Home | History | Annotate | Download | only in CodeGen
      1 //===-- RegAllocBasic.cpp - basic register allocator ----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the RABasic function pass, which provides a minimal
     11 // implementation of the basic register allocator.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "regalloc"
     16 #include "RegAllocBase.h"
     17 #include "LiveDebugVariables.h"
     18 #include "LiveIntervalUnion.h"
     19 #include "LiveRangeEdit.h"
     20 #include "RenderMachineFunction.h"
     21 #include "Spiller.h"
     22 #include "VirtRegMap.h"
     23 #include "llvm/ADT/OwningPtr.h"
     24 #include "llvm/ADT/Statistic.h"
     25 #include "llvm/Analysis/AliasAnalysis.h"
     26 #include "llvm/Function.h"
     27 #include "llvm/PassAnalysisSupport.h"
     28 #include "llvm/CodeGen/CalcSpillWeights.h"
     29 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     30 #include "llvm/CodeGen/LiveStackAnalysis.h"
     31 #include "llvm/CodeGen/MachineFunctionPass.h"
     32 #include "llvm/CodeGen/MachineInstr.h"
     33 #include "llvm/CodeGen/MachineLoopInfo.h"
     34 #include "llvm/CodeGen/MachineRegisterInfo.h"
     35 #include "llvm/CodeGen/Passes.h"
     36 #include "llvm/CodeGen/RegAllocRegistry.h"
     37 #include "llvm/Target/TargetMachine.h"
     38 #include "llvm/Target/TargetOptions.h"
     39 #include "llvm/Target/TargetRegisterInfo.h"
     40 #ifndef NDEBUG
     41 #include "llvm/ADT/SparseBitVector.h"
     42 #endif
     43 #include "llvm/Support/Debug.h"
     44 #include "llvm/Support/ErrorHandling.h"
     45 #include "llvm/Support/raw_ostream.h"
     46 #include "llvm/Support/Timer.h"
     47 
     48 #include <cstdlib>
     49 #include <queue>
     50 
     51 using namespace llvm;
     52 
     53 STATISTIC(NumAssigned     , "Number of registers assigned");
     54 STATISTIC(NumUnassigned   , "Number of registers unassigned");
     55 STATISTIC(NumNewQueued    , "Number of new live ranges queued");
     56 
     57 static RegisterRegAlloc basicRegAlloc("basic", "basic register allocator",
     58                                       createBasicRegisterAllocator);
     59 
     60 // Temporary verification option until we can put verification inside
     61 // MachineVerifier.
     62 static cl::opt<bool, true>
     63 VerifyRegAlloc("verify-regalloc", cl::location(RegAllocBase::VerifyEnabled),
     64                cl::desc("Verify during register allocation"));
     65 
     66 const char *RegAllocBase::TimerGroupName = "Register Allocation";
     67 bool RegAllocBase::VerifyEnabled = false;
     68 
     69 namespace {
     70   struct CompSpillWeight {
     71     bool operator()(LiveInterval *A, LiveInterval *B) const {
     72       return A->weight < B->weight;
     73     }
     74   };
     75 }
     76 
     77 namespace {
     78 /// RABasic provides a minimal implementation of the basic register allocation
     79 /// algorithm. It prioritizes live virtual registers by spill weight and spills
     80 /// whenever a register is unavailable. This is not practical in production but
     81 /// provides a useful baseline both for measuring other allocators and comparing
     82 /// the speed of the basic algorithm against other styles of allocators.
     83 class RABasic : public MachineFunctionPass, public RegAllocBase
     84 {
     85   // context
     86   MachineFunction *MF;
     87 
     88   // analyses
     89   LiveStacks *LS;
     90   RenderMachineFunction *RMF;
     91 
     92   // state
     93   std::auto_ptr<Spiller> SpillerInstance;
     94   std::priority_queue<LiveInterval*, std::vector<LiveInterval*>,
     95                       CompSpillWeight> Queue;
     96 public:
     97   RABasic();
     98 
     99   /// Return the pass name.
