Home | History | Annotate | Download | only in tutorial
      1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
      2                       "http://www.w3.org/TR/html4/strict.dtd">
      3 
      4 <html>
      5 <head>
      6   <title>Kaleidoscope: Adding JIT and Optimizer Support</title>
      7   <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
      8   <meta name="author" content="Chris Lattner">
      9   <meta name="author" content="Erick Tryzelaar">
     10   <link rel="stylesheet" href="../llvm.css" type="text/css">
     11 </head>
     12 
     13 <body>
     14 
     15 <h1>Kaleidoscope: Adding JIT and Optimizer Support</h1>
     16 
     17 <ul>
     18 <li><a href="index.html">Up to Tutorial Index</a></li>
     19 <li>Chapter 4
     20   <ol>
     21     <li><a href="#intro">Chapter 4 Introduction</a></li>
     22     <li><a href="#trivialconstfold">Trivial Constant Folding</a></li>
     23     <li><a href="#optimizerpasses">LLVM Optimization Passes</a></li>
     24     <li><a href="#jit">Adding a JIT Compiler</a></li>
     25     <li><a href="#code">Full Code Listing</a></li>
     26   </ol>
     27 </li>
     28 <li><a href="OCamlLangImpl5.html">Chapter 5</a>: Extending the Language: Control
     29 Flow</li>
     30 </ul>
     31 
     32 <div class="doc_author">
     33 	<p>
     34 		Written by <a href="mailto:sabre (a] nondot.org">Chris Lattner</a>
     35 		and <a href="mailto:idadesub (a] users.sourceforge.net">Erick Tryzelaar</a>
     36 	</p>
     37 </div>
     38 
     39 <!-- *********************************************************************** -->
     40 <h2><a name="intro">Chapter 4 Introduction</a></h2>
     41 <!-- *********************************************************************** -->
     42 
     43 <div>
     44 
     45 <p>Welcome to Chapter 4 of the "<a href="index.html">Implementing a language
     46 with LLVM</a>" tutorial.  Chapters 1-3 described the implementation of a simple
     47 language and added support for generating LLVM IR.  This chapter describes
     48 two new techniques: adding optimizer support to your language, and adding JIT
     49 compiler support.  These additions will demonstrate how to get nice, efficient code
     50 for the Kaleidoscope language.</p>
     51 
     52 </div>
     53 
     54 <!-- *********************************************************************** -->
     55 <h2><a name="trivialconstfold">Trivial Constant Folding</a></h2>
     56 <!-- *********************************************************************** -->
     57 
     58 <div>
     59 
     60 <p><b>Note:</b> the default <tt>IRBuilder</tt> now always includes the constant 
     61 folding optimisations below.<p>
     62 
     63 <p>
     64 Our demonstration for Chapter 3 is elegant and easy to extend.  Unfortunately,
     65 it does not produce wonderful code.  For example, when compiling simple code,
     66 we don't get obvious optimizations:</p>
     67 
     68 <div class="doc_code">
     69 <pre>
     70 ready&gt; <b>def test(x) 1+2+x;</b>
     71 Read function definition:
     72 define double @test(double %x) {
     73 entry:
     74         %addtmp = fadd double 1.000000e+00, 2.000000e+00
     75         %addtmp1 = fadd double %addtmp, %x
     76         ret double %addtmp1
     77 }
     78 </pre>
     79 </div>
     80 
     81 <p>This code is a very, very literal transcription of the AST built by parsing
     82 the input. As such, this transcription lacks optimizations like constant folding
     83 (we'd like to get "<tt>add x, 3.0</tt>" in the example above) as well as other
     84 more important optimizations.  Constant folding, in particular, is a very common
     85 and very important optimization: so much so that many language implementors
     86 implement constant folding support in their AST representation.</p>
     87 
     88 <p>With LLVM, you don't need this support in the AST.  Since all calls to build
     89 LLVM IR go through the LLVM builder, it would be nice if the builder itself
     90 checked to see if there was a constant folding opportunity when you call it.
     91 If so, it could just do the constant fold and return the constant instead of
     92 creating an instruction.  This is exactly what the <tt>LLVMFoldingBuilder</tt>
     93 class does.
