1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" 2 "http://www.w3.org/TR/html4/strict.dtd"> 3 4 <html> 5 <head> 6 <title>Kaleidoscope: Adding JIT and Optimizer Support</title> 7 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> 8 <meta name="author" content="Chris Lattner"> 9 <link rel="stylesheet" href="../llvm.css" type="text/css"> 10 </head> 11 12 <body> 13 14 <h1>Kaleidoscope: Adding JIT and Optimizer Support</h1> 15 16 <ul> 17 <li><a href="index.html">Up to Tutorial Index</a></li> 18 <li>Chapter 4 19 <ol> 20 <li><a href="#intro">Chapter 4 Introduction</a></li> 21 <li><a href="#trivialconstfold">Trivial Constant Folding</a></li> 22 <li><a href="#optimizerpasses">LLVM Optimization Passes</a></li> 23 <li><a href="#jit">Adding a JIT Compiler</a></li> 24 <li><a href="#code">Full Code Listing</a></li> 25 </ol> 26 </li> 27 <li><a href="LangImpl5.html">Chapter 5</a>: Extending the Language: Control 28 Flow</li> 29 </ul> 30 31 <div class="doc_author"> 32 <p>Written by <a href="mailto:sabre (a] nondot.org">Chris Lattner</a></p> 33 </div> 34 35 <!-- *********************************************************************** --> 36 <h2><a name="intro">Chapter 4 Introduction</a></h2> 37 <!-- *********************************************************************** --> 38 39 <div> 40 41 <p>Welcome to Chapter 4 of the "<a href="index.html">Implementing a language 42 with LLVM</a>" tutorial. Chapters 1-3 described the implementation of a simple 43 language and added support for generating LLVM IR. This chapter describes 44 two new techniques: adding optimizer support to your language, and adding JIT 45 compiler support. These additions will demonstrate how to get nice, efficient code 46 for the Kaleidoscope language.</p> 47 48 </div> 49 50 <!-- *********************************************************************** --> 51 <h2><a name="trivialconstfold">Trivial Constant Folding</a></h2> 52 <!-- *********************************************************************** --> 53 54 <div> 55 56 <p> 57 Our demonstration for Chapter 3 is elegant and easy to extend. Unfortunately, 58 it does not produce wonderful code. The IRBuilder, however, does give us 59 obvious optimizations when compiling simple code:</p> 60 61 <div class="doc_code"> 62 <pre> 63 ready> <b>def test(x) 1+2+x;</b> 64 Read function definition: 65 define double @test(double %x) { 66 entry: 67 %addtmp = fadd double 3.000000e+00, %x 68 ret double %addtmp 69 } 70 </pre> 71 </div> 72 73 <p>This code is not a literal transcription of the AST built by parsing the 74 input. That would be: 75 76 <div class="doc_code"> 77 <pre> 78 ready> <b>def test(x) 1+2+x;</b> 79 Read function definition: 80 define double @test(double %x) { 81 entry: 82 %addtmp = fadd double 2.000000e+00, 1.000000e+00 83 %addtmp1 = fadd double %addtmp, %x 84 ret double %addtmp1 85 } 86 </pre> 87 </div> 88 89 <p>Constant folding, as seen above, in particular, is a very common and very 90 important optimization: so much so that many language implementors implement 91 constant folding support in their AST representation.</p> 92 93 <p>With LLVM, you don't need this support in the AST. Since all calls to build 94 LLVM IR go through the LLVM IR builder, the builder itself checked to see if 95 there was a constant folding opportunity when you call it. If so, it just does 96 the constant fold and return the constant instead of creating an instruction. 97 98 <p>Well, that was easy :). In practice, we recommend always using 99 <tt>IRBuilder</tt> when generating code like this. It has no 100 "syntactic overhead" for its use (you don't have to uglify your compiler with 101 constant checks everywhere) and it can dramatically reduce the amount of 102 LLVM IR that is generated in some cases (particular for languages with a macro 103 preprocessor or that use a lot of constants).</p> 104 105 <p>On the other hand, the <tt>IRBuilder</tt> is limited by the fact 106 that it does all of its analysis inline with the code as it is built. If you 107 take a slightly more complex example:</p> 108 109 <div class="doc_code"> 110 <pre> 111 ready> <b>def test(x) (1+2+x)*(x+(1+2));</b> 112 ready> Read function definition: 113 define double @test(double %x) { 114 entry: 115 %addtmp = fadd double 3.000000e+00, %x 116 %addtmp1 = fadd double %x, 3.000000e+00 117 %multmp = fmul double %addtmp, %addtmp1 118 ret double %multmp 119 } 120 </pre> 121 </div> 122 123 <p>In this case, the LHS and RHS of the multiplication are the same value. We'd 124 really like to see this generate "<tt>tmp = x+3; result = tmp*tmp;</tt>" instead 125 of computing "<tt>x+3</tt>" twice.</p> 126 127 <p>Unfortunately, no amount of local analysis will be able to detect and correct 128 this. This requires two transformations: reassociation of expressions (to 129 make the add's lexically identical) and Common Subexpression Elimination (CSE) 130 to delete the redundant add instruction. Fortunately, LLVM provides a broad 131 range of optimizations that you can use, in the form of "passes".