1 //===- ARMInstrInfo.td - Target Description for ARM Target -*- tablegen -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file describes the ARM instructions in TableGen format. 11 // 12 //===----------------------------------------------------------------------===// 13 14 //===----------------------------------------------------------------------===// 15 // ARM specific DAG Nodes. 16 // 17 18 // Type profiles. 19 def SDT_ARMCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>; 20 def SDT_ARMCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>, SDTCisVT<1, i32> ]>; 21 22 def SDT_ARMSaveCallPC : SDTypeProfile<0, 1, []>; 23 24 def SDT_ARMcall : SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>; 25 26 def SDT_ARMCMov : SDTypeProfile<1, 3, 27 [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, 28 SDTCisVT<3, i32>]>; 29 30 def SDT_ARMBrcond : SDTypeProfile<0, 2, 31 [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>; 32 33 def SDT_ARMBrJT : SDTypeProfile<0, 3, 34 [SDTCisPtrTy<0>, SDTCisVT<1, i32>, 35 SDTCisVT<2, i32>]>; 36 37 def SDT_ARMBr2JT : SDTypeProfile<0, 4, 38 [SDTCisPtrTy<0>, SDTCisVT<1, i32>, 39 SDTCisVT<2, i32>, SDTCisVT<3, i32>]>; 40 41 def SDT_ARMBCC_i64 : SDTypeProfile<0, 6, 42 [SDTCisVT<0, i32>, 43 SDTCisVT<1, i32>, SDTCisVT<2, i32>, 44 SDTCisVT<3, i32>, SDTCisVT<4, i32>, 45 SDTCisVT<5, OtherVT>]>; 46 47 def SDT_ARMAnd : SDTypeProfile<1, 2, 48 [SDTCisVT<0, i32>, SDTCisVT<1, i32>, 49 SDTCisVT<2, i32>]>; 50 51 def SDT_ARMCmp : SDTypeProfile<0, 2, [SDTCisSameAs<0, 1>]>; 52 53 def SDT_ARMPICAdd : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>, 54 SDTCisPtrTy<1>, SDTCisVT<2, i32>]>; 55 56 def SDT_ARMThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>; 57 def SDT_ARMEH_SJLJ_Setjmp : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisPtrTy<1>, 58 SDTCisInt<2>]>; 59 def SDT_ARMEH_SJLJ_Longjmp: SDTypeProfile<0, 2, [SDTCisPtrTy<0>, SDTCisInt<1>]>; 60 61 def SDT_ARMEH_SJLJ_DispatchSetup: SDTypeProfile<0, 1, [SDTCisInt<0>]>; 62 63 def SDT_ARMMEMBARRIER : SDTypeProfile<0, 1, [SDTCisInt<0>]>; 64 65 def SDT_ARMPREFETCH : SDTypeProfile<0, 3, [SDTCisPtrTy<0>, SDTCisSameAs<1, 2>, 66 SDTCisInt<1>]>; 67 68 def SDT_ARMTCRET : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>; 69 70 def SDT_ARMBFI : SDTypeProfile<1, 3, [SDTCisVT<0, i32>, SDTCisVT<1, i32>, 71 SDTCisVT<2, i32>, SDTCisVT<3, i32>]>; 72 73 def SDTBinaryArithWithFlags : SDTypeProfile<2, 2, 74 [SDTCisSameAs<0, 2>, 75 SDTCisSameAs<0, 3>, 76 SDTCisInt<0>, SDTCisVT<1, i32>]>; 77 78 // SDTBinaryArithWithFlagsInOut - RES1, CPSR = op LHS, RHS, CPSR 79 def SDTBinaryArithWithFlagsInOut : SDTypeProfile<2, 3, 80 [SDTCisSameAs<0, 2>, 81 SDTCisSameAs<0, 3>, 82 SDTCisInt<0>, 83 SDTCisVT<1, i32>, 84 SDTCisVT<4, i32>]>; 85 // Node definitions. 86 def ARMWrapper : SDNode<"ARMISD::Wrapper", SDTIntUnaryOp>; 87 def ARMWrapperDYN : SDNode<"ARMISD::WrapperDYN", SDTIntUnaryOp>; 88 def ARMWrapperPIC : SDNode<"ARMISD::WrapperPIC", SDTIntUnaryOp>; 89 def ARMWrapperJT : SDNode<"ARMISD::WrapperJT", SDTIntBinOp>; 90 91 def ARMcallseq_start : SDNode<"ISD::CALLSEQ_START", SDT_ARMCallSeqStart, 92 [SDNPHasChain, SDNPOutGlue]>; 93 def ARMcallseq_end : SDNode<"ISD::CALLSEQ_END", SDT_ARMCallSeqEnd, 94 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; 95 96 def ARMcall : SDNode<"ARMISD::CALL", SDT_ARMcall, 97 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, 98 SDNPVariadic]>; 99 def ARMcall_pred : SDNode<"ARMISD::CALL_PRED", SDT_ARMcall, 100 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, 101 SDNPVariadic]>; 102 def ARMcall_nolink : SDNode<"ARMISD::CALL_NOLINK", SDT_ARMcall, 103 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, 104 SDNPVariadic]>; 105 106 def ARMretflag : SDNode<"ARMISD::RET_FLAG", SDTNone, 107 [SDNPHasChain, SDNPOptInGlue]>; 108 109 def ARMcmov : SDNode<"ARMISD::CMOV", SDT_ARMCMov, 110 [SDNPInGlue]>; 111 112 def ARMbrcond : SDNode<"ARMISD::BRCOND", SDT_ARMBrcond, 113 [SDNPHasChain, SDNPInGlue, SDNPOutGlue]>; 114 115 def ARMbrjt : SDNode<"ARMISD::BR_JT", SDT_ARMBrJT, 116 [SDNPHasChain]>; 117 def ARMbr2jt : SDNode<"ARMISD::BR2_JT", SDT_ARMBr2JT, 118 [SDNPHasChain]>; 119 120 def ARMBcci64 : SDNode<"ARMISD::BCC_i64", SDT_ARMBCC_i64, 121 [SDNPHasChain]>; 122 123 def ARMcmp : SDNode<"ARMISD::CMP", SDT_ARMCmp, 124 [SDNPOutGlue]>; 125 126 def ARMcmpZ : SDNode<"ARMISD::CMPZ", SDT_ARMCmp, 127 [SDNPOutGlue, SDNPCommutative]>; 128 129 def ARMpic_add : SDNode<"ARMISD::PIC_ADD", SDT_ARMPICAdd>; 130 131 def ARMsrl_flag : SDNode<"ARMISD::SRL_FLAG", SDTIntUnaryOp, [SDNPOutGlue]>; 132 def ARMsra_flag : SDNode<"ARMISD::SRA_FLAG", SDTIntUnaryOp, [SDNPOutGlue]>; 133 def ARMrrx : SDNode<"ARMISD::RRX" , SDTIntUnaryOp, [SDNPInGlue ]>; 134 135 def ARMaddc : SDNode<"ARMISD::ADDC", SDTBinaryArithWithFlags, 136 [SDNPCommutative]>; 137 def ARMsubc : SDNode<"ARMISD::SUBC", SDTBinaryArithWithFlags>; 138 def ARMadde : SDNode<"ARMISD::ADDE", SDTBinaryArithWithFlagsInOut>; 139 def ARMsube : SDNode<"ARMISD::SUBE", SDTBinaryArithWithFlagsInOut>; 140 141 def ARMthread_pointer: SDNode<"ARMISD::THREAD_POINTER", SDT_ARMThreadPointer>; 142 def ARMeh_sjlj_setjmp: SDNode<"ARMISD::EH_SJLJ_SETJMP", 143 SDT_ARMEH_SJLJ_Setjmp, [SDNPHasChain]>; 144 def ARMeh_sjlj_longjmp: SDNode<"ARMISD::EH_SJLJ_LONGJMP", 145 SDT_ARMEH_SJLJ_Longjmp, [SDNPHasChain]>; 146 def ARMeh_sjlj_dispatchsetup: SDNode<"ARMISD::EH_SJLJ_DISPATCHSETUP", 147 SDT_ARMEH_SJLJ_DispatchSetup, [SDNPHasChain]>; 148 149 150 def ARMMemBarrier : SDNode<"ARMISD::MEMBARRIER", SDT_ARMMEMBARRIER, 151 [SDNPHasChain]>; 152 def ARMMemBarrierMCR : SDNode<"ARMISD::MEMBARRIER_MCR", SDT_ARMMEMBARRIER, 153 [SDNPHasChain]>; 154 def ARMPreload : SDNode<"ARMISD::PRELOAD", SDT_ARMPREFETCH, 155 [SDNPHasChain, SDNPMayLoad, SDNPMayStore]>; 156 157 def ARMrbit : SDNode<"ARMISD::RBIT", SDTIntUnaryOp>; 158 159 def ARMtcret : SDNode<"ARMISD::TC_RETURN", SDT_ARMTCRET, 160 [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; 161 162 163 def ARMbfi : SDNode<"ARMISD::BFI", SDT_ARMBFI>; 164 165 //===----------------------------------------------------------------------===// 166 // ARM Instruction Predicate Definitions. 167 // 168 def HasV4T : Predicate<"Subtarget->hasV4TOps()">, 169 AssemblerPredicate<"HasV4TOps">; 170 def NoV4T : Predicate<"!Subtarget->hasV4TOps()">; 171 def HasV5T : Predicate<"Subtarget->hasV5TOps()">; 172 def HasV5TE : Predicate<"Subtarget->hasV5TEOps()">, 173 AssemblerPredicate<"HasV5TEOps">; 174 def HasV6 : Predicate<"Subtarget->hasV6Ops()">, 175 AssemblerPredicate<"HasV6Ops">; 176 def NoV6 : Predicate<"!Subtarget->hasV6Ops()">; 177 def HasV6T2 : Predicate<"Subtarget->hasV6T2Ops()">, 178 AssemblerPredicate<"HasV6T2Ops">; 179 def NoV6T2 : Predicate<"!Subtarget->hasV6T2Ops()">; 180 def HasV7 : Predicate<"Subtarget->hasV7Ops()">, 181 AssemblerPredicate<"HasV7Ops">; 182 def NoVFP : Predicate<"!Subtarget->hasVFP2()">; 183 def HasVFP2 : Predicate<"Subtarget->hasVFP2()">, 184 AssemblerPredicate<"FeatureVFP2">; 185 def HasVFP3 : Predicate<"Subtarget->hasVFP3()">, 186 AssemblerPredicate<"FeatureVFP3">; 187 def HasNEON : Predicate<"Subtarget->hasNEON()">, 188 AssemblerPredicate<"FeatureNEON">; 189 def HasFP16 : Predicate<"Subtarget->hasFP16()">, 190 AssemblerPredicate<"FeatureFP16">; 191 def HasDivide : Predicate<"Subtarget->hasDivide()">, 192 AssemblerPredicate<"FeatureHWDiv">; 193 def HasT2ExtractPack : Predicate<"Subtarget->hasT2ExtractPack()">, 194 AssemblerPredicate<"FeatureT2XtPk">; 195 def HasThumb2DSP : Predicate<"Subtarget->hasThumb2DSP()">, 196 AssemblerPredicate<"FeatureDSPThumb2">; 197 def HasDB : Predicate<"Subtarget->hasDataBarrier()">, 198 AssemblerPredicate<"FeatureDB">; 199 def HasMP : Predicate<"Subtarget->hasMPExtension()">, 200 AssemblerPredicate<"FeatureMP">; 201 def UseNEONForFP : Predicate<"Subtarget->useNEONForSinglePrecisionFP()">; 202 def DontUseNEONForFP : Predicate<"!Subtarget->useNEONForSinglePrecisionFP()">; 203 def IsThumb : Predicate<"Subtarget->isThumb()">, 204 AssemblerPredicate<"ModeThumb">; 205 def IsThumb1Only : Predicate<"Subtarget->isThumb1Only()">; 206 def IsThumb2 : Predicate<"Subtarget->isThumb2()">, 207 AssemblerPredicate<"ModeThumb,FeatureThumb2">; 208 def IsMClass : Predicate<"Subtarget->isMClass()">, 209 AssemblerPredicate<"FeatureMClass">; 210 def IsARClass : Predicate<"!Subtarget->isMClass()">, 211 AssemblerPredicate<"!FeatureMClass">; 212 def IsARM : Predicate<"!Subtarget->isThumb()">, 213 AssemblerPredicate<"!ModeThumb">; 214 def IsDarwin : Predicate<"Subtarget->isTargetDarwin()">; 215 def IsNotDarwin : Predicate<"!Subtarget->isTargetDarwin()">; 216 def IsNaCl : Predicate<"Subtarget->isTargetNaCl()">, 217 AssemblerPredicate<"ModeNaCl">; 218 219 // FIXME: Eventually this will be just "hasV6T2Ops". 220 def UseMovt : Predicate<"Subtarget->useMovt()">; 221 def DontUseMovt : Predicate<"!Subtarget->useMovt()">; 222 def UseFPVMLx : Predicate<"Subtarget->useFPVMLx()">; 223 224 //===----------------------------------------------------------------------===// 225 // ARM Flag Definitions. 226 227 class RegConstraint<string C> { 228 string Constraints = C; 229 } 230 231 //===----------------------------------------------------------------------===// 232 // ARM specific transformation functions and pattern fragments. 233 // 234 235 // so_imm_neg_XFORM - Return a so_imm value packed into the format described for 236 // so_imm_neg def below. 237 def so_imm_neg_XFORM : SDNodeXForm<imm, [{ 238 return CurDAG->getTargetConstant(-(int)N->getZExtValue(), MVT::i32); 239 }]>; 240 241 // so_imm_not_XFORM - Return a so_imm value packed into the format described for 242 // so_imm_not def below. 243 def so_imm_not_XFORM : SDNodeXForm<imm, [{ 244 return CurDAG->getTargetConstant(~(int)N->getZExtValue(), MVT::i32); 245 }]>; 246 247 /// imm1_15 predicate - True if the 32-bit immediate is in the range [1,15]. 248 def imm1_15 : ImmLeaf<i32, [{ 249 return (int32_t)Imm >= 1 && (int32_t)Imm < 16; 250 }]>; 251 252 /// imm16_31 predicate - True if the 32-bit immediate is in the range [16,31]. 253 def imm16_31 : ImmLeaf<i32, [{ 254 return (int32_t)Imm >= 16 && (int32_t)Imm < 32; 255 }]>; 256 257 def so_imm_neg : 258 PatLeaf<(imm), [{ 259 return ARM_AM::getSOImmVal(-(uint32_t)N->getZExtValue()) != -1; 260 }], so_imm_neg_XFORM>; 261 262 def so_imm_not : 263 PatLeaf<(imm), [{ 264 return ARM_AM::getSOImmVal(~(uint32_t)N->getZExtValue()) != -1; 265 }], so_imm_not_XFORM>; 266 267 // sext_16_node predicate - True if the SDNode is sign-extended 16 or more bits. 268 def sext_16_node : PatLeaf<(i32 GPR:$a), [{ 269 return CurDAG->ComputeNumSignBits(SDValue(N,0)) >= 17; 270 }]>; 271 272 /// Split a 32-bit immediate into two 16 bit parts. 273 def hi16 : SDNodeXForm<imm, [{ 274 return CurDAG->getTargetConstant((uint32_t)N->getZExtValue() >> 16, MVT::i32); 275 }]>; 276 277 def lo16AllZero : PatLeaf<(i32 imm), [{ 278 // Returns true if all low 16-bits are 0. 279 return (((uint32_t)N->getZExtValue()) & 0xFFFFUL) == 0; 280 }], hi16>; 281 282 /// imm0_65535 - An immediate is in the range [0.65535]. 283 def Imm0_65535AsmOperand: AsmOperandClass { let Name = "Imm0_65535"; } 284 def imm0_65535 : Operand<i32>, ImmLeaf<i32, [{ 285 return Imm >= 0 && Imm < 65536; 286 }]> { 287 let ParserMatchClass = Imm0_65535AsmOperand; 288 } 289 290 class BinOpWithFlagFrag<dag res> : 291 PatFrag<(ops node:$LHS, node:$RHS, node:$FLAG), res>; 292 class BinOpFrag<dag res> : PatFrag<(ops node:$LHS, node:$RHS), res>; 293 class UnOpFrag <dag res> : PatFrag<(ops node:$Src), res>; 294 295 // An 'and' node with a single use. 296 def and_su : PatFrag<(ops node:$lhs, node:$rhs), (and node:$lhs, node:$rhs), [{ 297 return N->hasOneUse(); 298 }]>; 299 300 // An 'xor' node with a single use. 301 def xor_su : PatFrag<(ops node:$lhs, node:$rhs), (xor node:$lhs, node:$rhs), [{ 302 return N->hasOneUse(); 303 }]>; 304 305 // An 'fmul' node with a single use. 306 def fmul_su : PatFrag<(ops node:$lhs, node:$rhs), (fmul node:$lhs, node:$rhs),[{ 307 return N->hasOneUse(); 308 }]>; 309 310 // An 'fadd' node which checks for single non-hazardous use. 311 def fadd_mlx : PatFrag<(ops node:$lhs, node:$rhs),(fadd node:$lhs, node:$rhs),[{ 312 return hasNoVMLxHazardUse(N); 313 }]>; 314 315 // An 'fsub' node which checks for single non-hazardous use. 316 def fsub_mlx : PatFrag<(ops node:$lhs, node:$rhs),(fsub node:$lhs, node:$rhs),[{ 317 return hasNoVMLxHazardUse(N); 318 }]>; 319 320 //===----------------------------------------------------------------------===// 321 // Operand Definitions. 322 // 323 324 // Branch target. 325 // FIXME: rename brtarget to t2_brtarget 326 def brtarget : Operand<OtherVT> { 327 let EncoderMethod = "getBranchTargetOpValue"; 328 let OperandType = "OPERAND_PCREL"; 329 let DecoderMethod = "DecodeT2BROperand"; 330 } 331 332 // FIXME: get rid of this one? 333 def uncondbrtarget : Operand<OtherVT> { 334 let EncoderMethod = "getUnconditionalBranchTargetOpValue"; 335 let OperandType = "OPERAND_PCREL"; 336 } 337 338 // Branch target for ARM. Handles conditional/unconditional 339 def br_target : Operand<OtherVT> { 340 let EncoderMethod = "getARMBranchTargetOpValue"; 341 let OperandType = "OPERAND_PCREL"; 342 } 343 344 // Call target. 345 // FIXME: rename bltarget to t2_bl_target? 346 def bltarget : Operand<i32> { 347 // Encoded the same as branch targets. 348 let EncoderMethod = "getBranchTargetOpValue"; 349 let OperandType = "OPERAND_PCREL"; 350 } 351 352 // Call target for ARM. Handles conditional/unconditional 353 // FIXME: rename bl_target to t2_bltarget? 354 def bl_target : Operand<i32> { 355 // Encoded the same as branch targets. 356 let EncoderMethod = "getARMBranchTargetOpValue"; 357 let OperandType = "OPERAND_PCREL"; 358 } 359 360 def blx_target : Operand<i32> { 361 // Encoded the same as branch targets. 362 let EncoderMethod = "getARMBLXTargetOpValue"; 363 let OperandType = "OPERAND_PCREL"; 364 } 365 366 // A list of registers separated by comma. Used by load/store multiple. 367 def RegListAsmOperand : AsmOperandClass { let Name = "RegList"; } 368 def reglist : Operand<i32> { 369 let EncoderMethod = "getRegisterListOpValue"; 370 let ParserMatchClass = RegListAsmOperand; 371 let PrintMethod = "printRegisterList"; 372 let DecoderMethod = "DecodeRegListOperand"; 373 } 374 375 def DPRRegListAsmOperand : AsmOperandClass { let Name = "DPRRegList"; } 376 def dpr_reglist : Operand<i32> { 377 let EncoderMethod = "getRegisterListOpValue"; 378 let ParserMatchClass = DPRRegListAsmOperand; 379 let PrintMethod = "printRegisterList"; 380 let DecoderMethod = "DecodeDPRRegListOperand"; 381 } 382 383 def SPRRegListAsmOperand : AsmOperandClass { let Name = "SPRRegList"; } 384 def spr_reglist : Operand<i32> { 385 let EncoderMethod = "getRegisterListOpValue"; 386 let ParserMatchClass = SPRRegListAsmOperand; 387 let PrintMethod = "printRegisterList"; 388 let DecoderMethod = "DecodeSPRRegListOperand"; 389 } 390 391 // An operand for the CONSTPOOL_ENTRY pseudo-instruction. 392 def cpinst_operand : Operand<i32> { 393 let PrintMethod = "printCPInstOperand"; 394 } 395 396 // Local PC labels. 397 def pclabel : Operand<i32> { 398 let PrintMethod = "printPCLabel"; 399 } 400 401 // ADR instruction labels. 402 def adrlabel : Operand<i32> { 403 let EncoderMethod = "getAdrLabelOpValue"; 404 } 405 406 def neon_vcvt_imm32 : Operand<i32> { 407 let EncoderMethod = "getNEONVcvtImm32OpValue"; 408 let DecoderMethod = "DecodeVCVTImmOperand"; 409 } 410 411 // rot_imm: An integer that encodes a rotate amount. Must be 8, 16, or 24. 412 def rot_imm_XFORM: SDNodeXForm<imm, [{ 413 switch (N->getZExtValue()){ 414 default: assert(0); 415 case 0: return CurDAG->getTargetConstant(0, MVT::i32); 416 case 8: return CurDAG->getTargetConstant(1, MVT::i32); 417 case 16: return CurDAG->getTargetConstant(2, MVT::i32); 418 case 24: return CurDAG->getTargetConstant(3, MVT::i32); 419 } 420 }]>; 421 def RotImmAsmOperand : AsmOperandClass { 422 let Name = "RotImm"; 423 let ParserMethod = "parseRotImm"; 424 } 425 def rot_imm : Operand<i32>, PatLeaf<(i32 imm), [{ 426 int32_t v = N->getZExtValue(); 427 return v == 8 || v == 16 || v == 24; }], 428 rot_imm_XFORM> { 429 let PrintMethod = "printRotImmOperand"; 430 let ParserMatchClass = RotImmAsmOperand; 431 } 432 433 // shift_imm: An integer that encodes a shift amount and the type of shift 434 // (asr or lsl). The 6-bit immediate encodes as: 435 // {5} 0 ==> lsl 436 // 1 asr 437 // {4-0} imm5 shift amount. 438 // asr #32 encoded as imm5 == 0. 439 def ShifterImmAsmOperand : AsmOperandClass { 440 let Name = "ShifterImm"; 441 let ParserMethod = "parseShifterImm"; 442 } 443 def shift_imm : Operand<i32> { 444 let PrintMethod = "printShiftImmOperand"; 445 let ParserMatchClass = ShifterImmAsmOperand; 446 } 447 448 // shifter_operand operands: so_reg_reg, so_reg_imm, and so_imm. 449 def ShiftedRegAsmOperand : AsmOperandClass { let Name = "RegShiftedReg"; } 450 def so_reg_reg : Operand<i32>, // reg reg imm 451 ComplexPattern<i32, 3, "SelectRegShifterOperand", 452 [shl, srl, sra, rotr]> { 453 let EncoderMethod = "getSORegRegOpValue"; 454 let PrintMethod = "printSORegRegOperand"; 455 let DecoderMethod = "DecodeSORegRegOperand"; 456 let ParserMatchClass = ShiftedRegAsmOperand; 457 let MIOperandInfo = (ops GPRnopc, GPRnopc, i32imm); 458 } 459 460 def ShiftedImmAsmOperand : AsmOperandClass { let Name = "RegShiftedImm"; } 461 def so_reg_imm : Operand<i32>, // reg imm 462 ComplexPattern<i32, 2, "SelectImmShifterOperand", 463 [shl, srl, sra, rotr]> { 464 let EncoderMethod = "getSORegImmOpValue"; 465 let PrintMethod = "printSORegImmOperand"; 466 let DecoderMethod = "DecodeSORegImmOperand"; 467 let ParserMatchClass = ShiftedImmAsmOperand; 468 let MIOperandInfo = (ops GPR, i32imm); 469 } 470 471 // FIXME: Does this need to be distinct from so_reg? 472 def shift_so_reg_reg : Operand<i32>, // reg reg imm 473 ComplexPattern<i32, 3, "SelectShiftRegShifterOperand", 474 [shl,srl,sra,rotr]> { 475 let EncoderMethod = "getSORegRegOpValue"; 476 let PrintMethod = "printSORegRegOperand"; 477 let DecoderMethod = "DecodeSORegRegOperand"; 478 let MIOperandInfo = (ops GPR, GPR, i32imm); 479 } 480 481 // FIXME: Does this need to be distinct from so_reg? 482 def shift_so_reg_imm : Operand<i32>, // reg reg imm 483 ComplexPattern<i32, 2, "SelectShiftImmShifterOperand", 484 [shl,srl,sra,rotr]> { 485 let EncoderMethod = "getSORegImmOpValue"; 486 let PrintMethod = "printSORegImmOperand"; 487 let DecoderMethod = "DecodeSORegImmOperand"; 488 let MIOperandInfo = (ops GPR, i32imm); 489 } 490 491 492 // so_imm - Match a 32-bit shifter_operand immediate operand, which is an 493 // 8-bit immediate rotated by an arbitrary number of bits. 494 def SOImmAsmOperand: AsmOperandClass { let Name = "ARMSOImm"; } 495 def so_imm : Operand<i32>, ImmLeaf<i32, [{ 496 return ARM_AM::getSOImmVal(Imm) != -1; 497 }]> { 498 let EncoderMethod = "getSOImmOpValue"; 499 let ParserMatchClass = SOImmAsmOperand; 500 let DecoderMethod = "DecodeSOImmOperand"; 501 } 502 503 // Break so_imm's up into two pieces. This handles immediates with up to 16 504 // bits set in them. This uses so_imm2part to match and so_imm2part_[12] to 505 // get the first/second pieces. 506 def so_imm2part : PatLeaf<(imm), [{ 507 return ARM_AM::isSOImmTwoPartVal((unsigned)N->getZExtValue()); 508 }]>; 509 510 /// arm_i32imm - True for +V6T2, or true only if so_imm2part is true. 511 /// 512 def arm_i32imm : PatLeaf<(imm), [{ 513 if (Subtarget->hasV6T2Ops()) 514 return true; 515 return ARM_AM::isSOImmTwoPartVal((unsigned)N->getZExtValue()); 516 }]>; 517 518 /// imm0_7 predicate - Immediate in the range [0,7]. 519 def Imm0_7AsmOperand: AsmOperandClass { let Name = "Imm0_7"; } 520 def imm0_7 : Operand<i32>, ImmLeaf<i32, [{ 521 return Imm >= 0 && Imm < 8; 522 }]> { 523 let ParserMatchClass = Imm0_7AsmOperand; 524 } 525 526 /// imm0_15 predicate - Immediate in the range [0,15]. 527 def Imm0_15AsmOperand: AsmOperandClass { let Name = "Imm0_15"; } 528 def imm0_15 : Operand<i32>, ImmLeaf<i32, [{ 529 return Imm >= 0 && Imm < 16; 530 }]> { 531 let ParserMatchClass = Imm0_15AsmOperand; 532 } 533 534 /// imm0_31 predicate - True if the 32-bit immediate is in the range [0,31]. 535 def Imm0_31AsmOperand: AsmOperandClass { let Name = "Imm0_31"; } 536 def imm0_31 : Operand<i32>, ImmLeaf<i32, [{ 537 return Imm >= 0 && Imm < 32; 538 }]> { 539 let ParserMatchClass = Imm0_31AsmOperand; 540 } 541 542 /// imm0_255 predicate - Immediate in the range [0,255]. 543 def Imm0_255AsmOperand : AsmOperandClass { let Name = "Imm0_255"; } 544 def imm0_255 : Operand<i32>, ImmLeaf<i32, [{ return Imm >= 0 && Imm < 256; }]> { 545 let ParserMatchClass = Imm0_255AsmOperand; 546 } 547 548 // imm0_65535_expr - For movt/movw - 16-bit immediate that can also reference 549 // a relocatable expression. 550 // 551 // FIXME: This really needs a Thumb version separate from the ARM version. 552 // While the range is the same, and can thus use the same match class, 553 // the encoding is different so it should have a different encoder method. 554 def Imm0_65535ExprAsmOperand: AsmOperandClass { let Name = "Imm0_65535Expr"; } 555 def imm0_65535_expr : Operand<i32> { 556 let EncoderMethod = "getHiLo16ImmOpValue"; 557 let ParserMatchClass = Imm0_65535ExprAsmOperand; 558 } 559 560 /// imm24b - True if the 32-bit immediate is encodable in 24 bits. 561 def Imm24bitAsmOperand: AsmOperandClass { let Name = "Imm24bit"; } 562 def imm24b : Operand<i32>, ImmLeaf<i32, [{ 563 return Imm >= 0 && Imm <= 0xffffff; 564 }]> { 565 let ParserMatchClass = Imm24bitAsmOperand; 566 } 567 568 569 /// bf_inv_mask_imm predicate - An AND mask to clear an arbitrary width bitfield 570 /// e.g., 0xf000ffff 571 def BitfieldAsmOperand : AsmOperandClass { 572 let Name = "Bitfield"; 573 let ParserMethod = "parseBitfield"; 574 } 575 def bf_inv_mask_imm : Operand<i32>, 576 PatLeaf<(imm), [{ 577 return ARM::isBitFieldInvertedMask(N->getZExtValue()); 578 }] > { 579 let EncoderMethod = "getBitfieldInvertedMaskOpValue"; 580 let PrintMethod = "printBitfieldInvMaskImmOperand"; 581 let DecoderMethod = "DecodeBitfieldMaskOperand"; 582 let ParserMatchClass = BitfieldAsmOperand; 583 } 584 585 def imm1_32_XFORM: SDNodeXForm<imm, [{ 586 return CurDAG->getTargetConstant((int)N->getZExtValue() - 1, MVT::i32); 587 }]>; 588 def Imm1_32AsmOperand: AsmOperandClass { let Name = "Imm1_32"; } 589 def imm1_32 : Operand<i32>, PatLeaf<(imm), [{ 590 uint64_t Imm = N->getZExtValue(); 591 return Imm > 0 && Imm <= 32; 592 }], 593 imm1_32_XFORM> { 594 let PrintMethod = "printImmPlusOneOperand"; 595 let ParserMatchClass = Imm1_32AsmOperand; 596 } 597 598 def imm1_16_XFORM: SDNodeXForm<imm, [{ 599 return CurDAG->getTargetConstant((int)N->getZExtValue() - 1, MVT::i32); 600 }]>; 601 def Imm1_16AsmOperand: AsmOperandClass { let Name = "Imm1_16"; } 602 def imm1_16 : Operand<i32>, PatLeaf<(imm), [{ return Imm > 0 && Imm <= 16; }], 603 imm1_16_XFORM> { 604 let PrintMethod = "printImmPlusOneOperand"; 605 let ParserMatchClass = Imm1_16AsmOperand; 606 } 607 608 // Define ARM specific addressing modes. 609 // addrmode_imm12 := reg +/- imm12 610 // 611 def MemImm12OffsetAsmOperand : AsmOperandClass { let Name = "MemImm12Offset"; } 612 def addrmode_imm12 : Operand<i32>, 613 ComplexPattern<i32, 2, "SelectAddrModeImm12", []> { 614 // 12-bit immediate operand. Note that instructions using this encode 615 // #0 and #-0 differently. We flag #-0 as the magic value INT32_MIN. All other 616 // immediate values are as normal. 