     94 
     95 <p>All we did was switch from <tt>LLVMBuilder</tt> to
     96 <tt>LLVMFoldingBuilder</tt>.  Though we change no other code, we now have all of our
     97 instructions implicitly constant folded without us having to do anything
     98 about it.  For example, the input above now compiles to:</p>
     99 
    100 <div class="doc_code">
    101 <pre>
    102 ready&gt; <b>def test(x) 1+2+x;</b>
    103 Read function definition:
    104 define double @test(double %x) {
    105 entry:
    106         %addtmp = fadd double 3.000000e+00, %x
    107         ret double %addtmp
    108 }
    109 </pre>
    110 </div>
    111 
    112 <p>Well, that was easy :).  In practice, we recommend always using
    113 <tt>LLVMFoldingBuilder</tt> when generating code like this.  It has no
    114 "syntactic overhead" for its use (you don't have to uglify your compiler with
    115 constant checks everywhere) and it can dramatically reduce the amount of
    116 LLVM IR that is generated in some cases (particular for languages with a macro
    117 preprocessor or that use a lot of constants).</p>
    118 
    119 <p>On the other hand, the <tt>LLVMFoldingBuilder</tt> is limited by the fact
    120 that it does all of its analysis inline with the code as it is built.  If you
    121 take a slightly more complex example:</p>
    122 
    123 <div class="doc_code">
    124 <pre>
    125 ready&gt; <b>def test(x) (1+2+x)*(x+(1+2));</b>
    126 ready&gt; Read function definition:
    127 define double @test(double %x) {
    128 entry:
    129         %addtmp = fadd double 3.000000e+00, %x
    130         %addtmp1 = fadd double %x, 3.000000e+00
    131         %multmp = fmul double %addtmp, %addtmp1
    132         ret double %multmp
    133 }
    134 </pre>
    135 </div>
    136 
    137 <p>In this case, the LHS and RHS of the multiplication are the same value.  We'd
    138 really like to see this generate "<tt>tmp = x+3; result = tmp*tmp;</tt>" instead
    139 of computing "<tt>x*3</tt>" twice.</p>
    140 
    141 <p>Unfortunately, no amount of local analysis will be able to detect and correct
    142 this.  This requires two transformations: reassociation of expressions (to
    143 make the add's lexically identical) and Common Subexpression Elimination (CSE)
    144 to  delete the redundant add instruction.  Fortunately, LLVM provides a broad
    145 range of optimizations that you can use, in the form of "passes".</p>
    146 
    147 </div>
    148 
    149 <!-- *********************************************************************** -->
    150 <h2><a name="optimizerpasses">LLVM Optimization Passes</a></h2>
    151 <!-- *********************************************************************** -->
    152 
    153 <div>
    154 
    155 <p>LLVM provides many optimization passes, which do many different sorts of
    156 things and have different tradeoffs.  Unlike other systems, LLVM doesn't hold
    157 to the mistaken notion that one set of optimizations is right for all languages
    158 and for all situations.  LLVM allows a compiler implementor to make complete
    159 decisions about what optimizations to use, in which order, and in what
    160 situation.</p>
    161 
    162 <p>As a concrete example, LLVM supports both "whole module" passes, which look
    163 across as large of body of code as they can (often a whole file, but if run
    164 at link time, this can be a substantial portion of the whole program).  It also
    165 supports and includes "per-function" passes which just operate on a single
    166 function at a time, without looking at other functions.  For more information
    167 on passes and how they are run, see the <a href="../WritingAnLLVMPass.html">How
    168 to Write a Pass</a> document and the <a href="../Passes.html">List of LLVM
    169 Passes</a>.</p>
    170 
    171 <p>For Kaleidoscope, we are currently generating functions on the fly, one at
    172 a time, as the user types them in.  We aren't shooting for the ultimate
    173 optimization experience in this setting, but we also want to catch the easy and
    174 quick stuff where possible.  As such, we will choose to run a few per-function
    175 optimizations as the user types the function in.  If we wanted to make a "static
    176 Kaleidoscope compiler", we would use exactly the code we have now, except that
    177 we would defer running the optimizer until the entire file has been parsed.</p>
    178 
    179 <p>In order to get per-function optimizations going, we need to set up a
    180 <a href="../WritingAnLLVMPass.html#passmanager">Llvm.PassManager</a> to hold and
    181 organize the LLVM optimizations that we want to run.  Once we have that, we can
    182 add a set of optimizations to run.  The code looks like this:</p>
    183 
    184 <div class="doc_code">
    185 <pre>
    186   (* Create the JIT. *)
    187   let the_execution_engine = ExecutionEngine.create Codegen.the_module in
    188   let the_fpm = PassManager.create_function Codegen.the_module in
    189 
    190   (* Set up the optimizer pipeline.  Start with registering info about how the
    191    * target lays out data structures. *)
    192   TargetData.add (ExecutionEngine.target_data the_execution_engine) the_fpm;
    193 
    194   (* Do simple "peephole" optimizations and bit-twiddling optzn. *)
    195   add_instruction_combining the_fpm;
    196 
    197   (* reassociate expressions. *)
    198   add_reassociation the_fpm;
    199 
    200   (* Eliminate Common SubExpressions. *)
    201   add_gvn the_fpm;
    202 
    203   (* Simplify the control flow graph (deleting unreachable blocks, etc). *)
    204   add_cfg_simplification the_fpm;
    205 
    206   ignore (PassManager.initialize the_fpm);
    207 
    208   (* Run the main "interpreter loop" now. *)
    209   Toplevel.main_loop the_fpm the_execution_engine stream;
    210 </pre>
    211 </div>
    212 
    213 <p>The meat of the matter here, is the definition of "<tt>the_fpm</tt>".  It
    214 requires a pointer to the <tt>the_module</tt> to construct itself.  Once it is
    215 set up, we use a series of "add" calls to add a bunch of LLVM passes.  The
    216 first pass is basically boilerplate, it adds a pass so that later optimizations
    217 know how the data structures in the program are laid out.  The
    218 "<tt>the_execution_engine</tt>" variable is related to the JIT, which we will
    219 get to in the next section.</p>
    220 
    221 <p>In this case, we choose to add 4 optimization passes.  The passes we chose
    222 here are a pretty standard set of "cleanup" optimizations that are useful for
    223 a wide variety of code.  I won't delve into what they do but, believe me,
    224 they are a good starting place :).</p>
    225 
    226 <p>Once the <tt>Llvm.PassManager.</tt> is set up, we need to make use of it.
