Home | History | Annotate | Download | only in ParallelJIT
      1 //===-- examples/ParallelJIT/ParallelJIT.cpp - Exercise threaded-safe JIT -===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Parallel JIT
     11 //
     12 // This test program creates two LLVM functions then calls them from three
     13 // separate threads.  It requires the pthreads library.
     14 // The three threads are created and then block waiting on a condition variable.
     15 // Once all threads are blocked on the conditional variable, the main thread
     16 // wakes them up. This complicated work is performed so that all three threads
     17 // call into the JIT at the same time (or the best possible approximation of the
     18 // same time). This test had assertion errors until I got the locking right.
     19 
     20 #include <pthread.h>
     21 #include "llvm/LLVMContext.h"
     22 #include "llvm/Module.h"
     23 #include "llvm/Constants.h"
     24 #include "llvm/DerivedTypes.h"
     25 #include "llvm/Instructions.h"
     26 #include "llvm/ExecutionEngine/JIT.h"
     27 #include "llvm/ExecutionEngine/Interpreter.h"
     28 #include "llvm/ExecutionEngine/GenericValue.h"
     29 #include "llvm/Support/TargetSelect.h"
     30 #include <iostream>
     31 using namespace llvm;
     32 
     33 static Function* createAdd1(Module *M) {
     34   // Create the add1 function entry and insert this entry into module M.  The
     35   // function will have a return type of "int" and take an argument of "int".
     36   // The '0' terminates the list of argument types.
     37   Function *Add1F =
     38     cast<Function>(M->getOrInsertFunction("add1",
     39                                           Type::getInt32Ty(M->getContext()),
     40                                           Type::getInt32Ty(M->getContext()),
     41                                           (Type *)0));
     42 
     43   // Add a basic block to the function. As before, it automatically inserts
     44   // because of the last argument.
     45   BasicBlock *BB = BasicBlock::Create(M->getContext(), "EntryBlock", Add1F);
     46 
     47   // Get pointers to the constant `1'.
     48   Value *One = ConstantInt::get(Type::getInt32Ty(M->getContext()), 1);
     49 
     50   // Get pointers to the integer argument of the add1 function...
     51   assert(Add1F->arg_begin() != Add1F->arg_end()); // Make sure there's an arg
     52   Argument *ArgX = Add1F->arg_begin();  // Get the arg
     53   ArgX->setName("AnArg");            // Give it a nice symbolic name for fun.
     54 
     55   // Create the add instruction, inserting it into the end of BB.
     56   Instruction *Add = BinaryOperator::CreateAdd(One, ArgX, "addresult", BB);
     57 
     58   // Create the return instruction and add it to the basic block
     59   ReturnInst::Create(M->getContext(), Add, BB);
     60 
     61   // Now, function add1 is ready.
     62   return Add1F;
     63 }
     64 
     65 static Function *CreateFibFunction(Module *M) {
     66   // Create the fib function and insert it into module M.  This function is said
     67   // to return an int and take an int parameter.
     68   Function *FibF =
     69     cast<Function>(M->getOrInsertFunction("fib",
     70                                           Type::getInt32Ty(M->getContext()),
     71                                           Type::getInt32Ty(M->getContext()),
     72                                           (Type *)0));
     73 
     74   // Add a basic block to the function.
     75   BasicBlock *BB = BasicBlock::Create(M->getContext(), "EntryBlock", FibF);
     76 
     77   // Get pointers to the constants.
     78   Value *One = ConstantInt::get(Type::getInt32Ty(M->getContext()), 1);
     79   Value *Two = ConstantInt::get(Type::getInt32Ty(M->getContext()), 2);
     80 
     81   // Get pointer to the integer argument of the add1 function...
     82   Argument *ArgX = FibF->arg_begin();   // Get the arg.
     83   ArgX->setName("AnArg");            // Give it a nice symbolic name for fun.
     84 
     85   // Create the true_block.
     86   BasicBlock *RetBB = BasicBlock::Create(M->getContext(), "return", FibF);
     87   // Create an exit block.
