -->
   1290 <h3>
   1291   <a name="loop-extract">-loop-extract: Extract loops into new functions</a>
   1292 </h3>
   1293 <div>
   1294   <p>
   1295   A pass wrapper around the <code>ExtractLoop()</code> scalar transformation to 
   1296   extract each top-level loop into its own new function. If the loop is the
   1297   <em>only</em> loop in a given function, it is not touched. This is a pass most
   1298   useful for debugging via bugpoint.
   1299   </p>
   1300 </div>
   1301 
   1302 <!-------------------------------------------------------------------------- -->
   1303 <h3>
   1304   <a name="loop-extract-single">-loop-extract-single: Extract at most one loop into a new function</a>
   1305 </h3>
   1306 <div>
   1307   <p>
   1308   Similar to <a href="#loop-extract">Extract loops into new functions</a>,
   1309   this pass extracts one natural loop from the program into a function if it
   1310   can. This is used by bugpoint.
   1311   </p>
   1312 </div>
   1313 
   1314 <!-------------------------------------------------------------------------- -->
   1315 <h3>
   1316   <a name="loop-reduce">-loop-reduce: Loop Strength Reduction</a>
   1317 </h3>
   1318 <div>
   1319   <p>
   1320   This pass performs a strength reduction on array references inside loops that
   1321   have as one or more of their components the loop induction variable.  This is
   1322   accomplished by creating a new value to hold the initial value of the array
   1323   access for the first iteration, and then creating a new GEP instruction in
   1324   the loop to increment the value by the appropriate amount.
   1325   </p>
   1326 </div>
   1327 
   1328 <!-------------------------------------------------------------------------- -->
   1329 <h3>
   1330   <a name="loop-rotate">-loop-rotate: Rotate Loops</a>
   1331 </h3>
   1332 <div>
   1333   <p>A simple loop rotation transformation.</p>
   1334 </div>
   1335 
   1336 <!-------------------------------------------------------------------------- -->
   1337 <h3>
   1338   <a name="loop-simplify">-loop-simplify: Canonicalize natural loops</a>
   1339 </h3>
   1340 <div>
   1341   <p>
   1342   This pass performs several transformations to transform natural loops into a
   1343   simpler form, which makes subsequent analyses and transformations simpler and
   1344   more effective.
   1345   </p>
   1346   
   1347   <p>
   1348   Loop pre-header insertion guarantees that there is a single, non-critical
   1349   entry edge from outside of the loop to the loop header.  This simplifies a
   1350   number of analyses and transformations, such as LICM.
   1351   </p>
   1352   
   1353   <p>
   1354   Loop exit-block insertion guarantees that all exit blocks from the loop
   1355   (blocks which are outside of the loop that have predecessors inside of the
   1356   loop) only have predecessors from inside of the loop (and are thus dominated
   1357   by the loop header).  This simplifies transformations such as store-sinking
   1358   that are built into LICM.
   1359   </p>
   1360   
   1361   <p>
   1362   This pass also guarantees that loops will have exactly one backedge.
   1363   </p>
   1364   
   1365   <p>
   1366   Note that the simplifycfg pass will clean up blocks which are split out but
   1367   end up being unnecessary, so usage of this pass should not pessimize
   1368   generated code.
   1369   </p>
   1370   
   1371   <p>
   1372   This pass obviously modifies the CFG, but updates loop information and
   1373   dominator information.
   1374   </p>
   1375 </div>
   1376 
   1377 <!-------------------------------------------------------------------------- -->
   1378 <h3>
   1379   <a name="loop-unroll">-loop-unroll: Unroll loops</a>
   1380 </h3>
   1381 <div>
   1382   <p>
   1383   This pass implements a simple loop unroller.  It works best when loops have
   1384   been canonicalized by the <a href="#indvars"><tt>-indvars</tt></a> pass,
   1385   allowing it to determine the trip counts of loops easily.
