1 //===-- ConstantRange.cpp - ConstantRange implementation ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Represent a range of possible values that may occur when the program is run 11 // for an integral value. This keeps track of a lower and upper bound for the 12 // constant, which MAY wrap around the end of the numeric range. To do this, it 13 // keeps track of a [lower, upper) bound, which specifies an interval just like 14 // STL iterators. When used with boolean values, the following are important 15 // ranges (other integral ranges use min/max values for special range values): 16 // 17 // [F, F) = {} = Empty set 18 // [T, F) = {T} 19 // [F, T) = {F} 20 // [T, T) = {F, T} = Full set 21 // 22 //===----------------------------------------------------------------------===// 23 24 #include "llvm/InstrTypes.h" 25 #include "llvm/Support/ConstantRange.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/raw_ostream.h" 28 using namespace llvm; 29 30 /// Initialize a full (the default) or empty set for the specified type. 31 /// 32 ConstantRange::ConstantRange(uint32_t BitWidth, bool Full) { 33 if (Full) 34 Lower = Upper = APInt::getMaxValue(BitWidth); 35 else 36 Lower = Upper = APInt::getMinValue(BitWidth); 37 } 38 39 /// Initialize a range to hold the single specified value. 40 /// 41 ConstantRange::ConstantRange(const APInt &V) : Lower(V), Upper(V + 1) {} 42 43 ConstantRange::ConstantRange(const APInt &L, const APInt &U) : 44 Lower(L), Upper(U) { 45 assert(L.getBitWidth() == U.getBitWidth() && 46 "ConstantRange with unequal bit widths"); 47 assert((L != U || (L.isMaxValue() || L.isMinValue())) && 48 "Lower == Upper, but they aren't min or max value!"); 49 } 50 51 ConstantRange ConstantRange::makeICmpRegion(unsigned Pred, 52 const ConstantRange &CR) { 53 if (CR.isEmptySet()) 54 return CR; 55 56 uint32_t W = CR.getBitWidth(); 57 switch (Pred) { 58 default: assert(0 && "Invalid ICmp predicate to makeICmpRegion()"); 59 case CmpInst::ICMP_EQ: 60 return CR; 61 case CmpInst::ICMP_NE: 62 if (CR.isSingleElement()) 63 return ConstantRange(CR.getUpper(), CR.getLower()); 64 return ConstantRange(W); 65 case CmpInst::ICMP_ULT: { 66 APInt UMax(CR.getUnsignedMax()); 67 if (UMax.isMinValue()) 68 return ConstantRange(W, /* empty */ false); 69 return ConstantRange(APInt::getMinValue(W), UMax); 70 } 71 case CmpInst::ICMP_SLT: { 72 APInt SMax(CR.getSignedMax()); 73 if (SMax.isMinSignedValue()) 74 return ConstantRange(W, /* empty */ false); 75 return ConstantRange(APInt::getSignedMinValue(W), SMax); 76 } 77 case CmpInst::ICMP_ULE: { 78 APInt UMax(CR.getUnsignedMax()); 79 if (UMax.isMaxValue()) 80 return ConstantRange(W); 81 return ConstantRange(APInt::getMinValue(W), UMax + 1); 82 } 83 case CmpInst::ICMP_SLE: { 84 APInt SMax(CR.getSignedMax()); 85 if (SMax.isMaxSignedValue()) 86 return ConstantRange(W); 87 return ConstantRange(APInt::getSignedMinValue(W), SMax + 1); 88 } 89 case CmpInst::ICMP_UGT: { 90 APInt UMin(CR.getUnsignedMin()); 91 if (UMin.isMaxValue()) 92 return ConstantRange(W, /* empty */ false); 93 return ConstantRange(UMin + 1, APInt::getNullValue(W)); 94 } 95 case CmpInst::ICMP_SGT: { 96 APInt SMin(CR.getSignedMin()); 97 if (SMin.isMaxSignedValue()) 98 return ConstantRange(W, /* empty */ false); 99 return ConstantRange(SMin + 1, APInt::getSignedMinValue(W)); 100 } 101 case CmpInst::ICMP_UGE: { 102 APInt UMin(CR.getUnsignedMin()); 103 if (UMin.isMinValue()) 104 return ConstantRange(W); 105 return ConstantRange(UMin, APInt::getNullValue(W)); 106 } 107 case CmpInst::ICMP_SGE: { 108 APInt SMin(CR.getSignedMin()); 109 if (SMin.isMinSignedValue()) 110 return ConstantRange(W); 111 return ConstantRange(SMin, APInt::getSignedMinValue(W)); 112 } 113 } 114 } 115 116 /// isFullSet - Return true if this set contains all of the elements possible 117 /// for this data-type 118 bool ConstantRange::isFullSet() const { 119 return Lower == Upper && Lower.isMaxValue(); 120 } 121 122 /// isEmptySet - Return true if this set contains no members. 