    227 We do this by running it after our newly created function is constructed (in
    228 <tt>Codegen.codegen_func</tt>), but before it is returned to the client:</p>
    229 
    230 <div class="doc_code">
    231 <pre>
    232 let codegen_func the_fpm = function
    233       ...
    234       try
    235         let ret_val = codegen_expr body in
    236 
    237         (* Finish off the function. *)
    238         let _ = build_ret ret_val builder in
    239 
    240         (* Validate the generated code, checking for consistency. *)
    241         Llvm_analysis.assert_valid_function the_function;
    242 
    243         (* Optimize the function. *)
    244         let _ = PassManager.run_function the_function the_fpm in
    245 
    246         the_function
    247 </pre>
    248 </div>
    249 
    250 <p>As you can see, this is pretty straightforward.  The <tt>the_fpm</tt>
    251 optimizes and updates the LLVM Function* in place, improving (hopefully) its
    252 body.  With this in place, we can try our test above again:</p>
    253 
    254 <div class="doc_code">
    255 <pre>
    256 ready&gt; <b>def test(x) (1+2+x)*(x+(1+2));</b>
    257 ready&gt; Read function definition:
    258 define double @test(double %x) {
    259 entry:
    260         %addtmp = fadd double %x, 3.000000e+00
    261         %multmp = fmul double %addtmp, %addtmp
    262         ret double %multmp
    263 }
    264 </pre>
    265 </div>
    266 
    267 <p>As expected, we now get our nicely optimized code, saving a floating point
    268 add instruction from every execution of this function.</p>
    269 
    270 <p>LLVM provides a wide variety of optimizations that can be used in certain
    271 circumstances.  Some <a href="../Passes.html">documentation about the various
    272 passes</a> is available, but it isn't very complete.  Another good source of
    273 ideas can come from looking at the passes that <tt>llvm-gcc</tt> or
    274 <tt>llvm-ld</tt> run to get started.  The "<tt>opt</tt>" tool allows you to
    275 experiment with passes from the command line, so you can see if they do
    276 anything.</p>
    277 
    278 <p>Now that we have reasonable code coming out of our front-end, lets talk about
    279 executing it!</p>
    280 
    281 </div>
    282 
    283 <!-- *********************************************************************** -->
    284 <h2><a name="jit">Adding a JIT Compiler</a></h2>
    285 <!-- *********************************************************************** -->
    286 
    287 <div>
    288 
    289 <p>Code that is available in LLVM IR can have a wide variety of tools
    290 applied to it.  For example, you can run optimizations on it (as we did above),
    291 you can dump it out in textual or binary forms, you can compile the code to an
    292 assembly file (.s) for some target, or you can JIT compile it.  The nice thing
    293 about the LLVM IR representation is that it is the "common currency" between
    294 many different parts of the compiler.
    295 </p>
    296 
    297 <p>In this section, we'll add JIT compiler support to our interpreter.  The
    298 basic idea that we want for Kaleidoscope is to have the user enter function
    299 bodies as they do now, but immediately evaluate the top-level expressions they
    300 type in.  For example, if they type in "1 + 2;", we should evaluate and print
    301 out 3.  If they define a function, they should be able to call it from the
    302 command line.</p>
    303 
    304 <p>In order to do this, we first declare and initialize the JIT.  This is done
    305 by adding a global variable and a call in <tt>main</tt>:</p>
    306 
    307 <div class="doc_code">
    308 <pre>
    309 ...
    310 let main () =
    311   ...
    312   <b>(* Create the JIT. *)
    313   let the_execution_engine = ExecutionEngine.create Codegen.the_module in</b>
    314   ...
    315 </pre>
    316 </div>
    317 
    318 <p>This creates an abstract "Execution Engine" which can be either a JIT
    319 compiler or the LLVM interpreter.  LLVM will automatically pick a JIT compiler
    320 for you if one is available for your platform, otherwise it will fall back to
    321 the interpreter.</p>
    322 
    323 <p>Once the <tt>Llvm_executionengine.ExecutionEngine.t</tt> is created, the JIT
    324 is ready to be used.  There are a variety of APIs that are useful, but the
    325 simplest one is the "<tt>Llvm_executionengine.ExecutionEngine.run_function</tt>"
    326 function.  This method JIT compiles the specified LLVM Function and returns a
    327 function pointer to the generated machine code.  In our case, this means that we
    328 can change the code that parses a top-level expression to look like this:</p>
    329 
    330 <div class="doc_code">
    331 <pre>
    332             (* Evaluate a top-level expression into an anonymous function. *)
    333             let e = Parser.parse_toplevel stream in
    334             print_endline "parsed a top-level expr";
    335             let the_function = Codegen.codegen_func the_fpm e in
    336             dump_value the_function;
    337 
    338             (* JIT the function, returning a function pointer. *)
    339             let result = ExecutionEngine.run_function the_function [||]
    340               the_execution_engine in
    341 
    342             print_string "Evaluated to ";
    343             print_float (GenericValue.as_float Codegen.double_type result);
    344             print_newline ();
    345 </pre>
    346 </div>
    347 
    348 <p>Recall that we compile top-level expressions into a self-contained LLVM
    349 function that takes no arguments and returns the computed double.  Because the
    350 LLVM JIT compiler matches the native platform ABI, this means that you can just
    351 cast the result pointer to a function pointer of that type and call it directly.
