Home | History | Annotate | Download | only in Analysis
      1 //===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "llvm/Analysis/CGSCCPassManager.h"
     11 #include "llvm/ADT/ArrayRef.h"
     12 #include "llvm/ADT/Optional.h"
     13 #include "llvm/ADT/STLExtras.h"
     14 #include "llvm/ADT/SetVector.h"
     15 #include "llvm/ADT/SmallPtrSet.h"
     16 #include "llvm/ADT/SmallVector.h"
     17 #include "llvm/ADT/iterator_range.h"
     18 #include "llvm/Analysis/LazyCallGraph.h"
     19 #include "llvm/IR/CallSite.h"
     20 #include "llvm/IR/Constant.h"
     21 #include "llvm/IR/InstIterator.h"
     22 #include "llvm/IR/Instruction.h"
     23 #include "llvm/IR/PassManager.h"
     24 #include "llvm/Support/Casting.h"
     25 #include "llvm/Support/Debug.h"
     26 #include "llvm/Support/raw_ostream.h"
     27 #include <algorithm>
     28 #include <cassert>
     29 #include <iterator>
     30 
     31 #define DEBUG_TYPE "cgscc"
     32 
     33 using namespace llvm;
     34 
     35 // Explicit template instantiations and specialization definitions for core
     36 // template typedefs.
     37 namespace llvm {
     38 
     39 // Explicit instantiations for the core proxy templates.
     40 template class AllAnalysesOn<LazyCallGraph::SCC>;
     41 template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>;
     42 template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager,
     43                            LazyCallGraph &, CGSCCUpdateResult &>;
     44 template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>;
     45 template class OuterAnalysisManagerProxy<ModuleAnalysisManager,
     46                                          LazyCallGraph::SCC, LazyCallGraph &>;
     47 template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>;
     48 
     49 /// Explicitly specialize the pass manager run method to handle call graph
     50 /// updates.
     51 template <>
     52 PreservedAnalyses
     53 PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &,
     54             CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC,
     55                                       CGSCCAnalysisManager &AM,
     56                                       LazyCallGraph &G, CGSCCUpdateResult &UR) {
     57   PreservedAnalyses PA = PreservedAnalyses::all();
     58 
     59   if (DebugLogging)
     60     dbgs() << "Starting CGSCC pass manager run.\n";
     61 
     62   // The SCC may be refined while we are running passes over it, so set up
     63   // a pointer that we can update.
     64   LazyCallGraph::SCC *C = &InitialC;
     65 
     66   for (auto &Pass : Passes) {
     67     if (DebugLogging)
     68       dbgs() << "Running pass: " << Pass->name() << " on " << *C << "\n";
     69 
     70     PreservedAnalyses PassPA = Pass->run(*C, AM, G, UR);
     71 
     72     // Update the SCC if necessary.
     73     C = UR.UpdatedC ? UR.UpdatedC : C;
     74 
     75     // If the CGSCC pass wasn't able to provide a valid updated SCC, the
     76     // current SCC may simply need to be skipped if invalid.
     77     if (UR.InvalidatedSCCs.count(C)) {
     78       LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
     79       break;
     80     }
     81     // Check that we didn't miss any update scenario.
     82     assert(C->begin() != C->end() && "Cannot have an empty SCC!");
     83 
     84     // Update the analysis manager as each pass runs and potentially
     85     // invalidates analyses.
     86     AM.invalidate(*C, PassPA);
     87 
     88     // Finally, we intersect the final preserved analyses to compute the
     89     // aggregate preserved set for this pass manager.
     90     PA.intersect(std::move(PassPA));
     91 
     92     // FIXME: Historically, the pass managers all called the LLVM context's
     93     // yield function here. We don't have a generic way to acquire the
     94     // context and it isn't yet clear what the right pattern is for yielding
     95     // in the new pass manager so it is currently omitted.
     96     // ...getContext().yield();
     97   }
     98 
     99   // Invalidation was handled after each pass in the above loop for the current
    100   // SCC. Therefore, the remaining analysis results in the AnalysisManager are
    101   // preserved. We mark this with a set so that we don't need to inspect each
    102   // one individually.
