1 //===- InlineFunction.cpp - Code to perform function inlining -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements inlining of a function into a call site, resolving 11 // parameters and the return value as appropriate. 12 // 13 // The code in this file for handling inlines through invoke 14 // instructions preserves semantics only under some assumptions about 15 // the behavior of unwinders which correspond to gcc-style libUnwind 16 // exception personality functions. Eventually the IR will be 17 // improved to make this unnecessary, but until then, this code is 18 // marked [LIBUNWIND]. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "llvm/Transforms/Utils/Cloning.h" 23 #include "llvm/Constants.h" 24 #include "llvm/DerivedTypes.h" 25 #include "llvm/Module.h" 26 #include "llvm/Instructions.h" 27 #include "llvm/IntrinsicInst.h" 28 #include "llvm/Intrinsics.h" 29 #include "llvm/Attributes.h" 30 #include "llvm/Analysis/CallGraph.h" 31 #include "llvm/Analysis/DebugInfo.h" 32 #include "llvm/Analysis/InstructionSimplify.h" 33 #include "llvm/Target/TargetData.h" 34 #include "llvm/Transforms/Utils/Local.h" 35 #include "llvm/ADT/SmallVector.h" 36 #include "llvm/ADT/StringExtras.h" 37 #include "llvm/Support/CallSite.h" 38 #include "llvm/Support/IRBuilder.h" 39 using namespace llvm; 40 41 bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI) { 42 return InlineFunction(CallSite(CI), IFI); 43 } 44 bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI) { 45 return InlineFunction(CallSite(II), IFI); 46 } 47 48 // FIXME: New EH - Remove the functions marked [LIBUNWIND] when new EH is 49 // turned on. 50 51 /// [LIBUNWIND] Look for an llvm.eh.exception call in the given block. 52 static EHExceptionInst *findExceptionInBlock(BasicBlock *bb) { 53 for (BasicBlock::iterator i = bb->begin(), e = bb->end(); i != e; i++) { 54 EHExceptionInst *exn = dyn_cast<EHExceptionInst>(i); 55 if (exn) return exn; 56 } 57 58 return 0; 59 } 60 61 /// [LIBUNWIND] Look for the 'best' llvm.eh.selector instruction for 62 /// the given llvm.eh.exception call. 63 static EHSelectorInst *findSelectorForException(EHExceptionInst *exn) { 64 BasicBlock *exnBlock = exn->getParent(); 65 66 EHSelectorInst *outOfBlockSelector = 0; 67 for (Instruction::use_iterator 68 ui = exn->use_begin(), ue = exn->use_end(); ui != ue; ++ui) { 69 EHSelectorInst *sel = dyn_cast<EHSelectorInst>(*ui); 70 if (!sel) continue; 71 72 // Immediately accept an eh.selector in the same block as the 73 // excepton call. 74 if (sel->getParent() == exnBlock) return sel; 75 76 // Otherwise, use the first selector we see. 77 if (!outOfBlockSelector) outOfBlockSelector = sel; 78 } 79 80 return outOfBlockSelector; 81 } 82 83 /// [LIBUNWIND] Find the (possibly absent) call to @llvm.eh.selector 84 /// in the given landing pad. In principle, llvm.eh.exception is 85 /// required to be in the landing pad; in practice, SplitCriticalEdge 86 /// can break that invariant, and then inlining can break it further. 87 /// There's a real need for a reliable solution here, but until that 88 /// happens, we have some fragile workarounds here. 89 static EHSelectorInst *findSelectorForLandingPad(BasicBlock *lpad) { 90 // Look for an exception call in the actual landing pad. 91 EHExceptionInst *exn = findExceptionInBlock(lpad); 92 if (exn) return findSelectorForException(exn); 93 94 // Okay, if that failed, look for one in an obvious successor. If 95 // we find one, we'll fix the IR by moving things back to the 96 // landing pad. 97 98 bool dominates = true; // does the lpad dominate the exn call 99 BasicBlock *nonDominated = 0; // if not, the first non-dominated block 100 BasicBlock *lastDominated = 0; // and the block which branched to it 101 102 BasicBlock *exnBlock = lpad; 103 104 // We need to protect against lpads that lead into infinite loops. 105 SmallPtrSet<BasicBlock*,4> visited; 106 visited.insert(exnBlock); 107 108 do { 109 // We're not going to apply this hack to anything more complicated 110 // than a series of unconditional branches, so if the block 111 // doesn't terminate in an unconditional branch, just fail. More 112 // complicated cases can arise when, say, sinking a call into a 113 // split unwind edge and then inlining it; but that can do almost 114 // *anything* to the CFG, including leaving the selector 115 // completely unreachable. The only way to fix that properly is 116 // to (1) prohibit transforms which move the exception or selector 117 // values away from the landing pad, e.g. by producing them with 118 // instructions that are pinned to an edge like a phi, or 119 // producing them with not-really-instructions, and (2) making 120 // transforms which split edges deal with that. 121 BranchInst *branch = dyn_cast<BranchInst>(&exnBlock->back()); 122 if (!branch || branch->isConditional()) return 0; 123 124 BasicBlock *successor = branch->getSuccessor(0); 125 126 // Fail if we found an infinite loop. 127 if (!visited.insert(successor)) return 0; 128 129 // If the successor isn't dominated by exnBlock: 130 if (!successor->getSinglePredecessor()) { 131 // We don't want to have to deal with threading the exception 132 // through multiple levels of phi, so give up if we've already 133 // followed a non-dominating edge. 134 if (!dominates) return 0; 135 136 // Otherwise, remember this as a non-dominating edge. 137 dominates = false; 138 nonDominated = successor; 139 lastDominated = exnBlock; 140 } 141 142 exnBlock = successor; 143 144 // Can we stop here? 145 exn = findExceptionInBlock(exnBlock); 146 } while (!exn); 147 148 // Look for a selector call for the exception we found. 149 EHSelectorInst *selector = findSelectorForException(exn); 150 if (!selector) return 0; 151 152 // The easy case is when the landing pad still dominates the 153 // exception call, in which case we can just move both calls back to 154 // the landing pad. 155 if (dominates) { 156 selector->moveBefore(lpad->getFirstNonPHI()); 157 exn->moveBefore(selector); 158 return selector; 159 } 160 161 // Otherwise, we have to split at the first non-dominating block. 162 // The CFG looks basically like this: 163 // lpad: 164 // phis_0 165 // insnsAndBranches_1 166 // br label %nonDominated 167 // nonDominated: 168 // phis_2 169 // insns_3 170 // %exn = call i8* @llvm.eh.exception() 171 // insnsAndBranches_4 172 // %selector = call @llvm.eh.selector(i8* %exn, ... 173 // We need to turn this into: 174 // lpad: 175 // phis_0 176 // %exn0 = call i8* @llvm.eh.exception() 177 // %selector0 = call @llvm.eh.selector(i8* %exn0, ... 