</p> 132 133 </div> 134 135 <!-- *********************************************************************** --> 136 <h2><a name="optimizerpasses">LLVM Optimization Passes</a></h2> 137 <!-- *********************************************************************** --> 138 139 <div> 140 141 <p>LLVM provides many optimization passes, which do many different sorts of 142 things and have different tradeoffs. Unlike other systems, LLVM doesn't hold 143 to the mistaken notion that one set of optimizations is right for all languages 144 and for all situations. LLVM allows a compiler implementor to make complete 145 decisions about what optimizations to use, in which order, and in what 146 situation.</p> 147 148 <p>As a concrete example, LLVM supports both "whole module" passes, which look 149 across as large of body of code as they can (often a whole file, but if run 150 at link time, this can be a substantial portion of the whole program). It also 151 supports and includes "per-function" passes which just operate on a single 152 function at a time, without looking at other functions. For more information 153 on passes and how they are run, see the <a href="../WritingAnLLVMPass.html">How 154 to Write a Pass</a> document and the <a href="../Passes.html">List of LLVM 155 Passes</a>.</p> 156 157 <p>For Kaleidoscope, we are currently generating functions on the fly, one at 158 a time, as the user types them in. We aren't shooting for the ultimate 159 optimization experience in this setting, but we also want to catch the easy and 160 quick stuff where possible. As such, we will choose to run a few per-function 161 optimizations as the user types the function in. If we wanted to make a "static 162 Kaleidoscope compiler", we would use exactly the code we have now, except that 163 we would defer running the optimizer until the entire file has been parsed.</p> 164 165 <p>In order to get per-function optimizations going, we need to set up a 166 <a href="../WritingAnLLVMPass.html#passmanager">FunctionPassManager</a> to hold and 167 organize the LLVM optimizations that we want to run. Once we have that, we can 168 add a set of optimizations to run. The code looks like this:</p> 169 170 <div class="doc_code"> 171 <pre> 172 FunctionPassManager OurFPM(TheModule); 173 174 // Set up the optimizer pipeline. Start with registering info about how the 175 // target lays out data structures. 176 OurFPM.add(new TargetData(*TheExecutionEngine->getTargetData())); 177 // Provide basic AliasAnalysis support for GVN. 178 OurFPM.add(createBasicAliasAnalysisPass()); 179 // Do simple "peephole" optimizations and bit-twiddling optzns. 180 OurFPM.add(createInstructionCombiningPass()); 181 // Reassociate expressions. 182 OurFPM.add(createReassociatePass()); 183 // Eliminate Common SubExpressions. 184 OurFPM.add(createGVNPass()); 185 // Simplify the control flow graph (deleting unreachable blocks, etc). 186 OurFPM.add(createCFGSimplificationPass()); 187 188 OurFPM.doInitialization(); 189 190 // Set the global so the code gen can use this. 191 TheFPM = &OurFPM; 192 193 // Run the main "interpreter loop" now. 194 MainLoop(); 195 </pre> 196 </div> 197 198 <p>This code defines a <tt>FunctionPassManager</tt>, "<tt>OurFPM</tt>". It 199 requires a pointer to the <tt>Module</tt> to construct itself. Once it is set 200 up, we use a series of "add" calls to add a bunch of LLVM passes. The first 201 pass is basically boilerplate, it adds a pass so that later optimizations know 202 how the data structures in the program are laid out. The 203 "<tt>TheExecutionEngine</tt>" variable is related to the JIT, which we will get 204 to in the next section.</p> 205 206 <p>In this case, we choose to add 4 optimization passes. The passes we chose 207 here are a pretty standard set of "cleanup" optimizations that are useful for 208 a wide variety of code. I won't delve into what they do but, believe me, 209 they are a good starting place :).</p> 210 211 <p>Once the PassManager is set up, we need to make use of it. We do this by 212 running it after our newly created function is constructed (in 213 <tt>FunctionAST::Codegen</tt>), but before it is returned to the client:</p> 214 215 <div class="doc_code"> 216 <pre> 217 if (Value *RetVal = Body->Codegen()) { 218 // Finish off the function. 219 Builder.CreateRet(RetVal); 220 221 // Validate the generated code, checking for consistency. 222 verifyFunction(*TheFunction); 223 224 <b>// Optimize the function. 225 TheFPM->run(*TheFunction);</b> 226 227 return TheFunction; 228 } 229 </pre> 230 </div> 231 232 <p>As you can see, this is pretty straightforward. The 233 <tt>FunctionPassManager</tt> optimizes and updates the LLVM Function* in place, 234 improving (hopefully) its body. With this in place, we can try our test above 235 again:</p> 236 237 <div class="doc_code"> 238 <pre> 239 ready> <b>def test(x) (1+2+x)*(x+(1+2));</b> 240 ready> Read function definition: 241 define double @test(double %x) { 242 entry: 243 %addtmp = fadd double %x, 3.000000e+00 244 %multmp = fmul double %addtmp, %addtmp 245 ret double %multmp 246 } 247 </pre> 248 </div> 249 250 <p>As expected, we now get our nicely optimized code, saving a floating point 251 add instruction from every execution of this function.