   1386   </p>
   1387 </div>
   1388 
   1389 <!-------------------------------------------------------------------------- -->
   1390 <h3>
   1391   <a name="loop-unswitch">-loop-unswitch: Unswitch loops</a>
   1392 </h3>
   1393 <div>
   1394   <p>
   1395   This pass transforms loops that contain branches on loop-invariant conditions
   1396   to have multiple loops.  For example, it turns the left into the right code:
   1397   </p>
   1398   
   1399   <pre
   1400 >for (...)                  if (lic)
   1401   A                          for (...)
   1402   if (lic)                     A; B; C
   1403     B                      else
   1404   C                          for (...)
   1405                                A; C</pre>
   1406   
   1407   <p>
   1408   This can increase the size of the code exponentially (doubling it every time
   1409   a loop is unswitched) so we only unswitch if the resultant code will be
   1410   smaller than a threshold.
   1411   </p>
   1412   
   1413   <p>
   1414   This pass expects LICM to be run before it to hoist invariant conditions out
   1415   of the loop, to make the unswitching opportunity obvious.
   1416   </p>
   1417 </div>
   1418 
   1419 <!-------------------------------------------------------------------------- -->
   1420 <h3>
   1421   <a name="loweratomic">-loweratomic: Lower atomic intrinsics to non-atomic form</a>
   1422 </h3>
   1423 <div>
   1424   <p>
   1425   This pass lowers atomic intrinsics to non-atomic form for use in a known
   1426   non-preemptible environment.
   1427   </p>
   1428 
   1429   <p>
   1430   The pass does not verify that the environment is non-preemptible (in
   1431   general this would require knowledge of the entire call graph of the
   1432   program including any libraries which may not be available in bitcode form);
   1433   it simply lowers every atomic intrinsic.
   1434   </p>
   1435 </div>
   1436 
   1437 <!-------------------------------------------------------------------------- -->
   1438 <h3>
   1439   <a name="lowerinvoke">-lowerinvoke: Lower invoke and unwind, for unwindless code generators</a>
   1440 </h3>
   1441 <div>
   1442   <p>
   1443   This transformation is designed for use by code generators which do not yet
   1444   support stack unwinding.  This pass supports two models of exception handling
   1445   lowering, the 'cheap' support and the 'expensive' support.
   1446   </p>
   1447   
   1448   <p>
   1449   'Cheap' exception handling support gives the program the ability to execute
   1450   any program which does not "throw an exception", by turning 'invoke'
   1451   instructions into calls and by turning 'unwind' instructions into calls to
   1452   abort().  If the program does dynamically use the unwind instruction, the
   1453   program will print a message then abort.
   1454   </p>
   1455   
   1456   <p>
   1457   'Expensive' exception handling support gives the full exception handling
   1458   support to the program at the cost of making the 'invoke' instruction
   1459   really expensive.  It basically inserts setjmp/longjmp calls to emulate the
   1460   exception handling as necessary.
   1461   </p>
   1462   
   1463   <p>
   1464   Because the 'expensive' support slows down programs a lot, and EH is only
   1465   used for a subset of the programs, it must be specifically enabled by the
   1466   <tt>-enable-correct-eh-support</tt> option.
   1467   </p>
   1468   
   1469   <p>
   1470   Note that after this pass runs the CFG is not entirely accurate (exceptional
   1471   control flow edges are not correct anymore) so only very simple things should
   1472   be done after the lowerinvoke pass has run (like generation of native code).
   1473   This should not be used as a general purpose "my LLVM-to-LLVM pass doesn't
   1474   support the invoke instruction yet" lowering pass.
   1475   </p>
   1476 </div>
   1477 
   1478 <!-------------------------------------------------------------------------- -->
   1479 <h3>
   1480   <a name="lowerswitch">-lowerswitch: Lower SwitchInst's to branches</a>
   1481 </h3>
   1482 <div>
   1483   <p>
   1484   Rewrites <tt>switch</tt> instructions with a sequence of branches, which
   1485   allows targets to get away with not implementing the switch instruction until
   1486   it is convenient.