178 // insnsAndBranches_1 179 // br label %split // from lastDominated 180 // nonDominated: 181 // phis_2 (without edge from lastDominated) 182 // %exn1 = call i8* @llvm.eh.exception() 183 // %selector1 = call i8* @llvm.eh.selector(i8* %exn1, ... 184 // br label %split 185 // split: 186 // phis_2 (edge from lastDominated, edge from split) 187 // %exn = phi ... 188 // %selector = phi ... 189 // insns_3 190 // insnsAndBranches_4 191 192 assert(nonDominated); 193 assert(lastDominated); 194 195 // First, make clones of the intrinsics to go in lpad. 196 EHExceptionInst *lpadExn = cast<EHExceptionInst>(exn->clone()); 197 EHSelectorInst *lpadSelector = cast<EHSelectorInst>(selector->clone()); 198 lpadSelector->setArgOperand(0, lpadExn); 199 lpadSelector->insertBefore(lpad->getFirstNonPHI()); 200 lpadExn->insertBefore(lpadSelector); 201 202 // Split the non-dominated block. 203 BasicBlock *split = 204 nonDominated->splitBasicBlock(nonDominated->getFirstNonPHI(), 205 nonDominated->getName() + ".lpad-fix"); 206 207 // Redirect the last dominated branch there. 208 cast<BranchInst>(lastDominated->back()).setSuccessor(0, split); 209 210 // Move the existing intrinsics to the end of the old block. 211 selector->moveBefore(&nonDominated->back()); 212 exn->moveBefore(selector); 213 214 Instruction *splitIP = &split->front(); 215 216 // For all the phis in nonDominated, make a new phi in split to join 217 // that phi with the edge from lastDominated. 218 for (BasicBlock::iterator 219 i = nonDominated->begin(), e = nonDominated->end(); i != e; ++i) { 220 PHINode *phi = dyn_cast<PHINode>(i); 221 if (!phi) break; 222 223 PHINode *splitPhi = PHINode::Create(phi->getType(), 2, phi->getName(), 224 splitIP); 225 phi->replaceAllUsesWith(splitPhi); 226 splitPhi->addIncoming(phi, nonDominated); 227 splitPhi->addIncoming(phi->removeIncomingValue(lastDominated), 228 lastDominated); 229 } 230 231 // Make new phis for the exception and selector. 232 PHINode *exnPhi = PHINode::Create(exn->getType(), 2, "", splitIP); 233 exn->replaceAllUsesWith(exnPhi); 234 selector->setArgOperand(0, exn); // except for this use 235 exnPhi->addIncoming(exn, nonDominated); 236 exnPhi->addIncoming(lpadExn, lastDominated); 237 238 PHINode *selectorPhi = PHINode::Create(selector->getType(), 2, "", splitIP); 239 selector->replaceAllUsesWith(selectorPhi); 240 selectorPhi->addIncoming(selector, nonDominated); 241 selectorPhi->addIncoming(lpadSelector, lastDominated); 242 243 return lpadSelector; 244 } 245 246 namespace { 247 /// A class for recording information about inlining through an invoke. 248 class InvokeInliningInfo { 249 BasicBlock *OuterUnwindDest; 250 EHSelectorInst *OuterSelector; 251 BasicBlock *InnerUnwindDest; 252 PHINode *InnerExceptionPHI; 253 PHINode *InnerSelectorPHI; 254 SmallVector<Value*, 8> UnwindDestPHIValues; 255 256 // FIXME: New EH - These will replace the analogous ones above. 257 BasicBlock *OuterResumeDest; //< Destination of the invoke's unwind. 258 BasicBlock *InnerResumeDest; //< Destination for the callee's resume. 259 LandingPadInst *CallerLPad; //< LandingPadInst associated with the invoke. 260 PHINode *InnerEHValuesPHI; //< PHI for EH values from landingpad insts. 261 262 public: 263 InvokeInliningInfo(InvokeInst *II) 264 : OuterUnwindDest(II->getUnwindDest()), OuterSelector(0), 265 InnerUnwindDest(0), InnerExceptionPHI(0), InnerSelectorPHI(0), 266 OuterResumeDest(II->getUnwindDest()), InnerResumeDest(0), 267 CallerLPad(0), InnerEHValuesPHI(0) { 268 // If there are PHI nodes in the unwind destination block, we need to keep 269 // track of which values came into them from the invoke before removing 270 // the edge from this block. 271 llvm::BasicBlock *InvokeBB = II->getParent(); 272 BasicBlock::iterator I = OuterUnwindDest->begin(); 273 for (; isa<PHINode>(I); ++I) { 274 // Save the value to use for this edge. 275 PHINode *PHI = cast<PHINode>(I); 276 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 277 } 278 279 // FIXME: With the new EH, this if/dyn_cast should be a 'cast'. 280 if (LandingPadInst *LPI = dyn_cast<LandingPadInst>(I)) { 281 CallerLPad = LPI; 282 } 283 } 284 285 /// The outer unwind destination is the target of unwind edges 286 /// introduced for calls within the inlined function. 287 BasicBlock *getOuterUnwindDest() const { 288 return OuterUnwindDest; 289 } 290 291 EHSelectorInst *getOuterSelector() { 292 if (!OuterSelector) 293 OuterSelector = findSelectorForLandingPad(OuterUnwindDest); 294 return OuterSelector; 295 } 296 297 BasicBlock *getInnerUnwindDest(); 298 299 // FIXME: New EH - Rename when new EH is turned on. 300 BasicBlock *getInnerUnwindDestNewEH(); 301 302 LandingPadInst *getLandingPadInst() const { return CallerLPad; } 303 304 bool forwardEHResume(CallInst *call, BasicBlock *src); 305 306 /// forwardResume - Forward the 'resume' instruction to the caller's landing 307 /// pad block. When the landing pad block has only one predecessor, this is 308 /// a simple branch. When there is more than one predecessor, we need to 309 /// split the landing pad block after the landingpad instruction and jump 310 /// to there. 311 void forwardResume(ResumeInst *RI); 312 313 /// addIncomingPHIValuesFor - Add incoming-PHI values to the unwind 314 /// destination block for the given basic block, using the values for the 315 /// original invoke's source block. 316 void addIncomingPHIValuesFor(BasicBlock *BB) const { 317 addIncomingPHIValuesForInto(BB, OuterUnwindDest); 318 } 319 320 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { 321 BasicBlock::iterator I = dest->begin(); 322 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 323 PHINode *phi = cast<PHINode>(I); 324 phi->addIncoming(UnwindDestPHIValues[i], src); 325 } 326 } 327 }; 328 } 329 330 /// [LIBUNWIND] Get or create a target for the branch out of rewritten calls to 331 /// llvm.eh.resume. 332 BasicBlock *InvokeInliningInfo::getInnerUnwindDest() { 333 if (InnerUnwindDest) return InnerUnwindDest; 334 335 // Find and hoist the llvm.eh.exception and llvm.eh.selector calls 336 // in the outer landing pad to immediately following the phis. 337 EHSelectorInst *selector = getOuterSelector(); 338 if (!selector) return 0; 339 340 // The call to llvm.eh.exception *must* be in the landing pad. 341 Instruction *exn = cast<Instruction>(selector->getArgOperand(0)); 342 assert(exn->getParent() == OuterUnwindDest); 343 344 // TODO: recognize when we've already done this, so that we don't 345 // get a linear number of these when inlining calls into lots of 346 // invokes with the same landing pad. 347 348 // Do the hoisting. 