    352 This means, there is no difference between JIT compiled code and native machine
    353 code that is statically linked into your application.</p>
    354 
    355 <p>With just these two changes, lets see how Kaleidoscope works now!</p>
    356 
    357 <div class="doc_code">
    358 <pre>
    359 ready&gt; <b>4+5;</b>
    360 define double @""() {
    361 entry:
    362         ret double 9.000000e+00
    363 }
    364 
    365 <em>Evaluated to 9.000000</em>
    366 </pre>
    367 </div>
    368 
    369 <p>Well this looks like it is basically working.  The dump of the function
    370 shows the "no argument function that always returns double" that we synthesize
    371 for each top level expression that is typed in.  This demonstrates very basic
    372 functionality, but can we do more?</p>
    373 
    374 <div class="doc_code">
    375 <pre>
    376 ready&gt; <b>def testfunc(x y) x + y*2; </b>
    377 Read function definition:
    378 define double @testfunc(double %x, double %y) {
    379 entry:
    380         %multmp = fmul double %y, 2.000000e+00
    381         %addtmp = fadd double %multmp, %x
    382         ret double %addtmp
    383 }
    384 
    385 ready&gt; <b>testfunc(4, 10);</b>
    386 define double @""() {
    387 entry:
    388         %calltmp = call double @testfunc(double 4.000000e+00, double 1.000000e+01)
    389         ret double %calltmp
    390 }
    391 
    392 <em>Evaluated to 24.000000</em>
    393 </pre>
    394 </div>
    395 
    396 <p>This illustrates that we can now call user code, but there is something a bit
    397 subtle going on here.  Note that we only invoke the JIT on the anonymous
    398 functions that <em>call testfunc</em>, but we never invoked it
    399 on <em>testfunc</em> itself.  What actually happened here is that the JIT
    400 scanned for all non-JIT'd functions transitively called from the anonymous
    401 function and compiled all of them before returning
    402 from <tt>run_function</tt>.</p>
    403 
    404 <p>The JIT provides a number of other more advanced interfaces for things like
    405 freeing allocated machine code, rejit'ing functions to update them, etc.
    406 However, even with this simple code, we get some surprisingly powerful
    407 capabilities - check this out (I removed the dump of the anonymous functions,
    408 you should get the idea by now :) :</p>
    409 
    410 <div class="doc_code">
    411 <pre>
    412 ready&gt; <b>extern sin(x);</b>
    413 Read extern:
    414 declare double @sin(double)
    415 
    416 ready&gt; <b>extern cos(x);</b>
    417 Read extern:
    418 declare double @cos(double)
    419 
    420 ready&gt; <b>sin(1.0);</b>
    421 <em>Evaluated to 0.841471</em>
    422 
    423 ready&gt; <b>def foo(x) sin(x)*sin(x) + cos(x)*cos(x);</b>
    424 Read function definition:
    425 define double @foo(double %x) {
    426 entry:
    427         %calltmp = call double @sin(double %x)
    428         %multmp = fmul double %calltmp, %calltmp
    429         %calltmp2 = call double @cos(double %x)
    430         %multmp4 = fmul double %calltmp2, %calltmp2
    431         %addtmp = fadd double %multmp, %multmp4
    432         ret double %addtmp
    433 }
    434 
    435 ready&gt; <b>foo(4.0);</b>
    436 <em>Evaluated to 1.000000</em>
    437 </pre>
    438 </div>
    439 
    440 <p>Whoa, how does the JIT know about sin and cos?  The answer is surprisingly
    441 simple: in this example, the JIT started execution of a function and got to a
    442 function call.  It realized that the function was not yet JIT compiled and
    443 invoked the standard set of routines to resolve the function.  In this case,
    444 there is no body defined for the function, so the JIT ended up calling
    445 "<tt>dlsym("sin")</tt>" on the Kaleidoscope process itself.  Since
    446 "<tt>sin</tt>" is defined within the JIT's address space, it simply patches up
    447 calls in the module to call the libm version of <tt>sin</tt> directly.</p>
    448 
    449 <p>The LLVM JIT provides a number of interfaces (look in the
    450 <tt>llvm_executionengine.mli</tt> file) for controlling how unknown functions
    451 get resolved.  It allows you to establish explicit mappings between IR objects
    452 and addresses (useful for LLVM global variables that you want to map to static
    453 tables, for example), allows you to dynamically decide on the fly based on the
    454 function name, and even allows you to have the JIT compile functions lazily the
    455 first time they're called.</p>
    456 
    457 <p>One interesting application of this is that we can now extend the language
    458 by writing arbitrary C code to implement operations.  For example, if we add:
    459 </p>
    460 
    461 <div class="doc_code">
    462 <pre>
    463 /* putchard - putchar that takes a double and returns 0. */
    464 extern "C"
    465 double putchard(double X) {
    466   putchar((char)X);
    467   return 0;
    468 }
    469 </pre>
    470 </div>
    471 
    472 <p>Now we can produce simple output to the console by using things like:
    473 "<tt>extern putchard(x); putchard(120);</tt>", which prints a lowercase 'x' on
    474 the console (120 is the ASCII code for 'x').  Similar code could be used to
    475 implement file I/O, console input, and many other capabilities in
    476 Kaleidoscope.</p>
    477 
    478 <p>This completes the JIT and optimizer chapter of the Kaleidoscope tutorial. At
