Home | History | Annotate | Download | only in IR
      1 //===- ValueMap.h - Safe map from Values to data ----------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the ValueMap class.  ValueMap maps Value* or any subclass
     11 // to an arbitrary other type.  It provides the DenseMap interface but updates
     12 // itself to remain safe when keys are RAUWed or deleted.  By default, when a
     13 // key is RAUWed from V1 to V2, the old mapping V1->target is removed, and a new
     14 // mapping V2->target is added.  If V2 already existed, its old target is
     15 // overwritten.  When a key is deleted, its mapping is removed.
     16 //
     17 // You can override a ValueMap's Config parameter to control exactly what
     18 // happens on RAUW and destruction and to get called back on each event.  It's
     19 // legal to call back into the ValueMap from a Config's callbacks.  Config
     20 // parameters should inherit from ValueMapConfig<KeyT> to get default
     21 // implementations of all the methods ValueMap uses.  See ValueMapConfig for
     22 // documentation of the functions you can override.
     23 //
     24 //===----------------------------------------------------------------------===//
     25 
     26 #ifndef LLVM_IR_VALUEMAP_H
     27 #define LLVM_IR_VALUEMAP_H
     28 
     29 #include "llvm/ADT/DenseMap.h"
     30 #include "llvm/ADT/DenseMapInfo.h"
     31 #include "llvm/ADT/None.h"
     32 #include "llvm/ADT/Optional.h"
     33 #include "llvm/IR/TrackingMDRef.h"
     34 #include "llvm/IR/ValueHandle.h"
     35 #include "llvm/Support/Casting.h"
     36 #include "llvm/Support/Mutex.h"
     37 #include "llvm/Support/UniqueLock.h"
     38 #include <algorithm>
     39 #include <cassert>
     40 #include <cstddef>
     41 #include <iterator>
     42 #include <type_traits>
     43 #include <utility>
     44 
     45 namespace llvm {
     46 
     47 template<typename KeyT, typename ValueT, typename Config>
     48 class ValueMapCallbackVH;
     49 template<typename DenseMapT, typename KeyT>
     50 class ValueMapIterator;
     51 template<typename DenseMapT, typename KeyT>
     52 class ValueMapConstIterator;
     53 
     54 /// This class defines the default behavior for configurable aspects of
     55 /// ValueMap<>.  User Configs should inherit from this class to be as compatible
     56 /// as possible with future versions of ValueMap.
     57 template<typename KeyT, typename MutexT = sys::Mutex>
     58 struct ValueMapConfig {
     59   using mutex_type = MutexT;
     60 
     61   /// If FollowRAUW is true, the ValueMap will update mappings on RAUW. If it's
     62   /// false, the ValueMap will leave the original mapping in place.
     63   enum { FollowRAUW = true };
     64 
     65   // All methods will be called with a first argument of type ExtraData.  The
     66   // default implementations in this class take a templated first argument so
     67   // that users' subclasses can use any type they want without having to
     68   // override all the defaults.
     69   struct ExtraData {};
     70 
     71   template<typename ExtraDataT>
     72   static void onRAUW(const ExtraDataT & /*Data*/, KeyT /*Old*/, KeyT /*New*/) {}
     73   template<typename ExtraDataT>
     74   static void onDelete(const ExtraDataT &/*Data*/, KeyT /*Old*/) {}
     75 
     76   /// Returns a mutex that should be acquired around any changes to the map.
     77   /// This is only acquired from the CallbackVH (and held around calls to onRAUW
     78   /// and onDelete) and not inside other ValueMap methods.  NULL means that no
     79   /// mutex is necessary.
     80   template<typename ExtraDataT>
     81   static mutex_type *getMutex(const ExtraDataT &/*Data*/) { return nullptr; }
     82 };
     83 
     84 /// See the file comment.
     85 template<typename KeyT, typename ValueT, typename Config =ValueMapConfig<KeyT>>
     86 class ValueMap {
     87   friend class ValueMapCallbackVH<KeyT, ValueT, Config>;
     88 
     89   using ValueMapCVH = ValueMapCallbackVH<KeyT, ValueT, Config>;
     90   using MapT = DenseMap<ValueMapCVH, ValueT, DenseMapInfo<ValueMapCVH>>;
     91   using MDMapT = DenseMap<const Metadata *, TrackingMDRef>;
     92   using ExtraData = typename Config::ExtraData;
     93 
     94   MapT Map;
     95   Optional<MDMapT> MDMap;
     96   ExtraData Data;
     97   bool MayMapMetadata = true;
     98 
     99 public:
    100   using key_type = KeyT;
    101   using mapped_type = ValueT;
    102   using value_type = std::pair<KeyT, ValueT>;
    103   using size_type = unsigned;
    104 
    105   explicit ValueMap(unsigned NumInitBuckets = 64)
    106       : Map(NumInitBuckets), Data() {}
    107   explicit ValueMap(const ExtraData &Data, unsigned NumInitBuckets = 64)
    108       : Map(NumInitBuckets), Data(Data) {}
    109   // ValueMap can't be copied nor moved, beucase the callbacks store pointer
    110   // to it.