   1487   </p>
   1488 </div>
   1489 
   1490 <!-------------------------------------------------------------------------- -->
   1491 <h3>
   1492   <a name="mem2reg">-mem2reg: Promote Memory to Register</a>
   1493 </h3>
   1494 <div>
   1495   <p>
   1496   This file promotes memory references to be register references.  It promotes
   1497   <tt>alloca</tt> instructions which only have <tt>load</tt>s and
   1498   <tt>store</tt>s as uses.  An <tt>alloca</tt> is transformed by using dominator
   1499   frontiers to place <tt>phi</tt> nodes, then traversing the function in
   1500   depth-first order to rewrite <tt>load</tt>s and <tt>store</tt>s as
   1501   appropriate. This is just the standard SSA construction algorithm to construct
   1502   "pruned" SSA form.
   1503   </p>
   1504 </div>
   1505 
   1506 <!-------------------------------------------------------------------------- -->
   1507 <h3>
   1508   <a name="memcpyopt">-memcpyopt: MemCpy Optimization</a>
   1509 </h3>
   1510 <div>
   1511   <p>
   1512   This pass performs various transformations related to eliminating memcpy
   1513   calls, or transforming sets of stores into memset's.
   1514   </p>
   1515 </div>
   1516 
   1517 <!-------------------------------------------------------------------------- -->
   1518 <h3>
   1519   <a name="mergefunc">-mergefunc: Merge Functions</a>
   1520 </h3>
   1521 <div>
   1522   <p>This pass looks for equivalent functions that are mergable and folds them.
   1523  
   1524   A hash is computed from the function, based on its type and number of
   1525   basic blocks.
   1526  
   1527   Once all hashes are computed, we perform an expensive equality comparison
   1528   on each function pair. This takes n^2/2 comparisons per bucket, so it's
   1529   important that the hash function be high quality. The equality comparison
   1530   iterates through each instruction in each basic block.
   1531  
   1532   When a match is found the functions are folded. If both functions are
   1533   overridable, we move the functionality into a new internal function and
   1534   leave two overridable thunks to it.
   1535   </p>
   1536 </div>
   1537 
   1538 <!-------------------------------------------------------------------------- -->
   1539 <h3>
   1540   <a name="mergereturn">-mergereturn: Unify function exit nodes</a>
   1541 </h3>
   1542 <div>
   1543   <p>
   1544   Ensure that functions have at most one <tt>ret</tt> instruction in them.
   1545   Additionally, it keeps track of which node is the new exit node of the CFG.
   1546   </p>
   1547 </div>
   1548 
   1549 <!-------------------------------------------------------------------------- -->
   1550 <h3>
   1551   <a name="partial-inliner">-partial-inliner: Partial Inliner</a>
   1552 </h3>
   1553 <div>
   1554   <p>This pass performs partial inlining, typically by inlining an if 
   1555   statement that surrounds the body of the function.
   1556   </p>
   1557 </div>
   1558 
   1559 <!-------------------------------------------------------------------------- -->
   1560 <h3>
   1561   <a name="prune-eh">-prune-eh: Remove unused exception handling info</a>
   1562 </h3>
   1563 <div>
   1564   <p>
   1565   This file implements a simple interprocedural pass which walks the call-graph,
   1566   turning <tt>invoke</tt> instructions into <tt>call</tt> instructions if and
   1567   only if the callee cannot throw an exception. It implements this as a
   1568   bottom-up traversal of the call-graph.
   1569   </p>
   1570 </div>
   1571 
   1572 <!-------------------------------------------------------------------------- -->
   1573 <h3>
   1574   <a name="reassociate">-reassociate: Reassociate expressions</a>
   1575 </h3>
   1576 <div>
   1577   <p>
   1578   This pass reassociates commutative expressions in an order that is designed
   1579   to promote better constant propagation, GCSE, LICM, PRE, etc.