349 Instruction *splitPoint = exn->getParent()->getFirstNonPHI(); 350 assert(splitPoint != selector && "selector-on-exception dominance broken!"); 351 if (splitPoint == exn) { 352 selector->removeFromParent(); 353 selector->insertAfter(exn); 354 splitPoint = selector->getNextNode(); 355 } else { 356 exn->moveBefore(splitPoint); 357 selector->moveBefore(splitPoint); 358 } 359 360 // Split the landing pad. 361 InnerUnwindDest = OuterUnwindDest->splitBasicBlock(splitPoint, 362 OuterUnwindDest->getName() + ".body"); 363 364 // The number of incoming edges we expect to the inner landing pad. 365 const unsigned phiCapacity = 2; 366 367 // Create corresponding new phis for all the phis in the outer landing pad. 368 BasicBlock::iterator insertPoint = InnerUnwindDest->begin(); 369 BasicBlock::iterator I = OuterUnwindDest->begin(); 370 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 371 PHINode *outerPhi = cast<PHINode>(I); 372 PHINode *innerPhi = PHINode::Create(outerPhi->getType(), phiCapacity, 373 outerPhi->getName() + ".lpad-body", 374 insertPoint); 375 outerPhi->replaceAllUsesWith(innerPhi); 376 innerPhi->addIncoming(outerPhi, OuterUnwindDest); 377 } 378 379 // Create a phi for the exception value... 380 InnerExceptionPHI = PHINode::Create(exn->getType(), phiCapacity, 381 "exn.lpad-body", insertPoint); 382 exn->replaceAllUsesWith(InnerExceptionPHI); 383 selector->setArgOperand(0, exn); // restore this use 384 InnerExceptionPHI->addIncoming(exn, OuterUnwindDest); 385 386 // ...and the selector. 387 InnerSelectorPHI = PHINode::Create(selector->getType(), phiCapacity, 388 "selector.lpad-body", insertPoint); 389 selector->replaceAllUsesWith(InnerSelectorPHI); 390 InnerSelectorPHI->addIncoming(selector, OuterUnwindDest); 391 392 // All done. 393 return InnerUnwindDest; 394 } 395 396 /// [LIBUNWIND] Try to forward the given call, which logically occurs 397 /// at the end of the given block, as a branch to the inner unwind 398 /// block. Returns true if the call was forwarded. 399 bool InvokeInliningInfo::forwardEHResume(CallInst *call, BasicBlock *src) { 400 // First, check whether this is a call to the intrinsic. 401 Function *fn = dyn_cast<Function>(call->getCalledValue()); 402 if (!fn || fn->getName() != "llvm.eh.resume") 403 return false; 404 405 // At this point, we need to return true on all paths, because 406 // otherwise we'll construct an invoke of the intrinsic, which is 407 // not well-formed. 408 409 // Try to find or make an inner unwind dest, which will fail if we 410 // can't find a selector call for the outer unwind dest. 411 BasicBlock *dest = getInnerUnwindDest(); 412 bool hasSelector = (dest != 0); 413 414 // If we failed, just use the outer unwind dest, dropping the 415 // exception and selector on the floor. 416 if (!hasSelector) 417 dest = OuterUnwindDest; 418 419 // Make a branch. 420 BranchInst::Create(dest, src); 421 422 // Update the phis in the destination. They were inserted in an 423 // order which makes this work. 424 addIncomingPHIValuesForInto(src, dest); 425 426 if (hasSelector) { 427 InnerExceptionPHI->addIncoming(call->getArgOperand(0), src); 428 InnerSelectorPHI->addIncoming(call->getArgOperand(1), src); 429 } 430 431 return true; 432 } 433 434 /// Get or create a target for the branch from ResumeInsts. 435 BasicBlock *InvokeInliningInfo::getInnerUnwindDestNewEH() { 436 // FIXME: New EH - rename this function when new EH is turned on. 437 if (InnerResumeDest) return InnerResumeDest; 438 439 // Split the landing pad. 440 BasicBlock::iterator SplitPoint = CallerLPad; ++SplitPoint; 441 InnerResumeDest = 442 OuterResumeDest->splitBasicBlock(SplitPoint, 443 OuterResumeDest->getName() + ".body"); 444 445 // The number of incoming edges we expect to the inner landing pad. 446 const unsigned PHICapacity = 2; 447 448 // Create corresponding new PHIs for all the PHIs in the outer landing pad. 449 BasicBlock::iterator InsertPoint = InnerResumeDest->begin(); 450 BasicBlock::iterator I = OuterResumeDest->begin(); 451 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 452 PHINode *OuterPHI = cast<PHINode>(I); 453 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, 454 OuterPHI->getName() + ".lpad-body", 455 InsertPoint); 456 OuterPHI->replaceAllUsesWith(InnerPHI); 457 InnerPHI->addIncoming(OuterPHI, OuterResumeDest); 458 } 459 460 // Create a PHI for the exception values. 461 InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, 462 "eh.lpad-body", InsertPoint); 463 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); 464 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); 465 466 // All done. 467 return InnerResumeDest; 468 } 469 470 /// forwardResume - Forward the 'resume' instruction to the caller's landing pad 471 /// block. When the landing pad block has only one predecessor, this is a simple 472 /// branch. When there is more than one predecessor, we need to split the 473 /// landing pad block after the landingpad instruction and jump to there. 474 void InvokeInliningInfo::forwardResume(ResumeInst *RI) { 475 BasicBlock *Dest = getInnerUnwindDestNewEH(); 476 BasicBlock *Src = RI->getParent(); 477 478 BranchInst::Create(Dest, Src); 479 480 // Update the PHIs in the destination. They were inserted in an order which 481 // makes this work. 482 addIncomingPHIValuesForInto(Src, Dest); 483 484 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); 485 RI->eraseFromParent(); 486 } 487 488 /// [LIBUNWIND] Check whether this selector is "only cleanups": 489 /// call i32 @llvm.eh.selector(blah, blah, i32 0) 490 static bool isCleanupOnlySelector(EHSelectorInst *selector) { 491 if (selector->getNumArgOperands() != 3) return false; 492 ConstantInt *val = dyn_cast<ConstantInt>(selector->getArgOperand(2)); 493 return (val && val->isZero()); 494 } 495 496 /// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into 497 /// an invoke, we have to turn all of the calls that can throw into 498 /// invokes. This function analyze BB to see if there are any calls, and if so, 499 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI 500 /// nodes in that block with the values specified in InvokeDestPHIValues. 501 /// 502 /// Returns true to indicate that the next block should be skipped. 