    103   PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>();
    104 
    105   if (DebugLogging)
    106     dbgs() << "Finished CGSCC pass manager run.\n";
    107 
    108   return PA;
    109 }
    110 
    111 bool CGSCCAnalysisManagerModuleProxy::Result::invalidate(
    112     Module &M, const PreservedAnalyses &PA,
    113     ModuleAnalysisManager::Invalidator &Inv) {
    114   // If literally everything is preserved, we're done.
    115   if (PA.areAllPreserved())
    116     return false; // This is still a valid proxy.
    117 
    118   // If this proxy or the call graph is going to be invalidated, we also need
    119   // to clear all the keys coming from that analysis.
    120   //
    121   // We also directly invalidate the FAM's module proxy if necessary, and if
    122   // that proxy isn't preserved we can't preserve this proxy either. We rely on
    123   // it to handle module -> function analysis invalidation in the face of
    124   // structural changes and so if it's unavailable we conservatively clear the
    125   // entire SCC layer as well rather than trying to do invalidation ourselves.
    126   auto PAC = PA.getChecker<CGSCCAnalysisManagerModuleProxy>();
    127   if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>()) ||
    128       Inv.invalidate<LazyCallGraphAnalysis>(M, PA) ||
    129       Inv.invalidate<FunctionAnalysisManagerModuleProxy>(M, PA)) {
    130     InnerAM->clear();
    131 
    132     // And the proxy itself should be marked as invalid so that we can observe
    133     // the new call graph. This isn't strictly necessary because we cheat
    134     // above, but is still useful.
    135     return true;
    136   }
    137 
    138   // Directly check if the relevant set is preserved so we can short circuit
    139   // invalidating SCCs below.
    140   bool AreSCCAnalysesPreserved =
    141       PA.allAnalysesInSetPreserved<AllAnalysesOn<LazyCallGraph::SCC>>();
    142 
    143   // Ok, we have a graph, so we can propagate the invalidation down into it.
    144   G->buildRefSCCs();
    145   for (auto &RC : G->postorder_ref_sccs())
    146     for (auto &C : RC) {
    147       Optional<PreservedAnalyses> InnerPA;
    148 
    149       // Check to see whether the preserved set needs to be adjusted based on
    150       // module-level analysis invalidation triggering deferred invalidation
    151       // for this SCC.
    152       if (auto *OuterProxy =
    153               InnerAM->getCachedResult<ModuleAnalysisManagerCGSCCProxy>(C))
    154         for (const auto &OuterInvalidationPair :
    155              OuterProxy->getOuterInvalidations()) {
    156           AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first;
    157           const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
    158           if (Inv.invalidate(OuterAnalysisID, M, PA)) {
    159             if (!InnerPA)
    160               InnerPA = PA;
    161             for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
    162               InnerPA->abandon(InnerAnalysisID);
    163           }
    164         }
    165 
    166       // Check if we needed a custom PA set. If so we'll need to run the inner
    167       // invalidation.
    168       if (InnerPA) {
    169         InnerAM->invalidate(C, *InnerPA);
    170         continue;
    171       }
    172 
    173       // Otherwise we only need to do invalidation if the original PA set didn't
    174       // preserve all SCC analyses.
    175       if (!AreSCCAnalysesPreserved)
    176         InnerAM->invalidate(C, PA);
    177     }
    178 
    179   // Return false to indicate that this result is still a valid proxy.
    180   return false;
    181 }
    182 
    183 template <>
    184 CGSCCAnalysisManagerModuleProxy::Result
    185 CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM) {
    186   // Force the Function analysis manager to also be available so that it can
    187   // be accessed in an SCC analysis and proxied onward to function passes.
    188   // FIXME: It is pretty awkward to just drop the result here and assert that
    189   // we can find it again later.
    190   (void)AM.getResult<FunctionAnalysisManagerModuleProxy>(M);
    191 
    192   return Result(*InnerAM, AM.getResult<LazyCallGraphAnalysis>(M));
    193 }
    194 
    195 AnalysisKey FunctionAnalysisManagerCGSCCProxy::Key;
    196 
    197 FunctionAnalysisManagerCGSCCProxy::Result
    198 FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC &C,
    199                                        CGSCCAnalysisManager &AM,
    200                                        LazyCallGraph &CG) {
    201   // Collect the FunctionAnalysisManager from the Module layer and use that to
    202   // build the proxy result.