</p> 252 253 <p>LLVM provides a wide variety of optimizations that can be used in certain 254 circumstances. Some <a href="../Passes.html">documentation about the various 255 passes</a> is available, but it isn't very complete. Another good source of 256 ideas can come from looking at the passes that <tt>llvm-gcc</tt> or 257 <tt>llvm-ld</tt> run to get started. The "<tt>opt</tt>" tool allows you to 258 experiment with passes from the command line, so you can see if they do 259 anything.</p> 260 261 <p>Now that we have reasonable code coming out of our front-end, lets talk about 262 executing it!</p> 263 264 </div> 265 266 <!-- *********************************************************************** --> 267 <h2><a name="jit">Adding a JIT Compiler</a></h2> 268 <!-- *********************************************************************** --> 269 270 <div> 271 272 <p>Code that is available in LLVM IR can have a wide variety of tools 273 applied to it. For example, you can run optimizations on it (as we did above), 274 you can dump it out in textual or binary forms, you can compile the code to an 275 assembly file (.s) for some target, or you can JIT compile it. The nice thing 276 about the LLVM IR representation is that it is the "common currency" between 277 many different parts of the compiler. 278 </p> 279 280 <p>In this section, we'll add JIT compiler support to our interpreter. The 281 basic idea that we want for Kaleidoscope is to have the user enter function 282 bodies as they do now, but immediately evaluate the top-level expressions they 283 type in. For example, if they type in "1 + 2;", we should evaluate and print 284 out 3. If they define a function, they should be able to call it from the 285 command line.</p> 286 287 <p>In order to do this, we first declare and initialize the JIT. This is done 288 by adding a global variable and a call in <tt>main</tt>:</p> 289 290 <div class="doc_code"> 291 <pre> 292 <b>static ExecutionEngine *TheExecutionEngine;</b> 293 ... 294 int main() { 295 .. 296 <b>// Create the JIT. This takes ownership of the module. 297 TheExecutionEngine = EngineBuilder(TheModule).create();</b> 298 .. 299 } 300 </pre> 301 </div> 302 303 <p>This creates an abstract "Execution Engine" which can be either a JIT 304 compiler or the LLVM interpreter. LLVM will automatically pick a JIT compiler 305 for you if one is available for your platform, otherwise it will fall back to 306 the interpreter.</p> 307 308 <p>Once the <tt>ExecutionEngine</tt> is created, the JIT is ready to be used. 309 There are a variety of APIs that are useful, but the simplest one is the 310 "<tt>getPointerToFunction(F)</tt>" method. This method JIT compiles the 311 specified LLVM Function and returns a function pointer to the generated machine 312 code. In our case, this means that we can change the code that parses a 313 top-level expression to look like this:</p> 314 315 <div class="doc_code"> 316 <pre> 317 static void HandleTopLevelExpression() { 318 // Evaluate a top-level expression into an anonymous function. 319 if (FunctionAST *F = ParseTopLevelExpr()) { 320 if (Function *LF = F->Codegen()) { 321 LF->dump(); // Dump the function for exposition purposes. 322 323 <b>// JIT the function, returning a function pointer. 324 void *FPtr = TheExecutionEngine->getPointerToFunction(LF); 325 326 // Cast it to the right type (takes no arguments, returns a double) so we 327 // can call it as a native function. 328 double (*FP)() = (double (*)())(intptr_t)FPtr; 329 fprintf(stderr, "Evaluated to %f\n", FP());</b> 330 } 331 </pre> 332 </div> 333 334 <p>Recall that we compile top-level expressions into a self-contained LLVM 335 function that takes no arguments and returns the computed double. Because the 336 LLVM JIT compiler matches the native platform ABI, this means that you can just 337 cast the result pointer to a function pointer of that type and call it directly. 338 This means, there is no difference between JIT compiled code and native machine 339 code that is statically linked into your application.</p> 340 341 <p>With just these two changes, lets see how Kaleidoscope works now!</p> 342 343 <div class="doc_code"> 344 <pre> 345 ready> <b>4+5;</b> 346 Read top-level expression: 347 define double @0() { 348 entry: 349 ret double 9.000000e+00 350 } 351 352 <em>Evaluated to 9.000000</em> 353 </pre> 354 </div> 355 356 <p>Well this looks like it is basically working. The dump of the function 357 shows the "no argument function that always returns double" that we synthesize 358 for each top-level expression that is typed in. This demonstrates very basic 359 functionality, but can we do more?