    479 this point, we can compile a non-Turing-complete programming language, optimize
    480 and JIT compile it in a user-driven way.  Next up we'll look into <a
    481 href="OCamlLangImpl5.html">extending the language with control flow
    482 constructs</a>, tackling some interesting LLVM IR issues along the way.</p>
    483 
    484 </div>
    485 
    486 <!-- *********************************************************************** -->
    487 <h2><a name="code">Full Code Listing</a></h2>
    488 <!-- *********************************************************************** -->
    489 
    490 <div>
    491 
    492 <p>
    493 Here is the complete code listing for our running example, enhanced with the
    494 LLVM JIT and optimizer.  To build this example, use:
    495 </p>
    496 
    497 <div class="doc_code">
    498 <pre>
    499 # Compile
    500 ocamlbuild toy.byte
    501 # Run
    502 ./toy.byte
    503 </pre>
    504 </div>
    505 
    506 <p>Here is the code:</p>
    507 
    508 <dl>
    509 <dt>_tags:</dt>
    510 <dd class="doc_code">
    511 <pre>
    512 &lt;{lexer,parser}.ml&gt;: use_camlp4, pp(camlp4of)
    513 &lt;*.{byte,native}&gt;: g++, use_llvm, use_llvm_analysis
    514 &lt;*.{byte,native}&gt;: use_llvm_executionengine, use_llvm_target
    515 &lt;*.{byte,native}&gt;: use_llvm_scalar_opts, use_bindings
    516 </pre>
    517 </dd>
    518 
    519 <dt>myocamlbuild.ml:</dt>
    520 <dd class="doc_code">
    521 <pre>
    522 open Ocamlbuild_plugin;;
    523 
    524 ocaml_lib ~extern:true "llvm";;
    525 ocaml_lib ~extern:true "llvm_analysis";;
    526 ocaml_lib ~extern:true "llvm_executionengine";;
    527 ocaml_lib ~extern:true "llvm_target";;
    528 ocaml_lib ~extern:true "llvm_scalar_opts";;
    529 
    530 flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"]);;
    531 dep ["link"; "ocaml"; "use_bindings"] ["bindings.o"];;
    532 </pre>
    533 </dd>
    534 
    535 <dt>token.ml:</dt>
    536 <dd class="doc_code">
    537 <pre>
    538 (*===----------------------------------------------------------------------===
    539  * Lexer Tokens
    540  *===----------------------------------------------------------------------===*)
    541 
    542 (* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
    543  * these others for known things. *)
    544 type token =
    545   (* commands *)
    546   | Def | Extern
    547 
    548   (* primary *)
    549   | Ident of string | Number of float
    550 
    551   (* unknown *)
    552   | Kwd of char
    553 </pre>
    554 </dd>
    555 
    556 <dt>lexer.ml:</dt>
    557 <dd class="doc_code">
    558 <pre>
    559 (*===----------------------------------------------------------------------===
    560  * Lexer
    561  *===----------------------------------------------------------------------===*)
    562 
    563 let rec lex = parser
    564   (* Skip any whitespace. *)
    565   | [&lt; ' (' ' | '\n' | '\r' | '\t'); stream &gt;] -&gt; lex stream
    566 
    567   (* identifier: [a-zA-Z][a-zA-Z0-9] *)
    568   | [&lt; ' ('A' .. 'Z' | 'a' .. 'z' as c); stream &gt;] -&gt;
    569       let buffer = Buffer.create 1 in
    570       Buffer.add_char buffer c;
    571       lex_ident buffer stream
    572 
    573   (* number: [0-9.]+ *)
    574   | [&lt; ' ('0' .. '9' as c); stream &gt;] -&gt;
    575       let buffer = Buffer.create 1 in
    576       Buffer.add_char buffer c;
    577       lex_number buffer stream
    578 
    579   (* Comment until end of line. *)
    580   | [&lt; ' ('#'); stream &gt;] -&gt;
    581       lex_comment stream
    582 
    583   (* Otherwise, just return the character as its ascii value. *)
    584   | [&lt; 'c; stream &gt;] -&gt;
    585       [&lt; 'Token.Kwd c; lex stream &gt;]
    586 
    587   (* end of stream. *)
    588   | [&lt; &gt;] -&gt; [&lt; &gt;]
    589 
    590 and lex_number buffer = parser
    591   | [&lt; ' ('0' .. '9' | '.' as c); stream &gt;] -&gt;
    592       Buffer.add_char buffer c;
    593       lex_number buffer stream
    594   | [&lt; stream=lex &gt;] -&gt;
    595       [&lt; 'Token.Number (float_of_string (Buffer.contents buffer)); stream &gt;]
    596 
    597 and lex_ident buffer = parser
    598   | [&lt; ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream &gt;] -&gt;
    599       Buffer.add_char buffer c;
    600       lex_ident buffer stream
    601   | [&lt; stream=lex &gt;] -&gt;
    602       match Buffer.contents buffer with
    603       | "def" -&gt; [&lt; 'Token.Def; stream &gt;]
    604       | "extern" -&gt; [&lt; 'Token.Extern; stream &gt;]
    605       | id -&gt; [&lt; 'Token.Ident id; stream &gt;]
    606 
    607 and lex_comment = parser
    608   | [&lt; ' ('\n'); stream=lex &gt;] -&gt; stream
    609   | [&lt; 'c; e=lex_comment &gt;] -&gt; e
    610   | [&lt; &gt;] -&gt; [&lt; &gt;]
    611 </pre>
    612 </dd>
    613 
    614 <dt>ast.ml:</dt>
    615 <dd class="doc_code">
    616 <pre>
    617 (*===----------------------------------------------------------------------===
    618  * Abstract Syntax Tree (aka Parse Tree)
    619  *===----------------------------------------------------------------------===*)
    620 
    621 (* expr - Base type for all expression nodes. *)
    622 type expr =
    623   (* variant for numeric literals like "1.0". *)
    624   | Number of float
    625 
    626   (* variant for referencing a variable, like "a". *)
