Home | History | Annotate | Download | only in Scalar
      1 //===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements Loop Rotation Pass.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "loop-rotate"
     15 #include "llvm/Transforms/Scalar.h"
     16 #include "llvm/Function.h"
     17 #include "llvm/IntrinsicInst.h"
     18 #include "llvm/Analysis/CodeMetrics.h"
     19 #include "llvm/Analysis/LoopPass.h"
     20 #include "llvm/Analysis/InstructionSimplify.h"
     21 #include "llvm/Analysis/ScalarEvolution.h"
     22 #include "llvm/Transforms/Utils/Local.h"
     23 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     24 #include "llvm/Transforms/Utils/SSAUpdater.h"
     25 #include "llvm/Transforms/Utils/ValueMapper.h"
     26 #include "llvm/Support/Debug.h"
     27 #include "llvm/ADT/Statistic.h"
     28 using namespace llvm;
     29 
     30 #define MAX_HEADER_SIZE 16
     31 
     32 STATISTIC(NumRotated, "Number of loops rotated");
     33 namespace {
     34 
     35   class LoopRotate : public LoopPass {
     36   public:
     37     static char ID; // Pass ID, replacement for typeid
     38     LoopRotate() : LoopPass(ID) {
     39       initializeLoopRotatePass(*PassRegistry::getPassRegistry());
     40     }
     41 
     42     // LCSSA form makes instruction renaming easier.
     43     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
     44       AU.addPreserved<DominatorTree>();
     45       AU.addRequired<LoopInfo>();
     46       AU.addPreserved<LoopInfo>();
     47       AU.addRequiredID(LoopSimplifyID);
     48       AU.addPreservedID(LoopSimplifyID);
     49       AU.addRequiredID(LCSSAID);
     50       AU.addPreservedID(LCSSAID);
     51       AU.addPreserved<ScalarEvolution>();
     52     }
     53 
     54     bool runOnLoop(Loop *L, LPPassManager &LPM);
     55     bool rotateLoop(Loop *L);
     56 
     57   private:
     58     LoopInfo *LI;
     59   };
     60 }
     61 
     62 char LoopRotate::ID = 0;
     63 INITIALIZE_PASS_BEGIN(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
     64 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
     65 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
     66 INITIALIZE_PASS_DEPENDENCY(LCSSA)
     67 INITIALIZE_PASS_END(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
     68 
     69 Pass *llvm::createLoopRotatePass() { return new LoopRotate(); }
     70 
     71 /// Rotate Loop L as many times as possible. Return true if
     72 /// the loop is rotated at least once.
     73 bool LoopRotate::runOnLoop(Loop *L, LPPassManager &LPM) {
     74   LI = &getAnalysis<LoopInfo>();
     75 
     76   // One loop can be rotated multiple times.
     77   bool MadeChange = false;
     78   while (rotateLoop(L))
     79     MadeChange = true;
     80 
     81   return MadeChange;
     82 }
     83 
     84 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
     85 /// old header into the preheader.  If there were uses of the values produced by
     86 /// these instruction that were outside of the loop, we have to insert PHI nodes
     87 /// to merge the two values.  Do this now.
     88 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
     89                                             BasicBlock *OrigPreheader,
     90                                             ValueToValueMapTy &ValueMap) {
     91   // Remove PHI node entries that are no longer live.
     92   BasicBlock::iterator I, E = OrigHeader->end();
     93   for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
     94     PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader));
     95 
     96   // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
     97   // as necessary.
     98   SSAUpdater SSA;
     99   for (I = OrigHeader->begin(); I != E; ++I) {
    100     Value *OrigHeaderVal = I;
    101 
    102     // If there are no uses of the value (e.g. because it returns void), there
    103     // is nothing to rewrite.
    104     if (OrigHeaderVal->use_empty())
    105       continue;
    106 
    107     Value *OrigPreHeaderVal = ValueMap[OrigHeaderVal];
    108 
    109     // The value now exits in two versions: the initial value in the preheader
    110     // and the loop "next" value in the original header.
    111     SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
    112     SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
    113     SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal);
    114 
    115     // Visit each use of the OrigHeader instruction.
    116     for (Value::use_iterator UI = OrigHeaderVal->use_begin(),
    117          UE = OrigHeaderVal->use_end(); UI != UE; ) {
    118       // Grab the use before incrementing the iterator.
    119       Use &U = UI.getUse();
    120 
    121       // Increment the iterator before removing the use from the list.
    122       ++UI;
    123 
    124       // SSAUpdater can't handle a non-PHI use in the same block as an
    125       // earlier def. We can easily handle those cases manually.
    126       Instruction *UserInst = cast<Instruction>(U.getUser());
    127       if (!isa<PHINode>(UserInst)) {
    128         BasicBlock *UserBB = UserInst->getParent();
    129 
    130         // The original users in the OrigHeader are already using the
    131         // original definitions.