   1580   </p>
   1581   
   1582   <p>
   1583   For example: 4 + (<var>x</var> + 5)  <var>x</var> + (4 + 5)
   1584   </p>
   1585   
   1586   <p>
   1587   In the implementation of this algorithm, constants are assigned rank = 0,
   1588   function arguments are rank = 1, and other values are assigned ranks
   1589   corresponding to the reverse post order traversal of current function
   1590   (starting at 2), which effectively gives values in deep loops higher rank
   1591   than values not in loops.
   1592   </p>
   1593 </div>
   1594 
   1595 <!-------------------------------------------------------------------------- -->
   1596 <h3>
   1597   <a name="reg2mem">-reg2mem: Demote all values to stack slots</a>
   1598 </h3>
   1599 <div>
   1600   <p>
   1601   This file demotes all registers to memory references.  It is intented to be
   1602   the inverse of <a href="#mem2reg"><tt>-mem2reg</tt></a>.  By converting to
   1603   <tt>load</tt> instructions, the only values live across basic blocks are
   1604   <tt>alloca</tt> instructions and <tt>load</tt> instructions before
   1605   <tt>phi</tt> nodes. It is intended that this should make CFG hacking much 
   1606   easier. To make later hacking easier, the entry block is split into two, such
   1607   that all introduced <tt>alloca</tt> instructions (and nothing else) are in the
   1608   entry block.
   1609   </p>
   1610 </div>
   1611 
   1612 <!-------------------------------------------------------------------------- -->
   1613 <h3>
   1614   <a name="scalarrepl">-scalarrepl: Scalar Replacement of Aggregates (DT)</a>
   1615 </h3>
   1616 <div>
   1617   <p>
   1618   The well-known scalar replacement of aggregates transformation.  This
   1619   transform breaks up <tt>alloca</tt> instructions of aggregate type (structure
   1620   or array) into individual <tt>alloca</tt> instructions for each member if
   1621   possible.  Then, if possible, it transforms the individual <tt>alloca</tt>
   1622   instructions into nice clean scalar SSA form.
   1623   </p>
   1624   
   1625   <p>
   1626   This combines a simple scalar replacement of aggregates algorithm with the <a
   1627   href="#mem2reg"><tt>mem2reg</tt></a> algorithm because often interact, 
   1628   especially for C++ programs.  As such, iterating between <tt>scalarrepl</tt>, 
   1629   then <a href="#mem2reg"><tt>mem2reg</tt></a> until we run out of things to 
   1630   promote works well.
   1631   </p>
   1632 </div>
   1633 
   1634 <!-------------------------------------------------------------------------- -->
   1635 <h3>
   1636   <a name="sccp">-sccp: Sparse Conditional Constant Propagation</a>
   1637 </h3>
   1638 <div>
   1639   <p>
   1640   Sparse conditional constant propagation and merging, which can be summarized
   1641   as:
   1642   </p>
   1643   
   1644   <ol>
   1645     <li>Assumes values are constant unless proven otherwise</li>
   1646     <li>Assumes BasicBlocks are dead unless proven otherwise</li>
   1647     <li>Proves values to be constant, and replaces them with constants</li>
   1648     <li>Proves conditional branches to be unconditional</li>
   1649   </ol>
   1650   
   1651   <p>
   1652   Note that this pass has a habit of making definitions be dead.  It is a good
   1653   idea to to run a DCE pass sometime after running this pass.
   1654   </p>
   1655 </div>
   1656 
   1657 <!-------------------------------------------------------------------------- -->
   1658 <h3>
   1659   <a name="simplify-libcalls">-simplify-libcalls: Simplify well-known library calls</a>
   1660 </h3>
   1661 <div>
   1662   <p>
   1663   Applies a variety of small optimizations for calls to specific well-known 
   1664   function calls (e.g. runtime library functions). For example, a call
   1665    <tt>exit(3)</tt> that occurs within the <tt>main()</tt> function can be 
   1666    transformed into simply <tt>return 3</tt>.