503 static bool HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB, 504 InvokeInliningInfo &Invoke) { 505 LandingPadInst *LPI = Invoke.getLandingPadInst(); 506 507 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 508 Instruction *I = BBI++; 509 510 if (LPI) // FIXME: New EH - This won't be NULL in the new EH. 511 if (LandingPadInst *L = dyn_cast<LandingPadInst>(I)) { 512 unsigned NumClauses = LPI->getNumClauses(); 513 L->reserveClauses(NumClauses); 514 for (unsigned i = 0; i != NumClauses; ++i) 515 L->addClause(LPI->getClause(i)); 516 } 517 518 // We only need to check for function calls: inlined invoke 519 // instructions require no special handling. 520 CallInst *CI = dyn_cast<CallInst>(I); 521 if (CI == 0) continue; 522 523 // LIBUNWIND: merge selector instructions. 524 if (EHSelectorInst *Inner = dyn_cast<EHSelectorInst>(CI)) { 525 EHSelectorInst *Outer = Invoke.getOuterSelector(); 526 if (!Outer) continue; 527 528 bool innerIsOnlyCleanup = isCleanupOnlySelector(Inner); 529 bool outerIsOnlyCleanup = isCleanupOnlySelector(Outer); 530 531 // If both selectors contain only cleanups, we don't need to do 532 // anything. TODO: this is really just a very specific instance 533 // of a much more general optimization. 534 if (innerIsOnlyCleanup && outerIsOnlyCleanup) continue; 535 536 // Otherwise, we just append the outer selector to the inner selector. 537 SmallVector<Value*, 16> NewSelector; 538 for (unsigned i = 0, e = Inner->getNumArgOperands(); i != e; ++i) 539 NewSelector.push_back(Inner->getArgOperand(i)); 540 for (unsigned i = 2, e = Outer->getNumArgOperands(); i != e; ++i) 541 NewSelector.push_back(Outer->getArgOperand(i)); 542 543 CallInst *NewInner = 544 IRBuilder<>(Inner).CreateCall(Inner->getCalledValue(), NewSelector); 545 // No need to copy attributes, calling convention, etc. 546 NewInner->takeName(Inner); 547 Inner->replaceAllUsesWith(NewInner); 548 Inner->eraseFromParent(); 549 continue; 550 } 551 552 // If this call cannot unwind, don't convert it to an invoke. 553 if (CI->doesNotThrow()) 554 continue; 555 556 // Convert this function call into an invoke instruction. 557 // First, split the basic block. 558 BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc"); 559 560 // Delete the unconditional branch inserted by splitBasicBlock 561 BB->getInstList().pop_back(); 562 563 // LIBUNWIND: If this is a call to @llvm.eh.resume, just branch 564 // directly to the new landing pad. 565 if (Invoke.forwardEHResume(CI, BB)) { 566 // TODO: 'Split' is now unreachable; clean it up. 567 568 // We want to leave the original call intact so that the call 569 // graph and other structures won't get misled. We also have to 570 // avoid processing the next block, or we'll iterate here forever. 571 return true; 572 } 573 574 // Otherwise, create the new invoke instruction. 575 ImmutableCallSite CS(CI); 576 SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end()); 577 InvokeInst *II = 578 InvokeInst::Create(CI->getCalledValue(), Split, 579 Invoke.getOuterUnwindDest(), 580 InvokeArgs, CI->getName(), BB); 581 II->setCallingConv(CI->getCallingConv()); 582 II->setAttributes(CI->getAttributes()); 583 584 // Make sure that anything using the call now uses the invoke! This also 585 // updates the CallGraph if present, because it uses a WeakVH. 586 CI->replaceAllUsesWith(II); 587 588 Split->getInstList().pop_front(); // Delete the original call 589 590 // Update any PHI nodes in the exceptional block to indicate that 591 // there is now a new entry in them. 592 Invoke.addIncomingPHIValuesFor(BB); 593 return false; 594 } 595 596 return false; 597 } 598 599 600 /// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls 601 /// in the body of the inlined function into invokes and turn unwind 602 /// instructions into branches to the invoke unwind dest. 603 /// 604 /// II is the invoke instruction being inlined. FirstNewBlock is the first 605 /// block of the inlined code (the last block is the end of the function), 606 /// and InlineCodeInfo is information about the code that got inlined. 607 static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock, 608 ClonedCodeInfo &InlinedCodeInfo) { 609 BasicBlock *InvokeDest = II->getUnwindDest(); 610 611 Function *Caller = FirstNewBlock->getParent(); 612 613 // The inlined code is currently at the end of the function, scan from the 614 // start of the inlined code to its end, checking for stuff we need to 615 // rewrite. If the code doesn't have calls or unwinds, we know there is 616 // nothing to rewrite. 617 if (!InlinedCodeInfo.ContainsCalls && !InlinedCodeInfo.ContainsUnwinds) { 618 // Now that everything is happy, we have one final detail. The PHI nodes in 619 // the exception destination block still have entries due to the original 620 // invoke instruction. Eliminate these entries (which might even delete the 621 // PHI node) now. 622 InvokeDest->removePredecessor(II->getParent()); 623 return; 624 } 625 626 InvokeInliningInfo Invoke(II); 627 628 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){ 629 if (InlinedCodeInfo.ContainsCalls) 630 if (HandleCallsInBlockInlinedThroughInvoke(BB, Invoke)) { 631 // Honor a request to skip the next block. We don't need to 632 // consider UnwindInsts in this case either. 633 ++BB; 634 continue; 635 } 636 637 if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) { 638 // An UnwindInst requires special handling when it gets inlined into an 639 // invoke site. Once this happens, we know that the unwind would cause 640 // a control transfer to the invoke exception destination, so we can 641 // transform it into a direct branch to the exception destination. 642 BranchInst::Create(InvokeDest, UI); 643 644 // Delete the unwind instruction! 645 UI->eraseFromParent(); 646 647 // Update any PHI nodes in the exceptional block to indicate that 648 // there is now a new entry in them. 649 Invoke.addIncomingPHIValuesFor(BB); 650 } 651 652 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 653 Invoke.forwardResume(RI); 654 } 655 } 656 657 // Now that everything is happy, we have one final detail. The PHI nodes in 658 // the exception destination block still have entries due to the original 659 // invoke instruction. Eliminate these entries (which might even delete the 660 // PHI node) now. 661 InvokeDest->removePredecessor(II->getParent()); 662 } 663 664 /// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee 665 /// into the caller, update the specified callgraph to reflect the changes we 666 /// made. Note that it's possible that not all code was copied over, so only 667 /// some edges of the callgraph may remain. 