    132         if (UserBB == OrigHeader)
    133           continue;
    134 
    135         // Users in the OrigPreHeader need to use the value to which the
    136         // original definitions are mapped.
    137         if (UserBB == OrigPreheader) {
    138           U = OrigPreHeaderVal;
    139           continue;
    140         }
    141       }
    142 
    143       // Anything else can be handled by SSAUpdater.
    144       SSA.RewriteUse(U);
    145     }
    146   }
    147 }
    148 
    149 /// Rotate loop LP. Return true if the loop is rotated.
    150 bool LoopRotate::rotateLoop(Loop *L) {
    151   // If the loop has only one block then there is not much to rotate.
    152   if (L->getBlocks().size() == 1)
    153     return false;
    154 
    155   BasicBlock *OrigHeader = L->getHeader();
    156 
    157   BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
    158   if (BI == 0 || BI->isUnconditional())
    159     return false;
    160 
    161   // If the loop header is not one of the loop exiting blocks then
    162   // either this loop is already rotated or it is not
    163   // suitable for loop rotation transformations.
    164   if (!L->isLoopExiting(OrigHeader))
    165     return false;
    166 
    167   // Updating PHInodes in loops with multiple exits adds complexity.
    168   // Keep it simple, and restrict loop rotation to loops with one exit only.
    169   // In future, lift this restriction and support for multiple exits if
    170   // required.
    171   SmallVector<BasicBlock*, 8> ExitBlocks;
    172   L->getExitBlocks(ExitBlocks);
    173   if (ExitBlocks.size() > 1)
    174     return false;
    175 
    176   // Check size of original header and reject loop if it is very big.
    177   {
    178     CodeMetrics Metrics;
    179     Metrics.analyzeBasicBlock(OrigHeader);
    180     if (Metrics.NumInsts > MAX_HEADER_SIZE)
    181       return false;
    182   }
    183 
    184   // Now, this loop is suitable for rotation.
    185   BasicBlock *OrigPreheader = L->getLoopPreheader();
    186   BasicBlock *OrigLatch = L->getLoopLatch();
    187 
    188   // If the loop could not be converted to canonical form, it must have an
    189   // indirectbr in it, just give up.
    190   if (OrigPreheader == 0 || OrigLatch == 0)
    191     return false;
    192 
    193   // Anything ScalarEvolution may know about this loop or the PHI nodes
    194   // in its header will soon be invalidated.
    195   if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>())
    196     SE->forgetLoop(L);
    197 
    198   // Find new Loop header. NewHeader is a Header's one and only successor
    199   // that is inside loop.  Header's other successor is outside the
    200   // loop.  Otherwise loop is not suitable for rotation.
    201   BasicBlock *Exit = BI->getSuccessor(0);
    202   BasicBlock *NewHeader = BI->getSuccessor(1);
    203   if (L->contains(Exit))
    204     std::swap(Exit, NewHeader);
    205   assert(NewHeader && "Unable to determine new loop header");
    206   assert(L->contains(NewHeader) && !L->contains(Exit) &&
    207          "Unable to determine loop header and exit blocks");
    208 
    209   // This code assumes that the new header has exactly one predecessor.
    210   // Remove any single-entry PHI nodes in it.
    211   assert(NewHeader->getSinglePredecessor() &&
    212          "New header doesn't have one pred!");
    213   FoldSingleEntryPHINodes(NewHeader);
    214 
    215   // Begin by walking OrigHeader and populating ValueMap with an entry for
    216   // each Instruction.
    217   BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
    218   ValueToValueMapTy ValueMap;
    219 
    220   // For PHI nodes, the value available in OldPreHeader is just the
    221   // incoming value from OldPreHeader.
    222   for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
    223     ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader);
    224 
    225   // For the rest of the instructions, either hoist to the OrigPreheader if
    226   // possible or create a clone in the OldPreHeader if not.
    227   TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator();
    228   while (I != E) {
    229     Instruction *Inst = I++;
    230 
    231     // If the instruction's operands are invariant and it doesn't read or write
    232     // memory, then it is safe to hoist.  Doing this doesn't change the order of
    233     // execution in the preheader, but does prevent the instruction from
    234     // executing in each iteration of the loop.  This means it is safe to hoist
    235     // something that might trap, but isn't safe to hoist something that reads
    236     // memory (without proving that the loop doesn't write).
    237     if (L->hasLoopInvariantOperands(Inst) &&
    238         !Inst->mayReadFromMemory() && !Inst->mayWriteToMemory() &&
    239         !isa<TerminatorInst>(Inst) && !isa<DbgInfoIntrinsic>(Inst)) {
    240       Inst->moveBefore(LoopEntryBranch);
    241       continue;
    242     }
    243 
    244     // Otherwise, create a duplicate of the instruction.