   1667   </p>
   1668 </div>
   1669 
   1670 <!-------------------------------------------------------------------------- -->
   1671 <h3>
   1672   <a name="simplifycfg">-simplifycfg: Simplify the CFG</a>
   1673 </h3>
   1674 <div>
   1675   <p>
   1676   Performs dead code elimination and basic block merging. Specifically:
   1677   </p>
   1678   
   1679   <ol>
   1680     <li>Removes basic blocks with no predecessors.</li>
   1681     <li>Merges a basic block into its predecessor if there is only one and the
   1682         predecessor only has one successor.</li>
   1683     <li>Eliminates PHI nodes for basic blocks with a single predecessor.</li>
   1684     <li>Eliminates a basic block that only contains an unconditional
   1685         branch.</li>
   1686   </ol>
   1687 </div>
   1688 
   1689 <!-------------------------------------------------------------------------- -->
   1690 <h3>
   1691   <a name="sink">-sink: Code sinking</a>
   1692 </h3>
   1693 <div>
   1694   <p>This pass moves instructions into successor blocks, when possible, so that
   1695  they aren't executed on paths where their results aren't needed.
   1696   </p>
   1697 </div>
   1698 
   1699 <!-------------------------------------------------------------------------- -->
   1700 <h3>
   1701   <a name="sretpromotion">-sretpromotion: Promote sret arguments to multiple ret values</a>
   1702 </h3>
   1703 <div>
   1704   <p>
   1705   This pass finds functions that return a struct (using a pointer to the struct
   1706   as the first argument of the function, marked with the '<tt>sret</tt>' attribute) and
   1707   replaces them with a new function that simply returns each of the elements of
   1708   that struct (using multiple return values).
   1709   </p>
   1710 
   1711   <p>
   1712   This pass works under a number of conditions:
   1713   </p>
   1714 
   1715   <ul>
   1716   <li>The returned struct must not contain other structs</li>
   1717   <li>The returned struct must only be used to load values from</li>
   1718   <li>The placeholder struct passed in is the result of an <tt>alloca</tt></li>
   1719   </ul>
   1720 </div>
   1721 
   1722 <!-------------------------------------------------------------------------- -->
   1723 <h3>
   1724   <a name="strip">-strip: Strip all symbols from a module</a>
   1725 </h3>
   1726 <div>
   1727   <p>
   1728   performs code stripping. this transformation can delete:
   1729   </p>
   1730   
   1731   <ol>
   1732     <li>names for virtual registers</li>
   1733     <li>symbols for internal globals and functions</li>
   1734     <li>debug information</li>
   1735   </ol>
   1736   
   1737   <p>
   1738   note that this transformation makes code much less readable, so it should
   1739   only be used in situations where the <tt>strip</tt> utility would be used,
   1740   such as reducing code size or making it harder to reverse engineer code.
   1741   </p>
   1742 </div>
   1743 
   1744 <!-------------------------------------------------------------------------- -->
   1745 <h3>
   1746   <a name="strip-dead-debug-info">-strip-dead-debug-info: Strip debug info for unused symbols</a>
   1747 </h3>
   1748 <div>
   1749   <p>
   1750   performs code stripping. this transformation can delete:
   1751   </p>
   1752   
   1753   <ol>
   1754     <li>names for virtual registers</li>
   1755     <li>symbols for internal globals and functions</li>
   1756     <li>debug information</li>
   1757   </ol>
   1758   
   1759   <p>
   1760   note that this transformation makes code much less readable, so it should
   1761   only be used in situations where the <tt>strip</tt> utility would be used,
   1762   such as reducing code size or making it harder to reverse engineer code.