    100   virtual const char* getPassName() const {
    101     return "Basic Register Allocator";
    102   }
    103 
    104   /// RABasic analysis usage.
    105   virtual void getAnalysisUsage(AnalysisUsage &AU) const;
    106 
    107   virtual void releaseMemory();
    108 
    109   virtual Spiller &spiller() { return *SpillerInstance; }
    110 
    111   virtual float getPriority(LiveInterval *LI) { return LI->weight; }
    112 
    113   virtual void enqueue(LiveInterval *LI) {
    114     Queue.push(LI);
    115   }
    116 
    117   virtual LiveInterval *dequeue() {
    118     if (Queue.empty())
    119       return 0;
    120     LiveInterval *LI = Queue.top();
    121     Queue.pop();
    122     return LI;
    123   }
    124 
    125   virtual unsigned selectOrSplit(LiveInterval &VirtReg,
    126                                  SmallVectorImpl<LiveInterval*> &SplitVRegs);
    127 
    128   /// Perform register allocation.
    129   virtual bool runOnMachineFunction(MachineFunction &mf);
    130 
    131   static char ID;
    132 };
    133 
    134 char RABasic::ID = 0;
    135 
    136 } // end anonymous namespace
    137 
    138 RABasic::RABasic(): MachineFunctionPass(ID) {
    139   initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
    140   initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
    141   initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
    142   initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
    143   initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
    144   initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
    145   initializeLiveStacksPass(*PassRegistry::getPassRegistry());
    146   initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
    147   initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
    148   initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
    149   initializeRenderMachineFunctionPass(*PassRegistry::getPassRegistry());
    150 }
    151 
    152 void RABasic::getAnalysisUsage(AnalysisUsage &AU) const {
    153   AU.setPreservesCFG();
    154   AU.addRequired<AliasAnalysis>();
    155   AU.addPreserved<AliasAnalysis>();
    156   AU.addRequired<LiveIntervals>();
    157   AU.addPreserved<SlotIndexes>();
    158   AU.addRequired<LiveDebugVariables>();
    159   AU.addPreserved<LiveDebugVariables>();
    160   if (StrongPHIElim)
    161     AU.addRequiredID(StrongPHIEliminationID);
    162   AU.addRequiredTransitiveID(RegisterCoalescerPassID);
    163   AU.addRequired<CalculateSpillWeights>();
    164   AU.addRequired<LiveStacks>();
    165   AU.addPreserved<LiveStacks>();
    166   AU.addRequiredID(MachineDominatorsID);
    167   AU.addPreservedID(MachineDominatorsID);
    168   AU.addRequired<MachineLoopInfo>();
    169   AU.addPreserved<MachineLoopInfo>();
    170   AU.addRequired<VirtRegMap>();
    171   AU.addPreserved<VirtRegMap>();
    172   DEBUG(AU.addRequired<RenderMachineFunction>());
    173   MachineFunctionPass::getAnalysisUsage(AU);
    174 }
    175 
    176 void RABasic::releaseMemory() {
    177   SpillerInstance.reset(0);
    178   RegAllocBase::releaseMemory();
    179 }
    180 
    181 #ifndef NDEBUG
    182 // Verify each LiveIntervalUnion.
    183 void RegAllocBase::verify() {
    184   LiveVirtRegBitSet VisitedVRegs;
    185   OwningArrayPtr<LiveVirtRegBitSet>
    186     unionVRegs(new LiveVirtRegBitSet[PhysReg2LiveUnion.numRegs()]);
    187 
    188   // Verify disjoint unions.
    189   for (unsigned PhysReg = 0; PhysReg < PhysReg2LiveUnion.numRegs(); ++PhysReg) {
    190     DEBUG(PhysReg2LiveUnion[PhysReg].print(dbgs(), TRI));
    191     LiveVirtRegBitSet &VRegs = unionVRegs[PhysReg];
    192     PhysReg2LiveUnion[PhysReg].verify(VRegs);
    193     // Union + intersection test could be done efficiently in one pass, but
    194     // don't add a method to SparseBitVector unless we really need it.