    627   | Variable of string
    628 
    629   (* variant for a binary operator. *)
    630   | Binary of char * expr * expr
    631 
    632   (* variant for function calls. *)
    633   | Call of string * expr array
    634 
    635 (* proto - This type represents the "prototype" for a function, which captures
    636  * its name, and its argument names (thus implicitly the number of arguments the
    637  * function takes). *)
    638 type proto = Prototype of string * string array
    639 
    640 (* func - This type represents a function definition itself. *)
    641 type func = Function of proto * expr
    642 </pre>
    643 </dd>
    644 
    645 <dt>parser.ml:</dt>
    646 <dd class="doc_code">
    647 <pre>
    648 (*===---------------------------------------------------------------------===
    649  * Parser
    650  *===---------------------------------------------------------------------===*)
    651 
    652 (* binop_precedence - This holds the precedence for each binary operator that is
    653  * defined *)
    654 let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10
    655 
    656 (* precedence - Get the precedence of the pending binary operator token. *)
    657 let precedence c = try Hashtbl.find binop_precedence c with Not_found -&gt; -1
    658 
    659 (* primary
    660  *   ::= identifier
    661  *   ::= numberexpr
    662  *   ::= parenexpr *)
    663 let rec parse_primary = parser
    664   (* numberexpr ::= number *)
    665   | [&lt; 'Token.Number n &gt;] -&gt; Ast.Number n
    666 
    667   (* parenexpr ::= '(' expression ')' *)
    668   | [&lt; 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" &gt;] -&gt; e
    669 
    670   (* identifierexpr
    671    *   ::= identifier
    672    *   ::= identifier '(' argumentexpr ')' *)
    673   | [&lt; 'Token.Ident id; stream &gt;] -&gt;
    674       let rec parse_args accumulator = parser
    675         | [&lt; e=parse_expr; stream &gt;] -&gt;
    676             begin parser
    677               | [&lt; 'Token.Kwd ','; e=parse_args (e :: accumulator) &gt;] -&gt; e
    678               | [&lt; &gt;] -&gt; e :: accumulator
    679             end stream
    680         | [&lt; &gt;] -&gt; accumulator
    681       in
    682       let rec parse_ident id = parser
    683         (* Call. *)
    684         | [&lt; 'Token.Kwd '(';
    685              args=parse_args [];
    686              'Token.Kwd ')' ?? "expected ')'"&gt;] -&gt;
    687             Ast.Call (id, Array.of_list (List.rev args))
    688 
    689         (* Simple variable ref. *)
    690         | [&lt; &gt;] -&gt; Ast.Variable id
    691       in
    692       parse_ident id stream
    693 
    694   | [&lt; &gt;] -&gt; raise (Stream.Error "unknown token when expecting an expression.")
    695 
    696 (* binoprhs
    697  *   ::= ('+' primary)* *)
    698 and parse_bin_rhs expr_prec lhs stream =
    699   match Stream.peek stream with
    700   (* If this is a binop, find its precedence. *)
    701   | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c -&gt;
    702       let token_prec = precedence c in
    703 
    704       (* If this is a binop that binds at least as tightly as the current binop,
    705        * consume it, otherwise we are done. *)
    706       if token_prec &lt; expr_prec then lhs else begin
    707         (* Eat the binop. *)
    708         Stream.junk stream;
    709 
    710         (* Parse the primary expression after the binary operator. *)
    711         let rhs = parse_primary stream in
    712 
    713         (* Okay, we know this is a binop. *)
    714         let rhs =
    715           match Stream.peek stream with
    716           | Some (Token.Kwd c2) -&gt;
    717               (* If BinOp binds less tightly with rhs than the operator after
    718                * rhs, let the pending operator take rhs as its lhs. *)
    719               let next_prec = precedence c2 in
    720               if token_prec &lt; next_prec
    721               then parse_bin_rhs (token_prec + 1) rhs stream
    722               else rhs
    723           | _ -&gt; rhs
    724         in
    725 
    726         (* Merge lhs/rhs. *)
    727         let lhs = Ast.Binary (c, lhs, rhs) in
    728         parse_bin_rhs expr_prec lhs stream
    729       end
    730   | _ -&gt; lhs
    731 
    732 (* expression
    733  *   ::= primary binoprhs *)
    734 and parse_expr = parser
    735   | [&lt; lhs=parse_primary; stream &gt;] -&gt; parse_bin_rhs 0 lhs stream
    736 
    737 (* prototype
    738  *   ::= id '(' id* ')' *)
    739 let parse_prototype =
    740   let rec parse_args accumulator = parser
    741     | [&lt; 'Token.Ident id; e=parse_args (id::accumulator) &gt;] -&gt; e
    742     | [&lt; &gt;] -&gt; accumulator
    743   in
    744 
    745   parser
    746   | [&lt; 'Token.Ident id;
    747        'Token.Kwd '(' ?? "expected '(' in prototype";
    748        args=parse_args [];
    749        'Token.Kwd ')' ?? "expected ')' in prototype" &gt;] -&gt;
    750       (* success. *)
    751       Ast.Prototype (id, Array.of_list (List.rev args))
    752 
    753   | [&lt; &gt;] -&gt;
    754       raise (Stream.Error "expected function name in prototype")
    755 
    756 (* definition ::= 'def' prototype expression *)
    757 let parse_definition = parser
    758   | [&lt; 'Token.Def; p=parse_prototype; e=parse_expr &gt;] -&gt;
