1 //=====- SystemZOperands.td - SystemZ Operands defs ---------*- tblgen-*-=====// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file describes the various SystemZ instruction operands. 11 // 12 //===----------------------------------------------------------------------===// 13 14 //===----------------------------------------------------------------------===// 15 // Instruction Pattern Stuff. 16 //===----------------------------------------------------------------------===// 17 18 // SystemZ specific condition code. These correspond to CondCode in 19 // SystemZ.h. They must be kept in synch. 20 def SYSTEMZ_COND_O : PatLeaf<(i8 0)>; 21 def SYSTEMZ_COND_H : PatLeaf<(i8 1)>; 22 def SYSTEMZ_COND_NLE : PatLeaf<(i8 2)>; 23 def SYSTEMZ_COND_L : PatLeaf<(i8 3)>; 24 def SYSTEMZ_COND_NHE : PatLeaf<(i8 4)>; 25 def SYSTEMZ_COND_LH : PatLeaf<(i8 5)>; 26 def SYSTEMZ_COND_NE : PatLeaf<(i8 6)>; 27 def SYSTEMZ_COND_E : PatLeaf<(i8 7)>; 28 def SYSTEMZ_COND_NLH : PatLeaf<(i8 8)>; 29 def SYSTEMZ_COND_HE : PatLeaf<(i8 9)>; 30 def SYSTEMZ_COND_NL : PatLeaf<(i8 10)>; 31 def SYSTEMZ_COND_LE : PatLeaf<(i8 11)>; 32 def SYSTEMZ_COND_NH : PatLeaf<(i8 12)>; 33 def SYSTEMZ_COND_NO : PatLeaf<(i8 13)>; 34 35 def LO8 : SDNodeXForm<imm, [{ 36 // Transformation function: return low 8 bits. 37 return getI8Imm(N->getZExtValue() & 0x00000000000000FFULL); 38 }]>; 39 40 def LL16 : SDNodeXForm<imm, [{ 41 // Transformation function: return low 16 bits. 42 return getI16Imm(N->getZExtValue() & 0x000000000000FFFFULL); 43 }]>; 44 45 def LH16 : SDNodeXForm<imm, [{ 46 // Transformation function: return bits 16-31. 47 return getI16Imm((N->getZExtValue() & 0x00000000FFFF0000ULL) >> 16); 48 }]>; 49 50 def HL16 : SDNodeXForm<imm, [{ 51 // Transformation function: return bits 32-47. 52 return getI16Imm((N->getZExtValue() & 0x0000FFFF00000000ULL) >> 32); 53 }]>; 54 55 def HH16 : SDNodeXForm<imm, [{ 56 // Transformation function: return bits 48-63. 57 return getI16Imm((N->getZExtValue() & 0xFFFF000000000000ULL) >> 48); 58 }]>; 59 60 def LO32 : SDNodeXForm<imm, [{ 61 // Transformation function: return low 32 bits. 62 return getI32Imm(N->getZExtValue() & 0x00000000FFFFFFFFULL); 63 }]>; 64 65 def HI32 : SDNodeXForm<imm, [{ 66 // Transformation function: return bits 32-63. 67 return getI32Imm(N->getZExtValue() >> 32); 68 }]>; 69 70 def GetI64FromI32 : SDNodeXForm<imm, [{ 71 return CurDAG->getTargetConstant(N->getSExtValue(), MVT::i64); 72 }]>; 73 74 def i32ll16 : PatLeaf<(i32 imm), [{ 75 // i32ll16 predicate - true if the 32-bit immediate has only rightmost 16 76 // bits set. 77 return ((N->getZExtValue() & 0x000000000000FFFFULL) == N->getZExtValue()); 78 }], LL16>; 79 80 def i32lh16 : PatLeaf<(i32 imm), [{ 81 // i32lh16 predicate - true if the 32-bit immediate has only bits 16-31 set. 82 return ((N->getZExtValue() & 0x00000000FFFF0000ULL) == N->getZExtValue()); 83 }], LH16>; 84 85 def i32ll16c : PatLeaf<(i32 imm), [{ 86 // i32ll16c predicate - true if the 32-bit immediate has all bits 16-31 set. 87 return ((N->getZExtValue() | 