    195     assert(!VisitedVRegs.intersects(VRegs) && "vreg in multiple unions");
    196     VisitedVRegs |= VRegs;
    197   }
    198 
    199   // Verify vreg coverage.
    200   for (LiveIntervals::iterator liItr = LIS->begin(), liEnd = LIS->end();
    201        liItr != liEnd; ++liItr) {
    202     unsigned reg = liItr->first;
    203     if (TargetRegisterInfo::isPhysicalRegister(reg)) continue;
    204     if (!VRM->hasPhys(reg)) continue; // spilled?
    205     unsigned PhysReg = VRM->getPhys(reg);
    206     if (!unionVRegs[PhysReg].test(reg)) {
    207       dbgs() << "LiveVirtReg " << reg << " not in union " <<
    208         TRI->getName(PhysReg) << "\n";
    209       llvm_unreachable("unallocated live vreg");
    210     }
    211   }
    212   // FIXME: I'm not sure how to verify spilled intervals.
    213 }
    214 #endif //!NDEBUG
    215 
    216 //===----------------------------------------------------------------------===//
    217 //                         RegAllocBase Implementation
    218 //===----------------------------------------------------------------------===//
    219 
    220 // Instantiate a LiveIntervalUnion for each physical register.
    221 void RegAllocBase::LiveUnionArray::init(LiveIntervalUnion::Allocator &allocator,
    222                                         unsigned NRegs) {
    223   NumRegs = NRegs;
    224   Array =
    225     static_cast<LiveIntervalUnion*>(malloc(sizeof(LiveIntervalUnion)*NRegs));
    226   for (unsigned r = 0; r != NRegs; ++r)
    227     new(Array + r) LiveIntervalUnion(r, allocator);
    228 }
    229 
    230 void RegAllocBase::init(VirtRegMap &vrm, LiveIntervals &lis) {
    231   NamedRegionTimer T("Initialize", TimerGroupName, TimePassesIsEnabled);
    232   TRI = &vrm.getTargetRegInfo();
    233   MRI = &vrm.getRegInfo();
    234   VRM = &vrm;
    235   LIS = &lis;
    236   RegClassInfo.runOnMachineFunction(vrm.getMachineFunction());
    237 
    238   const unsigned NumRegs = TRI->getNumRegs();
    239   if (NumRegs != PhysReg2LiveUnion.numRegs()) {
    240     PhysReg2LiveUnion.init(UnionAllocator, NumRegs);
    241     // Cache an interferece query for each physical reg
    242     Queries.reset(new LiveIntervalUnion::Query[PhysReg2LiveUnion.numRegs()]);
    243   }
    244 }
    245 
    246 void RegAllocBase::LiveUnionArray::clear() {
    247   if (!Array)
    248     return;
    249   for (unsigned r = 0; r != NumRegs; ++r)
    250     Array[r].~LiveIntervalUnion();
    251   free(Array);
    252   NumRegs =  0;
    253   Array = 0;
    254 }
    255 
    256 void RegAllocBase::releaseMemory() {
    257   for (unsigned r = 0, e = PhysReg2LiveUnion.numRegs(); r != e; ++r)
    258     PhysReg2LiveUnion[r].clear();
    259 }
    260 
    261 // Visit all the live registers. If they are already assigned to a physical
    262 // register, unify them with the corresponding LiveIntervalUnion, otherwise push
    263 // them on the priority queue for later assignment.