</p> 360 361 <div class="doc_code"> 362 <pre> 363 ready> <b>def testfunc(x y) x + y*2; </b> 364 Read function definition: 365 define double @testfunc(double %x, double %y) { 366 entry: 367 %multmp = fmul double %y, 2.000000e+00 368 %addtmp = fadd double %multmp, %x 369 ret double %addtmp 370 } 371 372 ready> <b>testfunc(4, 10);</b> 373 Read top-level expression: 374 define double @1() { 375 entry: 376 %calltmp = call double @testfunc(double 4.000000e+00, double 1.000000e+01) 377 ret double %calltmp 378 } 379 380 <em>Evaluated to 24.000000</em> 381 </pre> 382 </div> 383 384 <p>This illustrates that we can now call user code, but there is something a bit 385 subtle going on here. Note that we only invoke the JIT on the anonymous 386 functions that <em>call testfunc</em>, but we never invoked it 387 on <em>testfunc</em> itself. What actually happened here is that the JIT 388 scanned for all non-JIT'd functions transitively called from the anonymous 389 function and compiled all of them before returning 390 from <tt>getPointerToFunction()</tt>.</p> 391 392 <p>The JIT provides a number of other more advanced interfaces for things like 393 freeing allocated machine code, rejit'ing functions to update them, etc. 394 However, even with this simple code, we get some surprisingly powerful 395 capabilities - check this out (I removed the dump of the anonymous functions, 396 you should get the idea by now :) :</p> 397 398 <div class="doc_code"> 399 <pre> 400 ready> <b>extern sin(x);</b> 401 Read extern: 402 declare double @sin(double) 403 404 ready> <b>extern cos(x);</b> 405 Read extern: 406 declare double @cos(double) 407 408 ready> <b>sin(1.0);</b> 409 Read top-level expression: 410 define double @2() { 411 entry: 412 ret double 0x3FEAED548F090CEE 413 } 414 415 <em>Evaluated to 0.841471</em> 416 417 ready> <b>def foo(x) sin(x)*sin(x) + cos(x)*cos(x);</b> 418 Read function definition: 419 define double @foo(double %x) { 420 entry: 421 %calltmp = call double @sin(double %x) 422 %multmp = fmul double %calltmp, %calltmp 423 %calltmp2 = call double @cos(double %x) 424 %multmp4 = fmul double %calltmp2, %calltmp2 425 %addtmp = fadd double %multmp, %multmp4 426 ret double %addtmp 427 } 428 429 ready> <b>foo(4.0);</b> 430 Read top-level expression: 431 define double @3() { 432 entry: 433 %calltmp = call double @foo(double 4.000000e+00) 434 ret double %calltmp 435 } 436 437 <em>Evaluated to 1.000000</em> 438 </pre> 439 </div> 440 441 <p>Whoa, how does the JIT know about sin and cos? The answer is surprisingly 442 simple: in this 443 example, the JIT started execution of a function and got to a function call. It 444 realized that the function was not yet JIT compiled and invoked the standard set 445 of routines to resolve the function. In this case, there is no body defined 446 for the function, so the JIT ended up calling "<tt>dlsym("sin")</tt>" on the 447 Kaleidoscope process itself. 448 Since "<tt>sin</tt>" is defined within the JIT's address space, it simply 449 patches up calls in the module to call the libm version of <tt>sin</tt> 450 directly.</p> 451 452 <p>The LLVM JIT provides a number of interfaces (look in the 453 <tt>ExecutionEngine.h</tt> file) for controlling how unknown functions get 454 resolved. It allows you to establish explicit mappings between IR objects and 455 addresses (useful for LLVM global variables that you want to map to static 456 tables, for example), allows you to dynamically decide on the fly based on the 457 function name, and even allows you to have the JIT compile functions lazily the 458 first time they're called.</p> 459 460 <p>One interesting application of this is that we can now extend the language 461 by writing arbitrary C++ code to implement operations. For example, if we add: 462 </p> 463 464 <div class="doc_code"> 465 <pre> 466 /// putchard - putchar that takes a double and returns 0. 467 extern "C" 468 double putchard(double X) { 469 putchar((char)X); 470 return 0; 471 } 472 </pre> 473 </div> 474 475 <p>Now we can produce simple output to the console by using things like: 476 "<tt>extern putchard(x); putchard(120);</tt>", which prints a lowercase 'x' on 477 the console (120 is the ASCII code for 'x'). Similar code could be used to 478 implement file I/O, console input, and many other capabilities in 479 Kaleidoscope.</p> 480 481 <p>This completes the JIT and optimizer chapter of the Kaleidoscope tutorial. At 482 this point, we can compile a non-Turing-complete programming language, optimize 483 and JIT compile it in a user-driven way. Next up we'll look into <a 484 href="LangImpl5.html">extending the language with control flow constructs</a>, 485 tackling some interesting LLVM IR issues along the way.</p> 486 487 </div> 488 489 <!-- *********************************************************************** --> 490 <h2><a name="code">Full Code Listing</a></h2> 491 <!