0x00000000FFFF0000ULL) == N->getZExtValue()); 88 }], LL16>; 89 90 def i32lh16c : PatLeaf<(i32 imm), [{ 91 // i32lh16c predicate - true if the 32-bit immediate has all rightmost 16 92 // bits set. 93 return ((N->getZExtValue() | 0x000000000000FFFFULL) == N->getZExtValue()); 94 }], LH16>; 95 96 def i64ll16 : PatLeaf<(i64 imm), [{ 97 // i64ll16 predicate - true if the 64-bit immediate has only rightmost 16 98 // bits set. 99 return ((N->getZExtValue() & 0x000000000000FFFFULL) == N->getZExtValue()); 100 }], LL16>; 101 102 def i64lh16 : PatLeaf<(i64 imm), [{ 103 // i64lh16 predicate - true if the 64-bit immediate has only bits 16-31 set. 104 return ((N->getZExtValue() & 0x00000000FFFF0000ULL) == N->getZExtValue()); 105 }], LH16>; 106 107 def i64hl16 : PatLeaf<(i64 imm), [{ 108 // i64hl16 predicate - true if the 64-bit immediate has only bits 32-47 set. 109 return ((N->getZExtValue() & 0x0000FFFF00000000ULL) == N->getZExtValue()); 110 }], HL16>; 111 112 def i64hh16 : PatLeaf<(i64 imm), [{ 113 // i64hh16 predicate - true if the 64-bit immediate has only bits 48-63 set. 114 return ((N->getZExtValue() & 0xFFFF000000000000ULL) == N->getZExtValue()); 115 }], HH16>; 116 117 def i64ll16c : PatLeaf<(i64 imm), [{ 118 // i64ll16c predicate - true if the 64-bit immediate has only rightmost 16 119 // bits set. 120 return ((N->getZExtValue() | 0xFFFFFFFFFFFF0000ULL) == N->getZExtValue()); 121 }], LL16>; 122 123 def i64lh16c : PatLeaf<(i64 imm), [{ 124 // i64lh16c predicate - true if the 64-bit immediate has only bits 16-31 set. 125 return ((N->getZExtValue() | 0xFFFFFFFF0000FFFFULL) == N->getZExtValue()); 126 }], LH16>; 127 128 def i64hl16c : PatLeaf<(i64 imm), [{ 129 // i64hl16c predicate - true if the 64-bit immediate has only bits 32-47 set. 130 return ((N->getZExtValue() | 0xFFFF0000FFFFFFFFULL) == N->getZExtValue()); 131 }], HL16>; 132 133 def i64hh16c : PatLeaf<(i64 imm), [{ 134 // i64hh16c predicate - true if the 64-bit immediate has only bits 48-63 set. 135 return ((N->getZExtValue() | 0x0000FFFFFFFFFFFFULL) == N->getZExtValue()); 136 }], HH16>; 137 138 def immSExt16 : PatLeaf<(imm), [{ 139 // immSExt16 predicate - true if the immediate fits in a 16-bit sign extended 140 // field. 141 if (N->getValueType(0) == MVT::i64) { 142 uint64_t val = N->getZExtValue(); 143 return ((int64_t)val == (int16_t)val); 144 } else if (N->getValueType(0) == MVT::i32) { 145 uint32_t val = N->getZExtValue(); 146 return ((int32_t)val == (int16_t)val); 147 } 148 149 return false; 150 }], LL16>; 151 152 def immSExt32 : PatLeaf<(i64 imm), [{ 153 // immSExt32 predicate - true if the immediate fits in a 32-bit sign extended 154 // field. 