    264 void RegAllocBase::seedLiveRegs() {
    265   NamedRegionTimer T("Seed Live Regs", TimerGroupName, TimePassesIsEnabled);
    266   for (LiveIntervals::iterator I = LIS->begin(), E = LIS->end(); I != E; ++I) {
    267     unsigned RegNum = I->first;
    268     LiveInterval &VirtReg = *I->second;
    269     if (TargetRegisterInfo::isPhysicalRegister(RegNum))
    270       PhysReg2LiveUnion[RegNum].unify(VirtReg);
    271     else
    272       enqueue(&VirtReg);
    273   }
    274 }
    275 
    276 void RegAllocBase::assign(LiveInterval &VirtReg, unsigned PhysReg) {
    277   DEBUG(dbgs() << "assigning " << PrintReg(VirtReg.reg, TRI)
    278                << " to " << PrintReg(PhysReg, TRI) << '\n');
    279   assert(!VRM->hasPhys(VirtReg.reg) && "Duplicate VirtReg assignment");
    280   VRM->assignVirt2Phys(VirtReg.reg, PhysReg);
    281   MRI->setPhysRegUsed(PhysReg);
    282   PhysReg2LiveUnion[PhysReg].unify(VirtReg);
    283   ++NumAssigned;
    284 }
    285 
    286 void RegAllocBase::unassign(LiveInterval &VirtReg, unsigned PhysReg) {
    287   DEBUG(dbgs() << "unassigning " << PrintReg(VirtReg.reg, TRI)
    288                << " from " << PrintReg(PhysReg, TRI) << '\n');
    289   assert(VRM->getPhys(VirtReg.reg) == PhysReg && "Inconsistent unassign");
    290   PhysReg2LiveUnion[PhysReg].extract(VirtReg);
    291   VRM->clearVirt(VirtReg.reg);
    292   ++NumUnassigned;
    293 }
    294 
    295 // Top-level driver to manage the queue of unassigned VirtRegs and call the
    296 // selectOrSplit implementation.
    297 void RegAllocBase::allocatePhysRegs() {
    298   seedLiveRegs();
    299 
    300   // Continue assigning vregs one at a time to available physical registers.
    301   while (LiveInterval *VirtReg = dequeue()) {
    302     assert(!VRM->hasPhys(VirtReg->reg) && "Register already assigned");
    303 
    304     // Unused registers can appear when the spiller coalesces snippets.
    305     if (MRI->reg_nodbg_empty(VirtReg->reg)) {
    306       DEBUG(dbgs() << "Dropping unused " << *VirtReg << '\n');
    307       LIS->removeInterval(VirtReg->reg);
    308       continue;
    309     }
    310 
    311     // Invalidate all interference queries, live ranges could have changed.
    312     invalidateVirtRegs();
    313 
    314     // selectOrSplit requests the allocator to return an available physical
    315     // register if possible and populate a list of new live intervals that
    316     // result from splitting.
    317     DEBUG(dbgs() << "\nselectOrSplit "
    318                  << MRI->getRegClass(VirtReg->reg)->getName()
    319                  << ':' << *VirtReg << '\n');
    320     typedef SmallVector<LiveInterval*, 4> VirtRegVec;
    321     VirtRegVec SplitVRegs;
    322     unsigned AvailablePhysReg = selectOrSplit(*VirtReg, SplitVRegs);
    323 
    324     if (AvailablePhysReg == ~0u) {
    325       // selectOrSplit failed to find a register!
    326       const char *Msg = "ran out of registers during register allocation";
    327       // Probably caused by an inline asm.
    328       MachineInstr *MI;
    329       for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(VirtReg->reg);
    330            (MI = I.skipInstruction());)
    331         if (MI->isInlineAsm())
    332           break;
    333       if (MI)
    334         MI->emitError(Msg);
    335       else
    336         report_fatal_error(Msg);
    337       // Keep going after reporting the error.