123 /// 124 bool ConstantRange::isEmptySet() const { 125 return Lower == Upper && Lower.isMinValue(); 126 } 127 128 /// isWrappedSet - Return true if this set wraps around the top of the range, 129 /// for example: [100, 8) 130 /// 131 bool ConstantRange::isWrappedSet() const { 132 return Lower.ugt(Upper); 133 } 134 135 /// isSignWrappedSet - Return true if this set wraps around the INT_MIN of 136 /// its bitwidth, for example: i8 [120, 140). 137 /// 138 bool ConstantRange::isSignWrappedSet() const { 139 return contains(APInt::getSignedMaxValue(getBitWidth())) && 140 contains(APInt::getSignedMinValue(getBitWidth())); 141 } 142 143 /// getSetSize - Return the number of elements in this set. 144 /// 145 APInt ConstantRange::getSetSize() const { 146 if (isEmptySet()) 147 return APInt(getBitWidth(), 0); 148 if (getBitWidth() == 1) { 149 if (Lower != Upper) // One of T or F in the set... 150 return APInt(2, 1); 151 return APInt(2, 2); // Must be full set... 152 } 153 154 // Simply subtract the bounds... 155 return Upper - Lower; 156 } 157 158 /// getUnsignedMax - Return the largest unsigned value contained in the 159 /// ConstantRange. 160 /// 161 APInt ConstantRange::getUnsignedMax() const { 162 if (isFullSet() || isWrappedSet()) 163 return APInt::getMaxValue(getBitWidth()); 164 else 165 return getUpper() - 1; 166 } 167 168 /// getUnsignedMin - Return the smallest unsigned value contained in the 169 /// ConstantRange. 170 /// 171 APInt ConstantRange::getUnsignedMin() const { 172 if (isFullSet() || (isWrappedSet() && getUpper() != 0)) 173 return APInt::getMinValue(getBitWidth()); 174 else 175 return getLower(); 176 } 177 178 /// getSignedMax - Return the largest signed value contained in the 179 /// ConstantRange. 180 /// 181 APInt ConstantRange::getSignedMax() const { 182 APInt SignedMax(APInt::getSignedMaxValue(getBitWidth())); 183 if (!isWrappedSet()) { 184 if (getLower().sle(getUpper() - 1)) 185 return getUpper() - 1; 186 else 187 return SignedMax; 188 } else { 189 if (getLower().isNegative() == getUpper().isNegative()) 190 return SignedMax; 191 else 192 return getUpper() - 1; 193 } 194 } 195 196 /// getSignedMin - Return the smallest signed value contained in the 197 /// ConstantRange. 198 /// 199 APInt ConstantRange::getSignedMin() const { 200 APInt SignedMin(APInt::getSignedMinValue(getBitWidth())); 201 if (!isWrappedSet()) { 202 if (getLower().sle(getUpper() - 1)) 203 return getLower(); 204 else 205 return SignedMin; 206 } else { 207 if ((getUpper() - 1).slt(getLower())) { 208 if (getUpper() != SignedMin) 209 return SignedMin; 210 else 211 return getLower(); 212 } else { 213 return getLower(); 214 } 215 } 216 } 217 218 /// contains - Return true if the specified value is in the set. 219 /// 220 bool ConstantRange::contains(const APInt &V) const { 221 if (Lower == Upper) 222 return isFullSet(); 223 224 if (!isWrappedSet()) 225 return Lower.ule(V) && V.ult(Upper); 226 else 227 return Lower.ule(V) || V.ult(Upper); 228 } 229 230 /// contains - Return true if the argument is a subset of this range. 231 /// Two equal sets contain each other. The empty set contained by all other 232 /// sets. 233 /// 234 bool ConstantRange::contains(const ConstantRange &Other) const { 235 if (isFullSet() || Other.isEmptySet()) return true; 236 if (isEmptySet() || Other.isFullSet()) return false; 237 238 if (!isWrappedSet()) { 239 if (Other.isWrappedSet()) 240 return false; 241 242 return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper); 243 } 244 245 if (!Other.isWrappedSet()) 246 return Other.getUpper().ule(Upper) || 247 Lower.ule(Other.getLower()); 248 249 return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower()); 250 } 251 252 /// subtract - Subtract the specified constant from the endpoints of this 253 /// constant range. 254 ConstantRange ConstantRange::subtract(const APInt &Val) const { 255 assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width"); 256 // If the set is empty or full, don't modify the endpoints. 