-- *********************************************************************** --> 492 493 <div> 494 495 <p> 496 Here is the complete code listing for our running example, enhanced with the 497 LLVM JIT and optimizer. To build this example, use: 498 </p> 499 500 <div class="doc_code"> 501 <pre> 502 # Compile 503 clang++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy 504 # Run 505 ./toy 506 </pre> 507 </div> 508 509 <p> 510 If you are compiling this on Linux, make sure to add the "-rdynamic" option 511 as well. This makes sure that the external functions are resolved properly 512 at runtime.</p> 513 514 <p>Here is the code:</p> 515 516 <div class="doc_code"> 517 <pre> 518 #include "llvm/DerivedTypes.h" 519 #include "llvm/ExecutionEngine/ExecutionEngine.h" 520 #include "llvm/ExecutionEngine/JIT.h" 521 #include "llvm/LLVMContext.h" 522 #include "llvm/Module.h" 523 #include "llvm/PassManager.h" 524 #include "llvm/Analysis/Verifier.h" 525 #include "llvm/Analysis/Passes.h" 526 #include "llvm/Target/TargetData.h" 527 #include "llvm/Transforms/Scalar.h" 528 #include "llvm/Support/IRBuilder.h" 529 #include "llvm/Support/TargetSelect.h" 530 #include <cstdio> 531 #include <string> 532 #include <map> 533 #include <vector> 534 using namespace llvm; 535 536 //===----------------------------------------------------------------------===// 537 // Lexer 538 //===----------------------------------------------------------------------===// 539 540 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one 541 // of these for known things. 542 enum Token { 543 tok_eof = -1, 544 545 // commands 546 tok_def = -2, tok_extern = -3, 547 548 // primary 549 tok_identifier = -4, tok_number = -5 550 }; 551 552 static std::string IdentifierStr; // Filled in if tok_identifier 553 static double NumVal; // Filled in if tok_number 554 555 /// gettok - Return the next token from standard input. 556 static int gettok() { 557 static int LastChar = ' '; 558 559 // Skip any whitespace. 560 while (isspace(LastChar)) 561 LastChar = getchar(); 562 563 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]* 564 IdentifierStr = LastChar; 565 while (isalnum((LastChar = getchar()))) 566 IdentifierStr += LastChar; 567 568 if (IdentifierStr == "def") return tok_def; 569 if (IdentifierStr == "extern") return tok_extern; 570 return tok_identifier; 571 } 572 573 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+ 574 std::string NumStr; 575 do { 576 NumStr += LastChar; 577 LastChar = getchar(); 578 } while (isdigit(LastChar) || LastChar == '.'); 579 580 NumVal = strtod(NumStr.c_str(), 0); 581 return tok_number; 582 } 583 584 if (LastChar == '#') { 585 // Comment until end of line. 586 do LastChar = getchar(); 587 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r'); 588 589 if (LastChar != EOF) 590 return gettok(); 591 } 592 593 // Check for end of file. Don't eat the EOF. 594 if (LastChar == EOF) 595 return tok_eof; 596 597 // Otherwise, just return the character as its ascii value. 598 int ThisChar = LastChar; 599 LastChar = getchar(); 600 return ThisChar; 601 } 602 603 //===----------------------------------------------------------------------===// 604 // Abstract Syntax Tree (aka Parse Tree) 605 //===----------------------------------------------------------------------===// 606 607 /// ExprAST - Base class for all expression nodes. 608 class ExprAST { 609 public: 610 virtual ~ExprAST() {} 611 virtual Value *Codegen() = 0; 612 }; 613 614 /// NumberExprAST - Expression class for numeric literals like "1.0". 615 class NumberExprAST : public ExprAST { 616 double Val; 617 public: 618 NumberExprAST(double val) : Val(val) {} 619 virtual Value *Codegen(); 620 }; 621 622 /// VariableExprAST - Expression class for referencing a variable, like "a". 623 class VariableExprAST : public ExprAST { 624 std::string Name; 625 public: 626 VariableExprAST(const std::string &name) : Name(name) {} 627 virtual Value *Codegen(); 628 }; 629 630 /// BinaryExprAST - Expression class for a binary operator. 631 class BinaryExprAST : public ExprAST { 632 char Op; 633 ExprAST *LHS, *RHS; 634 public: 635 BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) 636 : Op(op), LHS(lhs), RHS(rhs) {} 637 virtual Value *Codegen(); 638 }; 639 640 /// CallExprAST - Expression class for function calls. 641 class CallExprAST : public ExprAST { 642 std::string Callee; 643 std::vector<ExprAST*> Args; 644 public: 645 CallExprAST(const std::string &callee, std::vector<ExprAST*> &args) 646 : Callee(callee), Args(args) {} 647 virtual Value *Codegen(); 648 }; 649 650 /// PrototypeAST - This class represents the "prototype" for a function, 651 /// which captures its name, and its argument names (thus implicitly the number 652 /// of arguments the function takes). 