    338       VRM->assignVirt2Phys(VirtReg->reg,
    339                  RegClassInfo.getOrder(MRI->getRegClass(VirtReg->reg)).front());
    340       continue;
    341     }
    342 
    343     if (AvailablePhysReg)
    344       assign(*VirtReg, AvailablePhysReg);
    345 
    346     for (VirtRegVec::iterator I = SplitVRegs.begin(), E = SplitVRegs.end();
    347          I != E; ++I) {
    348       LiveInterval *SplitVirtReg = *I;
    349       assert(!VRM->hasPhys(SplitVirtReg->reg) && "Register already assigned");
    350       if (MRI->reg_nodbg_empty(SplitVirtReg->reg)) {
    351         DEBUG(dbgs() << "not queueing unused  " << *SplitVirtReg << '\n');
    352         LIS->removeInterval(SplitVirtReg->reg);
    353         continue;
    354       }
    355       DEBUG(dbgs() << "queuing new interval: " << *SplitVirtReg << "\n");
    356       assert(TargetRegisterInfo::isVirtualRegister(SplitVirtReg->reg) &&
    357              "expect split value in virtual register");
    358       enqueue(SplitVirtReg);
    359       ++NumNewQueued;
    360     }
    361   }
    362 }
    363 
    364 // Check if this live virtual register interferes with a physical register. If
    365 // not, then check for interference on each register that aliases with the
    366 // physical register. Return the interfering register.
    367 unsigned RegAllocBase::checkPhysRegInterference(LiveInterval &VirtReg,
    368                                                 unsigned PhysReg) {
    369   for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI)
    370     if (query(VirtReg, *AliasI).checkInterference())
    371       return *AliasI;
    372   return 0;
    373 }
    374 
    375 // Helper for spillInteferences() that spills all interfering vregs currently
    376 // assigned to this physical register.
    377 void RegAllocBase::spillReg(LiveInterval& VirtReg, unsigned PhysReg,
    378                             SmallVectorImpl<LiveInterval*> &SplitVRegs) {
    379   LiveIntervalUnion::Query &Q = query(VirtReg, PhysReg);
    380   assert(Q.seenAllInterferences() && "need collectInterferences()");
    381   const SmallVectorImpl<LiveInterval*> &PendingSpills = Q.interferingVRegs();
    382 
    383   for (SmallVectorImpl<LiveInterval*>::const_iterator I = PendingSpills.begin(),
    384          E = PendingSpills.end(); I != E; ++I) {
    385     LiveInterval &SpilledVReg = **I;
    386     DEBUG(dbgs() << "extracting from " <<
    387           TRI->getName(PhysReg) << " " << SpilledVReg << '\n');
    388 
    389     // Deallocate the interfering vreg by removing it from the union.
    390     // A LiveInterval instance may not be in a union during modification!
    391     unassign(SpilledVReg, PhysReg);
    392 
    393     // Spill the extracted interval.
    394     LiveRangeEdit LRE(SpilledVReg, SplitVRegs, 0, &PendingSpills);
    395     spiller().spill(LRE);
    396   }
    397   // After extracting segments, the query's results are invalid. But keep the
    398   // contents valid until we're done accessing pendingSpills.
    399   Q.clear();
    400 }
    401 
    402 // Spill or split all live virtual registers currently unified under PhysReg
    403 // that interfere with VirtReg. The newly spilled or split live intervals are
    404 // returned by appending them to SplitVRegs.
    405 bool
    406 RegAllocBase::spillInterferences(LiveInterval &VirtReg, unsigned PhysReg,
    407                                  SmallVectorImpl<LiveInterval*> &SplitVRegs) {
    408   // Record each interference and determine if all are spillable before mutating
    409   // either the union or live intervals.
    410   unsigned NumInterferences = 0;
    411   // Collect interferences assigned to any alias of the physical register.
    412   for (const unsigned *asI = TRI->getOverlaps(PhysReg); *asI; ++asI) {
    413     LiveIntervalUnion::Query &QAlias = query(VirtReg, *asI);
    414     NumInterferences += QAlias.collectInterferingVRegs();
    415     if (QAlias.seenUnspillableVReg()) {
    416       return false;
    417     }
    418   }
    419   DEBUG(dbgs() << "spilling " << TRI->getName(PhysReg) <<
    420         " interferences with " << VirtReg << "\n");
    421   assert(NumInterferences > 0 && "expect interference");
    422 
    423   // Spill each interfering vreg allocated to PhysReg or an alias.