257 if (Lower == Upper) 258 return *this; 259 return ConstantRange(Lower - Val, Upper - Val); 260 } 261 262 /// intersectWith - Return the range that results from the intersection of this 263 /// range with another range. The resultant range is guaranteed to include all 264 /// elements contained in both input ranges, and to have the smallest possible 265 /// set size that does so. Because there may be two intersections with the 266 /// same set size, A.intersectWith(B) might not be equal to B.intersectWith(A). 267 ConstantRange ConstantRange::intersectWith(const ConstantRange &CR) const { 268 assert(getBitWidth() == CR.getBitWidth() && 269 "ConstantRange types don't agree!"); 270 271 // Handle common cases. 272 if ( isEmptySet() || CR.isFullSet()) return *this; 273 if (CR.isEmptySet() || isFullSet()) return CR; 274 275 if (!isWrappedSet() && CR.isWrappedSet()) 276 return CR.intersectWith(*this); 277 278 if (!isWrappedSet() && !CR.isWrappedSet()) { 279 if (Lower.ult(CR.Lower)) { 280 if (Upper.ule(CR.Lower)) 281 return ConstantRange(getBitWidth(), false); 282 283 if (Upper.ult(CR.Upper)) 284 return ConstantRange(CR.Lower, Upper); 285 286 return CR; 287 } else { 288 if (Upper.ult(CR.Upper)) 289 return *this; 290 291 if (Lower.ult(CR.Upper)) 292 return ConstantRange(Lower, CR.Upper); 293 294 return ConstantRange(getBitWidth(), false); 295 } 296 } 297 298 if (isWrappedSet() && !CR.isWrappedSet()) { 299 if (CR.Lower.ult(Upper)) { 300 if (CR.Upper.ult(Upper)) 301 return CR; 302 303 if (CR.Upper.ult(Lower)) 304 return ConstantRange(CR.Lower, Upper); 305 306 if (getSetSize().ult(CR.getSetSize())) 307 return *this; 308 else 309 return CR; 310 } else if (CR.Lower.ult(Lower)) { 311 if (CR.Upper.ule(Lower)) 312 return ConstantRange(getBitWidth(), false); 313 314 return ConstantRange(Lower, CR.Upper); 315 } 316 return CR; 317 } 318 319 if (CR.Upper.ult(Upper)) { 320 if (CR.Lower.ult(Upper)) { 321 if (getSetSize().ult(CR.getSetSize())) 322 return *this; 323 else 324 return CR; 325 } 326 327 if (CR.Lower.ult(Lower)) 328 return ConstantRange(Lower, CR.Upper); 329 330 return CR; 331 } else if (CR.Upper.ult(Lower)) { 332 if (CR.Lower.ult(Lower)) 333 return *this; 334 335 return ConstantRange(CR.Lower, Upper); 336 } 337 if (getSetSize().ult(CR.getSetSize())) 338 return *this; 339 else 340 return CR; 341 } 342 343 344 /// unionWith - Return the range that results from the union of this range with 345 /// another range. The resultant range is guaranteed to include the elements of 346 /// both sets, but may contain more. For example, [3, 9) union [12,15) is 347 /// [3, 15), which includes 9, 10, and 11, which were not included in either 348 /// set before. 349 /// 350 ConstantRange ConstantRange::unionWith(const ConstantRange &CR) const { 351 assert(getBitWidth() == CR.getBitWidth() && 352 "ConstantRange types don't agree!"); 353 354 if ( isFullSet() || CR.isEmptySet()) return *this; 355 if (CR.isFullSet() || isEmptySet()) return CR; 356 357 if (!isWrappedSet() && CR.isWrappedSet()) return CR.unionWith(*this); 358 359 if (!isWrappedSet() && !CR.isWrappedSet()) { 360 if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower)) { 361 // If the two ranges are disjoint, find the smaller gap and bridge it. 362 APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper; 363 if (d1.ult(d2)) 364 return ConstantRange(Lower, CR.Upper); 365 else 366 return ConstantRange(CR.Lower, Upper); 367 } 368 369 APInt L = Lower, U = Upper; 370 if (CR.Lower.ult(L)) 371 L = CR.Lower; 372 if ((CR.Upper - 1).ugt(U - 1)) 373 U = CR.Upper; 374 375 if (L == 0 && U == 0) 376 return ConstantRange(getBitWidth()); 377 378 return ConstantRange(L, U); 379 } 380 381 if (!CR.isWrappedSet()) { 382 // ------U L----- and ------U L----- : this 383 // L--U L--U : CR 384 if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower)) 385 return *this; 386 