653 class PrototypeAST { 654 std::string Name; 655 std::vector<std::string> Args; 656 public: 657 PrototypeAST(const std::string &name, const std::vector<std::string> &args) 658 : Name(name), Args(args) {} 659 660 Function *Codegen(); 661 }; 662 663 /// FunctionAST - This class represents a function definition itself. 664 class FunctionAST { 665 PrototypeAST *Proto; 666 ExprAST *Body; 667 public: 668 FunctionAST(PrototypeAST *proto, ExprAST *body) 669 : Proto(proto), Body(body) {} 670 671 Function *Codegen(); 672 }; 673 674 //===----------------------------------------------------------------------===// 675 // Parser 676 //===----------------------------------------------------------------------===// 677 678 /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current 679 /// token the parser is looking at. getNextToken reads another token from the 680 /// lexer and updates CurTok with its results. 681 static int CurTok; 682 static int getNextToken() { 683 return CurTok = gettok(); 684 } 685 686 /// BinopPrecedence - This holds the precedence for each binary operator that is 687 /// defined. 688 static std::map<char, int> BinopPrecedence; 689 690 /// GetTokPrecedence - Get the precedence of the pending binary operator token. 691 static int GetTokPrecedence() { 692 if (!isascii(CurTok)) 693 return -1; 694 695 // Make sure it's a declared binop. 696 int TokPrec = BinopPrecedence[CurTok]; 697 if (TokPrec <= 0) return -1; 698 return TokPrec; 699 } 700 701 /// Error* - These are little helper functions for error handling. 702 ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;} 703 PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; } 704 FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; } 705 706 static ExprAST *ParseExpression(); 707 708 /// identifierexpr 709 /// ::= identifier 710 /// ::= identifier '(' expression* ')' 711 static ExprAST *ParseIdentifierExpr() { 712 std::string IdName = IdentifierStr; 713 714 getNextToken(); // eat identifier. 715 716 if (CurTok != '(') // Simple variable ref. 717 return new VariableExprAST(IdName); 718 719 // Call. 720 getNextToken(); // eat ( 721 std::vector<ExprAST*> Args; 722 if (CurTok != ')') { 723 while (1) { 724 ExprAST *Arg = ParseExpression(); 725 if (!Arg) return 0; 726 Args.push_back(Arg); 727 728 if (CurTok == ')') break; 729 730 if (CurTok != ',') 731 return Error("Expected ')' or ',' in argument list"); 732 getNextToken(); 733 } 734 } 735 736 // Eat the ')'. 737 getNextToken(); 738 739 return new CallExprAST(IdName, Args); 740 } 741 742 /// numberexpr ::= number 743 static ExprAST *ParseNumberExpr() { 744 ExprAST *Result = new NumberExprAST(NumVal); 745 getNextToken(); // consume the number 746 return Result; 747 } 748 749 /// parenexpr ::= '(' expression ')' 750 static ExprAST *ParseParenExpr() { 751 getNextToken(); // eat (. 752 ExprAST *V = ParseExpression(); 753 if (!V) return 0; 754 755 if (CurTok != ')') 756 return Error("expected ')'"); 757 getNextToken(); // eat ). 758 return V; 759 } 760 761 /// primary 762 /// ::= identifierexpr 763 /// ::= numberexpr 764 /// ::= parenexpr 765 static ExprAST *ParsePrimary() { 766 switch (CurTok) { 767 default: return Error("unknown token when expecting an expression"); 768 case tok_identifier: return ParseIdentifierExpr(); 769 case tok_number: return ParseNumberExpr(); 770 case '(': return ParseParenExpr(); 771 } 772 } 773 774 /// binoprhs 775 /// ::= ('+' primary)* 776 static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) { 777 // If this is a binop, find its precedence. 778 while (1) { 779 int TokPrec = GetTokPrecedence(); 780 781 // If this is a binop that binds at least as tightly as the current binop, 782 // consume it, otherwise we are done. 783 if (TokPrec < ExprPrec) 784 return LHS; 785 786 // Okay, we know this is a binop. 787 int BinOp = CurTok; 788 getNextToken(); // eat binop 789 790 // Parse the primary expression after the binary operator. 791 ExprAST *RHS = ParsePrimary(); 792 if (!RHS) return 0; 793 794 // If BinOp binds less tightly with RHS than the operator after RHS, let 795 // the pending operator take RHS as its LHS. 796 int NextPrec = GetTokPrecedence(); 797 if (TokPrec < NextPrec) { 798 RHS = ParseBinOpRHS(TokPrec+1, RHS); 799 if (RHS == 0) return 0; 800 } 801 802 // Merge LHS/RHS. 803 LHS = new BinaryExprAST(BinOp, LHS, RHS); 804 } 805 } 806 807 /// expression 808 /// ::= primary binoprhs 809 /// 810 static ExprAST *ParseExpression() { 811 ExprAST *LHS = ParsePrimary(); 812 if (!LHS) return 0; 813 814 return ParseBinOpRHS(0, LHS); 815 } 816 817 /// prototype 818 /// ::= id '(' id* ')' 819 static PrototypeAST *ParsePrototype() { 820 if (CurTok != tok_identifier) 821 return ErrorP("Expected function name in prototype"); 822 823 std::string FnName = IdentifierStr; 824 getNextToken(); 825 826 if (CurTok != '(') 827 return ErrorP("Expected '(' in prototype"); 828 829 std::vector<std::string> ArgNames; 830 while (getNextToken() == tok_identifier) 831 ArgNames.push_back(IdentifierStr); 832 if (CurTok != ')') 833 return ErrorP("Expected ')' in prototype"); 834 835 // success. 