    424   for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI)
    425     spillReg(VirtReg, *AliasI, SplitVRegs);
    426   return true;
    427 }
    428 
    429 // Add newly allocated physical registers to the MBB live in sets.
    430 void RegAllocBase::addMBBLiveIns(MachineFunction *MF) {
    431   NamedRegionTimer T("MBB Live Ins", TimerGroupName, TimePassesIsEnabled);
    432   SlotIndexes *Indexes = LIS->getSlotIndexes();
    433   if (MF->size() <= 1)
    434     return;
    435 
    436   LiveIntervalUnion::SegmentIter SI;
    437   for (unsigned PhysReg = 0; PhysReg < PhysReg2LiveUnion.numRegs(); ++PhysReg) {
    438     LiveIntervalUnion &LiveUnion = PhysReg2LiveUnion[PhysReg];
    439     if (LiveUnion.empty())
    440       continue;
    441     DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " live-in:");
    442     MachineFunction::iterator MBB = llvm::next(MF->begin());
    443     MachineFunction::iterator MFE = MF->end();
    444     SlotIndex Start, Stop;
    445     tie(Start, Stop) = Indexes->getMBBRange(MBB);
    446     SI.setMap(LiveUnion.getMap());
    447     SI.find(Start);
    448     while (SI.valid()) {
    449       if (SI.start() <= Start) {
    450         if (!MBB->isLiveIn(PhysReg))
    451           MBB->addLiveIn(PhysReg);
    452         DEBUG(dbgs() << "\tBB#" << MBB->getNumber() << ':'
    453                      << PrintReg(SI.value()->reg, TRI));
    454       } else if (SI.start() > Stop)
    455         MBB = Indexes->getMBBFromIndex(SI.start().getPrevIndex());
    456       if (++MBB == MFE)
    457         break;
    458       tie(Start, Stop) = Indexes->getMBBRange(MBB);
    459       SI.advanceTo(Start);
    460     }
    461     DEBUG(dbgs() << '\n');
    462   }
    463 }
    464 
    465 
    466 //===----------------------------------------------------------------------===//
    467 //                         RABasic Implementation
    468 //===----------------------------------------------------------------------===//
    469 
    470 // Driver for the register assignment and splitting heuristics.
    471 // Manages iteration over the LiveIntervalUnions.
    472 //
    473 // This is a minimal implementation of register assignment and splitting that
    474 // spills whenever we run out of registers.
    475 //
    476 // selectOrSplit can only be called once per live virtual register. We then do a
    477 // single interference test for each register the correct class until we find an
    478 // available register. So, the number of interference tests in the worst case is
    479 // |vregs| * |machineregs|. And since the number of interference tests is
    480 // minimal, there is no value in caching them outside the scope of
    481 // selectOrSplit().
    482 unsigned RABasic::selectOrSplit(LiveInterval &VirtReg,
    483                                 SmallVectorImpl<LiveInterval*> &SplitVRegs) {
    484   // Populate a list of physical register spill candidates.
    485   SmallVector<unsigned, 8> PhysRegSpillCands;
    486 
    487   // Check for an available register in this class.
    488   ArrayRef<unsigned> Order =
    489     RegClassInfo.getOrder(MRI->getRegClass(VirtReg.reg));
    490   for (ArrayRef<unsigned>::iterator I = Order.begin(), E = Order.end(); I != E;
    491        ++I) {
    492     unsigned PhysReg = *I;
    493 
    494     // Check interference and as a side effect, intialize queries for this
    495     // VirtReg and its aliases.
    496     unsigned interfReg = checkPhysRegInterference(VirtReg, PhysReg);
    497     if (interfReg == 0) {
    498       // Found an available register.