387 // ------U L----- : this 388 // L---------U : CR 389 if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper)) 390 return ConstantRange(getBitWidth()); 391 392 // ----U L---- : this 393 // L---U : CR 394 // <d1> <d2> 395 if (Upper.ule(CR.Lower) && CR.Upper.ule(Lower)) { 396 APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper; 397 if (d1.ult(d2)) 398 return ConstantRange(Lower, CR.Upper); 399 else 400 return ConstantRange(CR.Lower, Upper); 401 } 402 403 // ----U L----- : this 404 // L----U : CR 405 if (Upper.ult(CR.Lower) && Lower.ult(CR.Upper)) 406 return ConstantRange(CR.Lower, Upper); 407 408 // ------U L---- : this 409 // L-----U : CR 410 if (CR.Lower.ult(Upper) && CR.Upper.ult(Lower)) 411 return ConstantRange(Lower, CR.Upper); 412 } 413 414 assert(isWrappedSet() && CR.isWrappedSet() && 415 "ConstantRange::unionWith missed wrapped union unwrapped case"); 416 417 // ------U L---- and ------U L---- : this 418 // -U L----------- and ------------U L : CR 419 if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper)) 420 return ConstantRange(getBitWidth()); 421 422 APInt L = Lower, U = Upper; 423 if (CR.Upper.ugt(U)) 424 U = CR.Upper; 425 if (CR.Lower.ult(L)) 426 L = CR.Lower; 427 428 return ConstantRange(L, U); 429 } 430 431 /// zeroExtend - Return a new range in the specified integer type, which must 432 /// be strictly larger than the current type. The returned range will 433 /// correspond to the possible range of values as if the source range had been 434 /// zero extended. 435 ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const { 436 if (isEmptySet()) return ConstantRange(DstTySize, /*isFullSet=*/false); 437 438 unsigned SrcTySize = getBitWidth(); 439 assert(SrcTySize < DstTySize && "Not a value extension"); 440 if (isFullSet() || isWrappedSet()) 441 // Change into [0, 1 << src bit width) 442 return ConstantRange(APInt(DstTySize,0), APInt(DstTySize,1).shl(SrcTySize)); 443 444 return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize)); 445 } 446 447 /// signExtend - Return a new range in the specified integer type, which must 448 /// be strictly larger than the current type. The returned range will 449 /// correspond to the possible range of values as if the source range had been 450 /// sign extended. 451 ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const { 452 if (isEmptySet()) return ConstantRange(DstTySize, /*isFullSet=*/false); 453 454 unsigned SrcTySize = getBitWidth(); 455 assert(SrcTySize < DstTySize && "Not a value extension"); 456 if (isFullSet() || isSignWrappedSet()) { 457 return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1), 458 APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1); 459 } 460 461 return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize)); 462 } 463 464 /// truncate - Return a new range in the specified integer type, which must be 465 /// strictly smaller than the current type. The returned range will 466 /// correspond to the possible range of values as if the source range had been 467 /// truncated to the specified type. 468 ConstantRange ConstantRange::truncate(uint32_t DstTySize) const { 469 unsigned SrcTySize = getBitWidth(); 470 assert(SrcTySize > DstTySize && "Not a value truncation"); 471 APInt Size(APInt::getLowBitsSet(SrcTySize, DstTySize)); 472 if (isFullSet() || getSetSize().ugt(Size)) 473 return ConstantRange(DstTySize, /*isFullSet=*/true); 474 475 return ConstantRange(Lower.trunc(DstTySize), Upper.trunc(DstTySize)); 476 } 477 478 /// zextOrTrunc - make this range have the bit width given by \p DstTySize. The 479 /// value is zero extended, truncated, or left alone to make it that width. 480 ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const { 481 unsigned SrcTySize = getBitWidth(); 482 if (SrcTySize > DstTySize) 483 return truncate(DstTySize); 484 else if (SrcTySize < DstTySize) 485 return zeroExtend(DstTySize); 486 else 487 return *this; 488 } 489 490 /// sextOrTrunc - make this range have the bit width given by \p DstTySize. The 491 /// value is sign extended, truncated, or left alone to make it that width. 