    203   //
    204   // This allows us to rely on the FunctionAnalysisMangaerModuleProxy to
    205   // invalidate the function analyses.
    206   auto &MAM = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG).getManager();
    207   Module &M = *C.begin()->getFunction().getParent();
    208   auto *FAMProxy = MAM.getCachedResult<FunctionAnalysisManagerModuleProxy>(M);
    209   assert(FAMProxy && "The CGSCC pass manager requires that the FAM module "
    210                      "proxy is run on the module prior to entering the CGSCC "
    211                      "walk.");
    212 
    213   // Note that we special-case invalidation handling of this proxy in the CGSCC
    214   // analysis manager's Module proxy. This avoids the need to do anything
    215   // special here to recompute all of this if ever the FAM's module proxy goes
    216   // away.
    217   return Result(FAMProxy->getManager());
    218 }
    219 
    220 bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate(
    221     LazyCallGraph::SCC &C, const PreservedAnalyses &PA,
    222     CGSCCAnalysisManager::Invalidator &Inv) {
    223   // If literally everything is preserved, we're done.
    224   if (PA.areAllPreserved())
    225     return false; // This is still a valid proxy.
    226 
    227   // If this proxy isn't marked as preserved, then even if the result remains
    228   // valid, the key itself may no longer be valid, so we clear everything.
    229   //
    230   // Note that in order to preserve this proxy, a module pass must ensure that
    231   // the FAM has been completely updated to handle the deletion of functions.
    232   // Specifically, any FAM-cached results for those functions need to have been
    233   // forcibly cleared. When preserved, this proxy will only invalidate results
    234   // cached on functions *still in the module* at the end of the module pass.
    235   auto PAC = PA.getChecker<FunctionAnalysisManagerCGSCCProxy>();
    236   if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<LazyCallGraph::SCC>>()) {
    237     for (LazyCallGraph::Node &N : C)
    238       FAM->clear(N.getFunction(), N.getFunction().getName());
    239 
    240     return true;
    241   }
    242 
    243   // Directly check if the relevant set is preserved.
    244   bool AreFunctionAnalysesPreserved =
    245       PA.allAnalysesInSetPreserved<AllAnalysesOn<Function>>();
    246 
    247   // Now walk all the functions to see if any inner analysis invalidation is
    248   // necessary.
    249   for (LazyCallGraph::Node &N : C) {
    250     Function &F = N.getFunction();
    251     Optional<PreservedAnalyses> FunctionPA;
    252 
    253     // Check to see whether the preserved set needs to be pruned based on
    254     // SCC-level analysis invalidation that triggers deferred invalidation
    255     // registered with the outer analysis manager proxy for this function.
    256     if (auto *OuterProxy =
    257             FAM->getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F))
    258       for (const auto &OuterInvalidationPair :
    259            OuterProxy->getOuterInvalidations()) {
    260         AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first;
    261         const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
    262         if (Inv.invalidate(OuterAnalysisID, C, PA)) {
    263           if (!FunctionPA)
    264             FunctionPA = PA;
    265           for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
    266             FunctionPA->abandon(InnerAnalysisID);
    267         }
    268       }
    269 
    270     // Check if we needed a custom PA set, and if so we'll need to run the
    271     // inner invalidation.
    272     if (FunctionPA) {
    273       FAM->invalidate(F, *FunctionPA);
    274       continue;
    275     }
    276 
    277     // Otherwise we only need to do invalidation if the original PA set didn't
    278     // preserve all function analyses.
    279     if (!AreFunctionAnalysesPreserved)
    280       FAM->invalidate(F, PA);
    281   }
    282 
    283   // Return false to indicate that this result is still a valid proxy.
    284   return false;
    285 }
    286 
    287 } // end namespace llvm
    288 
    289 /// When a new SCC is created for the graph and there might be function
    290 /// analysis results cached for the functions now in that SCC two forms of
    291 /// updates are required.
