Home | History | Annotate | Download | only in opt
      1 // Copyright (c) 2018 Google LLC.
      2 //
      3 // Licensed under the Apache License, Version 2.0 (the "License");
      4 // you may not use this file except in compliance with the License.
      5 // You may obtain a copy of the License at
      6 //
      7 //     http://www.apache.org/licenses/LICENSE-2.0
      8 //
      9 // Unless required by applicable law or agreed to in writing, software
     10 // distributed under the License is distributed on an "AS IS" BASI,
     11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     12 // See the License for the specific language governing permissions and
     13 // limitations under the License.
     14 
     15 #ifndef SOURCE_OPT_SCALAR_ANALYSIS_NODES_H_
     16 #define SOURCE_OPT_SCALAR_ANALYSIS_NODES_H_
     17 
     18 #include <algorithm>
     19 #include <memory>
     20 #include <string>
     21 #include <vector>
     22 
     23 #include "source/opt/tree_iterator.h"
     24 
     25 namespace spvtools {
     26 namespace opt {
     27 
     28 class Loop;
     29 class ScalarEvolutionAnalysis;
     30 class SEConstantNode;
     31 class SERecurrentNode;
     32 class SEAddNode;
     33 class SEMultiplyNode;
     34 class SENegative;
     35 class SEValueUnknown;
     36 class SECantCompute;
     37 
     38 // Abstract class representing a node in the scalar evolution DAG. Each node
     39 // contains a vector of pointers to its children and each subclass of SENode
     40 // implements GetType and an As method to allow casting. SENodes can be hashed
     41 // using the SENodeHash functor. The vector of children is sorted when a node is
     42 // added. This is important as it allows the hash of X+Y to be the same as Y+X.
     43 class SENode {
     44  public:
     45   enum SENodeType {
     46     Constant,
     47     RecurrentAddExpr,
     48     Add,
     49     Multiply,
     50     Negative,
     51     ValueUnknown,
     52     CanNotCompute
     53   };
     54 
     55   using ChildContainerType = std::vector<SENode*>;
     56 
     57   explicit SENode(ScalarEvolutionAnalysis* parent_analysis)
     58       : parent_analysis_(parent_analysis), unique_id_(++NumberOfNodes) {}
     59 
     60   virtual SENodeType GetType() const = 0;
     61 
     62   virtual ~SENode() {}
     63 
     64   virtual inline void AddChild(SENode* child) {
     65     // If this is a constant node, assert.
     66     if (AsSEConstantNode()) {
     67       assert(false && "Trying to add a child node to a constant!");
     68     }
     69 
     70     // Find the first point in the vector where |child| is greater than the node
     71     // currently in the vector.
     72     auto find_first_less_than = [child](const SENode* node) {
     73       return child->unique_id_ <= node->unique_id_;
     74     };
     75 
     76     auto position = std::find_if_not(children_.begin(), children_.end(),
     77                                      find_first_less_than);
     78     // Children are sorted so the hashing and equality operator will be the same
     79     // for a node with the same children. X+Y should be the same as Y+X.
     80     children_.insert(position, child);
     81   }
     82 
     83   // Get the type as an std::string. This is used to represent the node in the
     84   // dot output and is used to hash the type as well.
     85   std::string AsString() const;
     86 
     87   // Dump the SENode and its immediate children, if |recurse| is true then it
     88   // will recurse through all children to print the DAG starting from this node
     89   // as a root.
     90   void DumpDot(std::ostream& out, bool recurse = false) const;
     91 
     92   // Checks if two nodes are the same by hashing them.
     93   bool operator==(const SENode& other) const;
     94 
     95   // Checks if two nodes are not the same by comparing the hashes.
     96   bool operator!=(const SENode& other) const;
     97 
     98   // Return the child node at |index|.
     99   inline SENode* GetChild(size_t index) { return children_[index]; }
    100   inline const SENode* GetChild(size_t index) const { return children_[index]; }
    101 
    102   // Iterator to iterate over the child nodes.
    103   using iterator = ChildContainerType::iterator;
    104   using const_iterator = ChildContainerType::const_iterator;
    105 
    106   // Iterate over immediate child nodes.
    107   iterator begin() { return children_.begin(); }
    108   iterator end() { return children_.end(); }
    109 
    110   // Constant overloads for iterating over immediate child nodes.