492 ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const { 493 unsigned SrcTySize = getBitWidth(); 494 if (SrcTySize > DstTySize) 495 return truncate(DstTySize); 496 else if (SrcTySize < DstTySize) 497 return signExtend(DstTySize); 498 else 499 return *this; 500 } 501 502 ConstantRange 503 ConstantRange::add(const ConstantRange &Other) const { 504 if (isEmptySet() || Other.isEmptySet()) 505 return ConstantRange(getBitWidth(), /*isFullSet=*/false); 506 if (isFullSet() || Other.isFullSet()) 507 return ConstantRange(getBitWidth(), /*isFullSet=*/true); 508 509 APInt Spread_X = getSetSize(), Spread_Y = Other.getSetSize(); 510 APInt NewLower = getLower() + Other.getLower(); 511 APInt NewUpper = getUpper() + Other.getUpper() - 1; 512 if (NewLower == NewUpper) 513 return ConstantRange(getBitWidth(), /*isFullSet=*/true); 514 515 ConstantRange X = ConstantRange(NewLower, NewUpper); 516 if (X.getSetSize().ult(Spread_X) || X.getSetSize().ult(Spread_Y)) 517 // We've wrapped, therefore, full set. 518 return ConstantRange(getBitWidth(), /*isFullSet=*/true); 519 520 return X; 521 } 522 523 ConstantRange 524 ConstantRange::sub(const ConstantRange &Other) const { 525 if (isEmptySet() || Other.isEmptySet()) 526 return ConstantRange(getBitWidth(), /*isFullSet=*/false); 527 if (isFullSet() || Other.isFullSet()) 528 return ConstantRange(getBitWidth(), /*isFullSet=*/true); 529 530 APInt Spread_X = getSetSize(), Spread_Y = Other.getSetSize(); 531 APInt NewLower = getLower() - Other.getUpper() + 1; 532 APInt NewUpper = getUpper() - Other.getLower(); 533 if (NewLower == NewUpper) 534 return ConstantRange(getBitWidth(), /*isFullSet=*/true); 535 536 ConstantRange X = ConstantRange(NewLower, NewUpper); 537 if (X.getSetSize().ult(Spread_X) || X.getSetSize().ult(Spread_Y)) 538 // We've wrapped, therefore, full set. 539 return ConstantRange(getBitWidth(), /*isFullSet=*/true); 540 541 return X; 542 } 543 544 ConstantRange 545 ConstantRange::multiply(const ConstantRange &Other) const { 546 // TODO: If either operand is a single element and the multiply is known to 547 // be non-wrapping, round the result min and max value to the appropriate 548 // multiple of that element. If wrapping is possible, at least adjust the 549 // range according to the greatest power-of-two factor of the single element. 550 551 if (isEmptySet() || Other.isEmptySet()) 552 return ConstantRange(getBitWidth(), /*isFullSet=*/false); 553 if (isFullSet() || Other.isFullSet()) 554 return ConstantRange(getBitWidth(), /*isFullSet=*/true); 555 556 APInt this_min = getUnsignedMin().zext(getBitWidth() * 2); 557 APInt this_max = getUnsignedMax().zext(getBitWidth() * 2); 558 APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2); 559 APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2); 560 561 ConstantRange Result_zext = ConstantRange(this_min * Other_min, 562 this_max * Other_max + 1); 563 return Result_zext.truncate(getBitWidth()); 564 } 565 566 ConstantRange 567 ConstantRange::smax(const ConstantRange &Other) const { 568 // X smax Y is: range(smax(X_smin, Y_smin), 569 // smax(X_smax, Y_smax)) 570 if (isEmptySet() || Other.isEmptySet()) 571 return ConstantRange(getBitWidth(), /*isFullSet=*/false); 572 APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin()); 573 APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1; 574 if (NewU == NewL) 575 return ConstantRange(getBitWidth(), /*isFullSet=*/true); 576 return ConstantRange(NewL, NewU); 577 } 578 579 ConstantRange 580 ConstantRange::umax(const ConstantRange &Other) const { 581 // X umax Y is: range(umax(X_umin, Y_umin), 582 // umax(X_umax, Y_umax)) 583 if (isEmptySet() || Other.isEmptySet()) 584 return ConstantRange(getBitWidth(), /*isFullSet=*/false); 585 APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin()); 586 APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1; 587 if (NewU == NewL) 588 return ConstantRange(getBitWidth(), /*isFullSet=*/true); 589 return ConstantRange(NewL, NewU); 590 } 591 592 ConstantRange 593 ConstantRange::udiv(const ConstantRange &RHS) const { 594 if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax() == 0) 595 return ConstantRange(getBitWidth(), /*isFullSet=*/false); 596 if (RHS.isFullSet()) 597 return ConstantRange(getBitWidth(), /*isFullSet=*/true); 598 599 APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax()); 600 601 APInt RHS_umin = RHS.getUnsignedMin(); 602 if (RHS_umin == 0) { 603 // We want the lowest value in RHS excluding zero. Usually that would be 1 604 // except for a range in the form of [X, 1) in which case it would be X. 605 if (RHS.getUpper() == 1) 606 RHS_umin = RHS.getLower(); 607 else 608 RHS_umin = APInt(getBitWidth(), 1); 609 } 610 611 APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1; 612 613 // If the LHS is Full and the RHS is a wrapped interval containing 1 then 614 // this could occur. 615 if (Lower == Upper) 616 return ConstantRange(getBitWidth(), /*isFullSet=*/true); 617 618 return ConstantRange(Lower, Upper); 619 } 620 621 ConstantRange 622 ConstantRange::binaryAnd(const ConstantRange &Other) const { 623 if (isEmptySet() || Other.isEmptySet()) 624 return ConstantRange(getBitWidth(), /*isFullSet=*/false); 625 626 // TODO: replace this with something less conservative 627 628 APInt umin = APIntOps::umin(Other.getUnsignedMax(), getUnsignedMax()); 629 if (umin.isAllOnesValue()) 630 return ConstantRange(getBitWidth(), /*isFullSet=*/true); 631 return ConstantRange(APInt::getNullValue(getBitWidth()), umin + 1); 632 } 633 634 ConstantRange 635 ConstantRange::binaryOr(const ConstantRange &Other) const { 636 if (isEmptySet() || Other.isEmptySet()) 637 return ConstantRange(getBitWidth(), /*isFullSet=*/false); 638 639 // TODO: replace this with something less conservative 640 641 APInt umax = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin()); 642 if (umax.isMinValue()) 643 return ConstantRange(getBitWidth(), /*isFullSet=*/true); 644 return ConstantRange(umax, APInt::getNullValue(getBitWidth())); 645 } 646 647 ConstantRange 648 ConstantRange::shl(const ConstantRange &Other) const { 649 if (isEmptySet() || Other.isEmptySet()) 650 return ConstantRange(getBitWidth(), /*isFullSet=*/false); 651 652 APInt min = getUnsignedMin().shl(Other.getUnsignedMin()); 653 APInt max = getUnsignedMax().shl(Other.getUnsignedMax()); 654 655 // there's no overflow! 656 APInt Zeros(getBitWidth(), getUnsignedMax().countLeadingZeros()); 657 if (Zeros.ugt(Other.getUnsignedMax())) 658 return ConstantRange(min, max + 1); 659 660 // FIXME: implement the other tricky cases 661 return ConstantRange(getBitWidth(), /*isFullSet=*/true); 662 } 663 664 ConstantRange 665 ConstantRange::lshr(const ConstantRange &Other) const { 666 if (isEmptySet() || Other.isEmptySet()) 667 return ConstantRange(getBitWidth(), /*isFullSet=*/false); 668 669 APInt max = getUnsignedMax().lshr(Other.getUnsignedMin()); 670 APInt min = getUnsignedMin().lshr(Other.getUnsignedMax()); 671 if (min == max + 1) 672 return ConstantRange(getBitWidth(), /*isFullSet=*/true); 673 674 return ConstantRange(min, max + 1); 675 } 676 677 ConstantRange ConstantRange::inverse() const { 678 if (isFullSet()) { 679 return ConstantRange(getBitWidth(), /*isFullSet=*/false); 680 } else if (isEmptySet()) { 681 return ConstantRange(getBitWidth(), /*isFullSet=*/true); 682 } 683 return ConstantRange(Upper, Lower); 684 } 685 686 /// print - Print out the bounds to a stream... 687 /// 688 void ConstantRange::print(raw_ostream &OS) const { 689 if (isFullSet()) 690 OS << "full-set"; 691 else if (isEmptySet()) 692 OS << "empty-set"; 693 else 694 OS << "[" << Lower << "," << Upper << ")"; 695 } 696 697 /// dump - Allow printing from a debugger easily... 698 /// 699 void ConstantRange::dump() const { 700 print(dbgs()); 701 } 702