    111   ValueMap(const ValueMap &) = delete;
    112   ValueMap(ValueMap &&) = delete;
    113   ValueMap &operator=(const ValueMap &) = delete;
    114   ValueMap &operator=(ValueMap &&) = delete;
    115 
    116   bool hasMD() const { return bool(MDMap); }
    117   MDMapT &MD() {
    118     if (!MDMap)
    119       MDMap.emplace();
    120     return *MDMap;
    121   }
    122   Optional<MDMapT> &getMDMap() { return MDMap; }
    123 
    124   bool mayMapMetadata() const { return MayMapMetadata; }
    125   void enableMapMetadata() { MayMapMetadata = true; }
    126   void disableMapMetadata() { MayMapMetadata = false; }
    127 
    128   /// Get the mapped metadata, if it's in the map.
    129   Optional<Metadata *> getMappedMD(const Metadata *MD) const {
    130     if (!MDMap)
    131       return None;
    132     auto Where = MDMap->find(MD);
    133     if (Where == MDMap->end())
    134       return None;
    135     return Where->second.get();
    136   }
    137 
    138   using iterator = ValueMapIterator<MapT, KeyT>;
    139   using const_iterator = ValueMapConstIterator<MapT, KeyT>;
    140 
    141   inline iterator begin() { return iterator(Map.begin()); }
    142   inline iterator end() { return iterator(Map.end()); }
    143   inline const_iterator begin() const { return const_iterator(Map.begin()); }
    144   inline const_iterator end() const { return const_iterator(Map.end()); }
    145 
    146   bool empty() const { return Map.empty(); }
    147   size_type size() const { return Map.size(); }
    148 
    149   /// Grow the map so that it has at least Size buckets. Does not shrink
    150   void resize(size_t Size) { Map.resize(Size); }
    151 
    152   void clear() {
    153     Map.clear();
    154     MDMap.reset();
    155   }
    156 
    157   /// Return 1 if the specified key is in the map, 0 otherwise.
    158   size_type count(const KeyT &Val) const {
    159     return Map.find_as(Val) == Map.end() ? 0 : 1;
    160   }
    161 
    162   iterator find(const KeyT &Val) {
    163     return iterator(Map.find_as(Val));
    164   }
    165   const_iterator find(const KeyT &Val) const {
    166     return const_iterator(Map.find_as(Val));
    167   }
    168 
    169   /// lookup - Return the entry for the specified key, or a default
    170   /// constructed value if no such entry exists.
    171   ValueT lookup(const KeyT &Val) const {
    172     typename MapT::const_iterator I = Map.find_as(Val);
    173     return I != Map.end() ? I->second : ValueT();
    174   }
    175 
    176   // Inserts key,value pair into the map if the key isn't already in the map.
    177   // If the key is already in the map, it returns false and doesn't update the
    178   // value.
    179   std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
    180     auto MapResult = Map.insert(std::make_pair(Wrap(KV.first), KV.second));
    181     return std::make_pair(iterator(MapResult.first), MapResult.second);
    182   }
    183 
    184   std::pair<iterator, bool> insert(std::pair<KeyT, ValueT> &&KV) {
    185     auto MapResult =
    186         Map.insert(std::make_pair(Wrap(KV.first), std::move(KV.second)));
    187     return std::make_pair(iterator(MapResult.first), MapResult.second);
    188   }
    189 
    190   /// insert - Range insertion of pairs.
    191   template<typename InputIt>
    192   void insert(InputIt I, InputIt E) {
    193     for (; I != E; ++I)
    194       insert(*I);
    195   }
    196 
    197   bool erase(const KeyT &Val) {
    198     typename MapT::iterator I = Map.find_as(Val);
    199     if (I == Map.end())
    200       return false;
    201 
    202     Map.erase(I);
    203     return true;
    204   }
    205   void erase(iterator I) {
    206     return Map.erase(I.base());
    207   }
    208 
    209   value_type& FindAndConstruct(const KeyT &Key) {
    210     return Map.FindAndConstruct(Wrap(Key));
    211   }
    212 
    213   ValueT &operator[](const KeyT &Key) {
    214     return Map[Wrap(Key)];
    215   }
    216 
    217   /// isPointerIntoBucketsArray - Return true if the specified pointer points
    218   /// somewhere into the ValueMap's array of buckets (i.e. either to a key or
    219   /// value in the ValueMap).