    499       return PhysReg;
    500     }
    501     Queries[interfReg].collectInterferingVRegs(1);
    502     LiveInterval *interferingVirtReg =
    503       Queries[interfReg].interferingVRegs().front();
    504 
    505     // The current VirtReg must either be spillable, or one of its interferences
    506     // must have less spill weight.
    507     if (interferingVirtReg->weight < VirtReg.weight ) {
    508       PhysRegSpillCands.push_back(PhysReg);
    509     }
    510   }
    511   // Try to spill another interfering reg with less spill weight.
    512   for (SmallVectorImpl<unsigned>::iterator PhysRegI = PhysRegSpillCands.begin(),
    513          PhysRegE = PhysRegSpillCands.end(); PhysRegI != PhysRegE; ++PhysRegI) {
    514 
    515     if (!spillInterferences(VirtReg, *PhysRegI, SplitVRegs)) continue;
    516 
    517     assert(checkPhysRegInterference(VirtReg, *PhysRegI) == 0 &&
    518            "Interference after spill.");
    519     // Tell the caller to allocate to this newly freed physical register.
    520     return *PhysRegI;
    521   }
    522 
    523   // No other spill candidates were found, so spill the current VirtReg.
    524   DEBUG(dbgs() << "spilling: " << VirtReg << '\n');
    525   if (!VirtReg.isSpillable())
    526     return ~0u;
    527   LiveRangeEdit LRE(VirtReg, SplitVRegs);
    528   spiller().spill(LRE);
    529 
    530   // The live virtual register requesting allocation was spilled, so tell
    531   // the caller not to allocate anything during this round.
    532   return 0;
    533 }
    534 
    535 bool RABasic::runOnMachineFunction(MachineFunction &mf) {
    536   DEBUG(dbgs() << "********** BASIC REGISTER ALLOCATION **********\n"
    537                << "********** Function: "
    538                << ((Value*)mf.getFunction())->getName() << '\n');
    539 
    540   MF = &mf;
    541   DEBUG(RMF = &getAnalysis<RenderMachineFunction>());
    542 
    543   RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>());
    544   SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
    545 
    546   allocatePhysRegs();
    547 
    548   addMBBLiveIns(MF);
    549 
    550   // Diagnostic output before rewriting
    551   DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *VRM << "\n");
    552 
    553   // optional HTML output
    554   DEBUG(RMF->renderMachineFunction("After basic register allocation.", VRM));
    555 
    556   // FIXME: Verification currently must run before VirtRegRewriter. We should
    557   // make the rewriter a separate pass and override verifyAnalysis instead. When
    558   // that happens, verification naturally falls under VerifyMachineCode.
    559 #ifndef NDEBUG
    560   if (VerifyEnabled) {
    561     // Verify accuracy of LiveIntervals. The standard machine code verifier
    562     // ensures that each LiveIntervals covers all uses of the virtual reg.
    563 
    564     // FIXME: MachineVerifier is badly broken when using the standard
    565     // spiller. Always use -spiller=inline with -verify-regalloc. Even with the
    566     // inline spiller, some tests fail to verify because the coalescer does not
    567     // always generate verifiable code.
    568     MF->verify(this, "In RABasic::verify");
    569 
    570     // Verify that LiveIntervals are partitioned into unions and disjoint within
    571     // the unions.
    572     verify();
    573   }
    574 #endif // !NDEBUG
    575 
    576   // Run rewriter
    577   VRM->rewrite(LIS->getSlotIndexes());
    578 
    579   // Write out new DBG_VALUE instructions.
    580   getAnalysis<LiveDebugVariables>().emitDebugValues(VRM);
    581 
    582   // The pass output is in VirtRegMap. Release all the transient data.
    583   releaseMemory();
    584 
    585   return true;
    586 }
    587 
    588 FunctionPass* llvm::createBasicRegisterAllocator()
    589 {
    590   return new RABasic();
    591 }
    592