617 618 let EncoderMethod = "getAddrModeImm12OpValue"; 619 let PrintMethod = "printAddrModeImm12Operand"; 620 let DecoderMethod = "DecodeAddrModeImm12Operand"; 621 let ParserMatchClass = MemImm12OffsetAsmOperand; 622 let MIOperandInfo = (ops GPR:$base, i32imm:$offsimm); 623 } 624 // ldst_so_reg := reg +/- reg shop imm 625 // 626 def MemRegOffsetAsmOperand : AsmOperandClass { let Name = "MemRegOffset"; } 627 def ldst_so_reg : Operand<i32>, 628 ComplexPattern<i32, 3, "SelectLdStSOReg", []> { 629 let EncoderMethod = "getLdStSORegOpValue"; 630 // FIXME: Simplify the printer 631 let PrintMethod = "printAddrMode2Operand"; 632 let DecoderMethod = "DecodeSORegMemOperand"; 633 let ParserMatchClass = MemRegOffsetAsmOperand; 634 let MIOperandInfo = (ops GPR:$base, GPRnopc:$offsreg, i32imm:$shift); 635 } 636 637 // postidx_imm8 := +/- [0,255] 638 // 639 // 9 bit value: 640 // {8} 1 is imm8 is non-negative. 0 otherwise. 641 // {7-0} [0,255] imm8 value. 642 def PostIdxImm8AsmOperand : AsmOperandClass { let Name = "PostIdxImm8"; } 643 def postidx_imm8 : Operand<i32> { 644 let PrintMethod = "printPostIdxImm8Operand"; 645 let ParserMatchClass = PostIdxImm8AsmOperand; 646 let MIOperandInfo = (ops i32imm); 647 } 648 649 // postidx_imm8s4 := +/- [0,1020] 650 // 651 // 9 bit value: 652 // {8} 1 is imm8 is non-negative. 0 otherwise. 653 // {7-0} [0,255] imm8 value, scaled by 4. 654 def PostIdxImm8s4AsmOperand : AsmOperandClass { let Name = "PostIdxImm8s4"; } 655 def postidx_imm8s4 : Operand<i32> { 656 let PrintMethod = "printPostIdxImm8s4Operand"; 657 let ParserMatchClass = PostIdxImm8s4AsmOperand; 658 let MIOperandInfo = (ops i32imm); 659 } 660 661 662 // postidx_reg := +/- reg 663 // 664 def PostIdxRegAsmOperand : AsmOperandClass { 665 let Name = "PostIdxReg"; 666 let ParserMethod = "parsePostIdxReg"; 667 } 668 def postidx_reg : Operand<i32> { 669 let EncoderMethod = "getPostIdxRegOpValue"; 670 let DecoderMethod = "DecodePostIdxReg"; 671 let PrintMethod = "printPostIdxRegOperand"; 672 let ParserMatchClass = PostIdxRegAsmOperand; 673 let MIOperandInfo = (ops GPR, i32imm); 674 } 675 676 677 // addrmode2 := reg +/- imm12 678 // := reg +/- reg shop imm 679 // 680 // FIXME: addrmode2 should be refactored the rest of the way to always 681 // use explicit imm vs. reg versions above (addrmode_imm12 and ldst_so_reg). 682 def AddrMode2AsmOperand : AsmOperandClass { let Name = "AddrMode2"; } 683 def addrmode2 : Operand<i32>, 684 ComplexPattern<i32, 3, "SelectAddrMode2", []> { 685 let EncoderMethod = "getAddrMode2OpValue"; 686 let PrintMethod = "printAddrMode2Operand"; 687 let ParserMatchClass = AddrMode2AsmOperand; 688 let MIOperandInfo = (ops GPR:$base, GPR:$offsreg, i32imm:$offsimm); 689 } 690 691 def PostIdxRegShiftedAsmOperand : AsmOperandClass { 692 let Name = "PostIdxRegShifted"; 693 let ParserMethod = "parsePostIdxReg"; 694 } 695 def am2offset_reg : Operand<i32>, 696 ComplexPattern<i32, 2, "SelectAddrMode2OffsetReg", 697 [], [SDNPWantRoot]> { 698 let EncoderMethod = "getAddrMode2OffsetOpValue"; 699 let PrintMethod = "printAddrMode2OffsetOperand"; 700 // When using this for assembly, it's always as a post-index offset. 701 let ParserMatchClass = PostIdxRegShiftedAsmOperand; 702 let MIOperandInfo = (ops GPR, i32imm); 703 } 704 705 // FIXME: am2offset_imm should only need the immediate, not the GPR. Having 706 // the GPR is purely vestigal at this point. 707 def AM2OffsetImmAsmOperand : AsmOperandClass { let Name = "AM2OffsetImm"; } 708 def am2offset_imm : Operand<i32>, 709 ComplexPattern<i32, 2, "SelectAddrMode2OffsetImm", 710 [], [SDNPWantRoot]> { 711 let EncoderMethod = "getAddrMode2OffsetOpValue"; 712 let PrintMethod = "printAddrMode2OffsetOperand"; 713 let ParserMatchClass = AM2OffsetImmAsmOperand; 714 let MIOperandInfo = (ops GPR, i32imm); 715 } 716 717 718 // addrmode3 := reg +/- reg 719 // addrmode3 := reg +/- imm8 720 // 721 // FIXME: split into imm vs. reg versions. 722 def AddrMode3AsmOperand : AsmOperandClass { let Name = "AddrMode3"; } 723 def addrmode3 : Operand<i32>, 724 ComplexPattern<i32, 3, "SelectAddrMode3", []> { 725 let EncoderMethod = "getAddrMode3OpValue"; 726 let PrintMethod = "printAddrMode3Operand"; 727 let ParserMatchClass = AddrMode3AsmOperand; 728 let MIOperandInfo = (ops GPR:$base, GPR:$offsreg, i32imm:$offsimm); 729 } 730 731 // FIXME: split into imm vs. reg versions. 732 // FIXME: parser method to handle +/- register. 733 def AM3OffsetAsmOperand : AsmOperandClass { 734 let Name = "AM3Offset"; 735 let ParserMethod = "parseAM3Offset"; 736 } 737 def am3offset : Operand<i32>, 738 ComplexPattern<i32, 2, "SelectAddrMode3Offset", 739 [], [SDNPWantRoot]> { 740 let EncoderMethod = "getAddrMode3OffsetOpValue"; 741 let PrintMethod = "printAddrMode3OffsetOperand"; 742 let ParserMatchClass = AM3OffsetAsmOperand; 743 let MIOperandInfo = (ops GPR, i32imm); 744 } 745 746 // ldstm_mode := {ia, ib, da, db} 747 // 748 def ldstm_mode : OptionalDefOperand<OtherVT, (ops i32), (ops (i32 1))> { 749 let EncoderMethod = "getLdStmModeOpValue"; 750 let PrintMethod = "printLdStmModeOperand"; 751 } 752 753 // addrmode5 := reg +/- imm8*4 754 // 755 def AddrMode5AsmOperand : AsmOperandClass { let Name = "AddrMode5"; } 756 def addrmode5 : Operand<i32>, 757 ComplexPattern<i32, 2, "SelectAddrMode5", []> { 758 let PrintMethod = "printAddrMode5Operand"; 759 let EncoderMethod = "getAddrMode5OpValue"; 760 let DecoderMethod = "DecodeAddrMode5Operand"; 761 let ParserMatchClass = AddrMode5AsmOperand; 762 let MIOperandInfo = (ops GPR:$base, i32imm); 763 } 764 765 // addrmode6 := reg with optional alignment 766 // 767 def AddrMode6AsmOperand : AsmOperandClass { let Name = "AlignedMemory"; } 768 def addrmode6 : Operand<i32>, 769 ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{ 770 let PrintMethod = "printAddrMode6Operand"; 771 let MIOperandInfo = (ops GPR:$addr, i32imm:$align); 772 let EncoderMethod = "getAddrMode6AddressOpValue"; 773 let DecoderMethod = "DecodeAddrMode6Operand"; 774 let ParserMatchClass = AddrMode6AsmOperand; 775 } 776 777 def am6offset : Operand<i32>, 778 ComplexPattern<i32, 1, "SelectAddrMode6Offset", 779 [], [SDNPWantRoot]> { 780 let PrintMethod = "printAddrMode6OffsetOperand"; 781 let MIOperandInfo = (ops GPR); 782 let EncoderMethod = "getAddrMode6OffsetOpValue"; 783 let DecoderMethod = "DecodeGPRRegisterClass"; 784 } 785 786 // Special version of addrmode6 to handle alignment encoding for VST1/VLD1 787 // (single element from one lane) for size 32. 788 def addrmode6oneL32 : Operand<i32>, 789 ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{ 790 let PrintMethod = "printAddrMode6Operand"; 791 let MIOperandInfo = (ops GPR:$addr, i32imm); 792 let EncoderMethod = "getAddrMode6OneLane32AddressOpValue"; 793 } 794 795 // Special version of addrmode6 to handle alignment encoding for VLD-dup 796 // instructions, specifically VLD4-dup. 797 def addrmode6dup : Operand<i32>, 798 ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{ 799 let PrintMethod = "printAddrMode6Operand"; 800 let MIOperandInfo = (ops GPR:$addr, i32imm); 801 let EncoderMethod = "getAddrMode6DupAddressOpValue"; 802 } 803 804 // addrmodepc := pc + reg 805 // 806 def addrmodepc : Operand<i32>, 807 ComplexPattern<i32, 2, "SelectAddrModePC", []> { 808 let PrintMethod = "printAddrModePCOperand"; 809 let MIOperandInfo = (ops GPR, i32imm); 810 } 811 812 // addr_offset_none := reg 813 // 814 def MemNoOffsetAsmOperand : AsmOperandClass { let Name = "MemNoOffset"; } 815 def addr_offset_none : Operand<i32>, 816 ComplexPattern<i32, 1, "SelectAddrOffsetNone", []> { 817 let PrintMethod = "printAddrMode7Operand"; 818 let DecoderMethod = "DecodeAddrMode7Operand"; 819 let ParserMatchClass = MemNoOffsetAsmOperand; 820 let MIOperandInfo = (ops GPR:$base); 821 } 822 823 def nohash_imm : Operand<i32> { 824 let PrintMethod = "printNoHashImmediate"; 825 } 826 827 def CoprocNumAsmOperand : AsmOperandClass { 828 let Name = "CoprocNum"; 829 let ParserMethod = "parseCoprocNumOperand"; 830 } 831 def p_imm : Operand<i32> { 832 let PrintMethod = "printPImmediate"; 833 let ParserMatchClass = CoprocNumAsmOperand; 834 let DecoderMethod = "DecodeCoprocessor"; 835 } 836 837 def CoprocRegAsmOperand : AsmOperandClass { 838 let Name = "CoprocReg"; 839 let ParserMethod = "parseCoprocRegOperand"; 840 } 841 def c_imm : Operand<i32> { 842 let PrintMethod = "printCImmediate"; 843 let ParserMatchClass = CoprocRegAsmOperand; 844 } 845 def CoprocOptionAsmOperand : AsmOperandClass { 846 let Name = "CoprocOption"; 847 let ParserMethod = "parseCoprocOptionOperand"; 848 } 849 def coproc_option_imm : Operand<i32> { 850 let PrintMethod = "printCoprocOptionImm"; 851 let ParserMatchClass = CoprocOptionAsmOperand; 852 } 853 854 //===----------------------------------------------------------------------===// 855 856 include "ARMInstrFormats.td" 857 858 //===----------------------------------------------------------------------===// 859 // Multiclass helpers... 860 // 861 862 /// AsI1_bin_irs - Defines a set of (op r, {so_imm|r|so_reg}) patterns for a 863 /// binop that produces a value. 864 multiclass AsI1_bin_irs<bits<4> opcod, string opc, 865 InstrItinClass iii, InstrItinClass iir, InstrItinClass iis, 866 PatFrag opnode, string baseOpc, bit Commutable = 0> { 867 // The register-immediate version is re-materializable. This is useful 868 // in particular for taking the address of a local. 869 let isReMaterializable = 1 in { 870 def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, so_imm:$imm), DPFrm, 871 iii, opc, "\t$Rd, $Rn, $imm", 872 [(set GPR:$Rd, (opnode GPR:$Rn, so_imm:$imm))]> { 873 bits<4> Rd; 874 bits<4> Rn; 875 bits<12> imm; 876 let Inst{25} = 1; 877 let Inst{19-16} = Rn; 878 let Inst{15-12} = Rd; 879 let Inst{11-0} = imm; 880 } 881 } 882 def rr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), DPFrm, 883 iir, opc, "\t$Rd, $Rn, $Rm", 884 [(set GPR:$Rd, (opnode GPR:$Rn, GPR:$Rm))]> { 885 bits<4> Rd; 886 bits<4> Rn; 887 bits<4> Rm; 888 let Inst{25} = 0; 889 let isCommutable = Commutable; 890 let Inst{19-16} = Rn; 891 let Inst{15-12} = Rd; 892 let Inst{11-4} = 0b00000000; 893 let Inst{3-0} = Rm; 894 } 895 896 def rsi : AsI1<opcod, (outs GPR:$Rd), 897 (ins GPR:$Rn, so_reg_imm:$shift), DPSoRegImmFrm, 898 iis, opc, "\t$Rd, $Rn, $shift", 899 [(set GPR:$Rd, (opnode GPR:$Rn, so_reg_imm:$shift))]> { 900 bits<4> Rd; 901 bits<4> Rn; 902 bits<12> shift; 903 let Inst{25} = 0; 904 let Inst{19-16} = Rn; 905 let Inst{15-12} = Rd; 906 let Inst{11-5} = shift{11-5}; 907 let Inst{4} = 0; 908 let Inst{3-0} = shift{3-0}; 909 } 910 911 def rsr : AsI1<opcod, (outs GPR:$Rd), 912 (ins GPR:$Rn, so_reg_reg:$shift), DPSoRegRegFrm, 913 iis, opc, "\t$Rd, $Rn, $shift", 914 [(set GPR:$Rd, (opnode GPR:$Rn, so_reg_reg:$shift))]> { 915 bits<4> Rd; 916 bits<4> Rn; 917 bits<12> shift; 918 let Inst{25} = 0; 919 let Inst{19-16} = Rn; 920 let Inst{15-12} = Rd; 921 let Inst{11-8} = shift{11-8}; 922 let Inst{7} = 0; 923 let Inst{6-5} = shift{6-5}; 924 let Inst{4} = 1; 925 let Inst{3-0} = shift{3-0}; 926 } 927 928 // Assembly aliases for optional destination operand when it's the same 929 // as the source operand. 930 def : InstAlias<!strconcat(opc, "${s}${p} $Rdn, $imm"), 931 (!cast<Instruction>(!strconcat(baseOpc, "ri")) GPR:$Rdn, GPR:$Rdn, 932 so_imm:$imm, pred:$p, 933 cc_out:$s)>, 934 Requires<[IsARM]>; 935 def : InstAlias<!strconcat(opc, "${s}${p} $Rdn, $Rm"), 936 (!cast<Instruction>(!strconcat(baseOpc, "rr")) GPR:$Rdn, GPR:$Rdn, 937 GPR:$Rm, pred:$p, 938 cc_out:$s)>, 939 Requires<[IsARM]>; 940 def : InstAlias<!strconcat(opc, "${s}${p} $Rdn, $shift"), 941 (!cast<Instruction>(!strconcat(baseOpc, "rsi")) GPR:$Rdn, GPR:$Rdn, 942 so_reg_imm:$shift, pred:$p, 943 cc_out:$s)>, 944 Requires<[IsARM]>; 945 def : InstAlias<!strconcat(opc, "${s}${p} $Rdn, $shift"), 946 (!cast<Instruction>(!strconcat(baseOpc, "rsr")) GPR:$Rdn, GPR:$Rdn, 947 so_reg_reg:$shift, pred:$p, 948 cc_out:$s)>, 949 Requires<[IsARM]>; 950 951 } 952 953 /// AsI1_rbin_irs - Same as AsI1_bin_irs except the order of operands are 954 /// reversed. The 'rr' form is only defined for the disassembler; for codegen 955 /// it is equivalent to the AsI1_bin_irs counterpart. 956 multiclass AsI1_rbin_irs<bits<4> opcod, string opc, 957 InstrItinClass iii, InstrItinClass iir, InstrItinClass iis, 958 PatFrag opnode, string baseOpc, bit Commutable = 0> { 959 // The register-immediate version is re-materializable. This is useful 960 // in particular for taking the address of a local. 961 let isReMaterializable = 1 in { 962 def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, so_imm:$imm), DPFrm, 963 iii, opc, "\t$Rd, $Rn, $imm", 964 [(set GPR:$Rd, (opnode so_imm:$imm, GPR:$Rn))]> { 965 bits<4> Rd; 966 bits<4> Rn; 967 bits<12> imm; 968 let Inst{25} = 1; 969 let Inst{19-16} = Rn; 970 let Inst{15-12} = Rd; 971 let Inst{11-0} = imm; 972 } 973 } 974 def rr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), DPFrm, 975 iir, opc, "\t$Rd, $Rn, $Rm", 976 [/* pattern left blank */]> { 977 bits<4> Rd; 978 bits<4> Rn; 979 bits<4> Rm; 980 let Inst{11-4} = 0b00000000; 981 let Inst{25} = 0; 982 let Inst{3-0} = Rm; 983 let Inst{15-12} = Rd; 984 let Inst{19-16} = Rn; 985 } 986 987 def rsi : AsI1<opcod, (outs GPR:$Rd), 988 (ins GPR:$Rn, so_reg_imm:$shift), DPSoRegImmFrm, 989 iis, opc, "\t$Rd, $Rn, $shift", 990 [(set GPR:$Rd, (opnode so_reg_imm:$shift, GPR:$Rn))]> { 991 bits<4> Rd; 992 bits<4> Rn; 993 bits<12> shift; 994 let Inst{25} = 0; 995 let Inst{19-16} = Rn; 996 let Inst{15-12} = Rd; 997 let Inst{11-5} = shift{11-5}; 998 let Inst{4} = 0; 999 let Inst{3-0} = shift{3-0}; 1000 } 1001 1002 def rsr : AsI1<opcod, (outs GPR:$Rd), 1003 (ins GPR:$Rn, so_reg_reg:$shift), DPSoRegRegFrm, 1004 iis, opc, "\t$Rd, $Rn, $shift", 1005 [(set GPR:$Rd, (opnode so_reg_reg:$shift, GPR:$Rn))]> { 1006 bits<4> Rd; 1007 bits<4> Rn; 1008 bits<12> shift; 1009 let Inst{25} = 0; 1010 let Inst{19-16} = Rn; 1011 let Inst{15-12} = Rd; 1012 let Inst{11-8} = shift{11-8}; 1013 let Inst{7} = 0; 1014 let Inst{6-5} = shift{6-5}; 1015 let Inst{4} = 1; 1016 let Inst{3-0} = shift{3-0}; 1017 } 1018 1019 // Assembly aliases for optional destination operand when it's the same 1020 // as the source operand. 1021 def : InstAlias<!strconcat(opc, "${s}${p} $Rdn, $imm"), 1022 (!cast<Instruction>(!strconcat(baseOpc, "ri")) GPR:$Rdn, GPR:$Rdn, 1023 so_imm:$imm, pred:$p, 1024 cc_out:$s)>, 1025 Requires<[IsARM]>; 1026 def : InstAlias<!strconcat(opc, "${s}${p} $Rdn, $Rm"), 1027 (!cast<Instruction>(!strconcat(baseOpc, "rr")) GPR:$Rdn, GPR:$Rdn, 1028 GPR:$Rm, pred:$p, 1029 cc_out:$s)>, 1030 Requires<[IsARM]>; 1031 def : InstAlias<!strconcat(opc, "${s}${p} $Rdn, $shift"), 1032 (!cast<Instruction>(!strconcat(baseOpc, "rsi")) GPR:$Rdn, GPR:$Rdn, 1033 so_reg_imm:$shift, pred:$p, 1034 cc_out:$s)>, 1035 Requires<[IsARM]>; 1036 def : InstAlias<!strconcat(opc, "${s}${p} $Rdn, $shift"), 1037 (!cast<Instruction>(!strconcat(baseOpc, "rsr")) GPR:$Rdn, GPR:$Rdn, 1038 so_reg_reg:$shift, pred:$p, 1039 cc_out:$s)>, 1040 Requires<[IsARM]>; 1041 1042 } 1043 1044 /// AsI1_rbin_s_is - Same as AsI1_rbin_s_is except it sets 's' bit by default. 1045 /// 1046 /// These opcodes will be converted to the real non-S opcodes by 1047 /// AdjustInstrPostInstrSelection after giving then an optional CPSR operand. 1048 let hasPostISelHook = 1, isCodeGenOnly = 1, isPseudo = 1, Defs = [CPSR] in { 1049 multiclass AsI1_rbin_s_is<bits<4> opcod, string opc, 1050 InstrItinClass iii, InstrItinClass iir, InstrItinClass iis, 1051 PatFrag opnode, bit Commutable = 0> { 1052 def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, so_imm:$imm), DPFrm, 1053 iii, opc, "\t$Rd, $Rn, $imm", 1054 [(set GPR:$Rd, CPSR, (opnode so_imm:$imm, GPR:$Rn))]>; 1055 1056 def rr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), DPFrm, 1057 iir, opc, "\t$Rd, $Rn, $Rm", 1058 [/* pattern left blank */]>; 1059 1060 def rsi : AsI1<opcod, (outs GPR:$Rd), 1061 (ins GPR:$Rn, so_reg_imm:$shift), DPSoRegImmFrm, 1062 iis, opc, "\t$Rd, $Rn, $shift", 1063 [(set GPR:$Rd, CPSR, (opnode so_reg_imm:$shift, GPR:$Rn))]>; 1064 1065 def rsr : AsI1<opcod, (outs GPR:$Rd), 1066 (ins GPR:$Rn, so_reg_reg:$shift), DPSoRegRegFrm, 1067 iis, opc, "\t$Rd, $Rn, $shift", 1068 [(set GPR:$Rd, CPSR, (opnode so_reg_reg:$shift, GPR:$Rn))]> { 1069 bits<4> Rd; 1070 bits<4> Rn; 1071 bits<12> shift; 1072 let Inst{25} = 0; 1073 let Inst{19-16} = Rn; 1074 let Inst{15-12} = Rd; 1075 let Inst{11-8} = shift{11-8}; 1076 let Inst{7} = 0; 1077 let Inst{6-5} = shift{6-5}; 1078 let Inst{4} = 1; 1079 let Inst{3-0} = shift{3-0}; 1080 } 1081 } 1082 } 1083 1084 /// AsI1_bin_s_irs - Same as AsI1_bin_irs except it sets the 's' bit by default. 1085 /// 1086 /// These opcodes will be converted to the real non-S opcodes by 1087 /// AdjustInstrPostInstrSelection after giving then an optional CPSR operand. 1088 let hasPostISelHook = 1, isCodeGenOnly = 1, isPseudo = 1, Defs = [CPSR] in { 1089 multiclass AsI1_bin_s_irs<bits<4> opcod, string opc, 1090 InstrItinClass iii, InstrItinClass iir, InstrItinClass iis, 1091 PatFrag opnode, bit Commutable = 0> { 1092 def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, so_imm:$imm), DPFrm, 1093 iii, opc, "\t$Rd, $Rn, $imm", 1094 [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, so_imm:$imm))]>; 1095 def rr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), DPFrm, 1096 iir, opc, "\t$Rd, $Rn, $Rm", 1097 [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, GPR:$Rm))]>; 1098 def rsi : AsI1<opcod, (outs GPR:$Rd), 1099 (ins GPR:$Rn, so_reg_imm:$shift), DPSoRegImmFrm, 1100 iis, opc, "\t$Rd, $Rn, $shift", 1101 [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, so_reg_imm:$shift))]>; 1102 1103 def rsr : AsI1<opcod, (outs GPR:$Rd), 1104 (ins GPR:$Rn, so_reg_reg:$shift), DPSoRegRegFrm, 1105 iis, opc, "\t$Rd, $Rn, $shift", 1106 [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, so_reg_reg:$shift))]>; 1107 } 1108 } 1109 1110 /// AI1_cmp_irs - Defines a set of (op r, {so_imm|r|so_reg}) cmp / test 1111 /// patterns. Similar to AsI1_bin_irs except the instruction does not produce 1112 /// a explicit result, only implicitly set CPSR. 1113 let isCompare = 1, Defs = [CPSR] in { 1114 multiclass AI1_cmp_irs<bits<4> opcod, string opc, 1115 InstrItinClass iii, InstrItinClass iir, InstrItinClass iis, 1116 PatFrag opnode, bit Commutable = 0> { 1117 def ri : AI1<opcod, (outs), (ins GPR:$Rn, so_imm:$imm), DPFrm, iii, 1118 opc, "\t$Rn, $imm", 1119 [(opnode GPR:$Rn, so_imm:$imm)]> { 1120 bits<4> Rn; 1121 bits<12> imm; 1122 let Inst{25} = 1; 1123 let Inst{20} = 1; 1124 let Inst{19-16} = Rn; 1125 let Inst{15-12} = 0b0000; 1126 let Inst{11-0} = imm; 1127 } 1128 def rr : AI1<opcod, (outs), (ins GPR:$Rn, GPR:$Rm), DPFrm, iir, 1129 opc, "\t$Rn, $Rm", 1130 [(opnode GPR:$Rn, GPR:$Rm)]> { 1131 bits<4> Rn; 1132 bits<4> Rm; 1133 let isCommutable = Commutable; 1134 let Inst{25} = 0; 1135 let Inst{20} = 1; 1136 let Inst{19-16} = Rn; 1137 let Inst{15-12} = 0b0000; 1138 let Inst{11-4} = 0b00000000; 1139 let Inst{3-0} = Rm; 1140 } 1141 def rsi : AI1<opcod, (outs), 1142 (ins GPR:$Rn, so_reg_imm:$shift), DPSoRegImmFrm, iis, 1143 opc, "\t$Rn, $shift", 1144 [(opnode GPR:$Rn, so_reg_imm:$shift)]> { 1145 bits<4> Rn; 1146 bits<12> shift; 1147 let Inst{25} = 0; 1148 let Inst{20} = 1; 1149 let Inst{19-16} = Rn; 1150 let Inst{15-12} = 0b0000; 1151 let Inst{11-5} = shift{11-5}; 1152 let Inst{4} = 0; 1153 let Inst{3-0} = shift{3-0}; 1154 } 1155 def rsr : AI1<opcod, (outs), 1156 (ins GPR:$Rn, so_reg_reg:$shift), DPSoRegRegFrm, iis, 1157 opc, "\t$Rn, $shift", 1158 [(opnode GPR:$Rn, so_reg_reg:$shift)]> { 1159 bits<4> Rn; 1160 bits<12> shift; 1161 let Inst{25} = 0; 1162 let Inst{20} = 1; 1163 let Inst{19-16} = Rn; 1164 let Inst{15-12} = 0b0000; 1165 let Inst{11-8} = shift{11-8}; 1166 let Inst{7} = 0; 1167 let Inst{6-5} = shift{6-5}; 1168 let Inst{4} = 1; 1169 let Inst{3-0} = shift{3-0}; 1170 } 1171 1172 } 1173 } 1174 1175 /// AI_ext_rrot - A unary operation with two forms: one whose operand is a 1176 /// register and one whose operand is a register rotated by 8/16/24. 1177 /// FIXME: Remove the 'r' variant. Its rot_imm is zero. 1178 class AI_ext_rrot<bits<8> opcod, string opc, PatFrag opnode> 1179 : AExtI<opcod, (outs GPRnopc:$Rd), (ins GPRnopc:$Rm, rot_imm:$rot), 1180 IIC_iEXTr, opc, "\t$Rd, $Rm$rot", 1181 [(set GPRnopc:$Rd, (opnode (rotr GPRnopc:$Rm, rot_imm:$rot)))]>, 1182 Requires<[IsARM, HasV6]> { 1183 bits<4> Rd; 1184 bits<4> Rm; 1185 bits<2> rot; 1186 let Inst{19-16} = 0b1111; 1187 let Inst{15-12} = Rd; 1188 let Inst{11-10} = rot; 1189 let Inst{3-0} = Rm; 1190 } 1191 1192 class AI_ext_rrot_np<bits<8> opcod, string opc> 1193 : AExtI<opcod, (outs GPRnopc:$Rd), (ins GPRnopc:$Rm, rot_imm:$rot), 1194 IIC_iEXTr, opc, "\t$Rd, $Rm$rot", []>, 1195 Requires<[IsARM, HasV6]> { 1196 bits<2> rot; 1197 let Inst{19-16} = 0b1111; 1198 let Inst{11-10} = rot; 1199 } 1200 1201 /// AI_exta_rrot - A binary operation with two forms: one whose operand is a 1202 /// register and one whose operand is a register rotated by 8/16/24. 1203 class AI_exta_rrot<bits<8> opcod, string opc, PatFrag opnode> 1204 : AExtI<opcod, (outs GPRnopc:$Rd), (ins GPR:$Rn, GPRnopc:$Rm, rot_imm:$rot), 1205 IIC_iEXTAr, opc, "\t$Rd, $Rn, $Rm$rot", 1206 [(set GPRnopc:$Rd, (opnode GPR:$Rn, 1207 (rotr GPRnopc:$Rm, rot_imm:$rot)))]>, 1208 Requires<[IsARM, HasV6]> { 1209 bits<4> Rd; 1210 bits<4> Rm; 1211 bits<4> Rn; 1212 bits<2> rot; 1213 let Inst{19-16} = Rn; 1214 let Inst{15-12} = Rd; 1215 let Inst{11-10} = rot; 1216 let Inst{9-4} = 0b000111; 1217 let Inst{3-0} = Rm; 1218 } 1219 1220 class AI_exta_rrot_np<bits<8> opcod, string opc> 1221 : AExtI<opcod, (outs GPRnopc:$Rd), (ins GPR:$Rn, GPRnopc:$Rm, rot_imm:$rot), 1222 IIC_iEXTAr, opc, "\t$Rd, $Rn, $Rm$rot", []>, 1223 Requires<[IsARM, HasV6]> { 1224 bits<4> Rn; 1225 bits<2> rot; 1226 let Inst{19-16} = Rn; 1227 let Inst{11-10} = rot; 1228 } 1229 1230 /// AI1_adde_sube_irs - Define instructions and patterns for adde and sube. 1231 multiclass AI1_adde_sube_irs<bits<4> opcod, string opc, PatFrag opnode, 1232 string baseOpc, bit Commutable = 0> { 1233 let hasPostISelHook = 1, Defs = [CPSR], Uses = [CPSR] in { 1234 def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, so_imm:$imm), 1235 DPFrm, IIC_iALUi, opc, "\t$Rd, $Rn, $imm", 1236 [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, so_imm:$imm, CPSR))]>, 1237 Requires<[IsARM]> { 1238 bits<4> Rd; 1239 bits<4> Rn; 1240 bits<12> imm; 1241 let Inst{25} = 1; 1242 let Inst{15-12} = Rd; 1243 let Inst{19-16} = Rn; 1244 let Inst{11-0} = imm; 1245 } 1246 def rr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), 1247 DPFrm, IIC_iALUr, opc, "\t$Rd, $Rn, $Rm", 1248 [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, GPR:$Rm, CPSR))]>, 1249 Requires<[IsARM]> { 1250 bits<4> Rd; 1251 bits<4> Rn; 1252 bits<4> Rm; 1253 let Inst{11-4} = 0b00000000; 1254 let Inst{25} = 0; 1255 let isCommutable = Commutable; 1256 let Inst{3-0} = Rm; 1257 let Inst{15-12} = Rd; 1258 let Inst{19-16} = Rn; 1259 } 1260 def rsi : AsI1<opcod, (outs GPR:$Rd), 1261 (ins GPR:$Rn, so_reg_imm:$shift), 1262 DPSoRegImmFrm, IIC_iALUsr, opc, "\t$Rd, $Rn, $shift", 1263 [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, so_reg_imm:$shift, CPSR))]>, 1264 Requires<[IsARM]> { 1265 bits<4> Rd; 1266 bits<4> Rn; 1267 bits<12> shift; 1268 let Inst{25} = 0; 1269 let Inst{19-16} = Rn; 1270 let Inst{15-12} = Rd; 1271 let Inst{11-5} = shift{11-5}; 1272 let Inst{4} = 0; 1273 let Inst{3-0} = shift{3-0}; 1274 } 1275 def rsr : AsI1<opcod, (outs GPR:$Rd), 1276 (ins GPR:$Rn, so_reg_reg:$shift), 1277 DPSoRegRegFrm, IIC_iALUsr, opc, "\t$Rd, $Rn, $shift", 1278 [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, so_reg_reg:$shift, CPSR))]>, 1279 Requires<[IsARM]> { 1280 bits<4> Rd; 1281 bits<4> Rn; 1282 bits<12> shift; 1283 let Inst{25} = 0; 1284 let Inst{19-16} = Rn; 1285 let Inst{15-12} = Rd; 1286 let Inst{11-8} = shift{11-8}; 1287 let Inst{7} = 0; 1288 let Inst{6-5} = shift{6-5}; 1289 let Inst{4} = 1; 1290 let Inst{3-0} = shift{3-0}; 1291 } 1292 } 1293 1294 // Assembly aliases for optional destination operand when it's the same 1295 // as the source operand. 