836 getNextToken(); // eat ')'. 837 838 return new PrototypeAST(FnName, ArgNames); 839 } 840 841 /// definition ::= 'def' prototype expression 842 static FunctionAST *ParseDefinition() { 843 getNextToken(); // eat def. 844 PrototypeAST *Proto = ParsePrototype(); 845 if (Proto == 0) return 0; 846 847 if (ExprAST *E = ParseExpression()) 848 return new FunctionAST(Proto, E); 849 return 0; 850 } 851 852 /// toplevelexpr ::= expression 853 static FunctionAST *ParseTopLevelExpr() { 854 if (ExprAST *E = ParseExpression()) { 855 // Make an anonymous proto. 856 PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>()); 857 return new FunctionAST(Proto, E); 858 } 859 return 0; 860 } 861 862 /// external ::= 'extern' prototype 863 static PrototypeAST *ParseExtern() { 864 getNextToken(); // eat extern. 865 return ParsePrototype(); 866 } 867 868 //===----------------------------------------------------------------------===// 869 // Code Generation 870 //===----------------------------------------------------------------------===// 871 872 static Module *TheModule; 873 static IRBuilder<> Builder(getGlobalContext()); 874 static std::map<std::string, Value*> NamedValues; 875 static FunctionPassManager *TheFPM; 876 877 Value *ErrorV(const char *Str) { Error(Str); return 0; } 878 879 Value *NumberExprAST::Codegen() { 880 return ConstantFP::get(getGlobalContext(), APFloat(Val)); 881 } 882 883 Value *VariableExprAST::Codegen() { 884 // Look this variable up in the function. 885 Value *V = NamedValues[Name]; 886 return V ? V : ErrorV("Unknown variable name"); 887 } 888 889 Value *BinaryExprAST::Codegen() { 890 Value *L = LHS->Codegen(); 891 Value *R = RHS->Codegen(); 892 if (L == 0 || R == 0) return 0; 893 894 switch (Op) { 895 case '+': return Builder.CreateFAdd(L, R, "addtmp"); 896 case '-': return Builder.CreateFSub(L, R, "subtmp"); 897 case '*': return Builder.CreateFMul(L, R, "multmp"); 898 case '<': 899 L = Builder.CreateFCmpULT(L, R, "cmptmp"); 900 // Convert bool 0/1 to double 0.0 or 1.0 901 return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()), 902 "booltmp"); 903 default: return ErrorV("invalid binary operator"); 904 } 905 } 906 907 Value *CallExprAST::Codegen() { 908 // Look up the name in the global module table. 909 Function *CalleeF = TheModule->getFunction(Callee); 910 if (CalleeF == 0) 911 return ErrorV("Unknown function referenced"); 912 913 // If argument mismatch error. 914 if (CalleeF->arg_size() != Args.size()) 915 return ErrorV("Incorrect # arguments passed"); 916 917 std::vector<Value*> ArgsV; 918 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 919 ArgsV.push_back(Args[i]->Codegen()); 920 if (ArgsV.back() == 0) return 0; 921 } 922 923 return Builder.CreateCall(CalleeF, ArgsV, "calltmp"); 924 } 925 926 Function *PrototypeAST::Codegen() { 927 // Make the function type: double(double,double) etc. 928 std::vector<Type*> Doubles(Args.size(), 929 Type::getDoubleTy(getGlobalContext())); 930 FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()), 931 Doubles, false); 932 933 Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule); 934 935 // If F conflicted, there was already something named 'Name'. If it has a 936 // body, don't allow redefinition or reextern. 937 if (F->getName() != Name) { 938 // Delete the one we just made and get the existing one. 939 F->eraseFromParent(); 940 F = TheModule->getFunction(Name); 941 942 // If F already has a body, reject this. 943 if (!F->empty()) { 944 ErrorF("redefinition of function"); 945 return 0; 946 } 947 948 // If F took a different number of args, reject. 949 if (F->arg_size() != Args.size()) { 950 ErrorF("redefinition of function with different # args"); 951 return 0; 952 } 953 } 954 955 // Set names for all arguments. 956 unsigned Idx = 0; 957 for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size(); 958 ++AI, ++Idx) { 959 AI->setName(Args[Idx]); 960 961 // Add arguments to variable symbol table. 962 NamedValues[Args[Idx]] = AI; 963 } 964 965 return F; 966 } 967 968 Function *FunctionAST::Codegen() { 969 NamedValues.clear(); 970 971 Function *TheFunction = Proto->Codegen(); 972 if (TheFunction == 0) 973 return 0; 974 975 // Create a new basic block to start insertion into. 976 BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction); 977 Builder.SetInsertPoint(BB); 978 979 if (Value *RetVal = Body->Codegen()) { 980 // Finish off the function. 981 Builder.CreateRet(RetVal); 982 983 // Validate the generated code, checking for consistency. 984 verifyFunction(*TheFunction); 985 986 // Optimize the function. 987 TheFPM->run(*TheFunction); 988 989 return TheFunction; 990 } 991 992 // Error reading body, remove function. 