    245     Instruction *C = Inst->clone();
    246 
    247     // Eagerly remap the operands of the instruction.
    248     RemapInstruction(C, ValueMap,
    249                      RF_NoModuleLevelChanges|RF_IgnoreMissingEntries);
    250 
    251     // With the operands remapped, see if the instruction constant folds or is
    252     // otherwise simplifyable.  This commonly occurs because the entry from PHI
    253     // nodes allows icmps and other instructions to fold.
    254     Value *V = SimplifyInstruction(C);
    255     if (V && LI->replacementPreservesLCSSAForm(C, V)) {
    256       // If so, then delete the temporary instruction and stick the folded value
    257       // in the map.
    258       delete C;
    259       ValueMap[Inst] = V;
    260     } else {
    261       // Otherwise, stick the new instruction into the new block!
    262       C->setName(Inst->getName());
    263       C->insertBefore(LoopEntryBranch);
    264       ValueMap[Inst] = C;
    265     }
    266   }
    267 
    268   // Along with all the other instructions, we just cloned OrigHeader's
    269   // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
    270   // successors by duplicating their incoming values for OrigHeader.
    271   TerminatorInst *TI = OrigHeader->getTerminator();
    272   for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
    273     for (BasicBlock::iterator BI = TI->getSuccessor(i)->begin();
    274          PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
    275       PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
    276 
    277   // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
    278   // OrigPreHeader's old terminator (the original branch into the loop), and
    279   // remove the corresponding incoming values from the PHI nodes in OrigHeader.
    280   LoopEntryBranch->eraseFromParent();
    281 
    282   // If there were any uses of instructions in the duplicated block outside the
    283   // loop, update them, inserting PHI nodes as required
    284   RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap);
    285 
    286   // NewHeader is now the header of the loop.
    287   L->moveToHeader(NewHeader);
    288   assert(L->getHeader() == NewHeader && "Latch block is our new header");
    289 
    290 
    291   // At this point, we've finished our major CFG changes.  As part of cloning
    292   // the loop into the preheader we've simplified instructions and the
    293   // duplicated conditional branch may now be branching on a constant.  If it is
    294   // branching on a constant and if that constant means that we enter the loop,
    295   // then we fold away the cond branch to an uncond branch.  This simplifies the
    296   // loop in cases important for nested loops, and it also means we don't have
    297   // to split as many edges.
    298   BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
    299   assert(PHBI->isConditional() && "Should be clone of BI condbr!");
    300   if (!isa<ConstantInt>(PHBI->getCondition()) ||
    301       PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero())
    302           != NewHeader) {
    303     // The conditional branch can't be folded, handle the general case.
    304     // Update DominatorTree to reflect the CFG change we just made.  Then split
    305     // edges as necessary to preserve LoopSimplify form.
    306     if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>()) {
    307       // Since OrigPreheader now has the conditional branch to Exit block, it is
    308       // the dominator of Exit.
    309       DT->changeImmediateDominator(Exit, OrigPreheader);
    310       DT->changeImmediateDominator(NewHeader, OrigPreheader);
    311 
    312       // Update OrigHeader to be dominated by the new header block.
    313       DT->changeImmediateDominator(OrigHeader, OrigLatch);
    314     }
    315 
    316     // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
    317     // thus is not a preheader anymore.  Split the edge to form a real preheader.
    318     BasicBlock *NewPH = SplitCriticalEdge(OrigPreheader, NewHeader, this);
    319     NewPH->setName(NewHeader->getName() + ".lr.ph");
    320 
    321     // Preserve canonical loop form, which means that 'Exit' should have only one
    322     // predecessor.
    323     BasicBlock *ExitSplit = SplitCriticalEdge(L->getLoopLatch(), Exit, this);
    324     ExitSplit->moveBefore(Exit);
    325   } else {
    326     // We can fold the conditional branch in the preheader, this makes things
    327     // simpler. The first step is to remove the extra edge to the Exit block.
    328     Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
    329     BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI);
    330     NewBI->setDebugLoc(PHBI->getDebugLoc());
    331     PHBI->eraseFromParent();
    332 
    333     // With our CFG finalized, update DomTree if it is available.
    334     if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>()) {
    335       // Update OrigHeader to be dominated by the new header block.
    336       DT->changeImmediateDominator(NewHeader, OrigPreheader);
    337       DT->changeImmediateDominator(OrigHeader, OrigLatch);
    338     }
    339   }
    340 
    341   assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
    342   assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
    343 
    344   // Now that the CFG and DomTree are in a consistent state again, try to merge
    345   // the OrigHeader block into OrigLatch.  This will succeed if they are
    346   // connected by an unconditional branch.  This is just a cleanup so the
    347   // emitted code isn't too gross in this common case.
    348   MergeBlockIntoPredecessor(OrigHeader, this);
    349 
    350   ++NumRotated;
    351   return true;
    352 }
    353 
    354