668 static void UpdateCallGraphAfterInlining(CallSite CS, 669 Function::iterator FirstNewBlock, 670 ValueToValueMapTy &VMap, 671 InlineFunctionInfo &IFI) { 672 CallGraph &CG = *IFI.CG; 673 const Function *Caller = CS.getInstruction()->getParent()->getParent(); 674 const Function *Callee = CS.getCalledFunction(); 675 CallGraphNode *CalleeNode = CG[Callee]; 676 CallGraphNode *CallerNode = CG[Caller]; 677 678 // Since we inlined some uninlined call sites in the callee into the caller, 679 // add edges from the caller to all of the callees of the callee. 680 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); 681 682 // Consider the case where CalleeNode == CallerNode. 683 CallGraphNode::CalledFunctionsVector CallCache; 684 if (CalleeNode == CallerNode) { 685 CallCache.assign(I, E); 686 I = CallCache.begin(); 687 E = CallCache.end(); 688 } 689 690 for (; I != E; ++I) { 691 const Value *OrigCall = I->first; 692 693 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); 694 // Only copy the edge if the call was inlined! 695 if (VMI == VMap.end() || VMI->second == 0) 696 continue; 697 698 // If the call was inlined, but then constant folded, there is no edge to 699 // add. Check for this case. 700 Instruction *NewCall = dyn_cast<Instruction>(VMI->second); 701 if (NewCall == 0) continue; 702 703 // Remember that this call site got inlined for the client of 704 // InlineFunction. 705 IFI.InlinedCalls.push_back(NewCall); 706 707 // It's possible that inlining the callsite will cause it to go from an 708 // indirect to a direct call by resolving a function pointer. If this 709 // happens, set the callee of the new call site to a more precise 710 // destination. This can also happen if the call graph node of the caller 711 // was just unnecessarily imprecise. 712 if (I->second->getFunction() == 0) 713 if (Function *F = CallSite(NewCall).getCalledFunction()) { 714 // Indirect call site resolved to direct call. 715 CallerNode->addCalledFunction(CallSite(NewCall), CG[F]); 716 717 continue; 718 } 719 720 CallerNode->addCalledFunction(CallSite(NewCall), I->second); 721 } 722 723 // Update the call graph by deleting the edge from Callee to Caller. We must 724 // do this after the loop above in case Caller and Callee are the same. 725 CallerNode->removeCallEdgeFor(CS); 726 } 727 728 /// HandleByValArgument - When inlining a call site that has a byval argument, 729 /// we have to make the implicit memcpy explicit by adding it. 730 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall, 731 const Function *CalledFunc, 732 InlineFunctionInfo &IFI, 733 unsigned ByValAlignment) { 734 Type *AggTy = cast<PointerType>(Arg->getType())->getElementType(); 735 736 // If the called function is readonly, then it could not mutate the caller's 737 // copy of the byval'd memory. In this case, it is safe to elide the copy and 738 // temporary. 739 if (CalledFunc->onlyReadsMemory()) { 740 // If the byval argument has a specified alignment that is greater than the 741 // passed in pointer, then we either have to round up the input pointer or 742 // give up on this transformation. 743 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment. 744 return Arg; 745 746 // If the pointer is already known to be sufficiently aligned, or if we can 747 // round it up to a larger alignment, then we don't need a temporary. 748 if (getOrEnforceKnownAlignment(Arg, ByValAlignment, 749 IFI.TD) >= ByValAlignment) 750 return Arg; 751 752 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad 753 // for code quality, but rarely happens and is required for correctness. 754 } 755 756 LLVMContext &Context = Arg->getContext(); 757 758 Type *VoidPtrTy = Type::getInt8PtrTy(Context); 759 760 // Create the alloca. If we have TargetData, use nice alignment. 761 unsigned Align = 1; 762 if (IFI.TD) 763 Align = IFI.TD->getPrefTypeAlignment(AggTy); 764 765 // If the byval had an alignment specified, we *must* use at least that 766 // alignment, as it is required by the byval argument (and uses of the 767 // pointer inside the callee). 768 Align = std::max(Align, ByValAlignment); 769 770 Function *Caller = TheCall->getParent()->getParent(); 771 772 Value *NewAlloca = new AllocaInst(AggTy, 0, Align, Arg->getName(), 773 &*Caller->begin()->begin()); 774 // Emit a memcpy. 775 Type *Tys[3] = {VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context)}; 776 Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(), 777 Intrinsic::memcpy, 778 Tys); 779 Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall); 780 Value *SrcCast = new BitCastInst(Arg, VoidPtrTy, "tmp", TheCall); 781 782 Value *Size; 783 if (IFI.TD == 0) 784 Size = ConstantExpr::getSizeOf(AggTy); 785 else 786 Size = ConstantInt::get(Type::getInt64Ty(Context), 787 IFI.TD->getTypeStoreSize(AggTy)); 788 789 // Always generate a memcpy of alignment 1 here because we don't know 790 // the alignment of the src pointer. Other optimizations can infer 791 // better alignment. 792 Value *CallArgs[] = { 793 DestCast, SrcCast, Size, 794 ConstantInt::get(Type::getInt32Ty(Context), 1), 795 ConstantInt::getFalse(Context) // isVolatile 796 }; 797 IRBuilder<>(TheCall).CreateCall(MemCpyFn, CallArgs); 798 799 // Uses of the argument in the function should use our new alloca 800 // instead. 801 return NewAlloca; 802 } 803 804 // isUsedByLifetimeMarker - Check whether this Value is used by a lifetime 805 // intrinsic. 806 static bool isUsedByLifetimeMarker(Value *V) { 807 for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); UI != UE; 808 ++UI) { 809 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI)) { 810 switch (II->getIntrinsicID()) { 811 default: break; 812 case Intrinsic::lifetime_start: 813 case Intrinsic::lifetime_end: 814 return true; 815 } 816 } 817 } 818 return false; 819 } 820 821 // hasLifetimeMarkers - Check whether the given alloca already has 822 // lifetime.start or lifetime.end intrinsics. 823 static bool hasLifetimeMarkers(AllocaInst *AI) { 824 Type *Int8PtrTy = Type::getInt8PtrTy(AI->getType()->getContext()); 825 if (AI->getType() == Int8PtrTy) 826 return isUsedByLifetimeMarker(AI); 827 828 // Do a scan to find all the casts to i8*. 