1296 def : InstAlias<!strconcat(opc, "${s}${p} $Rdn, $imm"), 1297 (!cast<Instruction>(!strconcat(baseOpc, "ri")) GPR:$Rdn, GPR:$Rdn, 1298 so_imm:$imm, pred:$p, 1299 cc_out:$s)>, 1300 Requires<[IsARM]>; 1301 def : InstAlias<!strconcat(opc, "${s}${p} $Rdn, $Rm"), 1302 (!cast<Instruction>(!strconcat(baseOpc, "rr")) GPR:$Rdn, GPR:$Rdn, 1303 GPR:$Rm, pred:$p, 1304 cc_out:$s)>, 1305 Requires<[IsARM]>; 1306 def : InstAlias<!strconcat(opc, "${s}${p} $Rdn, $shift"), 1307 (!cast<Instruction>(!strconcat(baseOpc, "rsi")) GPR:$Rdn, GPR:$Rdn, 1308 so_reg_imm:$shift, pred:$p, 1309 cc_out:$s)>, 1310 Requires<[IsARM]>; 1311 def : InstAlias<!strconcat(opc, "${s}${p} $Rdn, $shift"), 1312 (!cast<Instruction>(!strconcat(baseOpc, "rsr")) GPR:$Rdn, GPR:$Rdn, 1313 so_reg_reg:$shift, pred:$p, 1314 cc_out:$s)>, 1315 Requires<[IsARM]>; 1316 } 1317 1318 /// AI1_rsc_irs - Define instructions and patterns for rsc 1319 multiclass AI1_rsc_irs<bits<4> opcod, string opc, PatFrag opnode, 1320 string baseOpc> { 1321 let hasPostISelHook = 1, Defs = [CPSR], Uses = [CPSR] in { 1322 def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, so_imm:$imm), 1323 DPFrm, IIC_iALUi, opc, "\t$Rd, $Rn, $imm", 1324 [(set GPR:$Rd, CPSR, (opnode so_imm:$imm, GPR:$Rn, CPSR))]>, 1325 Requires<[IsARM]> { 1326 bits<4> Rd; 1327 bits<4> Rn; 1328 bits<12> imm; 1329 let Inst{25} = 1; 1330 let Inst{15-12} = Rd; 1331 let Inst{19-16} = Rn; 1332 let Inst{11-0} = imm; 1333 } 1334 def rr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), 1335 DPFrm, IIC_iALUr, opc, "\t$Rd, $Rn, $Rm", 1336 [/* pattern left blank */]> { 1337 bits<4> Rd; 1338 bits<4> Rn; 1339 bits<4> Rm; 1340 let Inst{11-4} = 0b00000000; 1341 let Inst{25} = 0; 1342 let Inst{3-0} = Rm; 1343 let Inst{15-12} = Rd; 1344 let Inst{19-16} = Rn; 1345 } 1346 def rsi : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, so_reg_imm:$shift), 1347 DPSoRegImmFrm, IIC_iALUsr, opc, "\t$Rd, $Rn, $shift", 1348 [(set GPR:$Rd, CPSR, (opnode so_reg_imm:$shift, GPR:$Rn, CPSR))]>, 1349 Requires<[IsARM]> { 1350 bits<4> Rd; 1351 bits<4> Rn; 1352 bits<12> shift; 1353 let Inst{25} = 0; 1354 let Inst{19-16} = Rn; 1355 let Inst{15-12} = Rd; 1356 let Inst{11-5} = shift{11-5}; 1357 let Inst{4} = 0; 1358 let Inst{3-0} = shift{3-0}; 1359 } 1360 def rsr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, so_reg_reg:$shift), 1361 DPSoRegRegFrm, IIC_iALUsr, opc, "\t$Rd, $Rn, $shift", 1362 [(set GPR:$Rd, CPSR, (opnode so_reg_reg:$shift, GPR:$Rn, CPSR))]>, 1363 Requires<[IsARM]> { 1364 bits<4> Rd; 1365 bits<4> Rn; 1366 bits<12> shift; 1367 let Inst{25} = 0; 1368 let Inst{19-16} = Rn; 1369 let Inst{15-12} = Rd; 1370 let Inst{11-8} = shift{11-8}; 1371 let Inst{7} = 0; 1372 let Inst{6-5} = shift{6-5}; 1373 let Inst{4} = 1; 1374 let Inst{3-0} = shift{3-0}; 1375 } 1376 } 1377 1378 // Assembly aliases for optional destination operand when it's the same 1379 // as the source operand. 1380 def : InstAlias<!strconcat(opc, "${s}${p} $Rdn, $imm"), 1381 (!cast<Instruction>(!strconcat(baseOpc, "ri")) GPR:$Rdn, GPR:$Rdn, 1382 so_imm:$imm, pred:$p, 1383 cc_out:$s)>, 1384 Requires<[IsARM]>; 1385 def : InstAlias<!strconcat(opc, "${s}${p} $Rdn, $Rm"), 1386 (!cast<Instruction>(!strconcat(baseOpc, "rr")) GPR:$Rdn, GPR:$Rdn, 1387 GPR:$Rm, pred:$p, 1388 cc_out:$s)>, 1389 Requires<[IsARM]>; 1390 def : InstAlias<!strconcat(opc, "${s}${p} $Rdn, $shift"), 1391 (!cast<Instruction>(!strconcat(baseOpc, "rsi")) GPR:$Rdn, GPR:$Rdn, 1392 so_reg_imm:$shift, pred:$p, 1393 cc_out:$s)>, 1394 Requires<[IsARM]>; 1395 def : InstAlias<!strconcat(opc, "${s}${p} $Rdn, $shift"), 1396 (!cast<Instruction>(!strconcat(baseOpc, "rsr")) GPR:$Rdn, GPR:$Rdn, 1397 so_reg_reg:$shift, pred:$p, 1398 cc_out:$s)>, 1399 Requires<[IsARM]>; 1400 } 1401 1402 let canFoldAsLoad = 1, isReMaterializable = 1 in { 1403 multiclass AI_ldr1<bit isByte, string opc, InstrItinClass iii, 1404 InstrItinClass iir, PatFrag opnode> { 1405 // Note: We use the complex addrmode_imm12 rather than just an input 1406 // GPR and a constrained immediate so that we can use this to match 1407 // frame index references and avoid matching constant pool references. 1408 def i12: AI2ldst<0b010, 1, isByte, (outs GPR:$Rt), (ins addrmode_imm12:$addr), 1409 AddrMode_i12, LdFrm, iii, opc, "\t$Rt, $addr", 1410 [(set GPR:$Rt, (opnode addrmode_imm12:$addr))]> { 1411 bits<4> Rt; 1412 bits<17> addr; 1413 let Inst{23} = addr{12}; // U (add = ('U' == 1)) 1414 let Inst{19-16} = addr{16-13}; // Rn 1415 let Inst{15-12} = Rt; 1416 let Inst{11-0} = addr{11-0}; // imm12 1417 } 1418 def rs : AI2ldst<0b011, 1, isByte, (outs GPR:$Rt), (ins ldst_so_reg:$shift), 1419 AddrModeNone, LdFrm, iir, opc, "\t$Rt, $shift", 1420 [(set GPR:$Rt, (opnode ldst_so_reg:$shift))]> { 1421 bits<4> Rt; 1422 bits<17> shift; 1423 let shift{4} = 0; // Inst{4} = 0 1424 let Inst{23} = shift{12}; // U (add = ('U' == 1)) 1425 let Inst{19-16} = shift{16-13}; // Rn 1426 let Inst{15-12} = Rt; 1427 let Inst{11-0} = shift{11-0}; 1428 } 1429 } 1430 } 1431 1432 let canFoldAsLoad = 1, isReMaterializable = 1 in { 1433 multiclass AI_ldr1nopc<bit isByte, string opc, InstrItinClass iii, 1434 InstrItinClass iir, PatFrag opnode> { 1435 // Note: We use the complex addrmode_imm12 rather than just an input 1436 // GPR and a constrained immediate so that we can use this to match 1437 // frame index references and avoid matching constant pool references. 1438 def i12: AI2ldst<0b010, 1, isByte, (outs GPRnopc:$Rt), (ins addrmode_imm12:$addr), 1439 AddrMode_i12, LdFrm, iii, opc, "\t$Rt, $addr", 1440 [(set GPRnopc:$Rt, (opnode addrmode_imm12:$addr))]> { 1441 bits<4> Rt; 1442 bits<17> addr; 1443 let Inst{23} = addr{12}; // U (add = ('U' == 1)) 1444 let Inst{19-16} = addr{16-13}; // Rn 1445 let Inst{15-12} = Rt; 1446 let Inst{11-0} = addr{11-0}; // imm12 1447 } 1448 def rs : AI2ldst<0b011, 1, isByte, (outs GPRnopc:$Rt), (ins ldst_so_reg:$shift), 1449 AddrModeNone, LdFrm, iir, opc, "\t$Rt, $shift", 1450 [(set GPRnopc:$Rt, (opnode ldst_so_reg:$shift))]> { 1451 bits<4> Rt; 1452 bits<17> shift; 1453 let shift{4} = 0; // Inst{4} = 0 1454 let Inst{23} = shift{12}; // U (add = ('U' == 1)) 1455 let Inst{19-16} = shift{16-13}; // Rn 1456 let Inst{15-12} = Rt; 1457 let Inst{11-0} = shift{11-0}; 1458 } 1459 } 1460 } 1461 1462 1463 multiclass AI_str1<bit isByte, string opc, InstrItinClass iii, 1464 InstrItinClass iir, PatFrag opnode> { 1465 // Note: We use the complex addrmode_imm12 rather than just an input 1466 // GPR and a constrained immediate so that we can use this to match 1467 // frame index references and avoid matching constant pool references. 1468 def i12 : AI2ldst<0b010, 0, isByte, (outs), 1469 (ins GPR:$Rt, addrmode_imm12:$addr), 1470 AddrMode_i12, StFrm, iii, opc, "\t$Rt, $addr", 1471 [(opnode GPR:$Rt, addrmode_imm12:$addr)]> { 1472 bits<4> Rt; 1473 bits<17> addr; 1474 let Inst{23} = addr{12}; // U (add = ('U' == 1)) 1475 let Inst{19-16} = addr{16-13}; // Rn 1476 let Inst{15-12} = Rt; 1477 let Inst{11-0} = addr{11-0}; // imm12 1478 } 1479 def rs : AI2ldst<0b011, 0, isByte, (outs), (ins GPR:$Rt, ldst_so_reg:$shift), 1480 AddrModeNone, StFrm, iir, opc, "\t$Rt, $shift", 1481 [(opnode GPR:$Rt, ldst_so_reg:$shift)]> { 1482 bits<4> Rt; 1483 bits<17> shift; 1484 let shift{4} = 0; // Inst{4} = 0 1485 let Inst{23} = shift{12}; // U (add = ('U' == 1)) 1486 let Inst{19-16} = shift{16-13}; // Rn 1487 let Inst{15-12} = Rt; 1488 let Inst{11-0} = shift{11-0}; 1489 } 1490 } 1491 1492 multiclass AI_str1nopc<bit isByte, string opc, InstrItinClass iii, 1493 InstrItinClass iir, PatFrag opnode> { 1494 // Note: We use the complex addrmode_imm12 rather than just an input 1495 // GPR and a constrained immediate so that we can use this to match 1496 // frame index references and avoid matching constant pool references. 1497 def i12 : AI2ldst<0b010, 0, isByte, (outs), 1498 (ins GPRnopc:$Rt, addrmode_imm12:$addr), 1499 AddrMode_i12, StFrm, iii, opc, "\t$Rt, $addr", 1500 [(opnode GPRnopc:$Rt, addrmode_imm12:$addr)]> { 1501 bits<4> Rt; 1502 bits<17> addr; 1503 let Inst{23} = addr{12}; // U (add = ('U' == 1)) 1504 let Inst{19-16} = addr{16-13}; // Rn 1505 let Inst{15-12} = Rt; 1506 let Inst{11-0} = addr{11-0}; // imm12 1507 } 1508 def rs : AI2ldst<0b011, 0, isByte, (outs), (ins GPRnopc:$Rt, ldst_so_reg:$shift), 1509 AddrModeNone, StFrm, iir, opc, "\t$Rt, $shift", 1510 [(opnode GPRnopc:$Rt, ldst_so_reg:$shift)]> { 1511 bits<4> Rt; 1512 bits<17> shift; 1513 let shift{4} = 0; // Inst{4} = 0 1514 let Inst{23} = shift{12}; // U (add = ('U' == 1)) 1515 let Inst{19-16} = shift{16-13}; // Rn 1516 let Inst{15-12} = Rt; 1517 let Inst{11-0} = shift{11-0}; 1518 } 1519 } 1520 1521 1522 //===----------------------------------------------------------------------===// 1523 // Instructions 1524 //===----------------------------------------------------------------------===// 1525 1526 //===----------------------------------------------------------------------===// 1527 // Miscellaneous Instructions. 1528 // 1529 1530 /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool in 1531 /// the function. The first operand is the ID# for this instruction, the second 1532 /// is the index into the MachineConstantPool that this is, the third is the 1533 /// size in bytes of this constant pool entry. 1534 let neverHasSideEffects = 1, isNotDuplicable = 1 in 1535 def CONSTPOOL_ENTRY : 1536 PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx, 1537 i32imm:$size), NoItinerary, []>; 1538 1539 // FIXME: Marking these as hasSideEffects is necessary to prevent machine DCE 1540 // from removing one half of the matched pairs. That breaks PEI, which assumes 1541 // these will always be in pairs, and asserts if it finds otherwise. Better way? 1542 let Defs = [SP], Uses = [SP], hasSideEffects = 1 in { 1543 def ADJCALLSTACKUP : 1544 PseudoInst<(outs), (ins i32imm:$amt1, i32imm:$amt2, pred:$p), NoItinerary, 1545 [(ARMcallseq_end timm:$amt1, timm:$amt2)]>; 1546 1547 def ADJCALLSTACKDOWN : 1548 PseudoInst<(outs), (ins i32imm:$amt, pred:$p), NoItinerary, 1549 [(ARMcallseq_start timm:$amt)]>; 1550 } 1551 1552 // Atomic pseudo-insts which will be lowered to ldrexd/strexd loops. 1553 // (These psuedos use a hand-written selection code). 1554 let usesCustomInserter = 1, Defs = [CPSR], mayLoad = 1, mayStore = 1 in { 1555 def ATOMOR6432 : PseudoInst<(outs GPR:$dst1, GPR:$dst2), 1556 (ins GPR:$addr, GPR:$src1, GPR:$src2), 1557 NoItinerary, []>; 1558 def ATOMXOR6432 : PseudoInst<(outs GPR:$dst1, GPR:$dst2), 1559 (ins GPR:$addr, GPR:$src1, GPR:$src2), 1560 NoItinerary, []>; 1561 def ATOMADD6432 : PseudoInst<(outs GPR:$dst1, GPR:$dst2), 1562 (ins GPR:$addr, GPR:$src1, GPR:$src2), 1563 NoItinerary, []>; 1564 def ATOMSUB6432 : PseudoInst<(outs GPR:$dst1, GPR:$dst2), 1565 (ins GPR:$addr, GPR:$src1, GPR:$src2), 1566 NoItinerary, []>; 1567 def ATOMNAND6432 : PseudoInst<(outs GPR:$dst1, GPR:$dst2), 1568 (ins GPR:$addr, GPR:$src1, GPR:$src2), 1569 NoItinerary, []>; 1570 def ATOMAND6432 : PseudoInst<(outs GPR:$dst1, GPR:$dst2), 1571 (ins GPR:$addr, GPR:$src1, GPR:$src2), 1572 NoItinerary, []>; 1573 def ATOMSWAP6432 : PseudoInst<(outs GPR:$dst1, GPR:$dst2), 1574 (ins GPR:$addr, GPR:$src1, GPR:$src2), 1575 NoItinerary, []>; 1576 def ATOMCMPXCHG6432 : PseudoInst<(outs GPR:$dst1, GPR:$dst2), 1577 (ins GPR:$addr, GPR:$cmp1, GPR:$cmp2, 1578 GPR:$set1, GPR:$set2), 1579 NoItinerary, []>; 1580 } 1581 1582 def NOP : AI<(outs), (ins), MiscFrm, NoItinerary, "nop", "", []>, 1583 Requires<[IsARM, HasV6T2]> { 1584 let Inst{27-16} = 0b001100100000; 1585 let Inst{15-8} = 0b11110000; 1586 let Inst{7-0} = 0b00000000; 1587 } 1588 1589 def YIELD : AI<(outs), (ins), MiscFrm, NoItinerary, "yield", "", []>, 1590 Requires<[IsARM, HasV6T2]> { 1591 let Inst{27-16} = 0b001100100000; 1592 let Inst{15-8} = 0b11110000; 1593 let Inst{7-0} = 0b00000001; 1594 } 1595 1596 def WFE : AI<(outs), (ins), MiscFrm, NoItinerary, "wfe", "", []>, 1597 Requires<[IsARM, HasV6T2]> { 1598 let Inst{27-16} = 0b001100100000; 1599 let Inst{15-8} = 0b11110000; 1600 let Inst{7-0} = 0b00000010; 1601 } 1602 1603 def WFI : AI<(outs), (ins), MiscFrm, NoItinerary, "wfi", "", []>, 1604 Requires<[IsARM, HasV6T2]> { 1605 let Inst{27-16} = 0b001100100000; 1606 let Inst{15-8} = 0b11110000; 1607 let Inst{7-0} = 0b00000011; 1608 } 1609 1610 def SEL : AI<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), DPFrm, NoItinerary, "sel", 1611 "\t$Rd, $Rn, $Rm", []>, Requires<[IsARM, HasV6]> { 1612 bits<4> Rd; 1613 bits<4> Rn; 1614 bits<4> Rm; 1615 let Inst{3-0} = Rm; 1616 let Inst{15-12} = Rd; 1617 let Inst{19-16} = Rn; 1618 let Inst{27-20} = 0b01101000; 1619 let Inst{7-4} = 0b1011; 1620 let Inst{11-8} = 0b1111; 1621 } 1622 1623 def SEV : AI<(outs), (ins), MiscFrm, NoItinerary, "sev", "", 1624 []>, Requires<[IsARM, HasV6T2]> { 1625 let Inst{27-16} = 0b001100100000; 1626 let Inst{15-8} = 0b11110000; 1627 let Inst{7-0} = 0b00000100; 1628 } 1629 1630 // The i32imm operand $val can be used by a debugger to store more information 1631 // about the breakpoint. 1632 def BKPT : AI<(outs), (ins imm0_65535:$val), MiscFrm, NoItinerary, 1633 "bkpt", "\t$val", []>, Requires<[IsARM]> { 1634 bits<16> val; 1635 let Inst{3-0} = val{3-0}; 1636 let Inst{19-8} = val{15-4}; 1637 let Inst{27-20} = 0b00010010; 1638 let Inst{7-4} = 0b0111; 1639 } 1640 1641 // Change Processor State 1642 // FIXME: We should use InstAlias to handle the optional operands. 1643 class CPS<dag iops, string asm_ops> 1644 : AXI<(outs), iops, MiscFrm, NoItinerary, !strconcat("cps", asm_ops), 1645 []>, Requires<[IsARM]> { 1646 bits<2> imod; 1647 bits<3> iflags; 1648 bits<5> mode; 1649 bit M; 1650 1651 let Inst{31-28} = 0b1111; 1652 let Inst{27-20} = 0b00010000; 1653 let Inst{19-18} = imod; 1654 let Inst{17} = M; // Enabled if mode is set; 1655 let Inst{16} = 0; 1656 let Inst{8-6} = iflags; 1657 let Inst{5} = 0; 1658 let Inst{4-0} = mode; 1659 } 1660 1661 let DecoderMethod = "DecodeCPSInstruction" in { 1662 let M = 1 in 1663 def CPS3p : CPS<(ins imod_op:$imod, iflags_op:$iflags, imm0_31:$mode), 1664 "$imod\t$iflags, $mode">; 1665 let mode = 0, M = 0 in 1666 def CPS2p : CPS<(ins imod_op:$imod, iflags_op:$iflags), "$imod\t$iflags">; 1667 1668 let imod = 0, iflags = 0, M = 1 in 1669 def CPS1p : CPS<(ins imm0_31:$mode), "\t$mode">; 1670 } 1671 1672 // Preload signals the memory system of possible future data/instruction access. 1673 multiclass APreLoad<bits<1> read, bits<1> data, string opc> { 1674 1675 def i12 : AXI<(outs), (ins addrmode_imm12:$addr), MiscFrm, IIC_Preload, 1676 !strconcat(opc, "\t$addr"), 1677 [(ARMPreload addrmode_imm12:$addr, (i32 read), (i32 data))]> { 1678 bits<4> Rt; 1679 bits<17> addr; 1680 let Inst{31-26} = 0b111101; 1681 let Inst{25} = 0; // 0 for immediate form 1682 let Inst{24} = data; 1683 let Inst{23} = addr{12}; // U (add = ('U' == 1)) 1684 let Inst{22} = read; 1685 let Inst{21-20} = 0b01; 1686 let Inst{19-16} = addr{16-13}; // Rn 1687 let Inst{15-12} = 0b1111; 1688 let Inst{11-0} = addr{11-0}; // imm12 1689 } 1690 1691 def rs : AXI<(outs), (ins ldst_so_reg:$shift), MiscFrm, IIC_Preload, 1692 !strconcat(opc, "\t$shift"), 1693 [(ARMPreload ldst_so_reg:$shift, (i32 read), (i32 data))]> { 1694 bits<17> shift; 1695 let Inst{31-26} = 0b111101; 1696 let Inst{25} = 1; // 1 for register form 1697 let Inst{24} = data; 1698 let Inst{23} = shift{12}; // U (add = ('U' == 1)) 1699 let Inst{22} = read; 1700 let Inst{21-20} = 0b01; 1701 let Inst{19-16} = shift{16-13}; // Rn 1702 let Inst{15-12} = 0b1111; 1703 let Inst{11-0} = shift{11-0}; 1704 let Inst{4} = 0; 1705 } 1706 } 1707 1708 defm PLD : APreLoad<1, 1, "pld">, Requires<[IsARM]>; 1709 defm PLDW : APreLoad<0, 1, "pldw">, Requires<[IsARM,HasV7,HasMP]>; 1710 defm PLI : APreLoad<1, 0, "pli">, Requires<[IsARM,HasV7]>; 1711 1712 def SETEND : AXI<(outs), (ins setend_op:$end), MiscFrm, NoItinerary, 1713 "setend\t$end", []>, Requires<[IsARM]> { 1714 bits<1> end; 1715 let Inst{31-10} = 0b1111000100000001000000; 1716 let Inst{9} = end; 1717 let Inst{8-0} = 0; 1718 } 1719 1720 def DBG : AI<(outs), (ins imm0_15:$opt), MiscFrm, NoItinerary, "dbg", "\t$opt", 1721 []>, Requires<[IsARM, HasV7]> { 1722 bits<4> opt; 1723 let Inst{27-4} = 0b001100100000111100001111; 1724 let Inst{3-0} = opt; 1725 } 1726 1727 // A5.4 Permanently UNDEFINED instructions. 1728 let isBarrier = 1, isTerminator = 1 in 1729 def TRAP : AXI<(outs), (ins), MiscFrm, NoItinerary, 1730 "trap", [(trap)]>, 1731 Requires<[IsARM]> { 1732 let Inst = 0xe7ffdefe; 1733 } 1734 1735 // Address computation and loads and stores in PIC mode. 1736 let isNotDuplicable = 1 in { 1737 def PICADD : ARMPseudoInst<(outs GPR:$dst), (ins GPR:$a, pclabel:$cp, pred:$p), 1738 4, IIC_iALUr, 1739 [(set GPR:$dst, (ARMpic_add GPR:$a, imm:$cp))]>; 1740 1741 let AddedComplexity = 10 in { 1742 def PICLDR : ARMPseudoInst<(outs GPR:$dst), (ins addrmodepc:$addr, pred:$p), 1743 4, IIC_iLoad_r, 1744 [(set GPR:$dst, (load addrmodepc:$addr))]>; 1745 1746 def PICLDRH : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p), 1747 4, IIC_iLoad_bh_r, 1748 [(set GPR:$Rt, (zextloadi16 addrmodepc:$addr))]>; 1749 1750 def PICLDRB : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p), 1751 4, IIC_iLoad_bh_r, 1752 [(set GPR:$Rt, (zextloadi8 addrmodepc:$addr))]>; 1753 1754 def PICLDRSH : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p), 1755 4, IIC_iLoad_bh_r, 1756 [(set GPR:$Rt, (sextloadi16 addrmodepc:$addr))]>; 1757 1758 def PICLDRSB : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p), 1759 4, IIC_iLoad_bh_r, 1760 [(set GPR:$Rt, (sextloadi8 addrmodepc:$addr))]>; 1761 } 1762 let AddedComplexity = 10 in { 1763 def PICSTR : ARMPseudoInst<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p), 1764 4, IIC_iStore_r, [(store GPR:$src, addrmodepc:$addr)]>; 1765 1766 def PICSTRH : ARMPseudoInst<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p), 1767 4, IIC_iStore_bh_r, [(truncstorei16 GPR:$src, 1768 addrmodepc:$addr)]>; 1769 1770 def PICSTRB : ARMPseudoInst<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p), 1771 4, IIC_iStore_bh_r, [(truncstorei8 GPR:$src, addrmodepc:$addr)]>; 1772 } 1773 } // isNotDuplicable = 1 1774 1775 1776 // LEApcrel - Load a pc-relative address into a register without offending the 1777 // assembler. 1778 let neverHasSideEffects = 1, isReMaterializable = 1 in 1779 // The 'adr' mnemonic encodes differently if the label is before or after 1780 // the instruction. The {24-21} opcode bits are set by the fixup, as we don't 1781 // know until then which form of the instruction will be used. 1782 def ADR : AI1<{0,?,?,0}, (outs GPR:$Rd), (ins adrlabel:$label), 1783 MiscFrm, IIC_iALUi, "adr", "\t$Rd, $label", []> { 1784 bits<4> Rd; 1785 bits<14> label; 1786 let Inst{27-25} = 0b001; 1787 let Inst{24} = 0; 1788 let Inst{23-22} = label{13-12}; 1789 let Inst{21} = 0; 1790 let Inst{20} = 0; 1791 let Inst{19-16} = 0b1111; 1792 let Inst{15-12} = Rd; 1793 let Inst{11-0} = label{11-0}; 1794 } 1795 def LEApcrel : ARMPseudoInst<(outs GPR:$Rd), (ins i32imm:$label, pred:$p), 1796 4, IIC_iALUi, []>; 1797 1798 def LEApcrelJT : ARMPseudoInst<(outs GPR:$Rd), 1799 (ins i32imm:$label, nohash_imm:$id, pred:$p), 1800 4, IIC_iALUi, []>; 1801 1802 //===----------------------------------------------------------------------===// 1803 // Control Flow Instructions. 1804 // 1805 1806 let isReturn = 1, isTerminator = 1, isBarrier = 1 in { 1807 // ARMV4T and above 1808 def BX_RET : AI<(outs), (ins), BrMiscFrm, IIC_Br, 1809 "bx", "\tlr", [(ARMretflag)]>, 1810 Requires<[IsARM, HasV4T]> { 1811 let Inst{27-0} = 0b0001001011111111111100011110; 1812 } 1813 1814 // ARMV4 only 1815 def MOVPCLR : AI<(outs), (ins), BrMiscFrm, IIC_Br, 1816 "mov", "\tpc, lr", [(ARMretflag)]>, 1817 Requires<[IsARM, NoV4T]> { 1818 let Inst{27-0} = 0b0001101000001111000000001110; 1819 } 1820 } 1821 1822 // Indirect branches 1823 let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in { 1824 // ARMV4T and above 1825 def BX : AXI<(outs), (ins GPR:$dst), BrMiscFrm, IIC_Br, "bx\t$dst", 1826 [(brind GPR:$dst)]>, 1827 Requires<[IsARM, HasV4T]> { 1828 bits<4> dst; 1829 let Inst{31-4} = 0b1110000100101111111111110001; 1830 let Inst{3-0} = dst; 1831 } 1832 1833 def BX_pred : AI<(outs), (ins GPR:$dst), BrMiscFrm, IIC_Br, 1834 "bx", "\t$dst", [/* pattern left blank */]>, 1835 Requires<[IsARM, HasV4T]> { 1836 bits<4> dst; 1837 let Inst{27-4} = 0b000100101111111111110001; 1838 let Inst{3-0} = dst; 1839 } 1840 } 1841 1842 // All calls clobber the non-callee saved registers. SP is marked as 1843 // a use to prevent stack-pointer assignments that appear immediately 1844 // before calls from potentially appearing dead. 1845 let isCall = 1, 1846 // On non-Darwin platforms R9 is callee-saved. 1847 // FIXME: Do we really need a non-predicated version? If so, it should 1848 // at least be a pseudo instruction expanding to the predicated version 1849 // at MC lowering time. 1850 Defs = [R0, R1, R2, R3, R12, LR, QQQQ0, QQQQ2, QQQQ3, CPSR, FPSCR], 1851 Uses = [SP] in { 1852 def BL : ABXI<0b1011, (outs), (ins bl_target:$func, variable_ops), 1853 IIC_Br, "bl\t$func", 1854 [(ARMcall tglobaladdr:$func)]>, 1855 Requires<[IsARM, IsNotDarwin]> { 1856 let Inst{31-28} = 0b1110; 1857 bits<24> func; 1858 let Inst{23-0} = func; 1859 let DecoderMethod = "DecodeBranchImmInstruction"; 1860 } 1861 1862 def BL_pred : ABI<0b1011, (outs), (ins bl_target:$func, variable_ops), 1863 IIC_Br, "bl", "\t$func", 1864 [(ARMcall_pred tglobaladdr:$func)]>, 1865 Requires<[IsARM, IsNotDarwin]> { 1866 bits<24> func; 1867 let Inst{23-0} = func; 1868 let DecoderMethod = "DecodeBranchImmInstruction"; 1869 } 1870 1871 // ARMv5T and above 1872 def BLX : AXI<(outs), (ins GPR:$func, variable_ops), BrMiscFrm, 1873 IIC_Br, "blx\t$func", 1874 [(ARMcall GPR:$func)]>, 1875 Requires<[IsARM, HasV5T, IsNotDarwin]> { 1876 bits<4> func; 1877 let Inst{31-4} = 0b1110000100101111111111110011; 1878 let Inst{3-0} = func; 1879 } 1880 1881 def BLX_pred : AI<(outs), (ins GPR:$func, variable_ops), BrMiscFrm, 1882 IIC_Br, "blx", "\t$func", 1883 [(ARMcall_pred GPR:$func)]>, 1884 Requires<[IsARM, HasV5T, IsNotDarwin]> { 1885 bits<4> func; 1886 let Inst{27-4} = 0b000100101111111111110011; 1887 let Inst{3-0} = func; 1888 } 1889 1890 // ARMv4T 1891 // Note: Restrict $func to the tGPR regclass to prevent it being in LR. 1892 def BX_CALL : ARMPseudoInst<(outs), (ins tGPR:$func, variable_ops), 1893 8, IIC_Br, [(ARMcall_nolink tGPR:$func)]>, 1894 Requires<[IsARM, HasV4T, IsNotDarwin]>; 1895 1896 // ARMv4 1897 def BMOVPCRX_CALL : ARMPseudoInst<(outs), (ins tGPR:$func, variable_ops), 1898 8, IIC_Br, [(ARMcall_nolink tGPR:$func)]>, 1899 Requires<[IsARM, NoV4T, IsNotDarwin]>; 1900 } 1901 1902 let isCall = 1, 1903 // On Darwin R9 is call-clobbered. 