    111   const_iterator begin() const { return children_.cbegin(); }
    112   const_iterator end() const { return children_.cend(); }
    113   const_iterator cbegin() { return children_.cbegin(); }
    114   const_iterator cend() { return children_.cend(); }
    115 
    116   // Collect all the recurrent nodes in this SENode
    117   std::vector<SERecurrentNode*> CollectRecurrentNodes() {
    118     std::vector<SERecurrentNode*> recurrent_nodes{};
    119 
    120     if (auto recurrent_node = AsSERecurrentNode()) {
    121       recurrent_nodes.push_back(recurrent_node);
    122     }
    123 
    124     for (auto child : GetChildren()) {
    125       auto child_recurrent_nodes = child->CollectRecurrentNodes();
    126       recurrent_nodes.insert(recurrent_nodes.end(),
    127                              child_recurrent_nodes.begin(),
    128                              child_recurrent_nodes.end());
    129     }
    130 
    131     return recurrent_nodes;
    132   }
    133 
    134   // Collect all the value unknown nodes in this SENode
    135   std::vector<SEValueUnknown*> CollectValueUnknownNodes() {
    136     std::vector<SEValueUnknown*> value_unknown_nodes{};
    137 
    138     if (auto value_unknown_node = AsSEValueUnknown()) {
    139       value_unknown_nodes.push_back(value_unknown_node);
    140     }
    141 
    142     for (auto child : GetChildren()) {
    143       auto child_value_unknown_nodes = child->CollectValueUnknownNodes();
    144       value_unknown_nodes.insert(value_unknown_nodes.end(),
    145                                  child_value_unknown_nodes.begin(),
    146                                  child_value_unknown_nodes.end());
    147     }
    148 
    149     return value_unknown_nodes;
    150   }
    151 
    152   // Iterator to iterate over the entire DAG. Even though we are using the tree
    153   // iterator it should still be safe to iterate over. However, nodes with
    154   // multiple parents will be visited multiple times, unlike in a tree.
    155   using dag_iterator = TreeDFIterator<SENode>;
    156   using const_dag_iterator = TreeDFIterator<const SENode>;
    157 
    158   // Iterate over all child nodes in the graph.
    159   dag_iterator graph_begin() { return dag_iterator(this); }
    160   dag_iterator graph_end() { return dag_iterator(); }
    161   const_dag_iterator graph_begin() const { return graph_cbegin(); }
    162   const_dag_iterator graph_end() const { return graph_cend(); }
    163   const_dag_iterator graph_cbegin() const { return const_dag_iterator(this); }
    164   const_dag_iterator graph_cend() const { return const_dag_iterator(); }
    165 
    166   // Return the vector of immediate children.
    167   const ChildContainerType& GetChildren() const { return children_; }
    168   ChildContainerType& GetChildren() { return children_; }
    169 
    170   // Return true if this node is a cant compute node.
    171   bool IsCantCompute() const { return GetType() == CanNotCompute; }
    172 
    173 // Implements a casting method for each type.
    174 #define DeclareCastMethod(target)                  \
    175   virtual target* As##target() { return nullptr; } \
    176   virtual const target* As##target() const { return nullptr; }
    177   DeclareCastMethod(SEConstantNode);
    178   DeclareCastMethod(SERecurrentNode);
    179   DeclareCastMethod(SEAddNode);
    180   DeclareCastMethod(SEMultiplyNode);
    181   DeclareCastMethod(SENegative);
    182   DeclareCastMethod(SEValueUnknown);
    183   DeclareCastMethod(SECantCompute);
    184 #undef DeclareCastMethod
    185 
    186   // Get the analysis which has this node in its cache.
    187   inline ScalarEvolutionAnalysis* GetParentAnalysis() const {
    188     return parent_analysis_;
    189   }
    190 
    191  protected:
    192   ChildContainerType children_;
    193 
    194   ScalarEvolutionAnalysis* parent_analysis_;
    195 
    196   // The unique id of this node, assigned on creation by incrementing the static
    197   // node count.
    198   uint32_t unique_id_;
    199 
    200   // The number of nodes created.
    201   static uint32_t NumberOfNodes;
    202 };
    203 
    204 // Function object to handle the hashing of SENodes. Hashing algorithm hashes
    205 // the type (as a string), the literal value of any constants, and the child
    206 // pointers which are assumed to be unique.
    207 struct SENodeHash {
    208   size_t operator()(const std::unique_ptr<SENode>& node) const;
    209   size_t operator()(const SENode* node) const;
    210 };
    211 
    212 // A node representing a constant integer.
    213 class SEConstantNode : public SENode {
    214  public:
    215   SEConstantNode(ScalarEvolutionAnalysis* parent_analysis, int64_t value)
    216       : SENode(parent_analysis), literal_value_(value) {}
    217 
    218   SENodeType GetType() const final { return Constant; }
    219 
    220   int64_t FoldToSingleValue() const { return literal_value_; }
    221 
    222   SEConstantNode* AsSEConstantNode() override { return this; }
    223   const SEConstantNode* AsSEConstantNode() const override { return this; }
    224 
    225   inline void AddChild(SENode*) final {
    226     assert(false && "Attempting to add a child to a constant node!");
    227   }
    228 
    229  protected:
    230   int64_t literal_value_;
    231 };
    232 
    233 // A node representing a recurrent expression in the code. A recurrent
    234 // expression is an expression whose value can be expressed as a linear
    235 // expression of the loop iterations. Such as an induction variable. The actual
    236 // value of a recurrent expression is coefficent_ * iteration + offset_, hence
    237 // an induction variable i=0, i++ becomes a recurrent expression with an offset
    238 // of zero and a coefficient of one.