    759       Ast.Function (p, e)
    760 
    761 (* toplevelexpr ::= expression *)
    762 let parse_toplevel = parser
    763   | [&lt; e=parse_expr &gt;] -&gt;
    764       (* Make an anonymous proto. *)
    765       Ast.Function (Ast.Prototype ("", [||]), e)
    766 
    767 (*  external ::= 'extern' prototype *)
    768 let parse_extern = parser
    769   | [&lt; 'Token.Extern; e=parse_prototype &gt;] -&gt; e
    770 </pre>
    771 </dd>
    772 
    773 <dt>codegen.ml:</dt>
    774 <dd class="doc_code">
    775 <pre>
    776 (*===----------------------------------------------------------------------===
    777  * Code Generation
    778  *===----------------------------------------------------------------------===*)
    779 
    780 open Llvm
    781 
    782 exception Error of string
    783 
    784 let context = global_context ()
    785 let the_module = create_module context "my cool jit"
    786 let builder = builder context
    787 let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
    788 let double_type = double_type context
    789 
    790 let rec codegen_expr = function
    791   | Ast.Number n -&gt; const_float double_type n
    792   | Ast.Variable name -&gt;
    793       (try Hashtbl.find named_values name with
    794         | Not_found -&gt; raise (Error "unknown variable name"))
    795   | Ast.Binary (op, lhs, rhs) -&gt;
    796       let lhs_val = codegen_expr lhs in
    797       let rhs_val = codegen_expr rhs in
    798       begin
    799         match op with
    800         | '+' -&gt; build_add lhs_val rhs_val "addtmp" builder
    801         | '-' -&gt; build_sub lhs_val rhs_val "subtmp" builder
    802         | '*' -&gt; build_mul lhs_val rhs_val "multmp" builder
    803         | '&lt;' -&gt;
    804             (* Convert bool 0/1 to double 0.0 or 1.0 *)
    805             let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
    806             build_uitofp i double_type "booltmp" builder
    807         | _ -&gt; raise (Error "invalid binary operator")
    808       end
    809   | Ast.Call (callee, args) -&gt;
    810       (* Look up the name in the module table. *)
    811       let callee =
    812         match lookup_function callee the_module with
    813         | Some callee -&gt; callee
    814         | None -&gt; raise (Error "unknown function referenced")
    815       in
    816       let params = params callee in
    817 
    818       (* If argument mismatch error. *)
    819       if Array.length params == Array.length args then () else
    820         raise (Error "incorrect # arguments passed");
    821       let args = Array.map codegen_expr args in
    822       build_call callee args "calltmp" builder
    823 
    824 let codegen_proto = function
    825   | Ast.Prototype (name, args) -&gt;
    826       (* Make the function type: double(double,double) etc. *)
    827       let doubles = Array.make (Array.length args) double_type in
    828       let ft = function_type double_type doubles in
    829       let f =
    830         match lookup_function name the_module with
    831         | None -&gt; declare_function name ft the_module
    832 
    833         (* If 'f' conflicted, there was already something named 'name'. If it
    834          * has a body, don't allow redefinition or reextern. *)
    835         | Some f -&gt;
    836             (* If 'f' already has a body, reject this. *)
    837             if block_begin f &lt;&gt; At_end f then
    838               raise (Error "redefinition of function");
    839 
    840             (* If 'f' took a different number of arguments, reject. *)
    841             if element_type (type_of f) &lt;&gt; ft then
    842               raise (Error "redefinition of function with different # args");
    843             f
    844       in
    845 
    846       (* Set names for all arguments. *)
    847       Array.iteri (fun i a -&gt;
    848         let n = args.(i) in
    849         set_value_name n a;
    850         Hashtbl.add named_values n a;
    851       ) (params f);
    852       f
    853 
    854 let codegen_func the_fpm = function
    855   | Ast.Function (proto, body) -&gt;
    856       Hashtbl.clear named_values;
    857       let the_function = codegen_proto proto in
    858 
    859       (* Create a new basic block to start insertion into. *)
    860       let bb = append_block context "entry" the_function in
    861       position_at_end bb builder;
    862 
    863       try
    864         let ret_val = codegen_expr body in
    865 
    866         (* Finish off the function. *)
    867         let _ = build_ret ret_val builder in
    868 
    869         (* Validate the generated code, checking for consistency. *)
    870         Llvm_analysis.assert_valid_function the_function;
    871 
    872         (* Optimize the function. *)
    873         let _ = PassManager.run_function the_function the_fpm in
    874 
    875         the_function
    876       with e -&gt;
    877         delete_function the_function;
    878         raise e
    879 </pre>
    880 </dd>
    881 
    882 <dt>toplevel.ml:</dt>
    883 <dd class="doc_code">
    884 <pre>
    885 (*===----------------------------------------------------------------------===
    886  * Top-Level parsing and JIT Driver
    887  *===----------------------------------------------------------------------===*)
    888 
    889 open Llvm