1904 // R7 is marked as a use to prevent frame-pointer assignments from being 1905 // moved above / below calls. 1906 Defs = [R0, R1, R2, R3, R9, R12, LR, QQQQ0, QQQQ2, QQQQ3, CPSR, FPSCR], 1907 Uses = [R7, SP] in { 1908 def BLr9 : ARMPseudoExpand<(outs), (ins bl_target:$func, variable_ops), 1909 4, IIC_Br, 1910 [(ARMcall tglobaladdr:$func)], (BL bl_target:$func)>, 1911 Requires<[IsARM, IsDarwin]>; 1912 1913 def BLr9_pred : ARMPseudoExpand<(outs), 1914 (ins bl_target:$func, pred:$p, variable_ops), 1915 4, IIC_Br, 1916 [(ARMcall_pred tglobaladdr:$func)], 1917 (BL_pred bl_target:$func, pred:$p)>, 1918 Requires<[IsARM, IsDarwin]>; 1919 1920 // ARMv5T and above 1921 def BLXr9 : ARMPseudoExpand<(outs), (ins GPR:$func, variable_ops), 1922 4, IIC_Br, 1923 [(ARMcall GPR:$func)], 1924 (BLX GPR:$func)>, 1925 Requires<[IsARM, HasV5T, IsDarwin]>; 1926 1927 def BLXr9_pred: ARMPseudoExpand<(outs), (ins GPR:$func, pred:$p,variable_ops), 1928 4, IIC_Br, 1929 [(ARMcall_pred GPR:$func)], 1930 (BLX_pred GPR:$func, pred:$p)>, 1931 Requires<[IsARM, HasV5T, IsDarwin]>; 1932 1933 // ARMv4T 1934 // Note: Restrict $func to the tGPR regclass to prevent it being in LR. 1935 def BXr9_CALL : ARMPseudoInst<(outs), (ins tGPR:$func, variable_ops), 1936 8, IIC_Br, [(ARMcall_nolink tGPR:$func)]>, 1937 Requires<[IsARM, HasV4T, IsDarwin]>; 1938 1939 // ARMv4 1940 def BMOVPCRXr9_CALL : ARMPseudoInst<(outs), (ins tGPR:$func, variable_ops), 1941 8, IIC_Br, [(ARMcall_nolink tGPR:$func)]>, 1942 Requires<[IsARM, NoV4T, IsDarwin]>; 1943 } 1944 1945 let isBranch = 1, isTerminator = 1 in { 1946 // FIXME: should be able to write a pattern for ARMBrcond, but can't use 1947 // a two-value operand where a dag node expects two operands. :( 1948 def Bcc : ABI<0b1010, (outs), (ins br_target:$target), 1949 IIC_Br, "b", "\t$target", 1950 [/*(ARMbrcond bb:$target, imm:$cc, CCR:$ccr)*/]> { 1951 bits<24> target; 1952 let Inst{23-0} = target; 1953 let DecoderMethod = "DecodeBranchImmInstruction"; 1954 } 1955 1956 let isBarrier = 1 in { 1957 // B is "predicable" since it's just a Bcc with an 'always' condition. 1958 let isPredicable = 1 in 1959 // FIXME: We shouldn't need this pseudo at all. Just using Bcc directly 1960 // should be sufficient. 1961 // FIXME: Is B really a Barrier? That doesn't seem right. 1962 def B : ARMPseudoExpand<(outs), (ins br_target:$target), 4, IIC_Br, 1963 [(br bb:$target)], (Bcc br_target:$target, (ops 14, zero_reg))>; 1964 1965 let isNotDuplicable = 1, isIndirectBranch = 1 in { 1966 def BR_JTr : ARMPseudoInst<(outs), 1967 (ins GPR:$target, i32imm:$jt, i32imm:$id), 1968 0, IIC_Br, 1969 [(ARMbrjt GPR:$target, tjumptable:$jt, imm:$id)]>; 1970 // FIXME: This shouldn't use the generic "addrmode2," but rather be split 1971 // into i12 and rs suffixed versions. 1972 def BR_JTm : ARMPseudoInst<(outs), 1973 (ins addrmode2:$target, i32imm:$jt, i32imm:$id), 1974 0, IIC_Br, 1975 [(ARMbrjt (i32 (load addrmode2:$target)), tjumptable:$jt, 1976 imm:$id)]>; 1977 def BR_JTadd : ARMPseudoInst<(outs), 1978 (ins GPR:$target, GPR:$idx, i32imm:$jt, i32imm:$id), 1979 0, IIC_Br, 1980 [(ARMbrjt (add GPR:$target, GPR:$idx), tjumptable:$jt, 1981 imm:$id)]>; 1982 } // isNotDuplicable = 1, isIndirectBranch = 1 1983 } // isBarrier = 1 1984 1985 } 1986 1987 // BLX (immediate) 1988 def BLXi : AXI<(outs), (ins blx_target:$target), BrMiscFrm, NoItinerary, 1989 "blx\t$target", []>, 1990 Requires<[IsARM, HasV5T]> { 1991 let Inst{31-25} = 0b1111101; 1992 bits<25> target; 1993 let Inst{23-0} = target{24-1}; 1994 let Inst{24} = target{0}; 1995 } 1996 1997 // Branch and Exchange Jazelle 1998 def BXJ : ABI<0b0001, (outs), (ins GPR:$func), NoItinerary, "bxj", "\t$func", 1999 [/* pattern left blank */]> { 2000 bits<4> func; 2001 let Inst{23-20} = 0b0010; 2002 let Inst{19-8} = 0xfff; 2003 let Inst{7-4} = 0b0010; 2004 let Inst{3-0} = func; 2005 } 2006 2007 // Tail calls. 2008 2009 let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in { 2010 // Darwin versions. 2011 let Defs = [R0, R1, R2, R3, R9, R12, QQQQ0, QQQQ2, QQQQ3, PC], 2012 Uses = [SP] in { 2013 def TCRETURNdi : PseudoInst<(outs), (ins i32imm:$dst, variable_ops), 2014 IIC_Br, []>, Requires<[IsDarwin]>; 2015 2016 def TCRETURNri : PseudoInst<(outs), (ins tcGPR:$dst, variable_ops), 2017 IIC_Br, []>, Requires<[IsDarwin]>; 2018 2019 def TAILJMPd : ARMPseudoExpand<(outs), (ins br_target:$dst, variable_ops), 2020 4, IIC_Br, [], 2021 (Bcc br_target:$dst, (ops 14, zero_reg))>, 2022 Requires<[IsARM, IsDarwin]>; 2023 2024 def TAILJMPr : ARMPseudoExpand<(outs), (ins tcGPR:$dst, variable_ops), 2025 4, IIC_Br, [], 2026 (BX GPR:$dst)>, 2027 Requires<[IsARM, IsDarwin]>; 2028 2029 } 2030 2031 // Non-Darwin versions (the difference is R9). 2032 let Defs = [R0, R1, R2, R3, R12, QQQQ0, QQQQ2, QQQQ3, PC], 2033 Uses = [SP] in { 2034 def TCRETURNdiND : PseudoInst<(outs), (ins i32imm:$dst, variable_ops), 2035 IIC_Br, []>, Requires<[IsNotDarwin]>; 2036 2037 def TCRETURNriND : PseudoInst<(outs), (ins tcGPR:$dst, variable_ops), 2038 IIC_Br, []>, Requires<[IsNotDarwin]>; 2039 2040 def TAILJMPdND : ARMPseudoExpand<(outs), (ins brtarget:$dst, variable_ops), 2041 4, IIC_Br, [], 2042 (Bcc br_target:$dst, (ops 14, zero_reg))>, 2043 Requires<[IsARM, IsNotDarwin]>; 2044 2045 def TAILJMPrND : ARMPseudoExpand<(outs), (ins tcGPR:$dst, variable_ops), 2046 4, IIC_Br, [], 2047 (BX GPR:$dst)>, 2048 Requires<[IsARM, IsNotDarwin]>; 2049 } 2050 } 2051 2052 // Secure Monitor Call is a system instruction. 2053 def SMC : ABI<0b0001, (outs), (ins imm0_15:$opt), NoItinerary, "smc", "\t$opt", 2054 []> { 2055 bits<4> opt; 2056 let Inst{23-4} = 0b01100000000000000111; 2057 let Inst{3-0} = opt; 2058 } 2059 2060 // Supervisor Call (Software Interrupt) 2061 let isCall = 1, Uses = [SP] in { 2062 def SVC : ABI<0b1111, (outs), (ins imm24b:$svc), IIC_Br, "svc", "\t$svc", []> { 2063 bits<24> svc; 2064 let Inst{23-0} = svc; 2065 } 2066 } 2067 2068 // Store Return State 2069 class SRSI<bit wb, string asm> 2070 : XI<(outs), (ins imm0_31:$mode), AddrModeNone, 4, IndexModeNone, BrFrm, 2071 NoItinerary, asm, "", []> { 2072 bits<5> mode; 2073 let Inst{31-28} = 0b1111; 2074 let Inst{27-25} = 0b100; 2075 let Inst{22} = 1; 2076 let Inst{21} = wb; 2077 let Inst{20} = 0; 2078 let Inst{19-16} = 0b1101; // SP 2079 let Inst{15-5} = 0b00000101000; 2080 let Inst{4-0} = mode; 2081 } 2082 2083 def SRSDA : SRSI<0, "srsda\tsp, $mode"> { 2084 let Inst{24-23} = 0; 2085 } 2086 def SRSDA_UPD : SRSI<1, "srsda\tsp!, $mode"> { 2087 let Inst{24-23} = 0; 2088 } 2089 def SRSDB : SRSI<0, "srsdb\tsp, $mode"> { 2090 let Inst{24-23} = 0b10; 2091 } 2092 def SRSDB_UPD : SRSI<1, "srsdb\tsp!, $mode"> { 2093 let Inst{24-23} = 0b10; 2094 } 2095 def SRSIA : SRSI<0, "srsia\tsp, $mode"> { 2096 let Inst{24-23} = 0b01; 2097 } 2098 def SRSIA_UPD : SRSI<1, "srsia\tsp!, $mode"> { 2099 let Inst{24-23} = 0b01; 2100 } 2101 def SRSIB : SRSI<0, "srsib\tsp, $mode"> { 2102 let Inst{24-23} = 0b11; 2103 } 2104 def SRSIB_UPD : SRSI<1, "srsib\tsp!, $mode"> { 2105 let Inst{24-23} = 0b11; 2106 } 2107 2108 // Return From Exception 2109 class RFEI<bit wb, string asm> 2110 : XI<(outs), (ins GPR:$Rn), AddrModeNone, 4, IndexModeNone, BrFrm, 2111 NoItinerary, asm, "", []> { 2112 bits<4> Rn; 2113 let Inst{31-28} = 0b1111; 2114 let Inst{27-25} = 0b100; 2115 let Inst{22} = 0; 2116 let Inst{21} = wb; 2117 let Inst{20} = 1; 2118 let Inst{19-16} = Rn; 2119 let Inst{15-0} = 0xa00; 2120 } 2121 2122 def RFEDA : RFEI<0, "rfeda\t$Rn"> { 2123 let Inst{24-23} = 0; 2124 } 2125 def RFEDA_UPD : RFEI<1, "rfeda\t$Rn!"> { 2126 let Inst{24-23} = 0; 2127 } 2128 def RFEDB : RFEI<0, "rfedb\t$Rn"> { 2129 let Inst{24-23} = 0b10; 2130 } 2131 def RFEDB_UPD : RFEI<1, "rfedb\t$Rn!"> { 2132 let Inst{24-23} = 0b10; 2133 } 2134 def RFEIA : RFEI<0, "rfeia\t$Rn"> { 2135 let Inst{24-23} = 0b01; 2136 } 2137 def RFEIA_UPD : RFEI<1, "rfeia\t$Rn!"> { 2138 let Inst{24-23} = 0b01; 2139 } 2140 def RFEIB : RFEI<0, "rfeib\t$Rn"> { 2141 let Inst{24-23} = 0b11; 2142 } 2143 def RFEIB_UPD : RFEI<1, "rfeib\t$Rn!"> { 2144 let Inst{24-23} = 0b11; 2145 } 2146 2147 //===----------------------------------------------------------------------===// 2148 // Load / store Instructions. 2149 // 2150 2151 // Load 2152 2153 2154 defm LDR : AI_ldr1<0, "ldr", IIC_iLoad_r, IIC_iLoad_si, 2155 UnOpFrag<(load node:$Src)>>; 2156 defm LDRB : AI_ldr1nopc<1, "ldrb", IIC_iLoad_bh_r, IIC_iLoad_bh_si, 2157 UnOpFrag<(zextloadi8 node:$Src)>>; 2158 defm STR : AI_str1<0, "str", IIC_iStore_r, IIC_iStore_si, 2159 BinOpFrag<(store node:$LHS, node:$RHS)>>; 2160 defm STRB : AI_str1nopc<1, "strb", IIC_iStore_bh_r, IIC_iStore_bh_si, 2161 BinOpFrag<(truncstorei8 node:$LHS, node:$RHS)>>; 2162 2163 // Special LDR for loads from non-pc-relative constpools. 2164 let canFoldAsLoad = 1, mayLoad = 1, neverHasSideEffects = 1, 2165 isReMaterializable = 1, isCodeGenOnly = 1 in 2166 def LDRcp : AI2ldst<0b010, 1, 0, (outs GPR:$Rt), (ins addrmode_imm12:$addr), 2167 AddrMode_i12, LdFrm, IIC_iLoad_r, "ldr", "\t$Rt, $addr", 2168 []> { 2169 bits<4> Rt; 2170 bits<17> addr; 2171 let Inst{23} = addr{12}; // U (add = ('U' == 1)) 2172 let Inst{19-16} = 0b1111; 2173 let Inst{15-12} = Rt; 2174 let Inst{11-0} = addr{11-0}; // imm12 2175 } 2176 2177 // Loads with zero extension 2178 def LDRH : AI3ld<0b1011, 1, (outs GPR:$Rt), (ins addrmode3:$addr), LdMiscFrm, 2179 IIC_iLoad_bh_r, "ldrh", "\t$Rt, $addr", 2180 [(set GPR:$Rt, (zextloadi16 addrmode3:$addr))]>; 2181 2182 // Loads with sign extension 2183 def LDRSH : AI3ld<0b1111, 1, (outs GPR:$Rt), (ins addrmode3:$addr), LdMiscFrm, 2184 IIC_iLoad_bh_r, "ldrsh", "\t$Rt, $addr", 2185 [(set GPR:$Rt, (sextloadi16 addrmode3:$addr))]>; 2186 2187 def LDRSB : AI3ld<0b1101, 1, (outs GPR:$Rt), (ins addrmode3:$addr), LdMiscFrm, 2188 IIC_iLoad_bh_r, "ldrsb", "\t$Rt, $addr", 2189 [(set GPR:$Rt, (sextloadi8 addrmode3:$addr))]>; 2190 2191 let mayLoad = 1, neverHasSideEffects = 1, hasExtraDefRegAllocReq = 1 in { 2192 // Load doubleword 2193 def LDRD : AI3ld<0b1101, 0, (outs GPR:$Rd, GPR:$dst2), 2194 (ins addrmode3:$addr), LdMiscFrm, 2195 IIC_iLoad_d_r, "ldrd", "\t$Rd, $dst2, $addr", 2196 []>, Requires<[IsARM, HasV5TE]>; 2197 } 2198 2199 // Indexed loads 2200 multiclass AI2_ldridx<bit isByte, string opc, InstrItinClass itin> { 2201 def _PRE_IMM : AI2ldstidx<1, isByte, 1, (outs GPR:$Rt, GPR:$Rn_wb), 2202 (ins addrmode_imm12:$addr), IndexModePre, LdFrm, itin, 2203 opc, "\t$Rt, $addr!", "$addr.base = $Rn_wb", []> { 2204 bits<17> addr; 2205 let Inst{25} = 0; 2206 let Inst{23} = addr{12}; 2207 let Inst{19-16} = addr{16-13}; 2208 let Inst{11-0} = addr{11-0}; 2209 let DecoderMethod = "DecodeLDRPreImm"; 2210 let AsmMatchConverter = "cvtLdWriteBackRegAddrModeImm12"; 2211 } 2212 2213 def _PRE_REG : AI2ldstidx<1, isByte, 1, (outs GPR:$Rt, GPR:$Rn_wb), 2214 (ins ldst_so_reg:$addr), IndexModePre, LdFrm, itin, 2215 opc, "\t$Rt, $addr!", "$addr.base = $Rn_wb", []> { 2216 bits<17> addr; 2217 let Inst{25} = 1; 2218 let Inst{23} = addr{12}; 2219 let Inst{19-16} = addr{16-13}; 2220 let Inst{11-0} = addr{11-0}; 2221 let Inst{4} = 0; 2222 let DecoderMethod = "DecodeLDRPreReg"; 2223 let AsmMatchConverter = "cvtLdWriteBackRegAddrMode2"; 2224 } 2225 2226 def _POST_REG : AI2ldstidx<1, isByte, 0, (outs GPR:$Rt, GPR:$Rn_wb), 2227 (ins addr_offset_none:$addr, am2offset_reg:$offset), 2228 IndexModePost, LdFrm, itin, 2229 opc, "\t$Rt, $addr, $offset", 2230 "$addr.base = $Rn_wb", []> { 2231 // {12} isAdd 2232 // {11-0} imm12/Rm 2233 bits<14> offset; 2234 bits<4> addr; 2235 let Inst{25} = 1; 2236 let Inst{23} = offset{12}; 2237 let Inst{19-16} = addr; 2238 let Inst{11-0} = offset{11-0}; 2239 2240 let DecoderMethod = "DecodeAddrMode2IdxInstruction"; 2241 } 2242 2243 def _POST_IMM : AI2ldstidx<1, isByte, 0, (outs GPR:$Rt, GPR:$Rn_wb), 2244 (ins addr_offset_none:$addr, am2offset_imm:$offset), 2245 IndexModePost, LdFrm, itin, 2246 opc, "\t$Rt, $addr, $offset", 2247 "$addr.base = $Rn_wb", []> { 2248 // {12} isAdd 2249 // {11-0} imm12/Rm 2250 bits<14> offset; 2251 bits<4> addr; 2252 let Inst{25} = 0; 2253 let Inst{23} = offset{12}; 2254 let Inst{19-16} = addr; 2255 let Inst{11-0} = offset{11-0}; 2256 2257 let DecoderMethod = "DecodeAddrMode2IdxInstruction"; 2258 } 2259 2260 } 2261 2262 let mayLoad = 1, neverHasSideEffects = 1 in { 2263 defm LDR : AI2_ldridx<0, "ldr", IIC_iLoad_ru>; 2264 defm LDRB : AI2_ldridx<1, "ldrb", IIC_iLoad_bh_ru>; 2265 } 2266 2267 multiclass AI3_ldridx<bits<4> op, string opc, InstrItinClass itin> { 2268 def _PRE : AI3ldstidx<op, 1, 1, (outs GPR:$Rt, GPR:$Rn_wb), 2269 (ins addrmode3:$addr), IndexModePre, 2270 LdMiscFrm, itin, 2271 opc, "\t$Rt, $addr!", "$addr.base = $Rn_wb", []> { 2272 bits<14> addr; 2273 let Inst{23} = addr{8}; // U bit 2274 let Inst{22} = addr{13}; // 1 == imm8, 0 == Rm 2275 let Inst{19-16} = addr{12-9}; // Rn 2276 let Inst{11-8} = addr{7-4}; // imm7_4/zero 2277 let Inst{3-0} = addr{3-0}; // imm3_0/Rm 2278 let AsmMatchConverter = "cvtLdWriteBackRegAddrMode3"; 2279 let DecoderMethod = "DecodeAddrMode3Instruction"; 2280 } 2281 def _POST : AI3ldstidx<op, 1, 0, (outs GPR:$Rt, GPR:$Rn_wb), 2282 (ins addr_offset_none:$addr, am3offset:$offset), 2283 IndexModePost, LdMiscFrm, itin, 2284 opc, "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", 2285 []> { 2286 bits<10> offset; 2287 bits<4> addr; 2288 let Inst{23} = offset{8}; // U bit 2289 let Inst{22} = offset{9}; // 1 == imm8, 0 == Rm 2290 let Inst{19-16} = addr; 2291 let Inst{11-8} = offset{7-4}; // imm7_4/zero 2292 let Inst{3-0} = offset{3-0}; // imm3_0/Rm 2293 let DecoderMethod = "DecodeAddrMode3Instruction"; 2294 } 2295 } 2296 2297 let mayLoad = 1, neverHasSideEffects = 1 in { 2298 defm LDRH : AI3_ldridx<0b1011, "ldrh", IIC_iLoad_bh_ru>; 2299 defm LDRSH : AI3_ldridx<0b1111, "ldrsh", IIC_iLoad_bh_ru>; 2300 defm LDRSB : AI3_ldridx<0b1101, "ldrsb", IIC_iLoad_bh_ru>; 2301 let hasExtraDefRegAllocReq = 1 in { 2302 def LDRD_PRE : AI3ldstidx<0b1101, 0, 1, (outs GPR:$Rt, GPR:$Rt2, GPR:$Rn_wb), 2303 (ins addrmode3:$addr), IndexModePre, 2304 LdMiscFrm, IIC_iLoad_d_ru, 2305 "ldrd", "\t$Rt, $Rt2, $addr!", 2306 "$addr.base = $Rn_wb", []> { 2307 bits<14> addr; 2308 let Inst{23} = addr{8}; // U bit 2309 let Inst{22} = addr{13}; // 1 == imm8, 0 == Rm 2310 let Inst{19-16} = addr{12-9}; // Rn 2311 let Inst{11-8} = addr{7-4}; // imm7_4/zero 2312 let Inst{3-0} = addr{3-0}; // imm3_0/Rm 2313 let DecoderMethod = "DecodeAddrMode3Instruction"; 2314 let AsmMatchConverter = "cvtLdrdPre"; 2315 } 2316 def LDRD_POST: AI3ldstidx<0b1101, 0, 0, (outs GPR:$Rt, GPR:$Rt2, GPR:$Rn_wb), 2317 (ins addr_offset_none:$addr, am3offset:$offset), 2318 IndexModePost, LdMiscFrm, IIC_iLoad_d_ru, 2319 "ldrd", "\t$Rt, $Rt2, $addr, $offset", 2320 "$addr.base = $Rn_wb", []> { 2321 bits<10> offset; 2322 bits<4> addr; 2323 let Inst{23} = offset{8}; // U bit 2324 let Inst{22} = offset{9}; // 1 == imm8, 0 == Rm 2325 let Inst{19-16} = addr; 2326 let Inst{11-8} = offset{7-4}; // imm7_4/zero 2327 let Inst{3-0} = offset{3-0}; // imm3_0/Rm 2328 let DecoderMethod = "DecodeAddrMode3Instruction"; 2329 } 2330 } // hasExtraDefRegAllocReq = 1 2331 } // mayLoad = 1, neverHasSideEffects = 1 2332 2333 // LDRT, LDRBT, LDRSBT, LDRHT, LDRSHT. 2334 let mayLoad = 1, neverHasSideEffects = 1 in { 2335 def LDRT_POST_REG : AI2ldstidx<1, 0, 0, (outs GPR:$Rt, GPR:$Rn_wb), 2336 (ins addr_offset_none:$addr, am2offset_reg:$offset), 2337 IndexModePost, LdFrm, IIC_iLoad_ru, 2338 "ldrt", "\t$Rt, $addr, $offset", 2339 "$addr.base = $Rn_wb", []> { 2340 // {12} isAdd 2341 // {11-0} imm12/Rm 2342 bits<14> offset; 2343 bits<4> addr; 2344 let Inst{25} = 1; 2345 let Inst{23} = offset{12}; 2346 let Inst{21} = 1; // overwrite 2347 let Inst{19-16} = addr; 2348 let Inst{11-5} = offset{11-5}; 2349 let Inst{4} = 0; 2350 let Inst{3-0} = offset{3-0}; 2351 let DecoderMethod = "DecodeAddrMode2IdxInstruction"; 2352 } 2353 2354 def LDRT_POST_IMM : AI2ldstidx<1, 0, 0, (outs GPR:$Rt, GPR:$Rn_wb), 2355 (ins addr_offset_none:$addr, am2offset_imm:$offset), 2356 IndexModePost, LdFrm, IIC_iLoad_ru, 2357 "ldrt", "\t$Rt, $addr, $offset", 2358 "$addr.base = $Rn_wb", []> { 2359 // {12} isAdd 2360 // {11-0} imm12/Rm 2361 bits<14> offset; 2362 bits<4> addr; 2363 let Inst{25} = 0; 2364 let Inst{23} = offset{12}; 2365 let Inst{21} = 1; // overwrite 2366 let Inst{19-16} = addr; 2367 let Inst{11-0} = offset{11-0}; 2368 let DecoderMethod = "DecodeAddrMode2IdxInstruction"; 2369 } 2370 2371 def LDRBT_POST_REG : AI2ldstidx<1, 1, 0, (outs GPR:$Rt, GPR:$Rn_wb), 2372 (ins addr_offset_none:$addr, am2offset_reg:$offset), 2373 IndexModePost, LdFrm, IIC_iLoad_bh_ru, 2374 "ldrbt", "\t$Rt, $addr, $offset", 2375 "$addr.base = $Rn_wb", []> { 2376 // {12} isAdd 2377 // {11-0} imm12/Rm 2378 bits<14> offset; 2379 bits<4> addr; 2380 let Inst{25} = 1; 2381 let Inst{23} = offset{12}; 2382 let Inst{21} = 1; // overwrite 2383 let Inst{19-16} = addr; 2384 let Inst{11-5} = offset{11-5}; 2385 let Inst{4} = 0; 2386 let Inst{3-0} = offset{3-0}; 2387 let DecoderMethod = "DecodeAddrMode2IdxInstruction"; 2388 } 2389 2390 def LDRBT_POST_IMM : AI2ldstidx<1, 1, 0, (outs GPR:$Rt, GPR:$Rn_wb), 2391 (ins addr_offset_none:$addr, am2offset_imm:$offset), 2392 IndexModePost, LdFrm, IIC_iLoad_bh_ru, 2393 "ldrbt", "\t$Rt, $addr, $offset", 2394 "$addr.base = $Rn_wb", []> { 2395 // {12} isAdd 2396 // {11-0} imm12/Rm 2397 bits<14> offset; 2398 bits<4> addr; 2399 let Inst{25} = 0; 2400 let Inst{23} = offset{12}; 2401 let Inst{21} = 1; // overwrite 2402 let Inst{19-16} = addr; 2403 let Inst{11-0} = offset{11-0}; 2404 let DecoderMethod = "DecodeAddrMode2IdxInstruction"; 2405 } 2406 2407 multiclass AI3ldrT<bits<4> op, string opc> { 2408 def i : AI3ldstidxT<op, 1, (outs GPR:$Rt, GPR:$base_wb), 2409 (ins addr_offset_none:$addr, postidx_imm8:$offset), 2410 IndexModePost, LdMiscFrm, IIC_iLoad_bh_ru, opc, 2411 "\t$Rt, $addr, $offset", "$addr.base = $base_wb", []> { 2412 bits<9> offset; 2413 let Inst{23} = offset{8}; 2414 let Inst{22} = 1; 2415 let Inst{11-8} = offset{7-4}; 2416 let Inst{3-0} = offset{3-0}; 2417 let AsmMatchConverter = "cvtLdExtTWriteBackImm"; 2418 } 2419 def r : AI3ldstidxT<op, 1, (outs GPR:$Rt, GPR:$base_wb), 2420 (ins addr_offset_none:$addr, postidx_reg:$Rm), 2421 IndexModePost, LdMiscFrm, IIC_iLoad_bh_ru, opc, 2422 "\t$Rt, $addr, $Rm", "$addr.base = $base_wb", []> { 2423 bits<5> Rm; 2424 let Inst{23} = Rm{4}; 2425 let Inst{22} = 0; 2426 let Inst{11-8} = 0; 2427 let Inst{3-0} = Rm{3-0}; 2428 let AsmMatchConverter = "cvtLdExtTWriteBackReg"; 2429 } 2430 } 2431 2432 defm LDRSBT : AI3ldrT<0b1101, "ldrsbt">; 2433 defm LDRHT : AI3ldrT<0b1011, "ldrht">; 2434 defm LDRSHT : AI3ldrT<0b1111, "ldrsht">; 2435 } 2436 2437 // Store 2438 2439 // Stores with truncate 2440 def STRH : AI3str<0b1011, (outs), (ins GPR:$Rt, addrmode3:$addr), StMiscFrm, 2441 IIC_iStore_bh_r, "strh", "\t$Rt, $addr", 2442 [(truncstorei16 GPR:$Rt, addrmode3:$addr)]>; 2443 2444 // Store doubleword 2445 let mayStore = 1, neverHasSideEffects = 1, hasExtraSrcRegAllocReq = 1 in 2446 def STRD : AI3str<0b1111, (outs), (ins GPR:$Rt, GPR:$src2, addrmode3:$addr), 2447 StMiscFrm, IIC_iStore_d_r, 2448 "strd", "\t$Rt, $src2, $addr", []>, 2449 Requires<[IsARM, HasV5TE]> { 2450 let Inst{21} = 0; 2451 } 2452 2453 // Indexed stores 2454 multiclass AI2_stridx<bit isByte, string opc, InstrItinClass itin> { 2455 def _PRE_IMM : AI2ldstidx<0, isByte, 1, (outs GPR:$Rn_wb), 2456 (ins GPR:$Rt, addrmode_imm12:$addr), IndexModePre, 2457 StFrm, itin, 2458 opc, "\t$Rt, $addr!", "$addr.base = $Rn_wb", []> { 2459 bits<17> addr; 2460 let Inst{25} = 0; 2461 let Inst{23} = addr{12}; // U (add = ('U' == 1)) 2462 let Inst{19-16} = addr{16-13}; // Rn 2463 let Inst{11-0} = addr{11-0}; // imm12 2464 let AsmMatchConverter = "cvtStWriteBackRegAddrModeImm12"; 2465 let DecoderMethod = "DecodeSTRPreImm"; 2466 } 2467 2468 def _PRE_REG : AI2ldstidx<0, isByte, 1, (outs GPR:$Rn_wb), 2469 (ins GPR:$Rt, ldst_so_reg:$addr), 2470 IndexModePre, StFrm, itin, 2471 opc, "\t$Rt, $addr!", "$addr.base = $Rn_wb", []> { 2472 bits<17> addr; 2473 let Inst{25} = 1; 2474 let Inst{23} = addr{12}; // U (add = ('U' == 1)) 2475 let Inst{19-16} = addr{16-13}; // Rn 2476 let Inst{11-0} = addr{11-0}; 2477 let Inst{4} = 0; // Inst{4} = 0 2478 let AsmMatchConverter = "cvtStWriteBackRegAddrMode2"; 2479 let DecoderMethod = "DecodeSTRPreReg"; 2480 } 2481 def _POST_REG : AI2ldstidx<0, isByte, 0, (outs GPR:$Rn_wb), 2482 (ins GPR:$Rt, addr_offset_none:$addr, am2offset_reg:$offset), 2483 IndexModePost, StFrm, itin, 2484 opc, "\t$Rt, $addr, $offset", 2485 "$addr.base = $Rn_wb", []> { 2486 // {12} isAdd 2487 // {11-0} imm12/Rm 2488 bits<14> offset; 2489 bits<4> addr; 2490 let Inst{25} = 1; 2491 let Inst{23} = offset{12}; 2492 let Inst{19-16} = addr; 2493 let Inst{11-0} = offset{11-0}; 2494 2495 let DecoderMethod = "DecodeAddrMode2IdxInstruction"; 2496 } 2497 2498 def _POST_IMM : AI2ldstidx<0, isByte, 0, (outs GPR:$Rn_wb), 2499 (ins GPR:$Rt, addr_offset_none:$addr, am2offset_imm:$offset), 2500 IndexModePost, StFrm, itin, 2501 opc, "\t$Rt, $addr, $offset", 2502 "$addr.base = $Rn_wb", []> { 2503 // {12} isAdd 2504 // {11-0} imm12/Rm 2505 bits<14> offset; 2506 bits<4> addr; 2507 let Inst{25} = 0; 2508 let Inst{23} = offset{12}; 2509 let Inst{19-16} = addr; 2510 let Inst{11-0} = offset{11-0}; 2511 2512 let DecoderMethod = "DecodeAddrMode2IdxInstruction"; 2513 } 2514 } 2515 2516 let mayStore = 1, neverHasSideEffects = 1 in { 2517 defm STR : AI2_stridx<0, "str", IIC_iStore_ru>; 2518 defm STRB : AI2_stridx<1, "strb", IIC_iStore_bh_ru>; 2519 } 2520 2521 def : ARMPat<(post_store GPR:$Rt, addr_offset_none:$addr, 2522 am2offset_reg:$offset), 2523 (STR_POST_REG GPR:$Rt, addr_offset_none:$addr, 2524 am2offset_reg:$offset)>; 2525 def : ARMPat<(post_store GPR:$Rt, addr_offset_none:$addr, 2526 am2offset_imm:$offset), 2527 (STR_POST_IMM GPR:$Rt, addr_offset_none:$addr, 2528 am2offset_imm:$offset)>; 2529 def : ARMPat<(post_truncsti8 GPR:$Rt, addr_offset_none:$addr, 2530 am2offset_reg:$offset), 2531 (STRB_POST_REG GPR:$Rt, addr_offset_none:$addr, 2532 am2offset_reg:$offset)>; 2533 def : ARMPat<(post_truncsti8 GPR:$Rt, addr_offset_none:$addr, 2534 am2offset_imm:$offset), 2535 (STRB_POST_IMM GPR:$Rt, addr_offset_none:$addr, 2536 am2offset_imm:$offset)>; 2537 2538 // Pseudo-instructions for pattern matching the pre-indexed stores. We can't 2539 // put the patterns on the instruction definitions directly as ISel wants 2540 // the address base and offset to be separate operands, not a single 2541 // complex operand like we represent the instructions themselves. The 2542 // pseudos map between the two. 2543 let usesCustomInserter = 1, 2544 Constraints = "$Rn = $Rn_wb,@earlyclobber $Rn_wb" in { 2545 def STRi_preidx: ARMPseudoInst<(outs GPR:$Rn_wb), 2546 (ins GPR:$Rt, GPR:$Rn, am2offset_imm:$offset, pred:$p), 2547 4, IIC_iStore_ru, 2548 [(set GPR:$Rn_wb, 2549 (pre_store GPR:$Rt, GPR:$Rn, am2offset_imm:$offset))]>; 2550 def STRr_preidx: ARMPseudoInst<(outs GPR:$Rn_wb), 2551 (ins GPR:$Rt, GPR:$Rn, am2offset_reg:$offset, pred:$p), 2552 4, IIC_iStore_ru, 2553 [(set GPR:$Rn_wb, 2554 (pre_store GPR:$Rt, GPR:$Rn, am2offset_reg:$offset))]>; 2555 def STRBi_preidx: ARMPseudoInst<(outs GPR:$Rn_wb), 2556 (ins GPR:$Rt, GPR:$Rn, am2offset_imm:$offset, pred:$p), 2557 4, IIC_iStore_ru, 2558 [(set GPR:$Rn_wb, 2559 (pre_truncsti8 GPR:$Rt, GPR:$Rn, am2offset_imm:$offset))]>; 2560 def STRBr_preidx: ARMPseudoInst<(outs GPR:$Rn_wb), 2561 (ins