Home | History | Annotate | Download | only in Analysis
      1 //===- PHITransAddr.h - PHI Translation for Addresses -----------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file declares the PHITransAddr class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_ANALYSIS_PHITRANSADDR_H
     15 #define LLVM_ANALYSIS_PHITRANSADDR_H
     16 
     17 #include "llvm/Instruction.h"
     18 #include "llvm/ADT/SmallVector.h"
     19 
     20 namespace llvm {
     21   class DominatorTree;
     22   class TargetData;
     23 
     24 /// PHITransAddr - An address value which tracks and handles phi translation.
     25 /// As we walk "up" the CFG through predecessors, we need to ensure that the
     26 /// address we're tracking is kept up to date.  For example, if we're analyzing
     27 /// an address of "&A[i]" and walk through the definition of 'i' which is a PHI
     28 /// node, we *must* phi translate i to get "&A[j]" or else we will analyze an
     29 /// incorrect pointer in the predecessor block.
     30 ///
     31 /// This is designed to be a relatively small object that lives on the stack and
     32 /// is copyable.
     33 ///
     34 class PHITransAddr {
     35   /// Addr - The actual address we're analyzing.
     36   Value *Addr;
     37 
     38   /// TD - The target data we are playing with if known, otherwise null.
     39   const TargetData *TD;
     40 
     41   /// InstInputs - The inputs for our symbolic address.
     42   SmallVector<Instruction*, 4> InstInputs;
     43 public:
     44   PHITransAddr(Value *addr, const TargetData *td) : Addr(addr), TD(td) {
     45     // If the address is an instruction, the whole thing is considered an input.
     46     if (Instruction *I = dyn_cast<Instruction>(Addr))
     47       InstInputs.push_back(I);
     48   }
     49 
     50   Value *getAddr() const { return Addr; }
     51 
     52   /// NeedsPHITranslationFromBlock - Return true if moving from the specified
     53   /// BasicBlock to its predecessors requires PHI translation.
     54   bool NeedsPHITranslationFromBlock(BasicBlock *BB) const {
     55     // We do need translation if one of our input instructions is defined in
     56     // this block.
     57     for (unsigned i = 0, e = InstInputs.size(); i != e; ++i)
     58       if (InstInputs[i]->getParent() == BB)
     59         return true;
     60     return false;
     61   }
     62 
     63   /// IsPotentiallyPHITranslatable - If this needs PHI translation, return true
     64   /// if we have some hope of doing it.  This should be used as a filter to
     65   /// avoid calling PHITranslateValue in hopeless situations.
     66   bool IsPotentiallyPHITranslatable() const;
     67 
     68   /// PHITranslateValue - PHI translate the current address up the CFG from
     69   /// CurBB to Pred, updating our state to reflect any needed changes.  If the
     70   /// dominator tree DT is non-null, the translated value must dominate
     71   /// PredBB.  This returns true on failure and sets Addr to null.
     72   bool PHITranslateValue(BasicBlock *CurBB, BasicBlock *PredBB,
     73                          const DominatorTree *DT);
     74 
     75   /// PHITranslateWithInsertion - PHI translate this value into the specified
     76   /// predecessor block, inserting a computation of the value if it is
     77   /// unavailable.
     78   ///
     79   /// All newly created instructions are added to the NewInsts list.  This
     80   /// returns null on failure.
     81   ///
     82   Value *PHITranslateWithInsertion(BasicBlock *CurBB, BasicBlock *PredBB,
     83                                    const DominatorTree &DT,
     84                                    SmallVectorImpl<Instruction*> &NewInsts);
     85 
     86   void dump() const;
     87 
     88   /// Verify - Check internal consistency of this data structure.  If the
     89   /// structure is valid, it returns true.  If invalid, it prints errors and
     90   /// returns false.
     91   bool Verify() const;
     92 private:
     93   Value *PHITranslateSubExpr(Value *V, BasicBlock *CurBB, BasicBlock *PredBB,
     94                              const DominatorTree *DT);
     95 
     96   /// InsertPHITranslatedSubExpr - Insert a computation of the PHI translated
     97   /// version of 'V' for the edge PredBB->CurBB into the end of the PredBB
     98   /// block.  All newly created instructions are added to the NewInsts list.
     99   /// This returns null on failure.
    100   ///
    101   Value *InsertPHITranslatedSubExpr(Value *InVal, BasicBlock *CurBB,
    102                                     BasicBlock *PredBB, const DominatorTree &DT,
    103                                     SmallVectorImpl<Instruction*> &NewInsts);
    104 
    105   /// AddAsInput - If the specified value is an instruction, add it as an input.
    106   Value *AddAsInput(Value *V) {
    107     // If V is an instruction, it is now an input.
    108     if (Instruction *VI = dyn_cast<Instruction>(V))
    109       InstInputs.push_back(VI);
    110     return V;
    111   }
    112 
    113 };
    114 
    115 } // end namespace llvm
    116 
    117 #endif
    118