    220   bool isPointerIntoBucketsArray(const void *Ptr) const {
    221     return Map.isPointerIntoBucketsArray(Ptr);
    222   }
    223 
    224   /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets
    225   /// array.  In conjunction with the previous method, this can be used to
    226   /// determine whether an insertion caused the ValueMap to reallocate.
    227   const void *getPointerIntoBucketsArray() const {
    228     return Map.getPointerIntoBucketsArray();
    229   }
    230 
    231 private:
    232   // Takes a key being looked up in the map and wraps it into a
    233   // ValueMapCallbackVH, the actual key type of the map.  We use a helper
    234   // function because ValueMapCVH is constructed with a second parameter.
    235   ValueMapCVH Wrap(KeyT key) const {
    236     // The only way the resulting CallbackVH could try to modify *this (making
    237     // the const_cast incorrect) is if it gets inserted into the map.  But then
    238     // this function must have been called from a non-const method, making the
    239     // const_cast ok.
    240     return ValueMapCVH(key, const_cast<ValueMap*>(this));
    241   }
    242 };
    243 
    244 // This CallbackVH updates its ValueMap when the contained Value changes,
    245 // according to the user's preferences expressed through the Config object.
    246 template <typename KeyT, typename ValueT, typename Config>
    247 class ValueMapCallbackVH final : public CallbackVH {
    248   friend class ValueMap<KeyT, ValueT, Config>;
    249   friend struct DenseMapInfo<ValueMapCallbackVH>;
    250 
    251   using ValueMapT = ValueMap<KeyT, ValueT, Config>;
    252   using KeySansPointerT = typename std::remove_pointer<KeyT>::type;
    253 
    254   ValueMapT *Map;
    255 
    256   ValueMapCallbackVH(KeyT Key, ValueMapT *Map)
    257       : CallbackVH(const_cast<Value*>(static_cast<const Value*>(Key))),
    258         Map(Map) {}
    259 
    260   // Private constructor used to create empty/tombstone DenseMap keys.
    261   ValueMapCallbackVH(Value *V) : CallbackVH(V), Map(nullptr) {}
    262 
    263 public:
    264   KeyT Unwrap() const { return cast_or_null<KeySansPointerT>(getValPtr()); }
    265 
    266   void deleted() override {
    267     // Make a copy that won't get changed even when *this is destroyed.
    268     ValueMapCallbackVH Copy(*this);
    269     typename Config::mutex_type *M = Config::getMutex(Copy.Map->Data);
    270     unique_lock<typename Config::mutex_type> Guard;
    271     if (M)
    272       Guard = unique_lock<typename Config::mutex_type>(*M);
    273     Config::onDelete(Copy.Map->Data, Copy.Unwrap());  // May destroy *this.
    274     Copy.Map->Map.erase(Copy);  // Definitely destroys *this.
    275   }
    276 
    277   void allUsesReplacedWith(Value *new_key) override {
    278     assert(isa<KeySansPointerT>(new_key) &&
    279            "Invalid RAUW on key of ValueMap<>");
    280     // Make a copy that won't get changed even when *this is destroyed.
    281     ValueMapCallbackVH Copy(*this);
    282     typename Config::mutex_type *M = Config::getMutex(Copy.Map->Data);
    283     unique_lock<typename Config::mutex_type> Guard;
    284     if (M)
    285       Guard = unique_lock<typename Config::mutex_type>(*M);
    286 
    287     KeyT typed_new_key = cast<KeySansPointerT>(new_key);
    288     // Can destroy *this:
    289     Config::onRAUW(Copy.Map->Data, Copy.Unwrap(), typed_new_key);
    290     if (Config::FollowRAUW) {
    291       typename ValueMapT::MapT::iterator I = Copy.Map->Map.find(Copy);
    292       // I could == Copy.Map->Map.end() if the onRAUW callback already
    293       // removed the old mapping.