GPR:$Rt, GPR:$Rn, am2offset_reg:$offset, pred:$p), 2562 4, IIC_iStore_ru, 2563 [(set GPR:$Rn_wb, 2564 (pre_truncsti8 GPR:$Rt, GPR:$Rn, am2offset_reg:$offset))]>; 2565 def STRH_preidx: ARMPseudoInst<(outs GPR:$Rn_wb), 2566 (ins GPR:$Rt, GPR:$Rn, am3offset:$offset, pred:$p), 2567 4, IIC_iStore_ru, 2568 [(set GPR:$Rn_wb, 2569 (pre_truncsti16 GPR:$Rt, GPR:$Rn, am3offset:$offset))]>; 2570 } 2571 2572 2573 2574 def STRH_PRE : AI3ldstidx<0b1011, 0, 1, (outs GPR:$Rn_wb), 2575 (ins GPR:$Rt, addrmode3:$addr), IndexModePre, 2576 StMiscFrm, IIC_iStore_bh_ru, 2577 "strh", "\t$Rt, $addr!", "$addr.base = $Rn_wb", []> { 2578 bits<14> addr; 2579 let Inst{23} = addr{8}; // U bit 2580 let Inst{22} = addr{13}; // 1 == imm8, 0 == Rm 2581 let Inst{19-16} = addr{12-9}; // Rn 2582 let Inst{11-8} = addr{7-4}; // imm7_4/zero 2583 let Inst{3-0} = addr{3-0}; // imm3_0/Rm 2584 let AsmMatchConverter = "cvtStWriteBackRegAddrMode3"; 2585 let DecoderMethod = "DecodeAddrMode3Instruction"; 2586 } 2587 2588 def STRH_POST : AI3ldstidx<0b1011, 0, 0, (outs GPR:$Rn_wb), 2589 (ins GPR:$Rt, addr_offset_none:$addr, am3offset:$offset), 2590 IndexModePost, StMiscFrm, IIC_iStore_bh_ru, 2591 "strh", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", 2592 [(set GPR:$Rn_wb, (post_truncsti16 GPR:$Rt, 2593 addr_offset_none:$addr, 2594 am3offset:$offset))]> { 2595 bits<10> offset; 2596 bits<4> addr; 2597 let Inst{23} = offset{8}; // U bit 2598 let Inst{22} = offset{9}; // 1 == imm8, 0 == Rm 2599 let Inst{19-16} = addr; 2600 let Inst{11-8} = offset{7-4}; // imm7_4/zero 2601 let Inst{3-0} = offset{3-0}; // imm3_0/Rm 2602 let DecoderMethod = "DecodeAddrMode3Instruction"; 2603 } 2604 2605 let mayStore = 1, neverHasSideEffects = 1, hasExtraSrcRegAllocReq = 1 in { 2606 def STRD_PRE : AI3ldstidx<0b1111, 0, 1, (outs GPR:$Rn_wb), 2607 (ins GPR:$Rt, GPR:$Rt2, addrmode3:$addr), 2608 IndexModePre, StMiscFrm, IIC_iStore_d_ru, 2609 "strd", "\t$Rt, $Rt2, $addr!", 2610 "$addr.base = $Rn_wb", []> { 2611 bits<14> addr; 2612 let Inst{23} = addr{8}; // U bit 2613 let Inst{22} = addr{13}; // 1 == imm8, 0 == Rm 2614 let Inst{19-16} = addr{12-9}; // Rn 2615 let Inst{11-8} = addr{7-4}; // imm7_4/zero 2616 let Inst{3-0} = addr{3-0}; // imm3_0/Rm 2617 let DecoderMethod = "DecodeAddrMode3Instruction"; 2618 let AsmMatchConverter = "cvtStrdPre"; 2619 } 2620 2621 def STRD_POST: AI3ldstidx<0b1111, 0, 0, (outs GPR:$Rn_wb), 2622 (ins GPR:$Rt, GPR:$Rt2, addr_offset_none:$addr, 2623 am3offset:$offset), 2624 IndexModePost, StMiscFrm, IIC_iStore_d_ru, 2625 "strd", "\t$Rt, $Rt2, $addr, $offset", 2626 "$addr.base = $Rn_wb", []> { 2627 bits<10> offset; 2628 bits<4> addr; 2629 let Inst{23} = offset{8}; // U bit 2630 let Inst{22} = offset{9}; // 1 == imm8, 0 == Rm 2631 let Inst{19-16} = addr; 2632 let Inst{11-8} = offset{7-4}; // imm7_4/zero 2633 let Inst{3-0} = offset{3-0}; // imm3_0/Rm 2634 let DecoderMethod = "DecodeAddrMode3Instruction"; 2635 } 2636 } // mayStore = 1, neverHasSideEffects = 1, hasExtraSrcRegAllocReq = 1 2637 2638 // STRT, STRBT, and STRHT 2639 2640 def STRBT_POST_REG : AI2ldstidx<0, 1, 0, (outs GPR:$Rn_wb), 2641 (ins GPR:$Rt, addr_offset_none:$addr, am2offset_reg:$offset), 2642 IndexModePost, StFrm, IIC_iStore_bh_ru, 2643 "strbt", "\t$Rt, $addr, $offset", 2644 "$addr.base = $Rn_wb", []> { 2645 // {12} isAdd 2646 // {11-0} imm12/Rm 2647 bits<14> offset; 2648 bits<4> addr; 2649 let Inst{25} = 1; 2650 let Inst{23} = offset{12}; 2651 let Inst{21} = 1; // overwrite 2652 let Inst{19-16} = addr; 2653 let Inst{11-5} = offset{11-5}; 2654 let Inst{4} = 0; 2655 let Inst{3-0} = offset{3-0}; 2656 let DecoderMethod = "DecodeAddrMode2IdxInstruction"; 2657 } 2658 2659 def STRBT_POST_IMM : AI2ldstidx<0, 1, 0, (outs GPR:$Rn_wb), 2660 (ins GPR:$Rt, addr_offset_none:$addr, am2offset_imm:$offset), 2661 IndexModePost, StFrm, IIC_iStore_bh_ru, 2662 "strbt", "\t$Rt, $addr, $offset", 2663 "$addr.base = $Rn_wb", []> { 2664 // {12} isAdd 2665 // {11-0} imm12/Rm 2666 bits<14> offset; 2667 bits<4> addr; 2668 let Inst{25} = 0; 2669 let Inst{23} = offset{12}; 2670 let Inst{21} = 1; // overwrite 2671 let Inst{19-16} = addr; 2672 let Inst{11-0} = offset{11-0}; 2673 let DecoderMethod = "DecodeAddrMode2IdxInstruction"; 2674 } 2675 2676 let mayStore = 1, neverHasSideEffects = 1 in { 2677 def STRT_POST_REG : AI2ldstidx<0, 0, 0, (outs GPR:$Rn_wb), 2678 (ins GPR:$Rt, addr_offset_none:$addr, am2offset_reg:$offset), 2679 IndexModePost, StFrm, IIC_iStore_ru, 2680 "strt", "\t$Rt, $addr, $offset", 2681 "$addr.base = $Rn_wb", []> { 2682 // {12} isAdd 2683 // {11-0} imm12/Rm 2684 bits<14> offset; 2685 bits<4> addr; 2686 let Inst{25} = 1; 2687 let Inst{23} = offset{12}; 2688 let Inst{21} = 1; // overwrite 2689 let Inst{19-16} = addr; 2690 let Inst{11-5} = offset{11-5}; 2691 let Inst{4} = 0; 2692 let Inst{3-0} = offset{3-0}; 2693 let DecoderMethod = "DecodeAddrMode2IdxInstruction"; 2694 } 2695 2696 def STRT_POST_IMM : AI2ldstidx<0, 0, 0, (outs GPR:$Rn_wb), 2697 (ins GPR:$Rt, addr_offset_none:$addr, am2offset_imm:$offset), 2698 IndexModePost, StFrm, IIC_iStore_ru, 2699 "strt", "\t$Rt, $addr, $offset", 2700 "$addr.base = $Rn_wb", []> { 2701 // {12} isAdd 2702 // {11-0} imm12/Rm 2703 bits<14> offset; 2704 bits<4> addr; 2705 let Inst{25} = 0; 2706 let Inst{23} = offset{12}; 2707 let Inst{21} = 1; // overwrite 2708 let Inst{19-16} = addr; 2709 let Inst{11-0} = offset{11-0}; 2710 let DecoderMethod = "DecodeAddrMode2IdxInstruction"; 2711 } 2712 } 2713 2714 2715 multiclass AI3strT<bits<4> op, string opc> { 2716 def i : AI3ldstidxT<op, 0, (outs GPR:$base_wb), 2717 (ins GPR:$Rt, addr_offset_none:$addr, postidx_imm8:$offset), 2718 IndexModePost, StMiscFrm, IIC_iStore_bh_ru, opc, 2719 "\t$Rt, $addr, $offset", "$addr.base = $base_wb", []> { 2720 bits<9> offset; 2721 let Inst{23} = offset{8}; 2722 let Inst{22} = 1; 2723 let Inst{11-8} = offset{7-4}; 2724 let Inst{3-0} = offset{3-0}; 2725 let AsmMatchConverter = "cvtStExtTWriteBackImm"; 2726 } 2727 def r : AI3ldstidxT<op, 0, (outs GPR:$base_wb), 2728 (ins GPR:$Rt, addr_offset_none:$addr, postidx_reg:$Rm), 2729 IndexModePost, StMiscFrm, IIC_iStore_bh_ru, opc, 2730 "\t$Rt, $addr, $Rm", "$addr.base = $base_wb", []> { 2731 bits<5> Rm; 2732 let Inst{23} = Rm{4}; 2733 let Inst{22} = 0; 2734 let Inst{11-8} = 0; 2735 let Inst{3-0} = Rm{3-0}; 2736 let AsmMatchConverter = "cvtStExtTWriteBackReg"; 2737 } 2738 } 2739 2740 2741 defm STRHT : AI3strT<0b1011, "strht">; 2742 2743 2744 //===----------------------------------------------------------------------===// 2745 // Load / store multiple Instructions. 2746 // 2747 2748 multiclass arm_ldst_mult<string asm, bit L_bit, Format f, 2749 InstrItinClass itin, InstrItinClass itin_upd> { 2750 // IA is the default, so no need for an explicit suffix on the 2751 // mnemonic here. Without it is the cannonical spelling. 2752 def IA : 2753 AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops), 2754 IndexModeNone, f, itin, 2755 !strconcat(asm, "${p}\t$Rn, $regs"), "", []> { 2756 let Inst{24-23} = 0b01; // Increment After 2757 let Inst{21} = 0; // No writeback 2758 let Inst{20} = L_bit; 2759 } 2760 def IA_UPD : 2761 AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops), 2762 IndexModeUpd, f, itin_upd, 2763 !strconcat(asm, "${p}\t$Rn!, $regs"), "$Rn = $wb", []> { 2764 let Inst{24-23} = 0b01; // Increment After 2765 let Inst{21} = 1; // Writeback 2766 let Inst{20} = L_bit; 2767 2768 let DecoderMethod = "DecodeMemMultipleWritebackInstruction"; 2769 } 2770 def DA : 2771 AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops), 2772 IndexModeNone, f, itin, 2773 !strconcat(asm, "da${p}\t$Rn, $regs"), "", []> { 2774 let Inst{24-23} = 0b00; // Decrement After 2775 let Inst{21} = 0; // No writeback 2776 let Inst{20} = L_bit; 2777 } 2778 def DA_UPD : 2779 AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops), 2780 IndexModeUpd, f, itin_upd, 2781 !strconcat(asm, "da${p}\t$Rn!, $regs"), "$Rn = $wb", []> { 2782 let Inst{24-23} = 0b00; // Decrement After 2783 let Inst{21} = 1; // Writeback 2784 let Inst{20} = L_bit; 2785 2786 let DecoderMethod = "DecodeMemMultipleWritebackInstruction"; 2787 } 2788 def DB : 2789 AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops), 2790 IndexModeNone, f, itin, 2791 !strconcat(asm, "db${p}\t$Rn, $regs"), "", []> { 2792 let Inst{24-23} = 0b10; // Decrement Before 2793 let Inst{21} = 0; // No writeback 2794 let Inst{20} = L_bit; 2795 } 2796 def DB_UPD : 2797 AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops), 2798 IndexModeUpd, f, itin_upd, 2799 !strconcat(asm, "db${p}\t$Rn!, $regs"), "$Rn = $wb", []> { 2800 let Inst{24-23} = 0b10; // Decrement Before 2801 let Inst{21} = 1; // Writeback 2802 let Inst{20} = L_bit; 2803 2804 let DecoderMethod = "DecodeMemMultipleWritebackInstruction"; 2805 } 2806 def IB : 2807 AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops), 2808 IndexModeNone, f, itin, 2809 !strconcat(asm, "ib${p}\t$Rn, $regs"), "", []> { 2810 let Inst{24-23} = 0b11; // Increment Before 2811 let Inst{21} = 0; // No writeback 2812 let Inst{20} = L_bit; 2813 } 2814 def IB_UPD : 2815 AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops), 2816 IndexModeUpd, f, itin_upd, 2817 !strconcat(asm, "ib${p}\t$Rn!, $regs"), "$Rn = $wb", []> { 2818 let Inst{24-23} = 0b11; // Increment Before 2819 let Inst{21} = 1; // Writeback 2820 let Inst{20} = L_bit; 2821 2822 let DecoderMethod = "DecodeMemMultipleWritebackInstruction"; 2823 } 2824 } 2825 2826 let neverHasSideEffects = 1 in { 2827 2828 let mayLoad = 1, hasExtraDefRegAllocReq = 1 in 2829 defm LDM : arm_ldst_mult<"ldm", 1, LdStMulFrm, IIC_iLoad_m, IIC_iLoad_mu>; 2830 2831 let mayStore = 1, hasExtraSrcRegAllocReq = 1 in 2832 defm STM : arm_ldst_mult<"stm", 0, LdStMulFrm, IIC_iStore_m, IIC_iStore_mu>; 2833 2834 } // neverHasSideEffects 2835 2836 // FIXME: remove when we have a way to marking a MI with these properties. 2837 // FIXME: Should pc be an implicit operand like PICADD, etc? 2838 let isReturn = 1, isTerminator = 1, isBarrier = 1, mayLoad = 1, 2839 hasExtraDefRegAllocReq = 1, isCodeGenOnly = 1 in 2840 def LDMIA_RET : ARMPseudoExpand<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, 2841 reglist:$regs, variable_ops), 2842 4, IIC_iLoad_mBr, [], 2843 (LDMIA_UPD GPR:$wb, GPR:$Rn, pred:$p, reglist:$regs)>, 2844 RegConstraint<"$Rn = $wb">; 2845 2846 //===----------------------------------------------------------------------===// 2847 // Move Instructions. 2848 // 2849 2850 let neverHasSideEffects = 1 in 2851 def MOVr : AsI1<0b1101, (outs GPR:$Rd), (ins GPR:$Rm), DPFrm, IIC_iMOVr, 2852 "mov", "\t$Rd, $Rm", []>, UnaryDP { 2853 bits<4> Rd; 2854 bits<4> Rm; 2855 2856 let Inst{19-16} = 0b0000; 2857 let Inst{11-4} = 0b00000000; 2858 let Inst{25} = 0; 2859 let Inst{3-0} = Rm; 2860 let Inst{15-12} = Rd; 2861 } 2862 2863 def : ARMInstAlias<"movs${p} $Rd, $Rm", 2864 (MOVr GPR:$Rd, GPR:$Rm, pred:$p, CPSR)>; 2865 2866 // A version for the smaller set of tail call registers. 2867 let neverHasSideEffects = 1 in 2868 def MOVr_TC : AsI1<0b1101, (outs tcGPR:$Rd), (ins tcGPR:$Rm), DPFrm, 2869 IIC_iMOVr, "mov", "\t$Rd, $Rm", []>, UnaryDP { 2870 bits<4> Rd; 2871 bits<4> Rm; 2872 2873 let Inst{11-4} = 0b00000000; 2874 let Inst{25} = 0; 2875 let Inst{3-0} = Rm; 2876 let Inst{15-12} = Rd; 2877 } 2878 2879 def MOVsr : AsI1<0b1101, (outs GPRnopc:$Rd), (ins shift_so_reg_reg:$src), 2880 DPSoRegRegFrm, IIC_iMOVsr, 2881 "mov", "\t$Rd, $src", 2882 [(set GPRnopc:$Rd, shift_so_reg_reg:$src)]>, UnaryDP { 2883 bits<4> Rd; 2884 bits<12> src; 2885 let Inst{15-12} = Rd; 2886 let Inst{19-16} = 0b0000; 2887 let Inst{11-8} = src{11-8}; 2888 let Inst{7} = 0; 2889 let Inst{6-5} = src{6-5}; 2890 let Inst{4} = 1; 2891 let Inst{3-0} = src{3-0}; 2892 let Inst{25} = 0; 2893 } 2894 2895 def MOVsi : AsI1<0b1101, (outs GPR:$Rd), (ins shift_so_reg_imm:$src), 2896 DPSoRegImmFrm, IIC_iMOVsr, 2897 "mov", "\t$Rd, $src", [(set GPR:$Rd, shift_so_reg_imm:$src)]>, 2898 UnaryDP { 2899 bits<4> Rd; 2900 bits<12> src; 2901 let Inst{15-12} = Rd; 2902 let Inst{19-16} = 0b0000; 2903 let Inst{11-5} = src{11-5}; 2904 let Inst{4} = 0; 2905 let Inst{3-0} = src{3-0}; 2906 let Inst{25} = 0; 2907 } 2908 2909 let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in 2910 def MOVi : AsI1<0b1101, (outs GPR:$Rd), (ins so_imm:$imm), DPFrm, IIC_iMOVi, 2911 "mov", "\t$Rd, $imm", [(set GPR:$Rd, so_imm:$imm)]>, UnaryDP { 2912 bits<4> Rd; 2913 bits<12> imm; 2914 let Inst{25} = 1; 2915 let Inst{15-12} = Rd; 2916 let Inst{19-16} = 0b0000; 2917 let Inst{11-0} = imm; 2918 } 2919 2920 let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in 2921 def MOVi16 : AI1<0b1000, (outs GPR:$Rd), (ins imm0_65535_expr:$imm), 2922 DPFrm, IIC_iMOVi, 2923 "movw", "\t$Rd, $imm", 2924 [(set GPR:$Rd, imm0_65535:$imm)]>, 2925 Requires<[IsARM, HasV6T2]>, UnaryDP { 2926 bits<4> Rd; 2927 bits<16> imm; 2928 let Inst{15-12} = Rd; 2929 let Inst{11-0} = imm{11-0}; 2930 let Inst{19-16} = imm{15-12}; 2931 let Inst{20} = 0; 2932 let Inst{25} = 1; 2933 let DecoderMethod = "DecodeArmMOVTWInstruction"; 2934 } 2935 2936 def : InstAlias<"mov${p} $Rd, $imm", 2937 (MOVi16 GPR:$Rd, imm0_65535_expr:$imm, pred:$p)>, 2938 Requires<[IsARM]>; 2939 2940 def MOVi16_ga_pcrel : PseudoInst<(outs GPR:$Rd), 2941 (ins i32imm:$addr, pclabel:$id), IIC_iMOVi, []>; 2942 2943 let Constraints = "$src = $Rd" in { 2944 def MOVTi16 : AI1<0b1010, (outs GPRnopc:$Rd), 2945 (ins GPR:$src, imm0_65535_expr:$imm), 2946 DPFrm, IIC_iMOVi, 2947 "movt", "\t$Rd, $imm", 2948 [(set GPRnopc:$Rd, 2949 (or (and GPR:$src, 0xffff), 2950 lo16AllZero:$imm))]>, UnaryDP, 2951 Requires<[IsARM, HasV6T2]> { 2952 bits<4> Rd; 2953 bits<16> imm; 2954 let Inst{15-12} = Rd; 2955 let Inst{11-0} = imm{11-0}; 2956 let Inst{19-16} = imm{15-12}; 2957 let Inst{20} = 0; 2958 let Inst{25} = 1; 2959 let DecoderMethod = "DecodeArmMOVTWInstruction"; 2960 } 2961 2962 def MOVTi16_ga_pcrel : PseudoInst<(outs GPR:$Rd), 2963 (ins GPR:$src, i32imm:$addr, pclabel:$id), IIC_iMOVi, []>; 2964 2965 } // Constraints 2966 2967 def : ARMPat<(or GPR:$src, 0xffff0000), (MOVTi16 GPR:$src, 0xffff)>, 2968 Requires<[IsARM, HasV6T2]>; 2969 2970 let Uses = [CPSR] in 2971 def RRX: PseudoInst<(outs GPR:$Rd), (ins GPR:$Rm), IIC_iMOVsi, 2972 [(set GPR:$Rd, (ARMrrx GPR:$Rm))]>, UnaryDP, 2973 Requires<[IsARM]>; 2974 2975 // These aren't really mov instructions, but we have to define them this way 2976 // due to flag operands. 2977 2978 let Defs = [CPSR] in { 2979 def MOVsrl_flag : PseudoInst<(outs GPR:$dst), (ins GPR:$src), IIC_iMOVsi, 2980 [(set GPR:$dst, (ARMsrl_flag GPR:$src))]>, UnaryDP, 2981 Requires<[IsARM]>; 2982 def MOVsra_flag : PseudoInst<(outs GPR:$dst), (ins GPR:$src), IIC_iMOVsi, 2983 [(set GPR:$dst, (ARMsra_flag GPR:$src))]>, UnaryDP, 2984 Requires<[IsARM]>; 2985 } 2986 2987 //===----------------------------------------------------------------------===// 2988 // Extend Instructions. 2989 // 2990 2991 // Sign extenders 2992 2993 def SXTB : AI_ext_rrot<0b01101010, 2994 "sxtb", UnOpFrag<(sext_inreg node:$Src, i8)>>; 2995 def SXTH : AI_ext_rrot<0b01101011, 2996 "sxth", UnOpFrag<(sext_inreg node:$Src, i16)>>; 2997 2998 def SXTAB : AI_exta_rrot<0b01101010, 2999 "sxtab", BinOpFrag<(add node:$LHS, (sext_inreg node:$RHS, i8))>>; 3000 def SXTAH : AI_exta_rrot<0b01101011, 3001 "sxtah", BinOpFrag<(add node:$LHS, (sext_inreg node:$RHS,i16))>>; 3002 3003 def SXTB16 : AI_ext_rrot_np<0b01101000, "sxtb16">; 3004 3005 def SXTAB16 : AI_exta_rrot_np<0b01101000, "sxtab16">; 3006 3007 // Zero extenders 3008 3009 let AddedComplexity = 16 in { 3010 def UXTB : AI_ext_rrot<0b01101110, 3011 "uxtb" , UnOpFrag<(and node:$Src, 0x000000FF)>>; 3012 def UXTH : AI_ext_rrot<0b01101111, 3013 "uxth" , UnOpFrag<(and node:$Src, 0x0000FFFF)>>; 3014 def UXTB16 : AI_ext_rrot<0b01101100, 3015 "uxtb16", UnOpFrag<(and node:$Src, 0x00FF00FF)>>; 3016 3017 // FIXME: This pattern incorrectly assumes the shl operator is a rotate. 3018 // The transformation should probably be done as a combiner action 3019 // instead so we can include a check for masking back in the upper 3020 // eight bits of the source into the lower eight bits of the result. 3021 //def : ARMV6Pat<(and (shl GPR:$Src, (i32 8)), 0xFF00FF), 3022 // (UXTB16r_rot GPR:$Src, 3)>; 3023 def : ARMV6Pat<(and (srl GPR:$Src, (i32 8)), 0xFF00FF), 3024 (UXTB16 GPR:$Src, 1)>; 3025 3026 def UXTAB : AI_exta_rrot<0b01101110, "uxtab", 3027 BinOpFrag<(add node:$LHS, (and node:$RHS, 0x00FF))>>; 3028 def UXTAH : AI_exta_rrot<0b01101111, "uxtah", 3029 BinOpFrag<(add node:$LHS, (and node:$RHS, 0xFFFF))>>; 3030 } 3031 3032 // This isn't safe in general, the add is two 16-bit units, not a 32-bit add. 3033 def UXTAB16 : AI_exta_rrot_np<0b01101100, "uxtab16">; 3034 3035 3036 def SBFX : I<(outs GPRnopc:$Rd), 3037 (ins GPRnopc:$Rn, imm0_31:$lsb, imm1_32:$width), 3038 AddrMode1, 4, IndexModeNone, DPFrm, IIC_iUNAsi, 3039 "sbfx", "\t$Rd, $Rn, $lsb, $width", "", []>, 3040 Requires<[IsARM, HasV6T2]> { 3041 bits<4> Rd; 3042 bits<4> Rn; 3043 bits<5> lsb; 3044 bits<5> width; 3045 let Inst{27-21} = 0b0111101; 3046 let Inst{6-4} = 0b101; 3047 let Inst{20-16} = width; 3048 let Inst{15-12} = Rd; 3049 let Inst{11-7} = lsb; 3050 let Inst{3-0} = Rn; 3051 } 3052 3053 def UBFX : I<(outs GPR:$Rd), 3054 (ins GPR:$Rn, imm0_31:$lsb, imm1_32:$width), 3055 AddrMode1, 4, IndexModeNone, DPFrm, IIC_iUNAsi, 3056 "ubfx", "\t$Rd, $Rn, $lsb, $width", "", []>, 3057 Requires<[IsARM, HasV6T2]> { 3058 bits<4> Rd; 3059 bits<4> Rn; 3060 bits<5> lsb; 3061 bits<5> width; 3062 let Inst{27-21} = 0b0111111; 3063 let Inst{6-4} = 0b101; 3064 let Inst{20-16} = width; 3065 let Inst{15-12} = Rd; 3066 let Inst{11-7} = lsb; 3067 let Inst{3-0} = Rn; 3068 } 3069 3070 //===----------------------------------------------------------------------===// 3071 // Arithmetic Instructions. 3072 // 3073 3074 defm ADD : AsI1_bin_irs<0b0100, "add", 3075 IIC_iALUi, IIC_iALUr, IIC_iALUsr, 3076 BinOpFrag<(add node:$LHS, node:$RHS)>, "ADD", 1>; 3077 defm SUB : AsI1_bin_irs<0b0010, "sub", 3078 IIC_iALUi, IIC_iALUr, IIC_iALUsr, 3079 BinOpFrag<(sub node:$LHS, node:$RHS)>, "SUB">; 3080 3081 // ADD and SUB with 's' bit set. 3082 // 3083 // Currently, t2ADDS/t2SUBS are pseudo opcodes that exist only in the 3084 // selection DAG. They are "lowered" to real t2ADD/t2SUB opcodes by 3085 // AdjustInstrPostInstrSelection where we determine whether or not to 3086 // set the "s" bit based on CPSR liveness. 3087 // 3088 // FIXME: Eliminate t2ADDS/t2SUBS pseudo opcodes after adding tablegen 3089 // support for an optional CPSR definition that corresponds to the DAG 3090 // node's second value. We can then eliminate the implicit def of CPSR. 3091 defm ADDS : AsI1_bin_s_irs<0b0100, "add", 3092 IIC_iALUi, IIC_iALUr, IIC_iALUsr, 3093 BinOpFrag<(ARMaddc node:$LHS, node:$RHS)>, 1>; 3094 defm SUBS : AsI1_bin_s_irs<0b0010, "sub", 3095 IIC_iALUi, IIC_iALUr, IIC_iALUsr, 3096 BinOpFrag<(ARMsubc node:$LHS, node:$RHS)>>; 3097 3098 defm ADC : AI1_adde_sube_irs<0b0101, "adc", 3099 BinOpWithFlagFrag<(ARMadde node:$LHS, node:$RHS, node:$FLAG)>, 3100 "ADC", 1>; 3101 defm SBC : AI1_adde_sube_irs<0b0110, "sbc", 3102 BinOpWithFlagFrag<(ARMsube node:$LHS, node:$RHS, node:$FLAG)>, 3103 "SBC">; 3104 3105 defm RSB : AsI1_rbin_irs <0b0011, "rsb", 3106 IIC_iALUi, IIC_iALUr, IIC_iALUsr, 3107 BinOpFrag<(sub node:$LHS, node:$RHS)>, "RSB">; 3108 3109 // FIXME: Eliminate them if we can write def : Pat patterns which defines 3110 // CPSR and the implicit def of CPSR is not needed. 3111 defm RSBS : AsI1_rbin_s_is<0b0011, "rsb", 3112 IIC_iALUi, IIC_iALUr, IIC_iALUsr, 3113 BinOpFrag<(ARMsubc node:$LHS, node:$RHS)>>; 3114 3115 defm RSC : AI1_rsc_irs<0b0111, "rsc", 3116 BinOpWithFlagFrag<(ARMsube node:$LHS, node:$RHS, node:$FLAG)>, 3117 "RSC">; 3118 3119 // (sub X, imm) gets canonicalized to (add X, -imm). Match this form. 3120 // The assume-no-carry-in form uses the negation of the input since add/sub 3121 // assume opposite meanings of the carry flag (i.e., carry == !borrow). 3122 // See the definition of AddWithCarry() in the ARM ARM A2.2.1 for the gory 3123 // details. 3124 def : ARMPat<(add GPR:$src, so_imm_neg:$imm), 3125 (SUBri GPR:$src, so_imm_neg:$imm)>; 3126 def : ARMPat<(ARMaddc GPR:$src, so_imm_neg:$imm), 3127 (SUBSri GPR:$src, so_imm_neg:$imm)>; 3128 3129 // The with-carry-in form matches bitwise not instead of the negation. 3130 // Effectively, the inverse interpretation of the carry flag already accounts 3131 // for part of the negation. 3132 def : ARMPat<(ARMadde GPR:$src, so_imm_not:$imm, CPSR), 3133 (SBCri GPR:$src, so_imm_not:$imm)>; 3134 3135 // Note: These are implemented in C++ code, because they have to generate 3136 // ADD/SUBrs instructions, which use a complex pattern that a xform function 3137 // cannot produce. 3138 // (mul X, 2^n+1) -> (add (X << n), X) 3139 // (mul X, 2^n-1) -> (rsb X, (X << n)) 3140 3141 // ARM Arithmetic Instruction 3142 // GPR:$dst = GPR:$a op GPR:$b 3143 class AAI<bits<8> op27_20, bits<8> op11_4, string opc, 3144 list<dag> pattern = [], 3145 dag iops = (ins GPRnopc:$Rn, GPRnopc:$Rm), 3146 string asm = "\t$Rd, $Rn, $Rm"> 3147 : AI<(outs GPRnopc:$Rd), iops, DPFrm, IIC_iALUr, opc, asm, pattern> { 3148 bits<4> Rn; 3149 bits<4> Rd; 3150 bits<4> Rm; 3151 let Inst{27-20} = op27_20; 3152 let Inst{11-4} = op11_4; 3153 let Inst{19-16} = Rn; 3154 let Inst{15-12} = Rd; 3155 let Inst{3-0} = Rm; 3156 } 3157 3158 // Saturating add/subtract 3159 3160 def QADD : AAI<0b00010000, 0b00000101, "qadd", 3161 [(set GPRnopc:$Rd, (int_arm_qadd GPRnopc:$Rm, GPRnopc:$Rn))], 3162 (ins GPRnopc:$Rm, GPRnopc:$Rn), "\t$Rd, $Rm, $Rn">; 3163 def QSUB : AAI<0b00010010, 0b00000101, "qsub", 3164 [(set GPRnopc:$Rd, (int_arm_qsub GPRnopc:$Rm, GPRnopc:$Rn))], 3165 (ins GPRnopc:$Rm, GPRnopc:$Rn), "\t$Rd, $Rm, $Rn">; 3166 def QDADD : AAI<0b00010100, 0b00000101, "qdadd", [], 3167 (ins GPRnopc:$Rm, GPRnopc:$Rn), 3168 "\t$Rd, $Rm, $Rn">; 3169 def QDSUB : AAI<0b00010110, 0b00000101, "qdsub", [], 3170 (ins GPRnopc:$Rm, GPRnopc:$Rn), 3171 "\t$Rd, $Rm, $Rn">; 3172 3173 def QADD16 : AAI<0b01100010, 0b11110001, "qadd16">; 3174 def QADD8 : AAI<0b01100010, 0b11111001, "qadd8">; 3175 def QASX : AAI<0b01100010, 0b11110011, "qasx">; 3176 def QSAX : AAI<0b01100010, 0b11110101, "qsax">; 3177 def QSUB16 : AAI<0b01100010, 0b11110111, "qsub16">; 3178 def QSUB8 : AAI<0b01100010, 0b11111111, "qsub8">; 3179 def UQADD16 : AAI<0b01100110, 0b11110001, "uqadd16">; 3180 def UQADD8 : AAI<0b01100110, 0b11111001, "uqadd8">; 3181 def UQASX : AAI<0b01100110, 0b11110011, "uqasx">; 3182 def UQSAX : AAI<0b01100110, 0b11110101, "uqsax">; 3183 def UQSUB16 : AAI<0b01100110, 0b11110111, "uqsub16">; 3184 def UQSUB8 : AAI<0b01100110, 0b11111111, "uqsub8">; 3185 3186 // Signed/Unsigned add/subtract 3187 3188 def SASX : AAI<0b01100001, 0b11110011, "sasx">; 3189 def SADD16 : AAI<0b01100001, 0b11110001, "sadd16">; 3190 def SADD8 : AAI<0b01100001, 0b11111001, "sadd8">; 3191 def SSAX : AAI<0b01100001, 0b11110101, "ssax">; 3192 def SSUB16 : AAI<0b01100001, 0b11110111, "ssub16">; 3193 def SSUB8 : AAI<0b01100001, 0b11111111, "ssub8">; 3194 def UASX : AAI<0b01100101, 0b11110011, "uasx">; 3195 def UADD16 : AAI<0b01100101, 0b11110001, "uadd16">; 3196 def UADD8 : AAI<0b01100101, 0b11111001, "uadd8">; 3197 def USAX : AAI<0b01100101, 0b11110101, "usax">; 3198 def USUB16 : AAI<0b01100101, 0b11110111, "usub16">; 3199 def USUB8 : AAI<0b01100101, 0b11111111, "usub8">; 3200 3201 // Signed/Unsigned halving add/subtract 3202 3203 def SHASX : AAI<0b01100011, 0b11110011, "shasx">; 3204 def SHADD16 : AAI<0b01100011, 0b11110001, "shadd16">; 3205 def SHADD8 : AAI<0b01100011, 0b11111001, "shadd8">; 3206 def SHSAX : AAI<0b01100011, 0b11110101, "shsax">; 3207 def SHSUB16 : AAI<0b01100011, 0b11110111, "shsub16">; 3208 def SHSUB8 : AAI<0b01100011, 0b11111111, "shsub8">; 3209 def UHASX : AAI<0b01100111, 0b11110011, "uhasx">; 3210 def UHADD16 : AAI<0b01100111, 0b11110001, "uhadd16">; 3211 def UHADD8 : AAI<0b01100111, 0b11111001, "uhadd8">; 3212 def UHSAX : AAI<0b01100111, 0b11110101, "uhsax">; 3213 def UHSUB16 : AAI<0b01100111, 0b11110111, "uhsub16">; 3214 def UHSUB8 : AAI<0b01100111, 0b11111111, "uhsub8">; 3215 3216 // Unsigned Sum of Absolute Differences [and Accumulate]. 