   1763   </p>
   1764 </div>
   1765 
   1766 <!-------------------------------------------------------------------------- -->
   1767 <h3>
   1768   <a name="strip-dead-prototypes">-strip-dead-prototypes: Strip Unused Function Prototypes</a>
   1769 </h3>
   1770 <div>
   1771   <p>
   1772   This pass loops over all of the functions in the input module, looking for
   1773   dead declarations and removes them. Dead declarations are declarations of
   1774   functions for which no implementation is available (i.e., declarations for
   1775   unused library functions).
   1776   </p>
   1777 </div>
   1778 
   1779 <!-------------------------------------------------------------------------- -->
   1780 <h3>
   1781   <a name="strip-debug-declare">-strip-debug-declare: Strip all llvm.dbg.declare intrinsics</a>
   1782 </h3>
   1783 <div>
   1784   <p>This pass implements code stripping. Specifically, it can delete:</p>
   1785   <ul>
   1786   <li>names for virtual registers</li>
   1787   <li>symbols for internal globals and functions</li>
   1788   <li>debug information</li>
   1789   </ul>
   1790   <p>
   1791   Note that this transformation makes code much less readable, so it should
   1792   only be used in situations where the 'strip' utility would be used, such as
   1793   reducing code size or making it harder to reverse engineer code.
   1794   </p>
   1795 </div>
   1796 
   1797 <!-------------------------------------------------------------------------- -->
   1798 <h3>
   1799   <a name="strip-nondebug">-strip-nondebug: Strip all symbols, except dbg symbols, from a module</a>
   1800 </h3>
   1801 <div>
   1802   <p>This pass implements code stripping. Specifically, it can delete:</p>
   1803   <ul>
   1804   <li>names for virtual registers</li>
   1805   <li>symbols for internal globals and functions</li>
   1806   <li>debug information</li>
   1807   </ul>
   1808   <p>
   1809   Note that this transformation makes code much less readable, so it should
   1810   only be used in situations where the 'strip' utility would be used, such as
   1811   reducing code size or making it harder to reverse engineer code.
   1812   </p>
   1813 </div>
   1814 
   1815 <!-------------------------------------------------------------------------- -->
   1816 <h3>
   1817   <a name="tailcallelim">-tailcallelim: Tail Call Elimination</a>
   1818 </h3>
   1819 <div>
   1820   <p>
   1821   This file transforms calls of the current function (self recursion) followed
   1822   by a return instruction with a branch to the entry of the function, creating
   1823   a loop.  This pass also implements the following extensions to the basic
   1824   algorithm:
   1825   </p>
   1826   
   1827   <ul>
   1828   <li>Trivial instructions between the call and return do not prevent the
   1829       transformation from taking place, though currently the analysis cannot
   1830       support moving any really useful instructions (only dead ones).
   1831   <li>This pass transforms functions that are prevented from being tail
   1832       recursive by an associative expression to use an accumulator variable,
   1833       thus compiling the typical naive factorial or <tt>fib</tt> implementation
   1834       into efficient code.
   1835   <li>TRE is performed if the function returns void, if the return
   1836       returns the result returned by the call, or if the function returns a
   1837       run-time constant on all exits from the function.  It is possible, though
   1838       unlikely, that the return returns something else (like constant 0), and
   1839       can still be TRE'd.  It can be TRE'd if <em>all other</em> return 
   1840       instructions in the function return the exact same value.
   1841   <li>If it can prove that callees do not access theier caller stack frame,
   1842       they are marked as eligible for tail call elimination (by the code
   1843       generator).
   1844   </ul>
   1845 </div>
   1846 
   1847 <!-------------------------------------------------------------------------- -->
   1848 <h3>
   1849   <a name="tailduplicate">-tailduplicate: Tail Duplication</a>
   1850 </h3>
   1851 <div>
   1852   <p>
   1853   This pass performs a limited form of tail duplication, intended to simplify
   1854   CFGs by removing some unconditional branches.  This pass is necessary to
   1855   straighten out loops created by the C front-end, but also is capable of
   1856   making other code nicer.  After this pass is run, the CFG simplify pass
   1857   should be run to clean up the mess.