829 for (Value::use_iterator I = AI->use_begin(), E = AI->use_end(); I != E; 830 ++I) { 831 if (I->getType() != Int8PtrTy) continue; 832 if (I->stripPointerCasts() != AI) continue; 833 if (isUsedByLifetimeMarker(*I)) 834 return true; 835 } 836 return false; 837 } 838 839 /// updateInlinedAtInfo - Helper function used by fixupLineNumbers to recursively 840 /// update InlinedAtEntry of a DebugLoc. 841 static DebugLoc updateInlinedAtInfo(const DebugLoc &DL, 842 const DebugLoc &InlinedAtDL, 843 LLVMContext &Ctx) { 844 if (MDNode *IA = DL.getInlinedAt(Ctx)) { 845 DebugLoc NewInlinedAtDL 846 = updateInlinedAtInfo(DebugLoc::getFromDILocation(IA), InlinedAtDL, Ctx); 847 return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx), 848 NewInlinedAtDL.getAsMDNode(Ctx)); 849 } 850 851 return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx), 852 InlinedAtDL.getAsMDNode(Ctx)); 853 } 854 855 856 /// fixupLineNumbers - Update inlined instructions' line numbers to 857 /// to encode location where these instructions are inlined. 858 static void fixupLineNumbers(Function *Fn, Function::iterator FI, 859 Instruction *TheCall) { 860 DebugLoc TheCallDL = TheCall->getDebugLoc(); 861 if (TheCallDL.isUnknown()) 862 return; 863 864 for (; FI != Fn->end(); ++FI) { 865 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); 866 BI != BE; ++BI) { 867 DebugLoc DL = BI->getDebugLoc(); 868 if (!DL.isUnknown()) { 869 BI->setDebugLoc(updateInlinedAtInfo(DL, TheCallDL, BI->getContext())); 870 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(BI)) { 871 LLVMContext &Ctx = BI->getContext(); 872 MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx); 873 DVI->setOperand(2, createInlinedVariable(DVI->getVariable(), 874 InlinedAt, Ctx)); 875 } 876 } 877 } 878 } 879 } 880 881 // InlineFunction - This function inlines the called function into the basic 882 // block of the caller. This returns false if it is not possible to inline this 883 // call. The program is still in a well defined state if this occurs though. 884 // 885 // Note that this only does one level of inlining. For example, if the 886 // instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 887 // exists in the instruction stream. Similarly this will inline a recursive 888 // function by one level. 889 // 890 bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI) { 891 Instruction *TheCall = CS.getInstruction(); 892 LLVMContext &Context = TheCall->getContext(); 893 assert(TheCall->getParent() && TheCall->getParent()->getParent() && 894 "Instruction not in function!"); 895 896 // If IFI has any state in it, zap it before we fill it in. 897 IFI.reset(); 898 899 const Function *CalledFunc = CS.getCalledFunction(); 900 if (CalledFunc == 0 || // Can't inline external function or indirect 901 CalledFunc->isDeclaration() || // call, or call to a vararg function! 902 CalledFunc->getFunctionType()->isVarArg()) return false; 903 904 // If the call to the callee is not a tail call, we must clear the 'tail' 905 // flags on any calls that we inline. 906 bool MustClearTailCallFlags = 907 !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall()); 908 909 // If the call to the callee cannot throw, set the 'nounwind' flag on any 910 // calls that we inline. 911 bool MarkNoUnwind = CS.doesNotThrow(); 912 913 BasicBlock *OrigBB = TheCall->getParent(); 914 Function *Caller = OrigBB->getParent(); 915 916 // GC poses two hazards to inlining, which only occur when the callee has GC: 917 // 1. If the caller has no GC, then the callee's GC must be propagated to the 918 // caller. 919 // 2. If the caller has a differing GC, it is invalid to inline. 920 if (CalledFunc->hasGC()) { 921 if (!Caller->hasGC()) 922 Caller->setGC(CalledFunc->getGC()); 923 else if (CalledFunc->getGC() != Caller->getGC()) 924 return false; 925 } 926 927 // Find the personality function used by the landing pads of the caller. If it 928 // exists, then check to see that it matches the personality function used in 929 // the callee. 930 for (Function::const_iterator 931 I = Caller->begin(), E = Caller->end(); I != E; ++I) 932 if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) { 933 const BasicBlock *BB = II->getUnwindDest(); 934 // FIXME: This 'isa' here should become go away once the new EH system is 935 // in place. 936 if (!isa<LandingPadInst>(BB->getFirstNonPHI())) 937 continue; 938 const LandingPadInst *LP = cast<LandingPadInst>(BB->getFirstNonPHI()); 939 const Value *CallerPersFn = LP->getPersonalityFn(); 940 941 // If the personality functions match, then we can perform the 942 // inlining. Otherwise, we can't inline. 943 // TODO: This isn't 100% true. Some personality functions are proper 944 // supersets of others and can be used in place of the other. 945 for (Function::const_iterator 946 I = CalledFunc->begin(), E = CalledFunc->end(); I != E; ++I) 947 if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) { 948 const BasicBlock *BB = II->getUnwindDest(); 949 // FIXME: This 'if/dyn_cast' here should become a normal 'cast' once 950 // the new EH system is in place. 951 if (const LandingPadInst *LP = 952 dyn_cast<LandingPadInst>(BB->getFirstNonPHI())) 953 if (CallerPersFn != LP->getPersonalityFn()) 954 return false; 955 break; 956 } 957 958 break; 959 } 960 961 // Get an iterator to the last basic block in the function, which will have 962 // the new function inlined after it. 963 // 964 Function::iterator LastBlock = &Caller->back(); 965 966 // Make sure to capture all of the return instructions from the cloned 967 // function. 968 SmallVector<ReturnInst*, 8> Returns; 969 ClonedCodeInfo InlinedFunctionInfo; 970 Function::iterator FirstNewBlock; 971 972 { // Scope to destroy VMap after cloning. 973 ValueToValueMapTy VMap; 974 975 assert(CalledFunc->arg_size() == CS.arg_size() && 976 "No varargs calls can be inlined!"); 977 978 // Calculate the vector of arguments to pass into the function cloner, which 979 // matches up the formal to the actual argument values. 980 CallSite::arg_iterator AI = CS.arg_begin(); 981 unsigned ArgNo = 0; 982 for (Function::const_arg_iterator I = CalledFunc->arg_begin(), 983 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { 984 Value *ActualArg = *AI; 985 986 // When byval arguments actually inlined, we need to make the copy implied 987 // by them explicit. However, we don't do this if the callee is readonly 988 // or readnone, because the copy would be unneeded: the callee doesn't 989 // modify the struct. 990 if (CalledFunc->paramHasAttr(ArgNo+1, Attribute::ByVal)) { 991 ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI, 992 CalledFunc->getParamAlignment(ArgNo+1)); 993 994 // Calls that we inline may use the new alloca, so we need to clear 995 // their 'tail' flags if HandleByValArgument introduced a new alloca and 996 // the callee has calls. 