3217 3218 def USAD8 : AI<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), 3219 MulFrm /* for convenience */, NoItinerary, "usad8", 3220 "\t$Rd, $Rn, $Rm", []>, 3221 Requires<[IsARM, HasV6]> { 3222 bits<4> Rd; 3223 bits<4> Rn; 3224 bits<4> Rm; 3225 let Inst{27-20} = 0b01111000; 3226 let Inst{15-12} = 0b1111; 3227 let Inst{7-4} = 0b0001; 3228 let Inst{19-16} = Rd; 3229 let Inst{11-8} = Rm; 3230 let Inst{3-0} = Rn; 3231 } 3232 def USADA8 : AI<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm, GPR:$Ra), 3233 MulFrm /* for convenience */, NoItinerary, "usada8", 3234 "\t$Rd, $Rn, $Rm, $Ra", []>, 3235 Requires<[IsARM, HasV6]> { 3236 bits<4> Rd; 3237 bits<4> Rn; 3238 bits<4> Rm; 3239 bits<4> Ra; 3240 let Inst{27-20} = 0b01111000; 3241 let Inst{7-4} = 0b0001; 3242 let Inst{19-16} = Rd; 3243 let Inst{15-12} = Ra; 3244 let Inst{11-8} = Rm; 3245 let Inst{3-0} = Rn; 3246 } 3247 3248 // Signed/Unsigned saturate 3249 3250 def SSAT : AI<(outs GPRnopc:$Rd), 3251 (ins imm1_32:$sat_imm, GPRnopc:$Rn, shift_imm:$sh), 3252 SatFrm, NoItinerary, "ssat", "\t$Rd, $sat_imm, $Rn$sh", []> { 3253 bits<4> Rd; 3254 bits<5> sat_imm; 3255 bits<4> Rn; 3256 bits<8> sh; 3257 let Inst{27-21} = 0b0110101; 3258 let Inst{5-4} = 0b01; 3259 let Inst{20-16} = sat_imm; 3260 let Inst{15-12} = Rd; 3261 let Inst{11-7} = sh{4-0}; 3262 let Inst{6} = sh{5}; 3263 let Inst{3-0} = Rn; 3264 } 3265 3266 def SSAT16 : AI<(outs GPRnopc:$Rd), 3267 (ins imm1_16:$sat_imm, GPRnopc:$Rn), SatFrm, 3268 NoItinerary, "ssat16", "\t$Rd, $sat_imm, $Rn", []> { 3269 bits<4> Rd; 3270 bits<4> sat_imm; 3271 bits<4> Rn; 3272 let Inst{27-20} = 0b01101010; 3273 let Inst{11-4} = 0b11110011; 3274 let Inst{15-12} = Rd; 3275 let Inst{19-16} = sat_imm; 3276 let Inst{3-0} = Rn; 3277 } 3278 3279 def USAT : AI<(outs GPRnopc:$Rd), 3280 (ins imm0_31:$sat_imm, GPRnopc:$Rn, shift_imm:$sh), 3281 SatFrm, NoItinerary, "usat", "\t$Rd, $sat_imm, $Rn$sh", []> { 3282 bits<4> Rd; 3283 bits<5> sat_imm; 3284 bits<4> Rn; 3285 bits<8> sh; 3286 let Inst{27-21} = 0b0110111; 3287 let Inst{5-4} = 0b01; 3288 let Inst{15-12} = Rd; 3289 let Inst{11-7} = sh{4-0}; 3290 let Inst{6} = sh{5}; 3291 let Inst{20-16} = sat_imm; 3292 let Inst{3-0} = Rn; 3293 } 3294 3295 def USAT16 : AI<(outs GPRnopc:$Rd), 3296 (ins imm0_15:$sat_imm, GPRnopc:$Rn), SatFrm, 3297 NoItinerary, "usat16", "\t$Rd, $sat_imm, $Rn", []> { 3298 bits<4> Rd; 3299 bits<4> sat_imm; 3300 bits<4> Rn; 3301 let Inst{27-20} = 0b01101110; 3302 let Inst{11-4} = 0b11110011; 3303 let Inst{15-12} = Rd; 3304 let Inst{19-16} = sat_imm; 3305 let Inst{3-0} = Rn; 3306 } 3307 3308 def : ARMV6Pat<(int_arm_ssat GPRnopc:$a, imm:$pos), 3309 (SSAT imm:$pos, GPRnopc:$a, 0)>; 3310 def : ARMV6Pat<(int_arm_usat GPRnopc:$a, imm:$pos), 3311 (USAT imm:$pos, GPRnopc:$a, 0)>; 3312 3313 //===----------------------------------------------------------------------===// 3314 // Bitwise Instructions. 3315 // 3316 3317 defm AND : AsI1_bin_irs<0b0000, "and", 3318 IIC_iBITi, IIC_iBITr, IIC_iBITsr, 3319 BinOpFrag<(and node:$LHS, node:$RHS)>, "AND", 1>; 3320 defm ORR : AsI1_bin_irs<0b1100, "orr", 3321 IIC_iBITi, IIC_iBITr, IIC_iBITsr, 3322 BinOpFrag<(or node:$LHS, node:$RHS)>, "ORR", 1>; 3323 defm EOR : AsI1_bin_irs<0b0001, "eor", 3324 IIC_iBITi, IIC_iBITr, IIC_iBITsr, 3325 BinOpFrag<(xor node:$LHS, node:$RHS)>, "EOR", 1>; 3326 defm BIC : AsI1_bin_irs<0b1110, "bic", 3327 IIC_iBITi, IIC_iBITr, IIC_iBITsr, 3328 BinOpFrag<(and node:$LHS, (not node:$RHS))>, "BIC">; 3329 3330 // FIXME: bf_inv_mask_imm should be two operands, the lsb and the msb, just 3331 // like in the actual instruction encoding. The complexity of mapping the mask 3332 // to the lsb/msb pair should be handled by ISel, not encapsulated in the 3333 // instruction description. 3334 def BFC : I<(outs GPR:$Rd), (ins GPR:$src, bf_inv_mask_imm:$imm), 3335 AddrMode1, 4, IndexModeNone, DPFrm, IIC_iUNAsi, 3336 "bfc", "\t$Rd, $imm", "$src = $Rd", 3337 [(set GPR:$Rd, (and GPR:$src, bf_inv_mask_imm:$imm))]>, 3338 Requires<[IsARM, HasV6T2]> { 3339 bits<4> Rd; 3340 bits<10> imm; 3341 let Inst{27-21} = 0b0111110; 3342 let Inst{6-0} = 0b0011111; 3343 let Inst{15-12} = Rd; 3344 let Inst{11-7} = imm{4-0}; // lsb 3345 let Inst{20-16} = imm{9-5}; // msb 3346 } 3347 3348 // A8.6.18 BFI - Bitfield insert (Encoding A1) 3349 def BFI:I<(outs GPRnopc:$Rd), (ins GPRnopc:$src, GPR:$Rn, bf_inv_mask_imm:$imm), 3350 AddrMode1, 4, IndexModeNone, DPFrm, IIC_iUNAsi, 3351 "bfi", "\t$Rd, $Rn, $imm", "$src = $Rd", 3352 [(set GPRnopc:$Rd, (ARMbfi GPRnopc:$src, GPR:$Rn, 3353 bf_inv_mask_imm:$imm))]>, 3354 Requires<[IsARM, HasV6T2]> { 3355 bits<4> Rd; 3356 bits<4> Rn; 3357 bits<10> imm; 3358 let Inst{27-21} = 0b0111110; 3359 let Inst{6-4} = 0b001; // Rn: Inst{3-0} != 15 3360 let Inst{15-12} = Rd; 3361 let Inst{11-7} = imm{4-0}; // lsb 3362 let Inst{20-16} = imm{9-5}; // width 3363 let Inst{3-0} = Rn; 3364 } 3365 3366 def MVNr : AsI1<0b1111, (outs GPR:$Rd), (ins GPR:$Rm), DPFrm, IIC_iMVNr, 3367 "mvn", "\t$Rd, $Rm", 3368 [(set GPR:$Rd, (not GPR:$Rm))]>, UnaryDP { 3369 bits<4> Rd; 3370 bits<4> Rm; 3371 let Inst{25} = 0; 3372 let Inst{19-16} = 0b0000; 3373 let Inst{11-4} = 0b00000000; 3374 let Inst{15-12} = Rd; 3375 let Inst{3-0} = Rm; 3376 } 3377 def MVNsi : AsI1<0b1111, (outs GPR:$Rd), (ins so_reg_imm:$shift), 3378 DPSoRegImmFrm, IIC_iMVNsr, "mvn", "\t$Rd, $shift", 3379 [(set GPR:$Rd, (not so_reg_imm:$shift))]>, UnaryDP { 3380 bits<4> Rd; 3381 bits<12> shift; 3382 let Inst{25} = 0; 3383 let Inst{19-16} = 0b0000; 3384 let Inst{15-12} = Rd; 3385 let Inst{11-5} = shift{11-5}; 3386 let Inst{4} = 0; 3387 let Inst{3-0} = shift{3-0}; 3388 } 3389 def MVNsr : AsI1<0b1111, (outs GPR:$Rd), (ins so_reg_reg:$shift), 3390 DPSoRegRegFrm, IIC_iMVNsr, "mvn", "\t$Rd, $shift", 3391 [(set GPR:$Rd, (not so_reg_reg:$shift))]>, UnaryDP { 3392 bits<4> Rd; 3393 bits<12> shift; 3394 let Inst{25} = 0; 3395 let Inst{19-16} = 0b0000; 3396 let Inst{15-12} = Rd; 3397 let Inst{11-8} = shift{11-8}; 3398 let Inst{7} = 0; 3399 let Inst{6-5} = shift{6-5}; 3400 let Inst{4} = 1; 3401 let Inst{3-0} = shift{3-0}; 3402 } 3403 let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in 3404 def MVNi : AsI1<0b1111, (outs GPR:$Rd), (ins so_imm:$imm), DPFrm, 3405 IIC_iMVNi, "mvn", "\t$Rd, $imm", 3406 [(set GPR:$Rd, so_imm_not:$imm)]>,UnaryDP { 3407 bits<4> Rd; 3408 bits<12> imm; 3409 let Inst{25} = 1; 3410 let Inst{19-16} = 0b0000; 3411 let Inst{15-12} = Rd; 3412 let Inst{11-0} = imm; 3413 } 3414 3415 def : ARMPat<(and GPR:$src, so_imm_not:$imm), 3416 (BICri GPR:$src, so_imm_not:$imm)>; 3417 3418 //===----------------------------------------------------------------------===// 3419 // Multiply Instructions. 3420 // 3421 class AsMul1I32<bits<7> opcod, dag oops, dag iops, InstrItinClass itin, 3422 string opc, string asm, list<dag> pattern> 3423 : AsMul1I<opcod, oops, iops, itin, opc, asm, pattern> { 3424 bits<4> Rd; 3425 bits<4> Rm; 3426 bits<4> Rn; 3427 let Inst{19-16} = Rd; 3428 let Inst{11-8} = Rm; 3429 let Inst{3-0} = Rn; 3430 } 3431 class AsMul1I64<bits<7> opcod, dag oops, dag iops, InstrItinClass itin, 3432 string opc, string asm, list<dag> pattern> 3433 : AsMul1I<opcod, oops, iops, itin, opc, asm, pattern> { 3434 bits<4> RdLo; 3435 bits<4> RdHi; 3436 bits<4> Rm; 3437 bits<4> Rn; 3438 let Inst{19-16} = RdHi; 3439 let Inst{15-12} = RdLo; 3440 let Inst{11-8} = Rm; 3441 let Inst{3-0} = Rn; 3442 } 3443 3444 // FIXME: The v5 pseudos are only necessary for the additional Constraint 3445 // property. Remove them when it's possible to add those properties 3446 // on an individual MachineInstr, not just an instuction description. 3447 let isCommutable = 1 in { 3448 def MUL : AsMul1I32<0b0000000, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), 3449 IIC_iMUL32, "mul", "\t$Rd, $Rn, $Rm", 3450 [(set GPR:$Rd, (mul GPR:$Rn, GPR:$Rm))]>, 3451 Requires<[IsARM, HasV6]> { 3452 let Inst{15-12} = 0b0000; 3453 } 3454 3455 let Constraints = "@earlyclobber $Rd" in 3456 def MULv5: ARMPseudoExpand<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm, 3457 pred:$p, cc_out:$s), 3458 4, IIC_iMUL32, 3459 [(set GPR:$Rd, (mul GPR:$Rn, GPR:$Rm))], 3460 (MUL GPR:$Rd, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s)>, 3461 Requires<[IsARM, NoV6]>; 3462 } 3463 3464 def MLA : AsMul1I32<0b0000001, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm, GPR:$Ra), 3465 IIC_iMAC32, "mla", "\t$Rd, $Rn, $Rm, $Ra", 3466 [(set GPR:$Rd, (add (mul GPR:$Rn, GPR:$Rm), GPR:$Ra))]>, 3467 Requires<[IsARM, HasV6]> { 3468 bits<4> Ra; 3469 let Inst{15-12} = Ra; 3470 } 3471 3472 let Constraints = "@earlyclobber $Rd" in 3473 def MLAv5: ARMPseudoExpand<(outs GPR:$Rd), 3474 (ins GPR:$Rn, GPR:$Rm, GPR:$Ra, pred:$p, cc_out:$s), 3475 4, IIC_iMAC32, 3476 [(set GPR:$Rd, (add (mul GPR:$Rn, GPR:$Rm), GPR:$Ra))], 3477 (MLA GPR:$Rd, GPR:$Rn, GPR:$Rm, GPR:$Ra, pred:$p, cc_out:$s)>, 3478 Requires<[IsARM, NoV6]>; 3479 3480 def MLS : AMul1I<0b0000011, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm, GPR:$Ra), 3481 IIC_iMAC32, "mls", "\t$Rd, $Rn, $Rm, $Ra", 3482 [(set GPR:$Rd, (sub GPR:$Ra, (mul GPR:$Rn, GPR:$Rm)))]>, 3483 Requires<[IsARM, HasV6T2]> { 3484 bits<4> Rd; 3485 bits<4> Rm; 3486 bits<4> Rn; 3487 bits<4> Ra; 3488 let Inst{19-16} = Rd; 3489 let Inst{15-12} = Ra; 3490 let Inst{11-8} = Rm; 3491 let Inst{3-0} = Rn; 3492 } 3493 3494 // Extra precision multiplies with low / high results 3495 let neverHasSideEffects = 1 in { 3496 let isCommutable = 1 in { 3497 def SMULL : AsMul1I64<0b0000110, (outs GPR:$RdLo, GPR:$RdHi), 3498 (ins GPR:$Rn, GPR:$Rm), IIC_iMUL64, 3499 "smull", "\t$RdLo, $RdHi, $Rn, $Rm", []>, 3500 Requires<[IsARM, HasV6]>; 3501 3502 def UMULL : AsMul1I64<0b0000100, (outs GPR:$RdLo, GPR:$RdHi), 3503 (ins GPR:$Rn, GPR:$Rm), IIC_iMUL64, 3504 "umull", "\t$RdLo, $RdHi, $Rn, $Rm", []>, 3505 Requires<[IsARM, HasV6]>; 3506 3507 let Constraints = "@earlyclobber $RdLo,@earlyclobber $RdHi" in { 3508 def SMULLv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi), 3509 (ins GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s), 3510 4, IIC_iMUL64, [], 3511 (SMULL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s)>, 3512 Requires<[IsARM, NoV6]>; 3513 3514 def UMULLv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi), 3515 (ins GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s), 3516 4, IIC_iMUL64, [], 3517 (UMULL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s)>, 3518 Requires<[IsARM, NoV6]>; 3519 } 3520 } 3521 3522 // Multiply + accumulate 3523 def SMLAL : AsMul1I64<0b0000111, (outs GPR:$RdLo, GPR:$RdHi), 3524 (ins GPR:$Rn, GPR:$Rm), IIC_iMAC64, 3525 "smlal", "\t$RdLo, $RdHi, $Rn, $Rm", []>, 3526 Requires<[IsARM, HasV6]>; 3527 def UMLAL : AsMul1I64<0b0000101, (outs GPR:$RdLo, GPR:$RdHi), 3528 (ins GPR:$Rn, GPR:$Rm), IIC_iMAC64, 3529 "umlal", "\t$RdLo, $RdHi, $Rn, $Rm", []>, 3530 Requires<[IsARM, HasV6]>; 3531 3532 def UMAAL : AMul1I <0b0000010, (outs GPR:$RdLo, GPR:$RdHi), 3533 (ins GPR:$Rn, GPR:$Rm), IIC_iMAC64, 3534 "umaal", "\t$RdLo, $RdHi, $Rn, $Rm", []>, 3535 Requires<[IsARM, HasV6]> { 3536 bits<4> RdLo; 3537 bits<4> RdHi; 3538 bits<4> Rm; 3539 bits<4> Rn; 3540 let Inst{19-16} = RdHi; 3541 let Inst{15-12} = RdLo; 3542 let Inst{11-8} = Rm; 3543 let Inst{3-0} = Rn; 3544 } 3545 3546 let Constraints = "@earlyclobber $RdLo,@earlyclobber $RdHi" in { 3547 def SMLALv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi), 3548 (ins GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s), 3549 4, IIC_iMAC64, [], 3550 (SMLAL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s)>, 3551 Requires<[IsARM, NoV6]>; 3552 def UMLALv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi), 3553 (ins GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s), 3554 4, IIC_iMAC64, [], 3555 (UMLAL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s)>, 3556 Requires<[IsARM, NoV6]>; 3557 def UMAALv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi), 3558 (ins GPR:$Rn, GPR:$Rm, pred:$p), 3559 4, IIC_iMAC64, [], 3560 (UMAAL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p)>, 3561 Requires<[IsARM, NoV6]>; 3562 } 3563 3564 } // neverHasSideEffects 3565 3566 // Most significant word multiply 3567 def SMMUL : AMul2I <0b0111010, 0b0001, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), 3568 IIC_iMUL32, "smmul", "\t$Rd, $Rn, $Rm", 3569 [(set GPR:$Rd, (mulhs GPR:$Rn, GPR:$Rm))]>, 3570 Requires<[IsARM, HasV6]> { 3571 let Inst{15-12} = 0b1111; 3572 } 3573 3574 def SMMULR : AMul2I <0b0111010, 0b0011, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), 3575 IIC_iMUL32, "smmulr", "\t$Rd, $Rn, $Rm", []>, 3576 Requires<[IsARM, HasV6]> { 3577 let Inst{15-12} = 0b1111; 3578 } 3579 3580 def SMMLA : AMul2Ia <0b0111010, 0b0001, (outs GPR:$Rd), 3581 (ins GPR:$Rn, GPR:$Rm, GPR:$Ra), 3582 IIC_iMAC32, "smmla", "\t$Rd, $Rn, $Rm, $Ra", 3583 [(set GPR:$Rd, (add (mulhs GPR:$Rn, GPR:$Rm), GPR:$Ra))]>, 3584 Requires<[IsARM, HasV6]>; 3585 3586 def SMMLAR : AMul2Ia <0b0111010, 0b0011, (outs GPR:$Rd), 3587 (ins GPR:$Rn, GPR:$Rm, GPR:$Ra), 3588 IIC_iMAC32, "smmlar", "\t$Rd, $Rn, $Rm, $Ra", []>, 3589 Requires<[IsARM, HasV6]>; 3590 3591 def SMMLS : AMul2Ia <0b0111010, 0b1101, (outs GPR:$Rd), 3592 (ins GPR:$Rn, GPR:$Rm, GPR:$Ra), 3593 IIC_iMAC32, "smmls", "\t$Rd, $Rn, $Rm, $Ra", 3594 [(set GPR:$Rd, (sub GPR:$Ra, (mulhs GPR:$Rn, GPR:$Rm)))]>, 3595 Requires<[IsARM, HasV6]>; 3596 3597 def SMMLSR : AMul2Ia <0b0111010, 0b1111, (outs GPR:$Rd), 3598 (ins GPR:$Rn, GPR:$Rm, GPR:$Ra), 3599 IIC_iMAC32, "smmlsr", "\t$Rd, $Rn, $Rm, $Ra", []>, 3600 Requires<[IsARM, HasV6]>; 3601 3602 multiclass AI_smul<string opc, PatFrag opnode> { 3603 def BB : AMulxyI<0b0001011, 0b00, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), 3604 IIC_iMUL16, !strconcat(opc, "bb"), "\t$Rd, $Rn, $Rm", 3605 [(set GPR:$Rd, (opnode (sext_inreg GPR:$Rn, i16), 3606 (sext_inreg GPR:$Rm, i16)))]>, 3607 Requires<[IsARM, HasV5TE]>; 3608 3609 def BT : AMulxyI<0b0001011, 0b10, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), 3610 IIC_iMUL16, !strconcat(opc, "bt"), "\t$Rd, $Rn, $Rm", 3611 [(set GPR:$Rd, (opnode (sext_inreg GPR:$Rn, i16), 3612 (sra GPR:$Rm, (i32 16))))]>, 3613 Requires<[IsARM, HasV5TE]>; 3614 3615 def TB : AMulxyI<0b0001011, 0b01, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), 3616 IIC_iMUL16, !strconcat(opc, "tb"), "\t$Rd, $Rn, $Rm", 3617 [(set GPR:$Rd, (opnode (sra GPR:$Rn, (i32 16)), 3618 (sext_inreg GPR:$Rm, i16)))]>, 3619 Requires<[IsARM, HasV5TE]>; 3620 3621 def TT : AMulxyI<0b0001011, 0b11, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), 3622 IIC_iMUL16, !strconcat(opc, "tt"), "\t$Rd, $Rn, $Rm", 3623 [(set GPR:$Rd, (opnode (sra GPR:$Rn, (i32 16)), 3624 (sra GPR:$Rm, (i32 16))))]>, 3625 Requires<[IsARM, HasV5TE]>; 3626 3627 def WB : AMulxyI<0b0001001, 0b01, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), 3628 IIC_iMUL16, !strconcat(opc, "wb"), "\t$Rd, $Rn, $Rm", 3629 [(set GPR:$Rd, (sra (opnode GPR:$Rn, 3630 (sext_inreg GPR:$Rm, i16)), (i32 16)))]>, 3631 Requires<[IsARM, HasV5TE]>; 3632 3633 def WT : AMulxyI<0b0001001, 0b11, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), 3634 IIC_iMUL16, !strconcat(opc, "wt"), "\t$Rd, $Rn, $Rm", 3635 [(set GPR:$Rd, (sra (opnode GPR:$Rn, 3636 (sra GPR:$Rm, (i32 16))), (i32 16)))]>, 3637 Requires<[IsARM, HasV5TE]>; 3638 } 3639 3640 3641 multiclass AI_smla<string opc, PatFrag opnode> { 3642 let DecoderMethod = "DecodeSMLAInstruction" in { 3643 def BB : AMulxyIa<0b0001000, 0b00, (outs GPRnopc:$Rd), 3644 (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra), 3645 IIC_iMAC16, !strconcat(opc, "bb"), "\t$Rd, $Rn, $Rm, $Ra", 3646 [(set GPRnopc:$Rd, (add GPR:$Ra, 3647 (opnode (sext_inreg GPRnopc:$Rn, i16), 3648 (sext_inreg GPRnopc:$Rm, i16))))]>, 3649 Requires<[IsARM, HasV5TE]>; 3650 3651 def BT : AMulxyIa<0b0001000, 0b10, (outs GPRnopc:$Rd), 3652 (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra), 3653 IIC_iMAC16, !strconcat(opc, "bt"), "\t$Rd, $Rn, $Rm, $Ra", 3654 [(set GPRnopc:$Rd, 3655 (add GPR:$Ra, (opnode (sext_inreg GPRnopc:$Rn, i16), 3656 (sra GPRnopc:$Rm, (i32 16)))))]>, 3657 Requires<[IsARM, HasV5TE]>; 3658 3659 def TB : AMulxyIa<0b0001000, 0b01, (outs GPRnopc:$Rd), 3660 (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra), 3661 IIC_iMAC16, !strconcat(opc, "tb"), "\t$Rd, $Rn, $Rm, $Ra", 3662 [(set GPRnopc:$Rd, 3663 (add GPR:$Ra, (opnode (sra GPRnopc:$Rn, (i32 16)), 3664 (sext_inreg GPRnopc:$Rm, i16))))]>, 3665 Requires<[IsARM, HasV5TE]>; 3666 3667 def TT : AMulxyIa<0b0001000, 0b11, (outs GPRnopc:$Rd), 3668 (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra), 3669 IIC_iMAC16, !strconcat(opc, "tt"), "\t$Rd, $Rn, $Rm, $Ra", 3670 [(set GPRnopc:$Rd, 3671 (add GPR:$Ra, (opnode (sra GPRnopc:$Rn, (i32 16)), 3672 (sra GPRnopc:$Rm, (i32 16)))))]>, 3673 Requires<[IsARM, HasV5TE]>; 3674 3675 def WB : AMulxyIa<0b0001001, 0b00, (outs GPRnopc:$Rd), 3676 (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra), 3677 IIC_iMAC16, !strconcat(opc, "wb"), "\t$Rd, $Rn, $Rm, $Ra", 3678 [(set GPRnopc:$Rd, 3679 (add GPR:$Ra, (sra (opnode GPRnopc:$Rn, 3680 (sext_inreg GPRnopc:$Rm, i16)), (i32 16))))]>, 3681 Requires<[IsARM, HasV5TE]>; 3682 3683 def WT : AMulxyIa<0b0001001, 0b10, (outs GPRnopc:$Rd), 3684 (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra), 3685 IIC_iMAC16, !strconcat(opc, "wt"), "\t$Rd, $Rn, $Rm, $Ra", 3686 [(set GPRnopc:$Rd, 3687 (add GPR:$Ra, (sra (opnode GPRnopc:$Rn, 3688 (sra GPRnopc:$Rm, (i32 16))), (i32 16))))]>, 3689 Requires<[IsARM, HasV5TE]>; 3690 } 3691 } 3692 3693 defm SMUL : AI_smul<"smul", BinOpFrag<(mul node:$LHS, node:$RHS)>>; 3694 defm SMLA : AI_smla<"smla", BinOpFrag<(mul node:$LHS, node:$RHS)>>; 3695 3696 // Halfword multiply accumulate long: SMLAL<x><y>. 3697 def SMLALBB : AMulxyI64<0b0001010, 0b00, (outs GPRnopc:$RdLo, GPRnopc:$RdHi), 3698 (ins GPRnopc:$Rn, GPRnopc:$Rm), 3699 IIC_iMAC64, "smlalbb", "\t$RdLo, $RdHi, $Rn, $Rm", []>, 3700 Requires<[IsARM, HasV5TE]>; 3701 3702 def SMLALBT : AMulxyI64<0b0001010, 0b10, (outs GPRnopc:$RdLo, GPRnopc:$RdHi), 3703 (ins GPRnopc:$Rn, GPRnopc:$Rm), 3704 IIC_iMAC64, "smlalbt", "\t$RdLo, $RdHi, $Rn, $Rm", []>, 3705 Requires<[IsARM, HasV5TE]>; 3706 3707 def SMLALTB : AMulxyI64<0b0001010, 0b01, (outs GPRnopc:$RdLo, GPRnopc:$RdHi), 3708 (ins GPRnopc:$Rn, GPRnopc:$Rm), 3709 IIC_iMAC64, "smlaltb", "\t$RdLo, $RdHi, $Rn, $Rm", []>, 3710 Requires<[IsARM, HasV5TE]>; 3711 3712 def SMLALTT : AMulxyI64<0b0001010, 0b11, (outs GPRnopc:$RdLo, GPRnopc:$RdHi), 3713 (ins GPRnopc:$Rn, GPRnopc:$Rm), 3714 IIC_iMAC64, "smlaltt", "\t$RdLo, $RdHi, $Rn, $Rm", []>, 3715 Requires<[IsARM, HasV5TE]>; 3716 3717 // Helper class for AI_smld. 3718 class AMulDualIbase<bit long, bit sub, bit swap, dag oops, dag iops, 3719 InstrItinClass itin, string opc, string asm> 3720 : AI<oops, iops, MulFrm, itin, opc, asm, []>, Requires<[IsARM, HasV6]> { 3721 bits<4> Rn; 3722 bits<4> Rm; 3723 let Inst{27-23} = 0b01110; 3724 let Inst{22} = long; 3725 let Inst{21-20} = 0b00; 3726 let Inst{11-8} = Rm; 3727 let Inst{7} = 0; 3728 let Inst{6} = sub; 3729 let Inst{5} = swap; 3730 let Inst{4} = 1; 3731 let Inst{3-0} = Rn; 3732 } 3733 class AMulDualI<bit long, bit sub, bit swap, dag oops, dag iops, 3734 InstrItinClass itin, string opc, string asm> 3735 : AMulDualIbase<long, sub, swap, oops, iops, itin, opc, asm> { 3736 bits<4> Rd; 3737 let Inst{15-12} = 0b1111; 3738 let Inst{19-16} = Rd; 3739 } 3740 class AMulDualIa<bit long, bit sub, bit swap, dag oops, dag iops, 3741 InstrItinClass itin, string opc, string asm> 3742 : AMulDualIbase<long, sub, swap, oops, iops, itin, opc, asm> { 3743 bits<4> Ra; 3744 bits<4> Rd; 3745 let Inst{19-16} = Rd; 3746 let Inst{15-12} = Ra; 3747 } 3748 class AMulDualI64<bit long, bit sub, bit swap, dag oops, dag iops, 3749 InstrItinClass itin, string opc, string asm> 3750 : AMulDualIbase<long, sub, swap, oops, iops, itin, opc, asm> { 3751 bits<4> RdLo; 3752 bits<4> RdHi; 3753 let Inst{19-16} = RdHi; 3754 let Inst{15-12} = RdLo; 3755 } 3756 3757 multiclass AI_smld<bit sub, string opc> { 3758 3759 def D : AMulDualIa<0, sub, 0, (outs GPRnopc:$Rd), 3760 (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra), 3761 NoItinerary, !strconcat(opc, "d"), "\t$Rd, $Rn, $Rm, $Ra">; 3762 3763 def DX: AMulDualIa<0, sub, 1, (outs GPRnopc:$Rd), 3764 (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra), 3765 NoItinerary, !strconcat(opc, "dx"), "\t$Rd, $Rn, $Rm, $Ra">; 3766 3767 def LD: AMulDualI64<1, sub, 0, (outs GPRnopc:$RdLo, GPRnopc:$RdHi), 3768 (ins GPRnopc:$Rn, GPRnopc:$Rm), NoItinerary, 3769 !strconcat(opc, "ld"), "\t$RdLo, $RdHi, $Rn, $Rm">; 3770 3771 def LDX : AMulDualI64<1, sub, 1, (outs GPRnopc:$RdLo, GPRnopc:$RdHi), 3772 (ins GPRnopc:$Rn, GPRnopc:$Rm), NoItinerary, 3773 !strconcat(opc, "ldx"),"\t$RdLo, $RdHi, $Rn, $Rm">; 3774 3775 } 3776 3777 defm SMLA : AI_smld<0, "smla">; 3778 defm SMLS : AI_smld<1, "smls">; 3779 3780 multiclass AI_sdml<bit sub, string opc> { 3781 3782 def D:AMulDualI<0, sub, 0, (outs GPRnopc:$Rd), (ins GPRnopc:$Rn, GPRnopc:$Rm), 3783 NoItinerary, !strconcat(opc, "d"), "\t$Rd, $Rn, $Rm">; 3784 def DX:AMulDualI<0, sub, 1, (outs GPRnopc:$Rd),(ins GPRnopc:$Rn, GPRnopc:$Rm), 3785 NoItinerary, !strconcat(opc, "dx"), "\t$Rd, $Rn, $Rm">; 3786 } 3787 3788 defm SMUA : AI_sdml<0, "smua">; 3789 defm SMUS : AI_sdml<1, "smus">; 3790 3791 //===----------------------------------------------------------------------===// 3792 // Misc. Arithmetic Instructions. 3793 // 3794 3795 def CLZ : AMiscA1I<0b000010110, 0b0001, (outs GPR:$Rd), (ins GPR:$Rm), 3796 IIC_iUNAr, "clz", "\t$Rd, $Rm", 3797 [(set GPR:$Rd, (ctlz GPR:$Rm))]>, Requires<[IsARM, HasV5T]>; 3798 3799 def RBIT : AMiscA1I<0b01101111, 0b0011, (outs GPR:$Rd), (ins GPR:$Rm), 3800 IIC_iUNAr, "rbit", "\t$Rd, $Rm", 3801 [(set GPR:$Rd, (ARMrbit GPR:$Rm))]>, 3802 Requires<[IsARM, HasV6T2]>; 3803 3804 def REV : AMiscA1I<0b01101011, 0b0011, (outs GPR:$Rd), (ins GPR:$Rm), 3805 IIC_iUNAr, "rev", "\t$Rd, $Rm", 3806 [(set GPR:$Rd, (bswap GPR:$Rm))]>, Requires<[IsARM, HasV6]>; 3807 3808 let AddedComplexity = 5 in 3809 def REV16 : AMiscA1I<0b01101011, 0b1011, (outs GPR:$Rd), (ins GPR:$Rm), 3810 IIC_iUNAr, "rev16", "\t$Rd, $Rm", 3811 [(set GPR:$Rd, (rotr (bswap GPR:$Rm), (i32 16)))]>, 3812 Requires<[IsARM, HasV6]>; 3813 3814 let AddedComplexity = 5 in 3815 def REVSH : AMiscA1I<0b01101111, 0b1011, (outs GPR:$Rd), (ins GPR:$Rm), 3816 IIC_iUNAr, "revsh", "\t$Rd, $Rm", 3817 [(set GPR:$Rd, (sra (bswap GPR:$Rm), (i32 16)))]>, 3818 Requires<[IsARM, HasV6]>; 3819 3820 def : ARMV6Pat<(or (sra (shl GPR:$Rm, (i32 24)), (i32 16)), 3821 (and (srl GPR:$Rm, (i32 8)), 0xFF)), 3822 (REVSH GPR:$Rm)>; 3823 3824 def PKHBT : APKHI<0b01101000, 0, (outs GPRnopc:$Rd), 3825 (ins GPRnopc:$Rn, GPRnopc:$Rm, pkh_lsl_amt:$sh), 3826 IIC_iALUsi, "pkhbt", "\t$Rd, $Rn, $Rm$sh", 3827 [(set GPRnopc:$Rd, (or (and GPRnopc:$Rn, 0xFFFF), 3828 (and (shl GPRnopc:$Rm, pkh_lsl_amt:$sh), 3829 0xFFFF0000)))]>, 3830 Requires<[IsARM, HasV6]>; 3831 3832 // Alternate cases for PKHBT where identities eliminate some nodes. 