    239 class SERecurrentNode : public SENode {
    240  public:
    241   SERecurrentNode(ScalarEvolutionAnalysis* parent_analysis, const Loop* loop)
    242       : SENode(parent_analysis), loop_(loop) {}
    243 
    244   SENodeType GetType() const final { return RecurrentAddExpr; }
    245 
    246   inline void AddCoefficient(SENode* child) {
    247     coefficient_ = child;
    248     SENode::AddChild(child);
    249   }
    250 
    251   inline void AddOffset(SENode* child) {
    252     offset_ = child;
    253     SENode::AddChild(child);
    254   }
    255 
    256   inline const SENode* GetCoefficient() const { return coefficient_; }
    257   inline SENode* GetCoefficient() { return coefficient_; }
    258 
    259   inline const SENode* GetOffset() const { return offset_; }
    260   inline SENode* GetOffset() { return offset_; }
    261 
    262   // Return the loop which this recurrent expression is recurring within.
    263   const Loop* GetLoop() const { return loop_; }
    264 
    265   SERecurrentNode* AsSERecurrentNode() override { return this; }
    266   const SERecurrentNode* AsSERecurrentNode() const override { return this; }
    267 
    268  private:
    269   SENode* coefficient_;
    270   SENode* offset_;
    271   const Loop* loop_;
    272 };
    273 
    274 // A node representing an addition operation between child nodes.
    275 class SEAddNode : public SENode {
    276  public:
    277   explicit SEAddNode(ScalarEvolutionAnalysis* parent_analysis)
    278       : SENode(parent_analysis) {}
    279 
    280   SENodeType GetType() const final { return Add; }
    281 
    282   SEAddNode* AsSEAddNode() override { return this; }
    283   const SEAddNode* AsSEAddNode() const override { return this; }
    284 };
    285 
    286 // A node representing a multiply operation between child nodes.
    287 class SEMultiplyNode : public SENode {
    288  public:
    289   explicit SEMultiplyNode(ScalarEvolutionAnalysis* parent_analysis)
    290       : SENode(parent_analysis) {}
    291 
    292   SENodeType GetType() const final { return Multiply; }
    293 
    294   SEMultiplyNode* AsSEMultiplyNode() override { return this; }
    295   const SEMultiplyNode* AsSEMultiplyNode() const override { return this; }
    296 };
    297 
    298 // A node representing a unary negative operation.
    299 class SENegative : public SENode {
    300  public:
    301   explicit SENegative(ScalarEvolutionAnalysis* parent_analysis)
    302       : SENode(parent_analysis) {}
    303 
    304   SENodeType GetType() const final { return Negative; }
    305 
    306   SENegative* AsSENegative() override { return this; }
    307   const SENegative* AsSENegative() const override { return this; }
    308 };
    309 
    310 // A node representing a value which we do not know the value of, such as a load
    311 // instruction.
    312 class SEValueUnknown : public SENode {
    313  public:
    314   // SEValueUnknowns must come from an instruction |unique_id| is the unique id
    315   // of that instruction. This is so we cancompare value unknowns and have a
    316   // unique value unknown for each instruction.
    317   SEValueUnknown(ScalarEvolutionAnalysis* parent_analysis, uint32_t result_id)
    318       : SENode(parent_analysis), result_id_(result_id) {}
    319 
    320   SENodeType GetType() const final { return ValueUnknown; }
    321 
    322   SEValueUnknown* AsSEValueUnknown() override { return this; }
    323   const SEValueUnknown* AsSEValueUnknown() const override { return this; }
    324 
    325   inline uint32_t ResultId() const { return result_id_; }
    326 
    327  private:
    328   uint32_t result_id_;
    329 };
    330 
    331 // A node which we cannot reason about at all.
    332 class SECantCompute : public SENode {
    333  public:
    334   explicit SECantCompute(ScalarEvolutionAnalysis* parent_analysis)
    335       : SENode(parent_analysis) {}
    336 
    337   SENodeType GetType() const final { return CanNotCompute; }
    338 
    339   SECantCompute* AsSECantCompute() override { return this; }
    340   const SECantCompute* AsSECantCompute() const override { return this; }
    341 };
    342 
    343 }  // namespace opt
    344 }  // namespace spvtools
    345 #endif  // SOURCE_OPT_SCALAR_ANALYSIS_NODES_H_
    346