993 TheFunction->eraseFromParent(); 994 return 0; 995 } 996 997 //===----------------------------------------------------------------------===// 998 // Top-Level parsing and JIT Driver 999 //===----------------------------------------------------------------------===// 1000 1001 static ExecutionEngine *TheExecutionEngine; 1002 1003 static void HandleDefinition() { 1004 if (FunctionAST *F = ParseDefinition()) { 1005 if (Function *LF = F->Codegen()) { 1006 fprintf(stderr, "Read function definition:"); 1007 LF->dump(); 1008 } 1009 } else { 1010 // Skip token for error recovery. 1011 getNextToken(); 1012 } 1013 } 1014 1015 static void HandleExtern() { 1016 if (PrototypeAST *P = ParseExtern()) { 1017 if (Function *F = P->Codegen()) { 1018 fprintf(stderr, "Read extern: "); 1019 F->dump(); 1020 } 1021 } else { 1022 // Skip token for error recovery. 1023 getNextToken(); 1024 } 1025 } 1026 1027 static void HandleTopLevelExpression() { 1028 // Evaluate a top-level expression into an anonymous function. 1029 if (FunctionAST *F = ParseTopLevelExpr()) { 1030 if (Function *LF = F->Codegen()) { 1031 fprintf(stderr, "Read top-level expression:"); 1032 LF->dump(); 1033 1034 // JIT the function, returning a function pointer. 1035 void *FPtr = TheExecutionEngine->getPointerToFunction(LF); 1036 1037 // Cast it to the right type (takes no arguments, returns a double) so we 1038 // can call it as a native function. 1039 double (*FP)() = (double (*)())(intptr_t)FPtr; 1040 fprintf(stderr, "Evaluated to %f\n", FP()); 1041 } 1042 } else { 1043 // Skip token for error recovery. 1044 getNextToken(); 1045 } 1046 } 1047 1048 /// top ::= definition | external | expression | ';' 1049 static void MainLoop() { 1050 while (1) { 1051 fprintf(stderr, "ready> "); 1052 switch (CurTok) { 1053 case tok_eof: return; 1054 case ';': getNextToken(); break; // ignore top-level semicolons. 1055 case tok_def: HandleDefinition(); break; 1056 case tok_extern: HandleExtern(); break; 1057 default: HandleTopLevelExpression(); break; 1058 } 1059 } 1060 } 1061 1062 //===----------------------------------------------------------------------===// 1063 // "Library" functions that can be "extern'd" from user code. 1064 //===----------------------------------------------------------------------===// 1065 1066 /// putchard - putchar that takes a double and returns 0. 1067 extern "C" 1068 double putchard(double X) { 1069 putchar((char)X); 1070 return 0; 1071 } 1072 1073 //===----------------------------------------------------------------------===// 1074 // Main driver code. 1075 //===----------------------------------------------------------------------===// 1076 1077 int main() { 1078 InitializeNativeTarget(); 1079 LLVMContext &Context = getGlobalContext(); 1080 1081 // Install standard binary operators. 1082 // 1 is lowest precedence. 1083 BinopPrecedence['<'] = 10; 1084 BinopPrecedence['+'] = 20; 1085 BinopPrecedence['-'] = 20; 1086 BinopPrecedence['*'] = 40; // highest. 1087 1088 // Prime the first token. 1089 fprintf(stderr, "ready> "); 1090 getNextToken(); 1091 1092 // Make the module, which holds all the code. 1093 TheModule = new Module("my cool jit", Context); 1094 1095 // Create the JIT. This takes ownership of the module. 1096 std::string ErrStr; 1097 TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create(); 1098 if (!TheExecutionEngine) { 1099 fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str()); 1100 exit(1); 1101 } 1102 1103 FunctionPassManager OurFPM(TheModule); 1104 1105 // Set up the optimizer pipeline. Start with registering info about how the 1106 // target lays out data structures. 1107 OurFPM.add(new TargetData(*TheExecutionEngine->getTargetData())); 1108 // Provide basic AliasAnalysis support for GVN. 1109 OurFPM.add(createBasicAliasAnalysisPass()); 1110 // Do simple "peephole" optimizations and bit-twiddling optzns. 1111 OurFPM.add(createInstructionCombiningPass()); 1112 // Reassociate expressions. 1113 OurFPM.add(createReassociatePass()); 1114 // Eliminate Common SubExpressions. 1115 OurFPM.add(createGVNPass()); 1116 // Simplify the control flow graph (deleting unreachable blocks, etc). 1117 OurFPM.add(createCFGSimplificationPass()); 1118 1119 OurFPM.doInitialization(); 1120 1121 // Set the global so the code gen can use this. 1122 TheFPM = &OurFPM; 1123 1124 // Run the main "interpreter loop" now. 1125 MainLoop(); 1126 1127 TheFPM = 0; 1128 1129 // Print out all of the generated code. 1130 TheModule->dump(); 1131 1132 return 0; 1133 } 1134 </pre> 1135 </div> 1136 1137 <a href="LangImpl5.html">Next: Extending the language: control flow</a> 1138 </div> 1139 1140 <!-- *********************************************************************** --> 1141 <hr> 1142 <address> 1143 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img 1144 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a> 1145 <a href="http://validator.w3.org/check/referer"><img 1146 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a> 1147 1148 <a href="mailto:sabre (a] nondot.org">Chris Lattner</a><br> 1149 <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br> 1150 Last modified: $Date: 2011-10-16 04:07:38 -0400 (Sun, 16 Oct 2011) $ 1151 </address> 1152 </body> 1153 </html> 1154