     88   BasicBlock* RecurseBB = BasicBlock::Create(M->getContext(), "recurse", FibF);
     89 
     90   // Create the "if (arg < 2) goto exitbb"
     91   Value *CondInst = new ICmpInst(*BB, ICmpInst::ICMP_SLE, ArgX, Two, "cond");
     92   BranchInst::Create(RetBB, RecurseBB, CondInst, BB);
     93 
     94   // Create: ret int 1
     95   ReturnInst::Create(M->getContext(), One, RetBB);
     96 
     97   // create fib(x-1)
     98   Value *Sub = BinaryOperator::CreateSub(ArgX, One, "arg", RecurseBB);
     99   Value *CallFibX1 = CallInst::Create(FibF, Sub, "fibx1", RecurseBB);
    100 
    101   // create fib(x-2)
    102   Sub = BinaryOperator::CreateSub(ArgX, Two, "arg", RecurseBB);
    103   Value *CallFibX2 = CallInst::Create(FibF, Sub, "fibx2", RecurseBB);
    104 
    105   // fib(x-1)+fib(x-2)
    106   Value *Sum =
    107     BinaryOperator::CreateAdd(CallFibX1, CallFibX2, "addresult", RecurseBB);
    108 
    109   // Create the return instruction and add it to the basic block
    110   ReturnInst::Create(M->getContext(), Sum, RecurseBB);
    111 
    112   return FibF;
    113 }
    114 
    115 struct threadParams {
    116   ExecutionEngine* EE;
    117   Function* F;
    118   int value;
    119 };
    120 
    121 // We block the subthreads just before they begin to execute:
    122 // we want all of them to call into the JIT at the same time,
    123 // to verify that the locking is working correctly.
    124 class WaitForThreads
    125 {
    126 public:
    127   WaitForThreads()
    128   {
    129     n = 0;
    130     waitFor = 0;
    131 
    132     int result = pthread_cond_init( &condition, NULL );
    133     assert( result == 0 );
    134 
    135     result = pthread_mutex_init( &mutex, NULL );
    136     assert( result == 0 );
    137   }
    138 
    139   ~WaitForThreads()
    140   {
    141     int result = pthread_cond_destroy( &condition );
    142     assert( result == 0 );
    143 
    144     result = pthread_mutex_destroy( &mutex );
    145     assert( result == 0 );
    146   }
    147 
    148   // All threads will stop here until another thread calls releaseThreads
    149   void block()
    150   {
    151     int result = pthread_mutex_lock( &mutex );
    152     assert( result == 0 );
    153     n ++;
    154     //~ std::cout << "block() n " << n << " waitFor " << waitFor << std::endl;
    155 
    156     assert( waitFor == 0 || n <= waitFor );
    157     if ( waitFor > 0 && n == waitFor )
    158     {
    159       // There are enough threads blocked that we can release all of them
    160       std::cout << "Unblocking threads from block()" << std::endl;
    161       unblockThreads();
    162     }
    163     else
    164     {
    165       // We just need to wait until someone unblocks us
    166       result = pthread_cond_wait( &condition, &mutex );
    167       assert( result == 0 );
    168     }
    169 
    170     // unlock the mutex before returning
    171     result = pthread_mutex_unlock( &mutex );
    172     assert( result == 0 );
    173   }
    174 
    175   // If there are num or more threads blocked, it will signal them all
    176   // Otherwise, this thread blocks until there are enough OTHER threads
    177   // blocked
    178   void releaseThreads( size_t num )
    179   {
    180     int result = pthread_mutex_lock( &mutex );
    181     assert( result == 0 );
    182 
    183     if ( n >= num ) {
    184       std::cout << "Unblocking threads from releaseThreads()" << std::endl;
    185       unblockThreads();
    186     }
    187     else
    188     {
    189       waitFor = num;
    190       pthread_cond_wait( &condition, &mutex );
    191     }
    192 
    193     // unlock the mutex before returning
    194     result = pthread_mutex_unlock( &mutex );
    195     assert( result == 0 );
    196   }
    197 
    198 private:
    199   void unblockThreads()