    292 ///
    293 /// First, a proxy from the SCC to the FunctionAnalysisManager needs to be
    294 /// created so that any subsequent invalidation events to the SCC are
    295 /// propagated to the function analysis results cached for functions within it.
    296 ///
    297 /// Second, if any of the functions within the SCC have analysis results with
    298 /// outer analysis dependencies, then those dependencies would point to the
    299 /// *wrong* SCC's analysis result. We forcibly invalidate the necessary
    300 /// function analyses so that they don't retain stale handles.
    301 static void updateNewSCCFunctionAnalyses(LazyCallGraph::SCC &C,
    302                                          LazyCallGraph &G,
    303                                          CGSCCAnalysisManager &AM) {
    304   // Get the relevant function analysis manager.
    305   auto &FAM =
    306       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, G).getManager();
    307 
    308   // Now walk the functions in this SCC and invalidate any function analysis
    309   // results that might have outer dependencies on an SCC analysis.
    310   for (LazyCallGraph::Node &N : C) {
    311     Function &F = N.getFunction();
    312 
    313     auto *OuterProxy =
    314         FAM.getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F);
    315     if (!OuterProxy)
    316       // No outer analyses were queried, nothing to do.
    317       continue;
    318 
    319     // Forcibly abandon all the inner analyses with dependencies, but
    320     // invalidate nothing else.
    321     auto PA = PreservedAnalyses::all();
    322     for (const auto &OuterInvalidationPair :
    323          OuterProxy->getOuterInvalidations()) {
    324       const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
    325       for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
    326         PA.abandon(InnerAnalysisID);
    327     }
    328 
    329     // Now invalidate anything we found.
    330     FAM.invalidate(F, PA);
    331   }
    332 }
    333 
    334 /// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c
    335 /// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly
    336 /// added SCCs.
    337 ///
    338 /// The range of new SCCs must be in postorder already. The SCC they were split
    339 /// out of must be provided as \p C. The current node being mutated and
    340 /// triggering updates must be passed as \p N.
    341 ///
    342 /// This function returns the SCC containing \p N. This will be either \p C if
    343 /// no new SCCs have been split out, or it will be the new SCC containing \p N.
    344 template <typename SCCRangeT>
    345 static LazyCallGraph::SCC *
    346 incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G,
    347                        LazyCallGraph::Node &N, LazyCallGraph::SCC *C,
    348                        CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) {
    349   using SCC = LazyCallGraph::SCC;
    350 
    351   if (NewSCCRange.begin() == NewSCCRange.end())
    352     return C;
    353 
    354   // Add the current SCC to the worklist as its shape has changed.
    355   UR.CWorklist.insert(C);
    356   LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist:" << *C
    357                     << "\n");
    358 
    359   SCC *OldC = C;
    360 
    361   // Update the current SCC. Note that if we have new SCCs, this must actually
    362   // change the SCC.
    363   assert(C != &*NewSCCRange.begin() &&
    364          "Cannot insert new SCCs without changing current SCC!");
    365   C = &*NewSCCRange.begin();
    366   assert(G.lookupSCC(N) == C && "Failed to update current SCC!");
    367 
    368   // If we had a cached FAM proxy originally, we will want to create more of
    369   // them for each SCC that was split off.
    370   bool NeedFAMProxy =
    371       AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*OldC) != nullptr;
    372 
    373   // We need to propagate an invalidation call to all but the newly current SCC
    374   // because the outer pass manager won't do that for us after splitting them.
    375   // FIXME: We should accept a PreservedAnalysis from the CG updater so that if
    376   // there are preserved analysis we can avoid invalidating them here for
    377   // split-off SCCs.
    378   // We know however that this will preserve any FAM proxy so go ahead and mark
    379   // that.
    380   PreservedAnalyses PA;
    381   PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
    382   AM.invalidate(*OldC, PA);
    383 
    384   // Ensure the now-current SCC's function analyses are updated.