3833 def : ARMV6Pat<(or (and GPRnopc:$Rn, 0xFFFF), (and GPRnopc:$Rm, 0xFFFF0000)), 3834 (PKHBT GPRnopc:$Rn, GPRnopc:$Rm, 0)>; 3835 def : ARMV6Pat<(or (and GPRnopc:$Rn, 0xFFFF), (shl GPRnopc:$Rm, imm16_31:$sh)), 3836 (PKHBT GPRnopc:$Rn, GPRnopc:$Rm, imm16_31:$sh)>; 3837 3838 // Note: Shifts of 1-15 bits will be transformed to srl instead of sra and 3839 // will match the pattern below. 3840 def PKHTB : APKHI<0b01101000, 1, (outs GPRnopc:$Rd), 3841 (ins GPRnopc:$Rn, GPRnopc:$Rm, pkh_asr_amt:$sh), 3842 IIC_iBITsi, "pkhtb", "\t$Rd, $Rn, $Rm$sh", 3843 [(set GPRnopc:$Rd, (or (and GPRnopc:$Rn, 0xFFFF0000), 3844 (and (sra GPRnopc:$Rm, pkh_asr_amt:$sh), 3845 0xFFFF)))]>, 3846 Requires<[IsARM, HasV6]>; 3847 3848 // Alternate cases for PKHTB where identities eliminate some nodes. Note that 3849 // a shift amount of 0 is *not legal* here, it is PKHBT instead. 3850 def : ARMV6Pat<(or (and GPRnopc:$src1, 0xFFFF0000), 3851 (srl GPRnopc:$src2, imm16_31:$sh)), 3852 (PKHTB GPRnopc:$src1, GPRnopc:$src2, imm16_31:$sh)>; 3853 def : ARMV6Pat<(or (and GPRnopc:$src1, 0xFFFF0000), 3854 (and (srl GPRnopc:$src2, imm1_15:$sh), 0xFFFF)), 3855 (PKHTB GPRnopc:$src1, GPRnopc:$src2, imm1_15:$sh)>; 3856 3857 //===----------------------------------------------------------------------===// 3858 // Comparison Instructions... 3859 // 3860 3861 defm CMP : AI1_cmp_irs<0b1010, "cmp", 3862 IIC_iCMPi, IIC_iCMPr, IIC_iCMPsr, 3863 BinOpFrag<(ARMcmp node:$LHS, node:$RHS)>>; 3864 3865 // ARMcmpZ can re-use the above instruction definitions. 3866 def : ARMPat<(ARMcmpZ GPR:$src, so_imm:$imm), 3867 (CMPri GPR:$src, so_imm:$imm)>; 3868 def : ARMPat<(ARMcmpZ GPR:$src, GPR:$rhs), 3869 (CMPrr GPR:$src, GPR:$rhs)>; 3870 def : ARMPat<(ARMcmpZ GPR:$src, so_reg_imm:$rhs), 3871 (CMPrsi GPR:$src, so_reg_imm:$rhs)>; 3872 def : ARMPat<(ARMcmpZ GPR:$src, so_reg_reg:$rhs), 3873 (CMPrsr GPR:$src, so_reg_reg:$rhs)>; 3874 3875 // FIXME: We have to be careful when using the CMN instruction and comparison 3876 // with 0. One would expect these two pieces of code should give identical 3877 // results: 3878 // 3879 // rsbs r1, r1, 0 3880 // cmp r0, r1 3881 // mov r0, #0 3882 // it ls 3883 // mov r0, #1 3884 // 3885 // and: 3886 // 3887 // cmn r0, r1 3888 // mov r0, #0 3889 // it ls 3890 // mov r0, #1 3891 // 3892 // However, the CMN gives the *opposite* result when r1 is 0. This is because 3893 // the carry flag is set in the CMP case but not in the CMN case. In short, the 3894 // CMP instruction doesn't perform a truncate of the (logical) NOT of 0 plus the 3895 // value of r0 and the carry bit (because the "carry bit" parameter to 3896 // AddWithCarry is defined as 1 in this case, the carry flag will always be set 3897 // when r0 >= 0). The CMN instruction doesn't perform a NOT of 0 so there is 3898 // never a "carry" when this AddWithCarry is performed (because the "carry bit" 3899 // parameter to AddWithCarry is defined as 0). 3900 // 3901 // When x is 0 and unsigned: 3902 // 3903 // x = 0 3904 // ~x = 0xFFFF FFFF 3905 // ~x + 1 = 0x1 0000 0000 3906 // (-x = 0) != (0x1 0000 0000 = ~x + 1) 3907 // 3908 // Therefore, we should disable CMN when comparing against zero, until we can 3909 // limit when the CMN instruction is used (when we know that the RHS is not 0 or 3910 // when it's a comparison which doesn't look at the 'carry' flag). 3911 // 3912 // (See the ARM docs for the "AddWithCarry" pseudo-code.) 3913 // 3914 // This is related to <rdar://problem/7569620>. 3915 // 3916 //defm CMN : AI1_cmp_irs<0b1011, "cmn", 3917 // BinOpFrag<(ARMcmp node:$LHS,(ineg node:$RHS))>>; 3918 3919 // Note that TST/TEQ don't set all the same flags that CMP does! 3920 defm TST : AI1_cmp_irs<0b1000, "tst", 3921 IIC_iTSTi, IIC_iTSTr, IIC_iTSTsr, 3922 BinOpFrag<(ARMcmpZ (and_su node:$LHS, node:$RHS), 0)>, 1>; 3923 defm TEQ : AI1_cmp_irs<0b1001, "teq", 3924 IIC_iTSTi, IIC_iTSTr, IIC_iTSTsr, 3925 BinOpFrag<(ARMcmpZ (xor_su node:$LHS, node:$RHS), 0)>, 1>; 3926 3927 defm CMNz : AI1_cmp_irs<0b1011, "cmn", 3928 IIC_iCMPi, IIC_iCMPr, IIC_iCMPsr, 3929 BinOpFrag<(ARMcmpZ node:$LHS,(ineg node:$RHS))>>; 3930 3931 //def : ARMPat<(ARMcmp GPR:$src, so_imm_neg:$imm), 3932 // (CMNri GPR:$src, so_imm_neg:$imm)>; 3933 3934 def : ARMPat<(ARMcmpZ GPR:$src, so_imm_neg:$imm), 3935 (CMNzri GPR:$src, so_imm_neg:$imm)>; 3936 3937 // Pseudo i64 compares for some floating point compares. 3938 let usesCustomInserter = 1, isBranch = 1, isTerminator = 1, 3939 Defs = [CPSR] in { 3940 def BCCi64 : PseudoInst<(outs), 3941 (ins i32imm:$cc, GPR:$lhs1, GPR:$lhs2, GPR:$rhs1, GPR:$rhs2, brtarget:$dst), 3942 IIC_Br, 3943 [(ARMBcci64 imm:$cc, GPR:$lhs1, GPR:$lhs2, GPR:$rhs1, GPR:$rhs2, bb:$dst)]>; 3944 3945 def BCCZi64 : PseudoInst<(outs), 3946 (ins i32imm:$cc, GPR:$lhs1, GPR:$lhs2, brtarget:$dst), IIC_Br, 3947 [(ARMBcci64 imm:$cc, GPR:$lhs1, GPR:$lhs2, 0, 0, bb:$dst)]>; 3948 } // usesCustomInserter 3949 3950 3951 // Conditional moves 3952 // FIXME: should be able to write a pattern for ARMcmov, but can't use 3953 // a two-value operand where a dag node expects two operands. :( 3954 let neverHasSideEffects = 1 in { 3955 def MOVCCr : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$false, GPR:$Rm, pred:$p), 3956 4, IIC_iCMOVr, 3957 [/*(set GPR:$Rd, (ARMcmov GPR:$false, GPR:$Rm, imm:$cc, CCR:$ccr))*/]>, 3958 RegConstraint<"$false = $Rd">; 3959 def MOVCCsi : ARMPseudoInst<(outs GPR:$Rd), 3960 (ins GPR:$false, so_reg_imm:$shift, pred:$p), 3961 4, IIC_iCMOVsr, 3962 [/*(set GPR:$Rd, (ARMcmov GPR:$false, so_reg_imm:$shift, 3963 imm:$cc, CCR:$ccr))*/]>, 3964 RegConstraint<"$false = $Rd">; 3965 def MOVCCsr : ARMPseudoInst<(outs GPR:$Rd), 3966 (ins GPR:$false, so_reg_reg:$shift, pred:$p), 3967 4, IIC_iCMOVsr, 3968 [/*(set GPR:$Rd, (ARMcmov GPR:$false, so_reg_reg:$shift, 3969 imm:$cc, CCR:$ccr))*/]>, 3970 RegConstraint<"$false = $Rd">; 3971 3972 3973 let isMoveImm = 1 in 3974 def MOVCCi16 : ARMPseudoInst<(outs GPR:$Rd), 3975 (ins GPR:$false, imm0_65535_expr:$imm, pred:$p), 3976 4, IIC_iMOVi, 3977 []>, 3978 RegConstraint<"$false = $Rd">, Requires<[IsARM, HasV6T2]>; 3979 3980 let isMoveImm = 1 in 3981 def MOVCCi : ARMPseudoInst<(outs GPR:$Rd), 3982 (ins GPR:$false, so_imm:$imm, pred:$p), 3983 4, IIC_iCMOVi, 3984 [/*(set GPR:$Rd, (ARMcmov GPR:$false, so_imm:$imm, imm:$cc, CCR:$ccr))*/]>, 3985 RegConstraint<"$false = $Rd">; 3986 3987 // Two instruction predicate mov immediate. 3988 let isMoveImm = 1 in 3989 def MOVCCi32imm : ARMPseudoInst<(outs GPR:$Rd), 3990 (ins GPR:$false, i32imm:$src, pred:$p), 3991 8, IIC_iCMOVix2, []>, RegConstraint<"$false = $Rd">; 3992 3993 let isMoveImm = 1 in 3994 def MVNCCi : ARMPseudoInst<(outs GPR:$Rd), 3995 (ins GPR:$false, so_imm:$imm, pred:$p), 3996 4, IIC_iCMOVi, 3997 [/*(set GPR:$Rd, (ARMcmov GPR:$false, so_imm_not:$imm, imm:$cc, CCR:$ccr))*/]>, 3998 RegConstraint<"$false = $Rd">; 3999 } // neverHasSideEffects 4000 4001 //===----------------------------------------------------------------------===// 4002 // Atomic operations intrinsics 4003 // 4004 4005 def MemBarrierOptOperand : AsmOperandClass { 4006 let Name = "MemBarrierOpt"; 4007 let ParserMethod = "parseMemBarrierOptOperand"; 4008 } 4009 def memb_opt : Operand<i32> { 4010 let PrintMethod = "printMemBOption"; 4011 let ParserMatchClass = MemBarrierOptOperand; 4012 let DecoderMethod = "DecodeMemBarrierOption"; 4013 } 4014 4015 // memory barriers protect the atomic sequences 4016 let hasSideEffects = 1 in { 4017 def DMB : AInoP<(outs), (ins memb_opt:$opt), MiscFrm, NoItinerary, 4018 "dmb", "\t$opt", [(ARMMemBarrier (i32 imm:$opt))]>, 4019 Requires<[IsARM, HasDB]> { 4020 bits<4> opt; 4021 let Inst{31-4} = 0xf57ff05; 4022 let Inst{3-0} = opt; 4023 } 4024 } 4025 4026 def DSB : AInoP<(outs), (ins memb_opt:$opt), MiscFrm, NoItinerary, 4027 "dsb", "\t$opt", []>, 4028 Requires<[IsARM, HasDB]> { 4029 bits<4> opt; 4030 let Inst{31-4} = 0xf57ff04; 4031 let Inst{3-0} = opt; 4032 } 4033 4034 // ISB has only full system option 4035 def ISB : AInoP<(outs), (ins memb_opt:$opt), MiscFrm, NoItinerary, 4036 "isb", "\t$opt", []>, 4037 Requires<[IsARM, HasDB]> { 4038 bits<4> opt; 4039 let Inst{31-4} = 0xf57ff06; 4040 let Inst{3-0} = opt; 4041 } 4042 4043 // Pseudo isntruction that combines movs + predicated rsbmi 4044 // to implement integer ABS 4045 let usesCustomInserter = 1, Defs = [CPSR] in { 4046 def ABS : ARMPseudoInst< 4047 (outs GPR:$dst), (ins GPR:$src), 4048 8, NoItinerary, []>; 4049 } 4050 4051 let usesCustomInserter = 1 in { 4052 let Defs = [CPSR] in { 4053 def ATOMIC_LOAD_ADD_I8 : PseudoInst< 4054 (outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary, 4055 [(set GPR:$dst, (atomic_load_add_8 GPR:$ptr, GPR:$incr))]>; 4056 def ATOMIC_LOAD_SUB_I8 : PseudoInst< 4057 (outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary, 4058 [(set GPR:$dst, (atomic_load_sub_8 GPR:$ptr, GPR:$incr))]>; 4059 def ATOMIC_LOAD_AND_I8 : PseudoInst< 4060 (outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary, 4061 [(set GPR:$dst, (atomic_load_and_8 GPR:$ptr, GPR:$incr))]>; 4062 def ATOMIC_LOAD_OR_I8 : PseudoInst< 4063 (outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary, 4064 [(set GPR:$dst, (atomic_load_or_8 GPR:$ptr, GPR:$incr))]>; 4065 def ATOMIC_LOAD_XOR_I8 : PseudoInst< 4066 (outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary, 4067 [(set GPR:$dst, (atomic_load_xor_8 GPR:$ptr, GPR:$incr))]>; 4068 def ATOMIC_LOAD_NAND_I8 : PseudoInst< 4069 (outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary, 4070 [(set GPR:$dst, (atomic_load_nand_8 GPR:$ptr, GPR:$incr))]>; 4071 def ATOMIC_LOAD_MIN_I8 : PseudoInst< 4072 (outs GPR:$dst), (ins GPR:$ptr, GPR:$val), NoItinerary, 4073 [(set GPR:$dst, (atomic_load_min_8 GPR:$ptr, GPR:$val))]>; 4074 def ATOMIC_LOAD_MAX_I8 : PseudoInst< 4075 (outs GPR:$dst), (ins GPR:$ptr, GPR:$val), NoItinerary, 4076 [(set GPR:$dst, (atomic_load_max_8 GPR:$ptr, GPR:$val))]>; 4077 def ATOMIC_LOAD_UMIN_I8 : PseudoInst< 4078 (outs GPR:$dst), (ins GPR:$ptr, GPR:$val), NoItinerary, 4079 [(set GPR:$dst, (atomic_load_min_8 GPR:$ptr, GPR:$val))]>; 4080 def ATOMIC_LOAD_UMAX_I8 : PseudoInst< 4081 (outs GPR:$dst), (ins GPR:$ptr, GPR:$val), NoItinerary, 4082 [(set GPR:$dst, (atomic_load_max_8 GPR:$ptr, GPR:$val))]>; 4083 def ATOMIC_LOAD_ADD_I16 : PseudoInst< 4084 (outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary, 4085 [(set GPR:$dst, (atomic_load_add_16 GPR:$ptr, GPR:$incr))]>; 4086 def ATOMIC_LOAD_SUB_I16 : PseudoInst< 4087 (outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary, 4088 [(set GPR:$dst, (atomic_load_sub_16 GPR:$ptr, GPR:$incr))]>; 4089 def ATOMIC_LOAD_AND_I16 : PseudoInst< 4090 (outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary, 4091 [(set GPR:$dst, (atomic_load_and_16 GPR:$ptr, GPR:$incr))]>; 4092 def ATOMIC_LOAD_OR_I16 : PseudoInst< 4093 (outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary, 4094 [(set GPR:$dst, (atomic_load_or_16 GPR:$ptr, GPR:$incr))]>; 4095 def ATOMIC_LOAD_XOR_I16 : PseudoInst< 4096 (outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary, 4097 [(set GPR:$dst, (atomic_load_xor_16 GPR:$ptr, GPR:$incr))]>; 4098 def ATOMIC_LOAD_NAND_I16 : PseudoInst< 4099 (outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary, 4100 [(set GPR:$dst, (atomic_load_nand_16 GPR:$ptr, GPR:$incr))]>; 4101 def ATOMIC_LOAD_MIN_I16 : PseudoInst< 4102 (outs GPR:$dst), (ins GPR:$ptr, GPR:$val), NoItinerary, 4103 [(set GPR:$dst, (atomic_load_min_16 GPR:$ptr, GPR:$val))]>; 4104 def ATOMIC_LOAD_MAX_I16 : PseudoInst< 4105 (outs GPR:$dst), (ins GPR:$ptr, GPR:$val), NoItinerary, 4106 [(set GPR:$dst, (atomic_load_max_16 GPR:$ptr, GPR:$val))]>; 4107 def ATOMIC_LOAD_UMIN_I16 : PseudoInst< 4108 (outs GPR:$dst), (ins GPR:$ptr, GPR:$val), NoItinerary, 4109 [(set GPR:$dst, (atomic_load_min_16 GPR:$ptr, GPR:$val))]>; 4110 def ATOMIC_LOAD_UMAX_I16 : PseudoInst< 4111 (outs GPR:$dst), (ins GPR:$ptr, GPR:$val), NoItinerary, 4112 [(set GPR:$dst, (atomic_load_max_16 GPR:$ptr, GPR:$val))]>; 4113 def ATOMIC_LOAD_ADD_I32 : PseudoInst< 4114 (outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary, 4115 [(set GPR:$dst, (atomic_load_add_32 GPR:$ptr, GPR:$incr))]>; 4116 def ATOMIC_LOAD_SUB_I32 : PseudoInst< 4117 (outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary, 4118 [(set GPR:$dst, (atomic_load_sub_32 GPR:$ptr, GPR:$incr))]>; 4119 def ATOMIC_LOAD_AND_I32 : PseudoInst< 4120 (outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary, 4121 [(set GPR:$dst, (atomic_load_and_32 GPR:$ptr, GPR:$incr))]>; 4122 def ATOMIC_LOAD_OR_I32 : PseudoInst< 4123 (outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary, 4124 [(set GPR:$dst, (atomic_load_or_32 GPR:$ptr, GPR:$incr))]>; 4125 def ATOMIC_LOAD_XOR_I32 : PseudoInst< 4126 (outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary, 4127 [(set GPR:$dst, (atomic_load_xor_32 GPR:$ptr, GPR:$incr))]>; 4128 def ATOMIC_LOAD_NAND_I32 : PseudoInst< 4129 (outs GPR:$dst), (ins GPR:$ptr, GPR:$incr), NoItinerary, 4130 [(set GPR:$dst, (atomic_load_nand_32 GPR:$ptr, GPR:$incr))]>; 4131 def ATOMIC_LOAD_MIN_I32 : PseudoInst< 4132 (outs GPR:$dst), (ins GPR:$ptr, GPR:$val), NoItinerary, 4133 [(set GPR:$dst, (atomic_load_min_32 GPR:$ptr, GPR:$val))]>; 4134 def ATOMIC_LOAD_MAX_I32 : PseudoInst< 4135 (outs GPR:$dst), (ins GPR:$ptr, GPR:$val), NoItinerary, 4136 [(set GPR:$dst, (atomic_load_max_32 GPR:$ptr, GPR:$val))]>; 4137 def ATOMIC_LOAD_UMIN_I32 : PseudoInst< 4138 (outs GPR:$dst), (ins GPR:$ptr, GPR:$val), NoItinerary, 4139 [(set GPR:$dst, (atomic_load_min_32 GPR:$ptr, GPR:$val))]>; 4140 def ATOMIC_LOAD_UMAX_I32 : PseudoInst< 4141 (outs GPR:$dst), (ins GPR:$ptr, GPR:$val), NoItinerary, 4142 [(set GPR:$dst, (atomic_load_max_32 GPR:$ptr, GPR:$val))]>; 4143 4144 def ATOMIC_SWAP_I8 : PseudoInst< 4145 (outs GPR:$dst), (ins GPR:$ptr, GPR:$new), NoItinerary, 4146 [(set GPR:$dst, (atomic_swap_8 GPR:$ptr, GPR:$new))]>; 4147 def ATOMIC_SWAP_I16 : PseudoInst< 4148 (outs GPR:$dst), (ins GPR:$ptr, GPR:$new), NoItinerary, 4149 [(set GPR:$dst, (atomic_swap_16 GPR:$ptr, GPR:$new))]>; 4150 def ATOMIC_SWAP_I32 : PseudoInst< 4151 (outs GPR:$dst), (ins GPR:$ptr, GPR:$new), NoItinerary, 4152 [(set GPR:$dst, (atomic_swap_32 GPR:$ptr, GPR:$new))]>; 4153 4154 def ATOMIC_CMP_SWAP_I8 : PseudoInst< 4155 (outs GPR:$dst), (ins GPR:$ptr, GPR:$old, GPR:$new), NoItinerary, 4156 [(set GPR:$dst, (atomic_cmp_swap_8 GPR:$ptr, GPR:$old, GPR:$new))]>; 4157 def ATOMIC_CMP_SWAP_I16 : PseudoInst< 4158 (outs GPR:$dst), (ins GPR:$ptr, GPR:$old, GPR:$new), NoItinerary, 4159 [(set GPR:$dst, (atomic_cmp_swap_16 GPR:$ptr, GPR:$old, GPR:$new))]>; 4160 def ATOMIC_CMP_SWAP_I32 : PseudoInst< 4161 (outs GPR:$dst), (ins GPR:$ptr, GPR:$old, GPR:$new), NoItinerary, 4162 [(set GPR:$dst, (atomic_cmp_swap_32 GPR:$ptr, GPR:$old, GPR:$new))]>; 4163 } 4164 } 4165 4166 let mayLoad = 1 in { 4167 def LDREXB : AIldrex<0b10, (outs GPR:$Rt), (ins addr_offset_none:$addr), 4168 NoItinerary, 4169 "ldrexb", "\t$Rt, $addr", []>; 4170 def LDREXH : AIldrex<0b11, (outs GPR:$Rt), (ins addr_offset_none:$addr), 4171 NoItinerary, "ldrexh", "\t$Rt, $addr", []>; 4172 def LDREX : AIldrex<0b00, (outs GPR:$Rt), (ins addr_offset_none:$addr), 4173 NoItinerary, "ldrex", "\t$Rt, $addr", []>; 4174 let hasExtraDefRegAllocReq = 1 in 4175 def LDREXD: AIldrex<0b01, (outs GPR:$Rt, GPR:$Rt2),(ins addr_offset_none:$addr), 4176 NoItinerary, "ldrexd", "\t$Rt, $Rt2, $addr", []> { 4177 let DecoderMethod = "DecodeDoubleRegLoad"; 4178 } 4179 } 4180 4181 let mayStore = 1, Constraints = "@earlyclobber $Rd" in { 4182 def STREXB: AIstrex<0b10, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr), 4183 NoItinerary, "strexb", "\t$Rd, $Rt, $addr", []>; 4184 def STREXH: AIstrex<0b11, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr), 4185 NoItinerary, "strexh", "\t$Rd, $Rt, $addr", []>; 4186 def STREX : AIstrex<0b00, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr), 4187 NoItinerary, "strex", "\t$Rd, $Rt, $addr", []>; 4188 } 4189 4190 let hasExtraSrcRegAllocReq = 1, Constraints = "@earlyclobber $Rd" in 4191 def STREXD : AIstrex<0b01, (outs GPR:$Rd), 4192 (ins GPR:$Rt, GPR:$Rt2, addr_offset_none:$addr), 4193 NoItinerary, "strexd", "\t$Rd, $Rt, $Rt2, $addr", []> { 4194 let DecoderMethod = "DecodeDoubleRegStore"; 4195 } 4196 4197 def CLREX : AXI<(outs), (ins), MiscFrm, NoItinerary, "clrex", []>, 4198 Requires<[IsARM, HasV7]> { 4199 let Inst{31-0} = 0b11110101011111111111000000011111; 4200 } 4201 4202 // SWP/SWPB are deprecated in V6/V7. 4203 let mayLoad = 1, mayStore = 1 in { 4204 def SWP : AIswp<0, (outs GPR:$Rt), (ins GPR:$Rt2, addr_offset_none:$addr), 4205 "swp", []>; 4206 def SWPB: AIswp<1, (outs GPR:$Rt), (ins GPR:$Rt2, addr_offset_none:$addr), 4207 "swpb", []>; 4208 } 4209 4210 //===----------------------------------------------------------------------===// 4211 // Coprocessor Instructions. 4212 // 4213 4214 def CDP : ABI<0b1110, (outs), (ins p_imm:$cop, imm0_15:$opc1, 4215 c_imm:$CRd, c_imm:$CRn, c_imm:$CRm, imm0_7:$opc2), 4216 NoItinerary, "cdp", "\t$cop, $opc1, $CRd, $CRn, $CRm, $opc2", 4217 [(int_arm_cdp imm:$cop, imm:$opc1, imm:$CRd, imm:$CRn, 4218 imm:$CRm, imm:$opc2)]> { 4219 bits<4> opc1; 4220 bits<4> CRn; 4221 bits<4> CRd; 4222 bits<4> cop; 4223 bits<3> opc2; 4224 bits<4> CRm; 4225 4226 let Inst{3-0} = CRm; 4227 let Inst{4} = 0; 4228 let Inst{7-5} = opc2; 4229 let Inst{11-8} = cop; 4230 let Inst{15-12} = CRd; 4231 let Inst{19-16} = CRn; 4232 let Inst{23-20} = opc1; 4233 } 4234 4235 def CDP2 : ABXI<0b1110, (outs), (ins p_imm:$cop, imm0_15:$opc1, 4236 c_imm:$CRd, c_imm:$CRn, c_imm:$CRm, imm0_7:$opc2), 4237 NoItinerary, "cdp2\t$cop, $opc1, $CRd, $CRn, $CRm, $opc2", 4238 [(int_arm_cdp2 imm:$cop, imm:$opc1, imm:$CRd, imm:$CRn, 4239 imm:$CRm, imm:$opc2)]> { 4240 let Inst{31-28} = 0b1111; 4241 bits<4> opc1; 4242 bits<4> CRn; 4243 bits<4> CRd; 4244 bits<4> cop; 4245 bits<3> opc2; 4246 bits<4> CRm; 4247 4248 let Inst{3-0} = CRm; 4249 let Inst{4} = 0; 4250 let Inst{7-5} = opc2; 4251 let Inst{11-8} = cop; 4252 let Inst{15-12} = CRd; 4253 let Inst{19-16} = CRn; 4254 let Inst{23-20} = opc1; 4255 } 4256 4257 class ACI<dag oops, dag iops, string opc, string asm, 4258 IndexMode im = IndexModeNone> 4259 : I<oops, iops, AddrModeNone, 4, im, BrFrm, NoItinerary, 4260 opc, asm, "", []> { 4261 let Inst{27-25} = 0b110; 4262 } 4263 class ACInoP<dag oops, dag iops, string opc, string asm, 4264 IndexMode im = IndexModeNone> 4265 : InoP<oops, iops, AddrModeNone, 4, im, BrFrm, NoItinerary, 4266 opc, asm, "", []> { 4267 let Inst{31-28} = 0b1111; 4268 let Inst{27-25} = 0b110; 4269 } 4270 multiclass LdStCop<bit load, bit Dbit, string asm> { 4271 def _OFFSET : ACI<(outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5:$addr), 4272 asm, "\t$cop, $CRd, $addr"> { 4273 bits<13> addr; 4274 bits<4> cop; 4275 bits<4> CRd; 4276 let Inst{24} = 1; // P = 1 4277 let Inst{23} = addr{8}; 4278 let Inst{22} = Dbit; 4279 let Inst{21} = 0; // W = 0 4280 let Inst{20} = load; 4281 let Inst{19-16} = addr{12-9}; 4282 let Inst{15-12} = CRd; 4283 let Inst{11-8} = cop; 4284 let Inst{7-0} = addr{7-0}; 4285 let DecoderMethod = "DecodeCopMemInstruction"; 4286 } 4287 def _PRE : ACI<(outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5:$addr), 4288 asm, "\t$cop, $CRd, $addr!", IndexModePre> { 4289 bits<13> addr; 4290 bits<4> cop; 4291 bits<4> CRd; 4292 let Inst{24} = 1; // P = 1 4293 let Inst{23} = addr{8}; 4294 let Inst{22} = Dbit; 4295 let Inst{21} = 1; // W = 1 4296 let Inst{20} = load; 4297 let Inst{19-16} = addr{12-9}; 4298 let Inst{15-12} = CRd; 4299 let Inst{11-8} = cop; 4300 let Inst{7-0} = addr{7-0}; 4301 let DecoderMethod = "DecodeCopMemInstruction"; 4302 } 4303 def _POST: ACI<(outs), (ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr, 4304 postidx_imm8s4:$offset), 4305 asm, "\t$cop, $CRd, $addr, $offset", IndexModePost> { 4306 bits<9> offset; 4307 bits<4> addr; 4308 bits<4> cop; 4309 bits<4> CRd; 4310 let Inst{24} = 0; // P = 0 4311 let Inst{23} = offset{8}; 4312 let Inst{22} = Dbit; 4313 let Inst{21} = 1; // W = 1 4314 let Inst{20} = load; 4315 let Inst{19-16} = addr; 4316 let Inst{15-12} = CRd; 4317 let Inst{11-8} = cop; 4318 let Inst{7-0} = offset{7-0}; 4319 let DecoderMethod = "DecodeCopMemInstruction"; 4320 } 4321 def _OPTION : ACI<(outs), 4322 (ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr, 4323 coproc_option_imm:$option), 4324 asm, "\t$cop, $CRd, $addr, $option"> { 4325 bits<8> option; 4326 bits<4> addr; 4327 bits<4> cop; 4328 bits<4> CRd; 4329 let Inst{24} = 0; // P = 0 4330 let Inst{23} = 1; // U = 1 4331 let Inst{22} = Dbit; 4332 let Inst{21} = 0; // W = 0 4333 let Inst{20} = load; 4334 let Inst{19-16} = addr; 4335 let Inst{15-12} = CRd; 4336 let Inst{11-8} = cop; 4337 let Inst{7-0} = option; 4338 let DecoderMethod = "DecodeCopMemInstruction"; 4339 } 4340 } 4341 multiclass LdSt2Cop<bit load, bit Dbit, string asm> { 4342 def _OFFSET : ACInoP<(outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5:$addr), 4343 asm, "\t$cop, $CRd, $addr"> { 4344 bits<13> addr; 4345 bits<4> cop; 4346 bits<4> CRd; 4347 let Inst{24} = 1; // P = 1 4348 let Inst{23} = addr{8}; 4349 let Inst{22} = Dbit; 4350 let Inst{21} = 0; // W = 0 4351 let Inst{20} = load; 4352 let Inst{19-16} = addr{12-9}; 4353 let Inst{15-12} = CRd; 4354 let Inst{11-8} = cop; 4355 let Inst{7-0} = addr{7-0}; 4356 let DecoderMethod = "DecodeCopMemInstruction"; 4357 } 4358 def _PRE : ACInoP<(outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5:$addr), 4359 asm, "\t$cop, $CRd, $addr!", IndexModePre> { 4360 bits<13> addr; 4361 bits<4> cop; 4362 bits<4> CRd; 4363 let Inst{24} = 1; // P = 1 4364 let Inst{23} = addr{8}; 4365 let Inst{22} = Dbit; 4366 let Inst{21} = 1; // W = 1 4367 let Inst{20} = load; 4368 let Inst{19-16} = addr{12-9}; 4369 let Inst{15-12} = CRd; 4370 let Inst{11-8} = cop; 4371 let Inst{7-0} = addr{7-0}; 4372 let DecoderMethod = "DecodeCopMemInstruction"; 4373 } 4374 def _POST: ACInoP<(outs), (ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr, 4375 postidx_imm8s4:$offset), 4376 asm, "\t$cop, $CRd, $addr, $offset", IndexModePost> { 4377 bits<9> offset; 4378 bits<4> addr; 4379 bits<4> cop; 4380 bits<4> CRd; 4381 let Inst{24} = 0; // P = 0 4382 let Inst{23} = offset{8}; 4383 let Inst{22} = Dbit; 4384 let Inst{21} = 1; // W = 1 4385 let Inst{20} = load; 4386 let Inst{19-16} = addr; 4387 let Inst{15-12} = CRd; 4388 let Inst{11-8} = cop; 4389 let Inst{7-0} = offset{7-0}; 4390 let DecoderMethod = "DecodeCopMemInstruction"; 4391 } 4392 def _OPTION : ACInoP<(outs), 4393 (ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr, 4394 coproc_option_imm:$option), 4395 asm, "\t$cop, $CRd, $addr, $option"> { 4396 bits<8> option; 4397 bits<4> addr; 4398 bits<4> cop; 4399 bits<4> CRd; 4400 let Inst{24} = 0; // P = 0 4401 let Inst{23} = 1; // U = 1 4402 let Inst{22} = Dbit; 4403 let Inst{21} = 0; // W = 0 4404 let Inst{20} = load; 4405 let Inst{19-16} = addr; 4406 let Inst{15-12} = CRd; 4407 let Inst{11-8} = cop; 4408 let Inst{7-0} = option; 4409 let DecoderMethod = "DecodeCopMemInstruction"; 4410 } 4411 } 4412 4413 defm LDC : LdStCop <1, 0, "ldc">; 4414 defm LDCL : LdStCop <1, 1, "ldcl">; 4415 defm STC : LdStCop <0, 0, "stc">; 4416 defm STCL : LdStCop <0, 1, "stcl">; 4417 defm LDC2 : LdSt2Cop<1, 0, "ldc2">; 4418 defm LDC2L : LdSt2Cop<1, 1, "ldc2l">; 4419 defm STC2 : LdSt2Cop<0, 0, "stc2">; 4420 defm STC2L : LdSt2Cop<0, 1, "stc2l">; 4421 4422 //===----------------------------------------------------------------------===// 4423 // Move between coprocessor and ARM core register. 