    294       if (I != Copy.Map->Map.end()) {
    295         ValueT Target(std::move(I->second));
    296         Copy.Map->Map.erase(I);  // Definitely destroys *this.
    297         Copy.Map->insert(std::make_pair(typed_new_key, std::move(Target)));
    298       }
    299     }
    300   }
    301 };
    302 
    303 template<typename KeyT, typename ValueT, typename Config>
    304 struct DenseMapInfo<ValueMapCallbackVH<KeyT, ValueT, Config>> {
    305   using VH = ValueMapCallbackVH<KeyT, ValueT, Config>;
    306 
    307   static inline VH getEmptyKey() {
    308     return VH(DenseMapInfo<Value *>::getEmptyKey());
    309   }
    310 
    311   static inline VH getTombstoneKey() {
    312     return VH(DenseMapInfo<Value *>::getTombstoneKey());
    313   }
    314 
    315   static unsigned getHashValue(const VH &Val) {
    316     return DenseMapInfo<KeyT>::getHashValue(Val.Unwrap());
    317   }
    318 
    319   static unsigned getHashValue(const KeyT &Val) {
    320     return DenseMapInfo<KeyT>::getHashValue(Val);
    321   }
    322 
    323   static bool isEqual(const VH &LHS, const VH &RHS) {
    324     return LHS == RHS;
    325   }
    326 
    327   static bool isEqual(const KeyT &LHS, const VH &RHS) {
    328     return LHS == RHS.getValPtr();
    329   }
    330 };
    331 
    332 template<typename DenseMapT, typename KeyT>
    333 class ValueMapIterator :
    334     public std::iterator<std::forward_iterator_tag,
    335                          std::pair<KeyT, typename DenseMapT::mapped_type>,
    336                          ptrdiff_t> {
    337   using BaseT = typename DenseMapT::iterator;
    338   using ValueT = typename DenseMapT::mapped_type;
    339 
    340   BaseT I;
    341 
    342 public:
    343   ValueMapIterator() : I() {}
    344   ValueMapIterator(BaseT I) : I(I) {}
    345 
    346   BaseT base() const { return I; }
    347 
    348   struct ValueTypeProxy {
    349     const KeyT first;
    350     ValueT& second;
    351 
    352     ValueTypeProxy *operator->() { return this; }
    353 
    354     operator std::pair<KeyT, ValueT>() const {
    355       return std::make_pair(first, second);
    356     }
    357   };
    358 
    359   ValueTypeProxy operator*() const {
    360     ValueTypeProxy Result = {I->first.Unwrap(), I->second};
    361     return Result;
    362   }
    363 
    364   ValueTypeProxy operator->() const {
    365     return operator*();
    366   }
    367 
    368   bool operator==(const ValueMapIterator &RHS) const {
    369     return I == RHS.I;
    370   }
    371   bool operator!=(const ValueMapIterator &RHS) const {
    372     return I != RHS.I;
    373   }
    374 
    375   inline ValueMapIterator& operator++() {  // Preincrement
    376     ++I;
    377     return *this;
    378   }
    379   ValueMapIterator operator++(int) {  // Postincrement
    380     ValueMapIterator tmp = *this; ++*this; return tmp;
    381   }
    382 };
    383 
    384 template<typename DenseMapT, typename KeyT>
    385 class ValueMapConstIterator :
    386     public std::iterator<std::forward_iterator_tag,
    387                          std::pair<KeyT, typename DenseMapT::mapped_type>,
    388                          ptrdiff_t> {
    389   using BaseT = typename DenseMapT::const_iterator;
    390   using ValueT = typename DenseMapT::mapped_type;
    391 
    392   BaseT I;
    393 
    394 public:
    395   ValueMapConstIterator() : I() {}
    396   ValueMapConstIterator(BaseT I) : I(I) {}
    397   ValueMapConstIterator(ValueMapIterator<DenseMapT, KeyT> Other)
    398     : I(Other.base()) {}
    399 
    400   BaseT base() const { return I; }
    401 
    402   struct ValueTypeProxy {
    403     const KeyT first;
    404     const ValueT& second;
    405     ValueTypeProxy *operator->() { return this; }
    406     operator std::pair<KeyT, ValueT>() const {
    407       return std::make_pair(first, second);
    408     }
    409   };
    410 
    411   ValueTypeProxy operator*() const {
    412     ValueTypeProxy Result = {I->first.Unwrap(), I->second};
    413     return Result;
    414   }
    415 
    416   ValueTypeProxy operator->() const {
    417     return operator*();
    418   }
    419 
    420   bool operator==(const ValueMapConstIterator &RHS) const {
    421     return I == RHS.I;
    422   }
    423   bool operator!=(const ValueMapConstIterator &RHS) const {
    424     return I != RHS.I;
    425   }
    426 
    427   inline ValueMapConstIterator& operator++() {  // Preincrement
    428     ++I;
    429     return *this;
    430   }
    431   ValueMapConstIterator operator++(int) {  // Postincrement
    432     ValueMapConstIterator tmp = *this; ++*this; return tmp;
    433   }
    434 };
    435 
    436 } // end namespace llvm
    437 
    438 #endif // LLVM_IR_VALUEMAP_H
    439