   1858   </p>
   1859 </div>
   1860 
   1861 </div>
   1862 
   1863 <!-- ======================================================================= -->
   1864 <h2><a name="utilities">Utility Passes</a></h2>
   1865 <div>
   1866   <p>This section describes the LLVM Utility Passes.</p>
   1867 
   1868 <!-------------------------------------------------------------------------- -->
   1869 <h3>
   1870   <a name="deadarghaX0r">-deadarghaX0r: Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)</a>
   1871 </h3>
   1872 <div>
   1873   <p>
   1874   Same as dead argument elimination, but deletes arguments to functions which
   1875   are external.  This is only for use by <a
   1876   href="Bugpoint.html">bugpoint</a>.</p>
   1877 </div>
   1878 
   1879 <!-------------------------------------------------------------------------- -->
   1880 <h3>
   1881   <a name="extract-blocks">-extract-blocks: Extract Basic Blocks From Module (for bugpoint use)</a>
   1882 </h3>
   1883 <div>
   1884   <p>
   1885   This pass is used by bugpoint to extract all blocks from the module into their
   1886   own functions.</p>
   1887 </div>
   1888 
   1889 <!-------------------------------------------------------------------------- -->
   1890 <h3>
   1891   <a name="instnamer">-instnamer: Assign names to anonymous instructions</a>
   1892 </h3>
   1893 <div>
   1894   <p>This is a little utility pass that gives instructions names, this is mostly
   1895  useful when diffing the effect of an optimization because deleting an
   1896  unnamed instruction can change all other instruction numbering, making the
   1897  diff very noisy.  
   1898   </p>
   1899 </div>
   1900 
   1901 <!-------------------------------------------------------------------------- -->
   1902 <h3>
   1903   <a name="preverify">-preverify: Preliminary module verification</a>
   1904 </h3>
   1905 <div>
   1906   <p>
   1907   Ensures that the module is in the form required by the <a
   1908   href="#verifier">Module Verifier</a> pass.
   1909   </p>
   1910   
   1911   <p>
   1912   Running the verifier runs this pass automatically, so there should be no need
   1913   to use it directly.
   1914   </p>
   1915 </div>
   1916 
   1917 <!-------------------------------------------------------------------------- -->
   1918 <h3>
   1919   <a name="verify">-verify: Module Verifier</a>
   1920 </h3>
   1921 <div>
   1922   <p>
   1923   Verifies an LLVM IR code. This is useful to run after an optimization which is
   1924   undergoing testing. Note that <tt>llvm-as</tt> verifies its input before
   1925   emitting bitcode, and also that malformed bitcode is likely to make LLVM
   1926   crash. All language front-ends are therefore encouraged to verify their output
   1927   before performing optimizing transformations.
   1928   </p>
   1929 
   1930   <ul>
   1931     <li>Both of a binary operator's parameters are of the same type.</li>
   1932     <li>Verify that the indices of mem access instructions match other
   1933         operands.</li>
   1934     <li>Verify that arithmetic and other things are only performed on
   1935         first-class types.  Verify that shifts and logicals only happen on
   1936         integrals f.e.</li>
   1937     <li>All of the constants in a switch statement are of the correct type.</li>
   1938     <li>The code is in valid SSA form.</li>
   1939     <li>It is illegal to put a label into any other type (like a structure) or 
   1940         to return one.</li>
   1941     <li>Only phi nodes can be self referential: <tt>%x = add i32 %x, %x</tt> is
   1942         invalid.</li>
   1943     <li>PHI nodes must have an entry for each predecessor, with no extras.</li>
   1944     <li>PHI nodes must be the first thing in a basic block, all grouped
   1945         together.</li>
   1946     <li>PHI nodes must have at least one entry.</li>
   1947     <li>All basic blocks should only end with terminator insts, not contain
   1948         them.</li>
   1949     <li>The entry node to a function must not have predecessors.</li>
   1950     <li>All Instructions must be embedded into a basic block.</li>
   1951     <li>Functions cannot take a void-typed parameter.</li>
   1952     <li>Verify that a function's argument list agrees with its declared
   1953         type.</li>
   1954     <li>It is illegal to specify a name for a void value.</li>
   1955     <li>It is illegal to have a internal global value with no initializer.</li>
   1956     <li>It is illegal to have a ret instruction that returns a value that does
   1957         not agree with the function return value type.</li>
   1958     <li>Function call argument types match the function prototype.</li>
   1959     <li>All other things that are tested by asserts spread about the code.</li>
   1960   </ul>
   1961   
   1962   <p>
   1963   Note that this does not provide full security verification (like Java), but
   1964   instead just tries to ensure that code is well-formed.