4424 // 4425 4426 class MovRCopro<string opc, bit direction, dag oops, dag iops, 4427 list<dag> pattern> 4428 : ABI<0b1110, oops, iops, NoItinerary, opc, 4429 "\t$cop, $opc1, $Rt, $CRn, $CRm, $opc2", pattern> { 4430 let Inst{20} = direction; 4431 let Inst{4} = 1; 4432 4433 bits<4> Rt; 4434 bits<4> cop; 4435 bits<3> opc1; 4436 bits<3> opc2; 4437 bits<4> CRm; 4438 bits<4> CRn; 4439 4440 let Inst{15-12} = Rt; 4441 let Inst{11-8} = cop; 4442 let Inst{23-21} = opc1; 4443 let Inst{7-5} = opc2; 4444 let Inst{3-0} = CRm; 4445 let Inst{19-16} = CRn; 4446 } 4447 4448 def MCR : MovRCopro<"mcr", 0 /* from ARM core register to coprocessor */, 4449 (outs), 4450 (ins p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn, 4451 c_imm:$CRm, imm0_7:$opc2), 4452 [(int_arm_mcr imm:$cop, imm:$opc1, GPR:$Rt, imm:$CRn, 4453 imm:$CRm, imm:$opc2)]>; 4454 def MRC : MovRCopro<"mrc", 1 /* from coprocessor to ARM core register */, 4455 (outs GPR:$Rt), 4456 (ins p_imm:$cop, imm0_7:$opc1, c_imm:$CRn, c_imm:$CRm, 4457 imm0_7:$opc2), []>; 4458 4459 def : ARMPat<(int_arm_mrc imm:$cop, imm:$opc1, imm:$CRn, imm:$CRm, imm:$opc2), 4460 (MRC imm:$cop, imm:$opc1, imm:$CRn, imm:$CRm, imm:$opc2)>; 4461 4462 class MovRCopro2<string opc, bit direction, dag oops, dag iops, 4463 list<dag> pattern> 4464 : ABXI<0b1110, oops, iops, NoItinerary, 4465 !strconcat(opc, "\t$cop, $opc1, $Rt, $CRn, $CRm, $opc2"), pattern> { 4466 let Inst{31-28} = 0b1111; 4467 let Inst{20} = direction; 4468 let Inst{4} = 1; 4469 4470 bits<4> Rt; 4471 bits<4> cop; 4472 bits<3> opc1; 4473 bits<3> opc2; 4474 bits<4> CRm; 4475 bits<4> CRn; 4476 4477 let Inst{15-12} = Rt; 4478 let Inst{11-8} = cop; 4479 let Inst{23-21} = opc1; 4480 let Inst{7-5} = opc2; 4481 let Inst{3-0} = CRm; 4482 let Inst{19-16} = CRn; 4483 } 4484 4485 def MCR2 : MovRCopro2<"mcr2", 0 /* from ARM core register to coprocessor */, 4486 (outs), 4487 (ins p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn, 4488 c_imm:$CRm, imm0_7:$opc2), 4489 [(int_arm_mcr2 imm:$cop, imm:$opc1, GPR:$Rt, imm:$CRn, 4490 imm:$CRm, imm:$opc2)]>; 4491 def MRC2 : MovRCopro2<"mrc2", 1 /* from coprocessor to ARM core register */, 4492 (outs GPR:$Rt), 4493 (ins p_imm:$cop, imm0_7:$opc1, c_imm:$CRn, c_imm:$CRm, 4494 imm0_7:$opc2), []>; 4495 4496 def : ARMV5TPat<(int_arm_mrc2 imm:$cop, imm:$opc1, imm:$CRn, 4497 imm:$CRm, imm:$opc2), 4498 (MRC2 imm:$cop, imm:$opc1, imm:$CRn, imm:$CRm, imm:$opc2)>; 4499 4500 class MovRRCopro<string opc, bit direction, list<dag> pattern = []> 4501 : ABI<0b1100, (outs), (ins p_imm:$cop, imm0_15:$opc1, 4502 GPR:$Rt, GPR:$Rt2, c_imm:$CRm), 4503 NoItinerary, opc, "\t$cop, $opc1, $Rt, $Rt2, $CRm", pattern> { 4504 let Inst{23-21} = 0b010; 4505 let Inst{20} = direction; 4506 4507 bits<4> Rt; 4508 bits<4> Rt2; 4509 bits<4> cop; 4510 bits<4> opc1; 4511 bits<4> CRm; 4512 4513 let Inst{15-12} = Rt; 4514 let Inst{19-16} = Rt2; 4515 let Inst{11-8} = cop; 4516 let Inst{7-4} = opc1; 4517 let Inst{3-0} = CRm; 4518 } 4519 4520 def MCRR : MovRRCopro<"mcrr", 0 /* from ARM core register to coprocessor */, 4521 [(int_arm_mcrr imm:$cop, imm:$opc1, GPR:$Rt, GPR:$Rt2, 4522 imm:$CRm)]>; 4523 def MRRC : MovRRCopro<"mrrc", 1 /* from coprocessor to ARM core register */>; 4524 4525 class MovRRCopro2<string opc, bit direction, list<dag> pattern = []> 4526 : ABXI<0b1100, (outs), (ins p_imm:$cop, imm0_15:$opc1, 4527 GPR:$Rt, GPR:$Rt2, c_imm:$CRm), NoItinerary, 4528 !strconcat(opc, "\t$cop, $opc1, $Rt, $Rt2, $CRm"), pattern> { 4529 let Inst{31-28} = 0b1111; 4530 let Inst{23-21} = 0b010; 4531 let Inst{20} = direction; 4532 4533 bits<4> Rt; 4534 bits<4> Rt2; 4535 bits<4> cop; 4536 bits<4> opc1; 4537 bits<4> CRm; 4538 4539 let Inst{15-12} = Rt; 4540 let Inst{19-16} = Rt2; 4541 let Inst{11-8} = cop; 4542 let Inst{7-4} = opc1; 4543 let Inst{3-0} = CRm; 4544 } 4545 4546 def MCRR2 : MovRRCopro2<"mcrr2", 0 /* from ARM core register to coprocessor */, 4547 [(int_arm_mcrr2 imm:$cop, imm:$opc1, GPR:$Rt, GPR:$Rt2, 4548 imm:$CRm)]>; 4549 def MRRC2 : MovRRCopro2<"mrrc2", 1 /* from coprocessor to ARM core register */>; 4550 4551 //===----------------------------------------------------------------------===// 4552 // Move between special register and ARM core register 4553 // 4554 4555 // Move to ARM core register from Special Register 4556 def MRS : ABI<0b0001, (outs GPR:$Rd), (ins), NoItinerary, 4557 "mrs", "\t$Rd, apsr", []> { 4558 bits<4> Rd; 4559 let Inst{23-16} = 0b00001111; 4560 let Inst{15-12} = Rd; 4561 let Inst{7-4} = 0b0000; 4562 } 4563 4564 def : InstAlias<"mrs${p} $Rd, cpsr", (MRS GPR:$Rd, pred:$p)>, Requires<[IsARM]>; 4565 4566 def MRSsys : ABI<0b0001, (outs GPR:$Rd), (ins), NoItinerary, 4567 "mrs", "\t$Rd, spsr", []> { 4568 bits<4> Rd; 4569 let Inst{23-16} = 0b01001111; 4570 let Inst{15-12} = Rd; 4571 let Inst{7-4} = 0b0000; 4572 } 4573 4574 // Move from ARM core register to Special Register 4575 // 4576 // No need to have both system and application versions, the encodings are the 4577 // same and the assembly parser has no way to distinguish between them. The mask 4578 // operand contains the special register (R Bit) in bit 4 and bits 3-0 contains 4579 // the mask with the fields to be accessed in the special register. 4580 def MSR : ABI<0b0001, (outs), (ins msr_mask:$mask, GPR:$Rn), NoItinerary, 4581 "msr", "\t$mask, $Rn", []> { 4582 bits<5> mask; 4583 bits<4> Rn; 4584 4585 let Inst{23} = 0; 4586 let Inst{22} = mask{4}; // R bit 4587 let Inst{21-20} = 0b10; 4588 let Inst{19-16} = mask{3-0}; 4589 let Inst{15-12} = 0b1111; 4590 let Inst{11-4} = 0b00000000; 4591 let Inst{3-0} = Rn; 4592 } 4593 4594 def MSRi : ABI<0b0011, (outs), (ins msr_mask:$mask, so_imm:$a), NoItinerary, 4595 "msr", "\t$mask, $a", []> { 4596 bits<5> mask; 4597 bits<12> a; 4598 4599 let Inst{23} = 0; 4600 let Inst{22} = mask{4}; // R bit 4601 let Inst{21-20} = 0b10; 4602 let Inst{19-16} = mask{3-0}; 4603 let Inst{15-12} = 0b1111; 4604 let Inst{11-0} = a; 4605 } 4606 4607 //===----------------------------------------------------------------------===// 4608 // TLS Instructions 4609 // 4610 4611 // __aeabi_read_tp preserves the registers r1-r3. 4612 // This is a pseudo inst so that we can get the encoding right, 4613 // complete with fixup for the aeabi_read_tp function. 4614 let isCall = 1, 4615 Defs = [R0, R12, LR, CPSR], Uses = [SP] in { 4616 def TPsoft : PseudoInst<(outs), (ins), IIC_Br, 4617 [(set R0, ARMthread_pointer)]>; 4618 } 4619 4620 //===----------------------------------------------------------------------===// 4621 // SJLJ Exception handling intrinsics 4622 // eh_sjlj_setjmp() is an instruction sequence to store the return 4623 // address and save #0 in R0 for the non-longjmp case. 4624 // Since by its nature we may be coming from some other function to get 4625 // here, and we're using the stack frame for the containing function to 4626 // save/restore registers, we can't keep anything live in regs across 4627 // the eh_sjlj_setjmp(), else it will almost certainly have been tromped upon 4628 // when we get here from a longjmp(). We force everything out of registers 4629 // except for our own input by listing the relevant registers in Defs. By 4630 // doing so, we also cause the prologue/epilogue code to actively preserve 4631 // all of the callee-saved resgisters, which is exactly what we want. 4632 // A constant value is passed in $val, and we use the location as a scratch. 4633 // 4634 // These are pseudo-instructions and are lowered to individual MC-insts, so 4635 // no encoding information is necessary. 4636 let Defs = 4637 [ R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, LR, CPSR, 4638 QQQQ0, QQQQ1, QQQQ2, QQQQ3 ], hasSideEffects = 1, isBarrier = 1 in { 4639 def Int_eh_sjlj_setjmp : PseudoInst<(outs), (ins GPR:$src, GPR:$val), 4640 NoItinerary, 4641 [(set R0, (ARMeh_sjlj_setjmp GPR:$src, GPR:$val))]>, 4642 Requires<[IsARM, HasVFP2]>; 4643 } 4644 4645 let Defs = 4646 [ R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, LR, CPSR ], 4647 hasSideEffects = 1, isBarrier = 1 in { 4648 def Int_eh_sjlj_setjmp_nofp : PseudoInst<(outs), (ins GPR:$src, GPR:$val), 4649 NoItinerary, 4650 [(set R0, (ARMeh_sjlj_setjmp GPR:$src, GPR:$val))]>, 4651 Requires<[IsARM, NoVFP]>; 4652 } 4653 4654 // FIXME: Non-Darwin version(s) 4655 let isBarrier = 1, hasSideEffects = 1, isTerminator = 1, 4656 Defs = [ R7, LR, SP ] in { 4657 def Int_eh_sjlj_longjmp : PseudoInst<(outs), (ins GPR:$src, GPR:$scratch), 4658 NoItinerary, 4659 [(ARMeh_sjlj_longjmp GPR:$src, GPR:$scratch)]>, 4660 Requires<[IsARM, IsDarwin]>; 4661 } 4662 4663 // eh.sjlj.dispatchsetup pseudo-instruction. 4664 // This pseudo is used for ARM, Thumb1 and Thumb2. Any differences are 4665 // handled when the pseudo is expanded (which happens before any passes 4666 // that need the instruction size). 4667 let isBarrier = 1, hasSideEffects = 1 in 4668 def Int_eh_sjlj_dispatchsetup : 4669 PseudoInst<(outs), (ins GPR:$src), NoItinerary, 4670 [(ARMeh_sjlj_dispatchsetup GPR:$src)]>, 4671 Requires<[IsDarwin]>; 4672 4673 //===----------------------------------------------------------------------===// 4674 // Non-Instruction Patterns 4675 // 4676 4677 // ARMv4 indirect branch using (MOVr PC, dst) 4678 let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in 4679 def MOVPCRX : ARMPseudoExpand<(outs), (ins GPR:$dst), 4680 4, IIC_Br, [(brind GPR:$dst)], 4681 (MOVr PC, GPR:$dst, (ops 14, zero_reg), zero_reg)>, 4682 Requires<[IsARM, NoV4T]>; 4683 4684 // Large immediate handling. 4685 4686 // 32-bit immediate using two piece so_imms or movw + movt. 4687 // This is a single pseudo instruction, the benefit is that it can be remat'd 4688 // as a single unit instead of having to handle reg inputs. 4689 // FIXME: Remove this when we can do generalized remat. 4690 let isReMaterializable = 1, isMoveImm = 1 in 4691 def MOVi32imm : PseudoInst<(outs GPR:$dst), (ins i32imm:$src), IIC_iMOVix2, 4692 [(set GPR:$dst, (arm_i32imm:$src))]>, 4693 Requires<[IsARM]>; 4694 4695 // Pseudo instruction that combines movw + movt + add pc (if PIC). 4696 // It also makes it possible to rematerialize the instructions. 4697 // FIXME: Remove this when we can do generalized remat and when machine licm 4698 // can properly the instructions. 4699 let isReMaterializable = 1 in { 4700 def MOV_ga_pcrel : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr), 4701 IIC_iMOVix2addpc, 4702 [(set GPR:$dst, (ARMWrapperPIC tglobaladdr:$addr))]>, 4703 Requires<[IsARM, UseMovt]>; 4704 4705 def MOV_ga_dyn : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr), 4706 IIC_iMOVix2, 4707 [(set GPR:$dst, (ARMWrapperDYN tglobaladdr:$addr))]>, 4708 Requires<[IsARM, UseMovt]>; 4709 4710 let AddedComplexity = 10 in 4711 def MOV_ga_pcrel_ldr : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr), 4712 IIC_iMOVix2ld, 4713 [(set GPR:$dst, (load (ARMWrapperPIC tglobaladdr:$addr)))]>, 4714 Requires<[IsARM, UseMovt]>; 4715 } // isReMaterializable 4716 4717 // ConstantPool, GlobalAddress, and JumpTable 4718 def : ARMPat<(ARMWrapper tglobaladdr :$dst), (LEApcrel tglobaladdr :$dst)>, 4719 Requires<[IsARM, DontUseMovt]>; 4720 def : ARMPat<(ARMWrapper tconstpool :$dst), (LEApcrel tconstpool :$dst)>; 4721 def : ARMPat<(ARMWrapper tglobaladdr :$dst), (MOVi32imm tglobaladdr :$dst)>, 4722 Requires<[IsARM, UseMovt]>; 4723 def : ARMPat<(ARMWrapperJT tjumptable:$dst, imm:$id), 4724 (LEApcrelJT tjumptable:$dst, imm:$id)>; 4725 4726 // TODO: add,sub,and, 3-instr forms? 4727 4728 // Tail calls 4729 def : ARMPat<(ARMtcret tcGPR:$dst), 4730 (TCRETURNri tcGPR:$dst)>, Requires<[IsDarwin]>; 4731 4732 def : ARMPat<(ARMtcret (i32 tglobaladdr:$dst)), 4733 (TCRETURNdi texternalsym:$dst)>, Requires<[IsDarwin]>; 4734 4735 def : ARMPat<(ARMtcret (i32 texternalsym:$dst)), 4736 (TCRETURNdi texternalsym:$dst)>, Requires<[IsDarwin]>; 4737 4738 def : ARMPat<(ARMtcret tcGPR:$dst), 4739 (TCRETURNriND tcGPR:$dst)>, Requires<[IsNotDarwin]>; 4740 4741 def : ARMPat<(ARMtcret (i32 tglobaladdr:$dst)), 4742 (TCRETURNdiND texternalsym:$dst)>, Requires<[IsNotDarwin]>; 4743 4744 def : ARMPat<(ARMtcret (i32 texternalsym:$dst)), 4745 (TCRETURNdiND texternalsym:$dst)>, Requires<[IsNotDarwin]>; 4746 4747 // Direct calls 4748 def : ARMPat<(ARMcall texternalsym:$func), (BL texternalsym:$func)>, 4749 Requires<[IsARM, IsNotDarwin]>; 4750 def : ARMPat<(ARMcall texternalsym:$func), (BLr9 texternalsym:$func)>, 4751 Requires<[IsARM, IsDarwin]>; 4752 4753 // zextload i1 -> zextload i8 4754 def : ARMPat<(zextloadi1 addrmode_imm12:$addr), (LDRBi12 addrmode_imm12:$addr)>; 4755 def : ARMPat<(zextloadi1 ldst_so_reg:$addr), (LDRBrs ldst_so_reg:$addr)>; 4756 4757 // extload -> zextload 4758 def : ARMPat<(extloadi1 addrmode_imm12:$addr), (LDRBi12 addrmode_imm12:$addr)>; 4759 def : ARMPat<(extloadi1 ldst_so_reg:$addr), (LDRBrs ldst_so_reg:$addr)>; 4760 def : ARMPat<(extloadi8 addrmode_imm12:$addr), (LDRBi12 addrmode_imm12:$addr)>; 4761 def : ARMPat<(extloadi8 ldst_so_reg:$addr), (LDRBrs ldst_so_reg:$addr)>; 4762 4763 def : ARMPat<(extloadi16 addrmode3:$addr), (LDRH addrmode3:$addr)>; 4764 4765 def : ARMPat<(extloadi8 addrmodepc:$addr), (PICLDRB addrmodepc:$addr)>; 4766 def : ARMPat<(extloadi16 addrmodepc:$addr), (PICLDRH addrmodepc:$addr)>; 4767 4768 // smul* and smla* 4769 def : ARMV5TEPat<(mul (sra (shl GPR:$a, (i32 16)), (i32 16)), 4770 (sra (shl GPR:$b, (i32 16)), (i32 16))), 4771 (SMULBB GPR:$a, GPR:$b)>; 4772 def : ARMV5TEPat<(mul sext_16_node:$a, sext_16_node:$b), 4773 (SMULBB GPR:$a, GPR:$b)>; 4774 def : ARMV5TEPat<(mul (sra (shl GPR:$a, (i32 16)), (i32 16)), 4775 (sra GPR:$b, (i32 16))), 4776 (SMULBT GPR:$a, GPR:$b)>; 4777 def : ARMV5TEPat<(mul sext_16_node:$a, (sra GPR:$b, (i32 16))), 4778 (SMULBT GPR:$a, GPR:$b)>; 4779 def : ARMV5TEPat<(mul (sra GPR:$a, (i32 16)), 4780 (sra (shl GPR:$b, (i32 16)), (i32 16))), 4781 (SMULTB GPR:$a, GPR:$b)>; 4782 def : ARMV5TEPat<(mul (sra GPR:$a, (i32 16)), sext_16_node:$b), 4783 (SMULTB GPR:$a, GPR:$b)>; 4784 def : ARMV5TEPat<(sra (mul GPR:$a, (sra (shl GPR:$b, (i32 16)), (i32 16))), 4785 (i32 16)), 4786 (SMULWB GPR:$a, GPR:$b)>; 4787 def : ARMV5TEPat<(sra (mul GPR:$a, sext_16_node:$b), (i32 16)), 4788 (SMULWB GPR:$a, GPR:$b)>; 4789 4790 def : ARMV5TEPat<(add GPR:$acc, 4791 (mul (sra (shl GPR:$a, (i32 16)), (i32 16)), 4792 (sra (shl GPR:$b, (i32 16)), (i32 16)))), 4793 (SMLABB GPR:$a, GPR:$b, GPR:$acc)>; 4794 def : ARMV5TEPat<(add GPR:$acc, 4795 (mul sext_16_node:$a, sext_16_node:$b)), 4796 (SMLABB GPR:$a, GPR:$b, GPR:$acc)>; 4797 def : ARMV5TEPat<(add GPR:$acc, 4798 (mul (sra (shl GPR:$a, (i32 16)), (i32 16)), 4799 (sra GPR:$b, (i32 16)))), 4800 (SMLABT GPR:$a, GPR:$b, GPR:$acc)>; 4801 def : ARMV5TEPat<(add GPR:$acc, 4802 (mul sext_16_node:$a, (sra GPR:$b, (i32 16)))), 4803 (SMLABT GPR:$a, GPR:$b, GPR:$acc)>; 4804 def : ARMV5TEPat<(add GPR:$acc, 4805 (mul (sra GPR:$a, (i32 16)), 4806 (sra (shl GPR:$b, (i32 16)), (i32 16)))), 4807 (SMLATB GPR:$a, GPR:$b, GPR:$acc)>; 4808 def : ARMV5TEPat<(add GPR:$acc, 4809 (mul (sra GPR:$a, (i32 16)), sext_16_node:$b)), 4810 (SMLATB GPR:$a, GPR:$b, GPR:$acc)>; 4811 def : ARMV5TEPat<(add GPR:$acc, 4812 (sra (mul GPR:$a, (sra (shl GPR:$b, (i32 16)), (i32 16))), 4813 (i32 16))), 4814 (SMLAWB GPR:$a, GPR:$b, GPR:$acc)>; 4815 def : ARMV5TEPat<(add GPR:$acc, 4816 (sra (mul GPR:$a, sext_16_node:$b), (i32 16))), 4817 (SMLAWB GPR:$a, GPR:$b, GPR:$acc)>; 4818 4819 4820 // Pre-v7 uses MCR for synchronization barriers. 4821 def : ARMPat<(ARMMemBarrierMCR GPR:$zero), (MCR 15, 0, GPR:$zero, 7, 10, 5)>, 4822 Requires<[IsARM, HasV6]>; 4823 4824 // SXT/UXT with no rotate 4825 let AddedComplexity = 16 in { 4826 def : ARMV6Pat<(and GPR:$Src, 0x000000FF), (UXTB GPR:$Src, 0)>; 4827 def : ARMV6Pat<(and GPR:$Src, 0x0000FFFF), (UXTH GPR:$Src, 0)>; 4828 def : ARMV6Pat<(and GPR:$Src, 0x00FF00FF), (UXTB16 GPR:$Src, 0)>; 4829 def : ARMV6Pat<(add GPR:$Rn, (and GPR:$Rm, 0x00FF)), 4830 (UXTAB GPR:$Rn, GPR:$Rm, 0)>; 4831 def : ARMV6Pat<(add GPR:$Rn, (and GPR:$Rm, 0xFFFF)), 4832 (UXTAH GPR:$Rn, GPR:$Rm, 0)>; 4833 } 4834 4835 def : ARMV6Pat<(sext_inreg GPR:$Src, i8), (SXTB GPR:$Src, 0)>; 4836 def : ARMV6Pat<(sext_inreg GPR:$Src, i16), (SXTH GPR:$Src, 0)>; 4837 4838 def : ARMV6Pat<(add GPR:$Rn, (sext_inreg GPRnopc:$Rm, i8)), 4839 (SXTAB GPR:$Rn, GPRnopc:$Rm, 0)>; 4840 def : ARMV6Pat<(add GPR:$Rn, (sext_inreg GPRnopc:$Rm, i16)), 4841 (SXTAH GPR:$Rn, GPRnopc:$Rm, 0)>; 4842 4843 // Atomic load/store patterns 4844 def : ARMPat<(atomic_load_8 ldst_so_reg:$src), 4845 (LDRBrs ldst_so_reg:$src)>; 4846 def : ARMPat<(atomic_load_8 addrmode_imm12:$src), 4847 (LDRBi12 addrmode_imm12:$src)>; 4848 def : ARMPat<(atomic_load_16 addrmode3:$src), 4849 (LDRH addrmode3:$src)>; 4850 def : ARMPat<(atomic_load_32 ldst_so_reg:$src), 4851 (LDRrs ldst_so_reg:$src)>; 4852 def : ARMPat<(atomic_load_32 addrmode_imm12:$src), 4853 (LDRi12 addrmode_imm12:$src)>; 4854 def : ARMPat<(atomic_store_8 ldst_so_reg:$ptr, GPR:$val), 4855 (STRBrs GPR:$val, ldst_so_reg:$ptr)>; 4856 def : ARMPat<(atomic_store_8 addrmode_imm12:$ptr, GPR:$val), 4857 (STRBi12 GPR:$val, addrmode_imm12:$ptr)>; 4858 def : ARMPat<(atomic_store_16 addrmode3:$ptr, GPR:$val), 4859 (STRH GPR:$val, addrmode3:$ptr)>; 4860 def : ARMPat<(atomic_store_32 ldst_so_reg:$ptr, GPR:$val), 4861 (STRrs GPR:$val, ldst_so_reg:$ptr)>; 4862 def : ARMPat<(atomic_store_32 addrmode_imm12:$ptr, GPR:$val), 4863 (STRi12 GPR:$val, addrmode_imm12:$ptr)>; 4864 4865 4866 //===----------------------------------------------------------------------===// 4867 // Thumb Support 4868 // 4869 4870 include "ARMInstrThumb.td" 4871 4872 //===----------------------------------------------------------------------===// 4873 // Thumb2 Support 4874 // 4875 4876 include "ARMInstrThumb2.td" 4877 4878 //===----------------------------------------------------------------------===// 4879 // Floating Point Support 4880 // 4881 4882 include "ARMInstrVFP.td" 4883 4884 //===----------------------------------------------------------------------===// 4885 // Advanced SIMD (NEON) Support 4886 // 4887 4888 include "ARMInstrNEON.td" 4889 4890 //===----------------------------------------------------------------------===// 4891 // Assembler aliases 4892 // 4893 4894 // Memory barriers 4895 def : InstAlias<"dmb", (DMB 0xf)>, Requires<[IsARM, HasDB]>; 4896 def : InstAlias<"dsb", (DSB 0xf)>, Requires<[IsARM, HasDB]>; 4897 def : InstAlias<"isb", (ISB 0xf)>, Requires<[IsARM, HasDB]>; 4898 4899 // System instructions 4900 def : MnemonicAlias<"swi", "svc">; 4901 4902 // Load / Store Multiple 4903 def : MnemonicAlias<"ldmfd", "ldm">; 4904 def : MnemonicAlias<"ldmia", "ldm">; 4905 def : MnemonicAlias<"ldmea", "ldmdb">; 4906 def : MnemonicAlias<"stmfd", "stmdb">; 4907 def : MnemonicAlias<"stmia", "stm">; 4908 def : MnemonicAlias<"stmea", "stm">; 4909 4910 // PKHBT/PKHTB with default shift amount. PKHTB is equivalent to PKHBT when the 4911 // shift amount is zero (i.e., unspecified). 4912 def : InstAlias<"pkhbt${p} $Rd, $Rn, $Rm", 4913 (PKHBT GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, 0, pred:$p)>, 4914 Requires<[IsARM, HasV6]>; 4915 def : InstAlias<"pkhtb${p} $Rd, $Rn, $Rm", 4916 (PKHBT GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, 0, pred:$p)>, 4917 Requires<[IsARM, HasV6]>; 4918 4919 // PUSH/POP aliases for STM/LDM 4920 def : ARMInstAlias<"push${p} $regs", (STMDB_UPD SP, pred:$p, reglist:$regs)>; 4921 def : ARMInstAlias<"pop${p} $regs", (LDMIA_UPD SP, pred:$p, reglist:$regs)>; 4922 4923 // SSAT/USAT optional shift operand. 4924 def : ARMInstAlias<"ssat${p} $Rd, $sat_imm, $Rn", 4925 (SSAT GPRnopc:$Rd, imm1_32:$sat_imm, GPRnopc:$Rn, 0, pred:$p)>; 4926 def : ARMInstAlias<"usat${p} $Rd, $sat_imm, $Rn", 4927 (USAT GPRnopc:$Rd, imm0_31:$sat_imm, GPRnopc:$Rn, 0, pred:$p)>; 4928 4929 4930 // Extend instruction optional rotate operand. 4931 def : ARMInstAlias<"sxtab${p} $Rd, $Rn, $Rm", 4932 (SXTAB GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>; 4933 def : ARMInstAlias<"sxtah${p} $Rd, $Rn, $Rm", 4934 (SXTAH GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>; 4935 def : ARMInstAlias<"sxtab16${p} $Rd, $Rn, $Rm", 4936 (SXTAB16 GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>; 4937 def : ARMInstAlias<"sxtb${p} $Rd, $Rm", 4938 (SXTB GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>; 4939 def : ARMInstAlias<"sxtb16${p} $Rd, $Rm", 4940 (SXTB16 GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>; 4941 def : ARMInstAlias<"sxth${p} $Rd, $Rm", 4942 (SXTH GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>; 4943 4944 def : ARMInstAlias<"uxtab${p} $Rd, $Rn, $Rm", 4945 (UXTAB GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>; 4946 def : ARMInstAlias<"uxtah${p} $Rd, $Rn, $Rm", 4947 (UXTAH GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>; 4948 def : ARMInstAlias<"uxtab16${p} $Rd, $Rn, $Rm", 4949 (UXTAB16 GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>; 4950 def : ARMInstAlias<"uxtb${p} $Rd, $Rm", 4951 (UXTB GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>; 4952 def : ARMInstAlias<"uxtb16${p} $Rd, $Rm", 4953 (UXTB16 GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>; 4954 def : ARMInstAlias<"uxth${p} $Rd, $Rm", 4955 (UXTH GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>; 4956 4957 4958 // RFE aliases 4959 def : MnemonicAlias<"rfefa", "rfeda">; 4960 def : MnemonicAlias<"rfeea", "rfedb">; 4961 def : MnemonicAlias<"rfefd", "rfeia">; 4962 def : MnemonicAlias<"rfeed", "rfeib">; 4963 def : MnemonicAlias<"rfe", "rfeia">; 4964 4965 // SRS aliases 4966 def : MnemonicAlias<"srsfa", "srsda">; 4967 def : MnemonicAlias<"srsea", "srsdb">; 4968 def : MnemonicAlias<"srsfd", "srsia">; 4969 def : MnemonicAlias<"srsed", "srsib">; 4970 def : MnemonicAlias<"srs", "srsia">; 4971 4972 // QSAX == QSUBADDX 4973 def : MnemonicAlias<"qsubaddx", "qsax">; 4974 // SASX == SADDSUBX 4975 def : MnemonicAlias<"saddsubx", "sasx">; 4976 // SHASX == SHADDSUBX 4977 def : MnemonicAlias<"shaddsubx", "shasx">; 4978 // SHSAX == SHSUBADDX 4979 def : MnemonicAlias<"shsubaddx", "shsax">; 4980 // SSAX == SSUBADDX 4981 def : MnemonicAlias<"ssubaddx", "ssax">; 4982 // UASX == UADDSUBX 4983 def : MnemonicAlias<"uaddsubx", "uasx">; 4984 // UHASX == UHADDSUBX 4985 def : MnemonicAlias<"uhaddsubx", "uhasx">; 4986 // UHSAX == UHSUBADDX 4987 def : MnemonicAlias<"uhsubaddx", "uhsax">; 4988 // UQASX == UQADDSUBX 4989 def : MnemonicAlias<"uqaddsubx", "uqasx">; 4990 // UQSAX == UQSUBADDX 4991 def : MnemonicAlias<"uqsubaddx", "uqsax">; 4992 // USAX == USUBADDX 4993 def : MnemonicAlias<"usubaddx", "usax">; 4994 4995 // LDRSBT/LDRHT/LDRSHT post-index offset if optional. 4996 // Note that the write-back output register is a dummy operand for MC (it's 4997 // only meaningful for codegen), so we just pass zero here. 4998 // FIXME: tblgen not cooperating with argument conversions. 4999 //def : InstAlias<"ldrsbt${p} $Rt, $addr", 5000 // (LDRSBTi GPR:$Rt, GPR:$Rt, addr_offset_none:$addr, 0,pred:$p)>; 5001 //def : InstAlias<"ldrht${p} $Rt, $addr", 5002 // (LDRHTi GPR:$Rt, GPR:$Rt, addr_offset_none:$addr, 0, pred:$p)>; 5003 //def : InstAlias<"ldrsht${p} $Rt, $addr", 5004 // (LDRSHTi GPR:$Rt, GPR:$Rt, addr_offset_none:$addr, 0, pred:$p)>; 5005