155 uint64_t val = N->getZExtValue(); 156 return ((int64_t)val == (int32_t)val); 157 }], LO32>; 158 159 def i64lo32 : PatLeaf<(i64 imm), [{ 160 // i64lo32 predicate - true if the 64-bit immediate has only rightmost 32 161 // bits set. 162 return ((N->getZExtValue() & 0x00000000FFFFFFFFULL) == N->getZExtValue()); 163 }], LO32>; 164 165 def i64hi32 : PatLeaf<(i64 imm), [{ 166 // i64hi32 predicate - true if the 64-bit immediate has only bits 32-63 set. 167 return ((N->getZExtValue() & 0xFFFFFFFF00000000ULL) == N->getZExtValue()); 168 }], HI32>; 169 170 def i64lo32c : PatLeaf<(i64 imm), [{ 171 // i64lo32 predicate - true if the 64-bit immediate has only rightmost 32 172 // bits set. 173 return ((N->getZExtValue() | 0xFFFFFFFF00000000ULL) == N->getZExtValue()); 174 }], LO32>; 175 176 def i64hi32c : PatLeaf<(i64 imm), [{ 177 // i64hi32 predicate - true if the 64-bit immediate has only bits 32-63 set. 178 return ((N->getZExtValue() | 0x00000000FFFFFFFFULL) == N->getZExtValue()); 179 }], HI32>; 180 181 def i32immSExt8 : PatLeaf<(i32 imm), [{ 182 // i32immSExt8 predicate - True if the 32-bit immediate fits in a 8-bit 183 // sign extended field. 184 return (int32_t)N->getZExtValue() == (int8_t)N->getZExtValue(); 185 }], LO8>; 186 187 def i32immSExt16 : PatLeaf<(i32 imm), [{ 188 // i32immSExt16 predicate - True if the 32-bit immediate fits in a 16-bit 189 // sign extended field. 190 return (int32_t)N->getZExtValue() == (int16_t)N->getZExtValue(); 191 }], LL16>; 192 193 def i64immSExt32 : PatLeaf<(i64 imm), [{ 194 // i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit 195 // sign extended field. 196 return (int64_t)N->getZExtValue() == (int32_t)N->getZExtValue(); 197 }], LO32>; 198 199 def i64immZExt32 : PatLeaf<(i64 imm), [{ 200 // i64immZExt32 predicate - True if the 64-bit immediate fits in a 32-bit 201 // zero extended field. 202 return (uint64_t)N->getZExtValue() == (uint32_t)N->getZExtValue(); 203 }], LO32>; 204 205 // extloads 206 def extloadi32i8 : PatFrag<(ops node:$ptr), (i32 (extloadi8 node:$ptr))>; 207 def extloadi32i16 : PatFrag<(ops node:$ptr), (i32 (extloadi16 node:$ptr))>; 208 def extloadi64i8 : PatFrag<(ops node:$ptr), (i64 (extloadi8 node:$ptr))>; 209 def extloadi64i16 : PatFrag<(ops node:$ptr), (i64 (extloadi16 node:$ptr))>; 210 def extloadi64i32 : PatFrag<(ops node:$ptr), (i64 (extloadi32 node:$ptr))>; 211 212 def sextloadi32i8 : PatFrag<(ops node:$ptr), (i32 (sextloadi8 node:$ptr))>; 213 def sextloadi32i16 : PatFrag<(ops node:$ptr), (i32 (sextloadi16 node:$ptr))>; 214 def sextloadi64i8 : PatFrag<(ops node:$ptr), (i64 (sextloadi8 node:$ptr))>; 215 def sextloadi64i16 : PatFrag<(ops node:$ptr), (i64 (sextloadi16 node:$ptr))>; 216 def sextloadi64i32 : PatFrag<(ops node:$ptr), (i64 (sextloadi32 node:$ptr))>; 217 218 def zextloadi32i8 : PatFrag<(ops node:$ptr), (i32 (zextloadi8 node:$ptr))>; 219 def zextloadi32i16 : PatFrag<(ops node:$ptr), (i32 (zextloadi16 node:$ptr))>; 220 def zextloadi64i8 : PatFrag<(ops node:$ptr), (i64 (zextloadi8 node:$ptr))>; 221 def zextloadi64i16 : PatFrag<(ops node:$ptr), (i64 (zextloadi16 node:$ptr))>; 222 def zextloadi64i32 : PatFrag<(ops node:$ptr), (i64 (zextloadi32 node:$ptr))>; 223 224 // A couple of more descriptive operand definitions. 225 // 32-bits but only 8 bits are significant. 226 def i32i8imm : Operand<i32>; 227 // 32-bits but only 16 bits are significant. 