997 MustClearTailCallFlags |= ActualArg != *AI; 998 } 999 1000 VMap[I] = ActualArg; 1001 } 1002 1003 // We want the inliner to prune the code as it copies. We would LOVE to 1004 // have no dead or constant instructions leftover after inlining occurs 1005 // (which can happen, e.g., because an argument was constant), but we'll be 1006 // happy with whatever the cloner can do. 1007 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, 1008 /*ModuleLevelChanges=*/false, Returns, ".i", 1009 &InlinedFunctionInfo, IFI.TD, TheCall); 1010 1011 // Remember the first block that is newly cloned over. 1012 FirstNewBlock = LastBlock; ++FirstNewBlock; 1013 1014 // Update the callgraph if requested. 1015 if (IFI.CG) 1016 UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI); 1017 1018 // Update inlined instructions' line number information. 1019 fixupLineNumbers(Caller, FirstNewBlock, TheCall); 1020 } 1021 1022 // If there are any alloca instructions in the block that used to be the entry 1023 // block for the callee, move them to the entry block of the caller. First 1024 // calculate which instruction they should be inserted before. We insert the 1025 // instructions at the end of the current alloca list. 1026 // 1027 { 1028 BasicBlock::iterator InsertPoint = Caller->begin()->begin(); 1029 for (BasicBlock::iterator I = FirstNewBlock->begin(), 1030 E = FirstNewBlock->end(); I != E; ) { 1031 AllocaInst *AI = dyn_cast<AllocaInst>(I++); 1032 if (AI == 0) continue; 1033 1034 // If the alloca is now dead, remove it. This often occurs due to code 1035 // specialization. 1036 if (AI->use_empty()) { 1037 AI->eraseFromParent(); 1038 continue; 1039 } 1040 1041 if (!isa<Constant>(AI->getArraySize())) 1042 continue; 1043 1044 // Keep track of the static allocas that we inline into the caller. 1045 IFI.StaticAllocas.push_back(AI); 1046 1047 // Scan for the block of allocas that we can move over, and move them 1048 // all at once. 1049 while (isa<AllocaInst>(I) && 1050 isa<Constant>(cast<AllocaInst>(I)->getArraySize())) { 1051 IFI.StaticAllocas.push_back(cast<AllocaInst>(I)); 1052 ++I; 1053 } 1054 1055 // Transfer all of the allocas over in a block. Using splice means 1056 // that the instructions aren't removed from the symbol table, then 1057 // reinserted. 1058 Caller->getEntryBlock().getInstList().splice(InsertPoint, 1059 FirstNewBlock->getInstList(), 1060 AI, I); 1061 } 1062 } 1063 1064 // Leave lifetime markers for the static alloca's, scoping them to the 1065 // function we just inlined. 1066 if (!IFI.StaticAllocas.empty()) { 1067 IRBuilder<> builder(FirstNewBlock->begin()); 1068 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { 1069 AllocaInst *AI = IFI.StaticAllocas[ai]; 1070 1071 // If the alloca is already scoped to something smaller than the whole 1072 // function then there's no need to add redundant, less accurate markers. 1073 if (hasLifetimeMarkers(AI)) 1074 continue; 1075 1076 builder.CreateLifetimeStart(AI); 1077 for (unsigned ri = 0, re = Returns.size(); ri != re; ++ri) { 1078 IRBuilder<> builder(Returns[ri]); 1079 builder.CreateLifetimeEnd(AI); 1080 } 1081 } 1082 } 1083 1084 // If the inlined code contained dynamic alloca instructions, wrap the inlined 1085 // code with llvm.stacksave/llvm.stackrestore intrinsics. 1086 if (InlinedFunctionInfo.ContainsDynamicAllocas) { 1087 Module *M = Caller->getParent(); 1088 // Get the two intrinsics we care about. 1089 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); 1090 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); 1091 1092 // Insert the llvm.stacksave. 1093 CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin()) 1094 .CreateCall(StackSave, "savedstack"); 1095 1096 // Insert a call to llvm.stackrestore before any return instructions in the 1097 // inlined function. 1098 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 1099 IRBuilder<>(Returns[i]).CreateCall(StackRestore, SavedPtr); 1100 } 1101 1102 // Count the number of StackRestore calls we insert. 1103 unsigned NumStackRestores = Returns.size(); 1104 1105 // If we are inlining an invoke instruction, insert restores before each 1106 // unwind. These unwinds will be rewritten into branches later. 1107 if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) { 1108 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); 1109 BB != E; ++BB) 1110 if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) { 1111 IRBuilder<>(UI).CreateCall(StackRestore, SavedPtr); 1112 ++NumStackRestores; 1113 } 1114 } 1115 } 1116 1117 // If we are inlining tail call instruction through a call site that isn't 1118 // marked 'tail', we must remove the tail marker for any calls in the inlined 1119 // code. Also, calls inlined through a 'nounwind' call site should be marked 1120 // 'nounwind'. 1121 if (InlinedFunctionInfo.ContainsCalls && 1122 (MustClearTailCallFlags || MarkNoUnwind)) { 1123 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); 1124 BB != E; ++BB) 1125 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 1126 if (CallInst *CI = dyn_cast<CallInst>(I)) { 1127 if (MustClearTailCallFlags) 1128 CI->setTailCall(false); 1129 if (MarkNoUnwind) 1130 CI->setDoesNotThrow(); 1131 } 1132 } 1133 1134 // If we are inlining through a 'nounwind' call site then any inlined 'unwind' 1135 // instructions are unreachable. 1136 if (InlinedFunctionInfo.ContainsUnwinds && MarkNoUnwind) 1137 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); 1138 BB != E; ++BB) { 1139 TerminatorInst *Term = BB->getTerminator(); 1140 if (isa<UnwindInst>(Term)) { 1141 new UnreachableInst(Context, Term); 1142 BB->getInstList().erase(Term); 1143 } 1144 } 1145 1146 // If we are inlining for an invoke instruction, we must make sure to rewrite 1147 // any inlined 'unwind' instructions into branches to the invoke exception 1148 // destination, and call instructions into invoke instructions. 1149 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) 1150 HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo); 1151 1152 // If we cloned in _exactly one_ basic block, and if that block ends in a 1153 // return instruction, we splice the body of the inlined callee directly into 1154 // the calling basic block. 