    200   {
    201     // Reset the counters to zero: this way, if any new threads
    202     // enter while threads are exiting, they will block instead
    203     // of triggering a new release of threads
    204     n = 0;
    205 
    206     // Reset waitFor to zero: this way, if waitFor threads enter
    207     // while threads are exiting, they will block instead of
    208     // triggering a new release of threads
    209     waitFor = 0;
    210 
    211     int result = pthread_cond_broadcast( &condition );
    212     assert(result == 0); result=result;
    213   }
    214 
    215   size_t n;
    216   size_t waitFor;
    217   pthread_cond_t condition;
    218   pthread_mutex_t mutex;
    219 };
    220 
    221 static WaitForThreads synchronize;
    222 
    223 void* callFunc( void* param )
    224 {
    225   struct threadParams* p = (struct threadParams*) param;
    226 
    227   // Call the `foo' function with no arguments:
    228   std::vector<GenericValue> Args(1);
    229   Args[0].IntVal = APInt(32, p->value);
    230 
    231   synchronize.block(); // wait until other threads are at this point
    232   GenericValue gv = p->EE->runFunction(p->F, Args);
    233 
    234   return (void*)(intptr_t)gv.IntVal.getZExtValue();
    235 }
    236 
    237 int main() {
    238   InitializeNativeTarget();
    239   LLVMContext Context;
    240 
    241   // Create some module to put our function into it.
    242   Module *M = new Module("test", Context);
    243 
    244   Function* add1F = createAdd1( M );
    245   Function* fibF = CreateFibFunction( M );
    246 
    247   // Now we create the JIT.
    248   ExecutionEngine* EE = EngineBuilder(M).create();
    249 
    250   //~ std::cout << "We just constructed this LLVM module:\n\n" << *M;
    251   //~ std::cout << "\n\nRunning foo: " << std::flush;
    252 
    253   // Create one thread for add1 and two threads for fib
    254   struct threadParams add1 = { EE, add1F, 1000 };
    255   struct threadParams fib1 = { EE, fibF, 39 };
    256   struct threadParams fib2 = { EE, fibF, 42 };
    257 
    258   pthread_t add1Thread;
    259   int result = pthread_create( &add1Thread, NULL, callFunc, &add1 );
    260   if ( result != 0 ) {
    261           std::cerr << "Could not create thread" << std::endl;
    262           return 1;
    263   }
    264 
    265   pthread_t fibThread1;
    266   result = pthread_create( &fibThread1, NULL, callFunc, &fib1 );
    267   if ( result != 0 ) {
    268           std::cerr << "Could not create thread" << std::endl;
    269           return 1;
    270   }
    271 
    272   pthread_t fibThread2;
    273   result = pthread_create( &fibThread2, NULL, callFunc, &fib2 );
    274   if ( result != 0 ) {
    275           std::cerr << "Could not create thread" << std::endl;
    276           return 1;
    277   }
    278 
    279   synchronize.releaseThreads(3); // wait until other threads are at this point
    280 
    281   void* returnValue;
    282   result = pthread_join( add1Thread, &returnValue );
    283   if ( result != 0 ) {
    284           std::cerr << "Could not join thread" << std::endl;
    285           return 1;
    286   }
    287   std::cout << "Add1 returned " << intptr_t(returnValue) << std::endl;
    288 
    289   result = pthread_join( fibThread1, &returnValue );
    290   if ( result != 0 ) {
    291           std::cerr << "Could not join thread" << std::endl;
    292           return 1;
    293   }
    294   std::cout << "Fib1 returned " << intptr_t(returnValue) << std::endl;
    295 
    296   result = pthread_join( fibThread2, &returnValue );
    297   if ( result != 0 ) {
    298           std::cerr << "Could not join thread" << std::endl;
    299           return 1;
    300   }
    301   std::cout << "Fib2 returned " << intptr_t(returnValue) << std::endl;
    302 
    303   return 0;
    304 }
    305