228 def i32i16imm : Operand<i32>; 229 // 64-bits but only 32 bits are significant. 230 def i64i32imm : Operand<i64>; 231 // Branch targets have OtherVT type. 232 def brtarget : Operand<OtherVT>; 233 234 // Unsigned i12 235 def u12imm : Operand<i32> { 236 let PrintMethod = "printU12ImmOperand"; 237 } 238 def u12imm64 : Operand<i64> { 239 let PrintMethod = "printU12ImmOperand"; 240 } 241 242 // Signed i16 243 def s16imm : Operand<i32> { 244 let PrintMethod = "printS16ImmOperand"; 245 } 246 def s16imm64 : Operand<i64> { 247 let PrintMethod = "printS16ImmOperand"; 248 } 249 // Unsigned i16 250 def u16imm : Operand<i32> { 251 let PrintMethod = "printU16ImmOperand"; 252 } 253 def u16imm64 : Operand<i64> { 254 let PrintMethod = "printU16ImmOperand"; 255 } 256 257 // Signed i20 258 def s20imm : Operand<i32> { 259 let PrintMethod = "printS20ImmOperand"; 260 } 261 def s20imm64 : Operand<i64> { 262 let PrintMethod = "printS20ImmOperand"; 263 } 264 // Signed i32 265 def s32imm : Operand<i32> { 266 let PrintMethod = "printS32ImmOperand"; 267 } 268 def s32imm64 : Operand<i64> { 269 let PrintMethod = "printS32ImmOperand"; 270 } 271 // Unsigned i32 272 def u32imm : Operand<i32> { 273 let PrintMethod = "printU32ImmOperand"; 274 } 275 def u32imm64 : Operand<i64> { 276 let PrintMethod = "printU32ImmOperand"; 277 } 278 279 def imm_pcrel : Operand<i64> { 280 let PrintMethod = "printPCRelImmOperand"; 281 } 282 283 //===----------------------------------------------------------------------===// 284 // SystemZ Operand Definitions. 285 //===----------------------------------------------------------------------===// 286 287 // Address operands 288 289 // riaddr := reg + imm 290 def riaddr32 : Operand<i64>, 291 ComplexPattern<i64, 2, "SelectAddrRI12Only", []> { 292 let PrintMethod = "printRIAddrOperand"; 293 let MIOperandInfo = (ops ADDR64:$base, u12imm:$disp); 294 } 295 296 def riaddr12 : Operand<i64>, 297 ComplexPattern<i64, 2, "SelectAddrRI12", []> { 298 let PrintMethod = "printRIAddrOperand"; 299 let MIOperandInfo = (ops ADDR64:$base, u12imm64:$disp); 300 } 301 302 def riaddr : Operand<i64>, 303 ComplexPattern<i64, 2, "SelectAddrRI", []> { 304 let PrintMethod = "printRIAddrOperand"; 305 let MIOperandInfo = (ops ADDR64:$base, s20imm64:$disp); 306 } 307 308 //===----------------------------------------------------------------------===// 309 310 // rriaddr := reg + reg + imm 311 def rriaddr12 : Operand<i64>, 312 ComplexPattern<i64, 3, "SelectAddrRRI12", [], []> { 313 let PrintMethod = "printRRIAddrOperand"; 314 let MIOperandInfo = (ops ADDR64:$base, u12imm64:$disp, ADDR64:$index); 315 } 316 def rriaddr : Operand<i64>, 317 ComplexPattern<i64, 3, "SelectAddrRRI20", [], []> { 318 let PrintMethod = "printRRIAddrOperand"; 319 let MIOperandInfo = (ops ADDR64:$base, s20imm64:$disp, ADDR64:$index); 320 } 321 def laaddr : Operand<i64>, 322 ComplexPattern<i64, 3, "SelectLAAddr", [add, sub, or, frameindex], []> { 323 let PrintMethod = "printRRIAddrOperand"; 324 let MIOperandInfo = (ops ADDR64:$base, s20imm64:$disp, ADDR64:$index); 325 } 326