1155 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { 1156 // Move all of the instructions right before the call. 1157 OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(), 1158 FirstNewBlock->begin(), FirstNewBlock->end()); 1159 // Remove the cloned basic block. 1160 Caller->getBasicBlockList().pop_back(); 1161 1162 // If the call site was an invoke instruction, add a branch to the normal 1163 // destination. 1164 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) 1165 BranchInst::Create(II->getNormalDest(), TheCall); 1166 1167 // If the return instruction returned a value, replace uses of the call with 1168 // uses of the returned value. 1169 if (!TheCall->use_empty()) { 1170 ReturnInst *R = Returns[0]; 1171 if (TheCall == R->getReturnValue()) 1172 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1173 else 1174 TheCall->replaceAllUsesWith(R->getReturnValue()); 1175 } 1176 // Since we are now done with the Call/Invoke, we can delete it. 1177 TheCall->eraseFromParent(); 1178 1179 // Since we are now done with the return instruction, delete it also. 1180 Returns[0]->eraseFromParent(); 1181 1182 // We are now done with the inlining. 1183 return true; 1184 } 1185 1186 // Otherwise, we have the normal case, of more than one block to inline or 1187 // multiple return sites. 1188 1189 // We want to clone the entire callee function into the hole between the 1190 // "starter" and "ender" blocks. How we accomplish this depends on whether 1191 // this is an invoke instruction or a call instruction. 1192 BasicBlock *AfterCallBB; 1193 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 1194 1195 // Add an unconditional branch to make this look like the CallInst case... 1196 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall); 1197 1198 // Split the basic block. This guarantees that no PHI nodes will have to be 1199 // updated due to new incoming edges, and make the invoke case more 1200 // symmetric to the call case. 1201 AfterCallBB = OrigBB->splitBasicBlock(NewBr, 1202 CalledFunc->getName()+".exit"); 1203 1204 } else { // It's a call 1205 // If this is a call instruction, we need to split the basic block that 1206 // the call lives in. 1207 // 1208 AfterCallBB = OrigBB->splitBasicBlock(TheCall, 1209 CalledFunc->getName()+".exit"); 1210 } 1211 1212 // Change the branch that used to go to AfterCallBB to branch to the first 1213 // basic block of the inlined function. 1214 // 1215 TerminatorInst *Br = OrigBB->getTerminator(); 1216 assert(Br && Br->getOpcode() == Instruction::Br && 1217 "splitBasicBlock broken!"); 1218 Br->setOperand(0, FirstNewBlock); 1219 1220 1221 // Now that the function is correct, make it a little bit nicer. In 1222 // particular, move the basic blocks inserted from the end of the function 1223 // into the space made by splitting the source basic block. 1224 Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(), 1225 FirstNewBlock, Caller->end()); 1226 1227 // Handle all of the return instructions that we just cloned in, and eliminate 1228 // any users of the original call/invoke instruction. 1229 Type *RTy = CalledFunc->getReturnType(); 1230 1231 PHINode *PHI = 0; 1232 if (Returns.size() > 1) { 1233 // The PHI node should go at the front of the new basic block to merge all 1234 // possible incoming values. 1235 if (!TheCall->use_empty()) { 1236 PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(), 1237 AfterCallBB->begin()); 1238 // Anything that used the result of the function call should now use the 1239 // PHI node as their operand. 1240 TheCall->replaceAllUsesWith(PHI); 1241 } 1242 1243 // Loop over all of the return instructions adding entries to the PHI node 1244 // as appropriate. 1245 if (PHI) { 1246 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 1247 ReturnInst *RI = Returns[i]; 1248 assert(RI->getReturnValue()->getType() == PHI->getType() && 1249 "Ret value not consistent in function!"); 1250 PHI->addIncoming(RI->getReturnValue(), RI->getParent()); 1251 } 1252 } 1253 1254 1255 // Add a branch to the merge points and remove return instructions. 1256 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 1257 ReturnInst *RI = Returns[i]; 1258 BranchInst::Create(AfterCallBB, RI); 1259 RI->eraseFromParent(); 1260 } 1261 } else if (!Returns.empty()) { 1262 // Otherwise, if there is exactly one return value, just replace anything 1263 // using the return value of the call with the computed value. 1264 if (!TheCall->use_empty()) { 1265 if (TheCall == Returns[0]->getReturnValue()) 1266 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1267 else 1268 TheCall->replaceAllUsesWith(Returns[0]->getReturnValue()); 1269 } 1270 1271 // Update PHI nodes that use the ReturnBB to use the AfterCallBB. 1272 BasicBlock *ReturnBB = Returns[0]->getParent(); 1273 ReturnBB->replaceAllUsesWith(AfterCallBB); 1274 1275 // Splice the code from the return block into the block that it will return 1276 // to, which contains the code that was after the call. 1277 AfterCallBB->getInstList().splice(AfterCallBB->begin(), 1278 ReturnBB->getInstList()); 1279 1280 // Delete the return instruction now and empty ReturnBB now. 1281 Returns[0]->eraseFromParent(); 1282 ReturnBB->eraseFromParent(); 1283 } else if (!TheCall->use_empty()) { 1284 // No returns, but something is using the return value of the call. Just 1285 // nuke the result. 1286 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 1287 } 1288 1289 // Since we are now done with the Call/Invoke, we can delete it. 1290 TheCall->eraseFromParent(); 1291 1292 // We should always be able to fold the entry block of the function into the 1293 // single predecessor of the block... 1294 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); 1295 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); 1296 1297 // Splice the code entry block into calling block, right before the 1298 // unconditional branch. 1299 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes 1300 OrigBB->getInstList().splice(Br, CalleeEntry->getInstList()); 1301 1302 // Remove the unconditional branch. 1303 OrigBB->getInstList().erase(Br); 1304 1305 // Now we can remove the CalleeEntry block, which is now empty. 1306 Caller->getBasicBlockList().erase(CalleeEntry); 1307 1308 // If we inserted a phi node, check to see if it has a single value (e.g. all 1309 // the entries are the same or undef). If so, remove the PHI so it doesn't 1310 // block other optimizations. 1311 if (PHI) 1312 if (Value *V = SimplifyInstruction(PHI, IFI.TD)) { 1313 PHI->replaceAllUsesWith(V); 1314 PHI->eraseFromParent(); 1315 } 1316 1317 return true; 1318 } 1319