    890 open Llvm_executionengine
    891 
    892 (* top ::= definition | external | expression | ';' *)
    893 let rec main_loop the_fpm the_execution_engine stream =
    894   match Stream.peek stream with
    895   | None -&gt; ()
    896 
    897   (* ignore top-level semicolons. *)
    898   | Some (Token.Kwd ';') -&gt;
    899       Stream.junk stream;
    900       main_loop the_fpm the_execution_engine stream
    901 
    902   | Some token -&gt;
    903       begin
    904         try match token with
    905         | Token.Def -&gt;
    906             let e = Parser.parse_definition stream in
    907             print_endline "parsed a function definition.";
    908             dump_value (Codegen.codegen_func the_fpm e);
    909         | Token.Extern -&gt;
    910             let e = Parser.parse_extern stream in
    911             print_endline "parsed an extern.";
    912             dump_value (Codegen.codegen_proto e);
    913         | _ -&gt;
    914             (* Evaluate a top-level expression into an anonymous function. *)
    915             let e = Parser.parse_toplevel stream in
    916             print_endline "parsed a top-level expr";
    917             let the_function = Codegen.codegen_func the_fpm e in
    918             dump_value the_function;
    919 
    920             (* JIT the function, returning a function pointer. *)
    921             let result = ExecutionEngine.run_function the_function [||]
    922               the_execution_engine in
    923 
    924             print_string "Evaluated to ";
    925             print_float (GenericValue.as_float Codegen.double_type result);
    926             print_newline ();
    927         with Stream.Error s | Codegen.Error s -&gt;
    928           (* Skip token for error recovery. *)
    929           Stream.junk stream;
    930           print_endline s;
    931       end;
    932       print_string "ready&gt; "; flush stdout;
    933       main_loop the_fpm the_execution_engine stream
    934 </pre>
    935 </dd>
    936 
    937 <dt>toy.ml:</dt>
    938 <dd class="doc_code">
    939 <pre>
    940 (*===----------------------------------------------------------------------===
    941  * Main driver code.
    942  *===----------------------------------------------------------------------===*)
    943 
    944 open Llvm
    945 open Llvm_executionengine
    946 open Llvm_target
    947 open Llvm_scalar_opts
    948 
    949 let main () =
    950   ignore (initialize_native_target ());
    951 
    952   (* Install standard binary operators.
    953    * 1 is the lowest precedence. *)
    954   Hashtbl.add Parser.binop_precedence '&lt;' 10;
    955   Hashtbl.add Parser.binop_precedence '+' 20;
    956   Hashtbl.add Parser.binop_precedence '-' 20;
    957   Hashtbl.add Parser.binop_precedence '*' 40;    (* highest. *)
    958 
    959   (* Prime the first token. *)
    960   print_string "ready&gt; "; flush stdout;
    961   let stream = Lexer.lex (Stream.of_channel stdin) in
    962 
    963   (* Create the JIT. *)
    964   let the_execution_engine = ExecutionEngine.create Codegen.the_module in
    965   let the_fpm = PassManager.create_function Codegen.the_module in
    966 
    967   (* Set up the optimizer pipeline.  Start with registering info about how the
    968    * target lays out data structures. *)
    969   TargetData.add (ExecutionEngine.target_data the_execution_engine) the_fpm;
    970 
    971   (* Do simple "peephole" optimizations and bit-twiddling optzn. *)
    972   add_instruction_combination the_fpm;
    973 
    974   (* reassociate expressions. *)
    975   add_reassociation the_fpm;
    976 
    977   (* Eliminate Common SubExpressions. *)
    978   add_gvn the_fpm;
    979 
    980   (* Simplify the control flow graph (deleting unreachable blocks, etc). *)
    981   add_cfg_simplification the_fpm;
    982 
    983   ignore (PassManager.initialize the_fpm);
    984 
    985   (* Run the main "interpreter loop" now. *)
    986   Toplevel.main_loop the_fpm the_execution_engine stream;
    987 
    988   (* Print out all the generated code. *)
    989   dump_module Codegen.the_module
    990 ;;
    991 
    992 main ()
    993 </pre>
    994 </dd>
    995 
    996 <dt>bindings.c</dt>
    997 <dd class="doc_code">
    998 <pre>
    999 #include &lt;stdio.h&gt;
   1000 
   1001 /* putchard - putchar that takes a double and returns 0. */
   1002 extern double putchard(double X) {
   1003   putchar((char)X);
   1004   return 0;
   1005 }
   1006 </pre>
   1007 </dd>
   1008 </dl>
   1009 
   1010 <a href="OCamlLangImpl5.html">Next: Extending the language: control flow</a>
   1011 </div>
   1012 
   1013 <!-- *********************************************************************** -->
   1014 <hr>
   1015 <address>
   1016   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
   1017   src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
   1018   <a href="http://validator.w3.org/check/referer"><img
   1019   src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
   1020 
   1021   <a href="mailto:sabre (a] nondot.org">Chris Lattner</a><br>
   1022   <a href="mailto:idadesub (a] users.sourceforge.net">Erick Tryzelaar</a><br>
   1023   <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
   1024   Last modified: $Date: 2011-04-22 20:30:22 -0400 (Fri, 22 Apr 2011) $
   1025 </address>
   1026 </body>
   1027 </html>
   1028