   1965   </p>
   1966 </div>
   1967 
   1968 <!-------------------------------------------------------------------------- -->
   1969 <h3>
   1970   <a name="view-cfg">-view-cfg: View CFG of function</a>
   1971 </h3>
   1972 <div>
   1973   <p>
   1974   Displays the control flow graph using the GraphViz tool.
   1975   </p>
   1976 </div>
   1977 
   1978 <!-------------------------------------------------------------------------- -->
   1979 <h3>
   1980   <a name="view-cfg-only">-view-cfg-only: View CFG of function (with no function bodies)</a>
   1981 </h3>
   1982 <div>
   1983   <p>
   1984   Displays the control flow graph using the GraphViz tool, but omitting function
   1985   bodies.
   1986   </p>
   1987 </div>
   1988 
   1989 <!-------------------------------------------------------------------------- -->
   1990 <h3>
   1991   <a name="view-dom">-view-dom: View dominance tree of function</a>
   1992 </h3>
   1993 <div>
   1994   <p>
   1995   Displays the dominator tree using the GraphViz tool.
   1996   </p>
   1997 </div>
   1998 
   1999 <!-------------------------------------------------------------------------- -->
   2000 <h3>
   2001   <a name="view-dom-only">-view-dom-only: View dominance tree of function (with no function bodies)</a>
   2002 </h3>
   2003 <div>
   2004   <p>
   2005   Displays the dominator tree using the GraphViz tool, but omitting function
   2006   bodies.
   2007   </p>
   2008 </div>
   2009 
   2010 <!-------------------------------------------------------------------------- -->
   2011 <h3>
   2012   <a name="view-postdom">-view-postdom: View postdominance tree of function</a>
   2013 </h3>
   2014 <div>
   2015   <p>
   2016   Displays the post dominator tree using the GraphViz tool.
   2017   </p>
   2018 </div>
   2019 
   2020 <!-------------------------------------------------------------------------- -->
   2021 <h3>
   2022   <a name="view-postdom-only">-view-postdom-only: View postdominance tree of function (with no function bodies)</a>
   2023 </h3>
   2024 <div>
   2025   <p>
   2026   Displays the post dominator tree using the GraphViz tool, but omitting
   2027   function bodies.
   2028   </p>
   2029 </div>
   2030 
   2031 </div>
   2032 
   2033 <!-- *********************************************************************** -->
   2034 
   2035 <hr>
   2036 <address>
   2037   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
   2038   src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
   2039   <a href="http://validator.w3.org/check/referer"><img
   2040   src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
   2041 
   2042   <a href="mailto:rspencer (a] x10sys.com">Reid Spencer</a><br>
   2043   <a href="http://llvm.org/">LLVM Compiler Infrastructure</a><br>
   2044   Last modified: $Date: 2011-08-03 18:18:20 -0400 (Wed, 03 Aug 2011) $
   2045 </address>
   2046 
   2047 </body>
   2048 </html>
   2049