    385   if (NeedFAMProxy)
    386     updateNewSCCFunctionAnalyses(*C, G, AM);
    387 
    388   for (SCC &NewC : llvm::reverse(make_range(std::next(NewSCCRange.begin()),
    389                                             NewSCCRange.end()))) {
    390     assert(C != &NewC && "No need to re-visit the current SCC!");
    391     assert(OldC != &NewC && "Already handled the original SCC!");
    392     UR.CWorklist.insert(&NewC);
    393     LLVM_DEBUG(dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n");
    394 
    395     // Ensure new SCCs' function analyses are updated.
    396     if (NeedFAMProxy)
    397       updateNewSCCFunctionAnalyses(NewC, G, AM);
    398 
    399     // Also propagate a normal invalidation to the new SCC as only the current
    400     // will get one from the pass manager infrastructure.
    401     AM.invalidate(NewC, PA);
    402   }
    403   return C;
    404 }
    405 
    406 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass(
    407     LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
    408     CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) {
    409   using Node = LazyCallGraph::Node;
    410   using Edge = LazyCallGraph::Edge;
    411   using SCC = LazyCallGraph::SCC;
    412   using RefSCC = LazyCallGraph::RefSCC;
    413 
    414   RefSCC &InitialRC = InitialC.getOuterRefSCC();
    415   SCC *C = &InitialC;
    416   RefSCC *RC = &InitialRC;
    417   Function &F = N.getFunction();
    418 
    419   // Walk the function body and build up the set of retained, promoted, and
    420   // demoted edges.
    421   SmallVector<Constant *, 16> Worklist;
    422   SmallPtrSet<Constant *, 16> Visited;
    423   SmallPtrSet<Node *, 16> RetainedEdges;
    424   SmallSetVector<Node *, 4> PromotedRefTargets;
    425   SmallSetVector<Node *, 4> DemotedCallTargets;
    426 
    427   // First walk the function and handle all called functions. We do this first
    428   // because if there is a single call edge, whether there are ref edges is
    429   // irrelevant.
    430   for (Instruction &I : instructions(F))
    431     if (auto CS = CallSite(&I))
    432       if (Function *Callee = CS.getCalledFunction())
    433         if (Visited.insert(Callee).second && !Callee->isDeclaration()) {
    434           Node &CalleeN = *G.lookup(*Callee);
    435           Edge *E = N->lookup(CalleeN);
    436           // FIXME: We should really handle adding new calls. While it will
    437           // make downstream usage more complex, there is no fundamental
    438           // limitation and it will allow passes within the CGSCC to be a bit
    439           // more flexible in what transforms they can do. Until then, we
    440           // verify that new calls haven't been introduced.
    441           assert(E && "No function transformations should introduce *new* "
    442                       "call edges! Any new calls should be modeled as "
    443                       "promoted existing ref edges!");
    444           bool Inserted = RetainedEdges.insert(&CalleeN).second;
    445           (void)Inserted;
    446           assert(Inserted && "We should never visit a function twice.");
    447           if (!E->isCall())
    448             PromotedRefTargets.insert(&CalleeN);
    449         }
    450 
    451   // Now walk all references.
    452   for (Instruction &I : instructions(F))
    453     for (Value *Op : I.operand_values())
    454       if (auto *C = dyn_cast<Constant>(Op))
    455         if (Visited.insert(C).second)
    456           Worklist.push_back(C);
    457 
    458   auto VisitRef = [&](Function &Referee) {
    459     Node &RefereeN = *G.lookup(Referee);
    460     Edge *E = N->lookup(RefereeN);
    461     // FIXME: Similarly to new calls, we also currently preclude
    462     // introducing new references. See above for details.
    463     assert(E && "No function transformations should introduce *new* ref "
    464                 "edges! Any new ref edges would require IPO which "
    465                 "function passes aren't allowed to do!");
    466     bool Inserted = RetainedEdges.insert(&RefereeN).second;
    467     (void)Inserted;
    468     assert(Inserted && "We should never visit a function twice.");
    469     if (E->isCall())
    470       DemotedCallTargets.insert(&RefereeN);
    471   };
    472   LazyCallGraph::visitReferences(Worklist, Visited, VisitRef);
    473 
    474   // Include synthetic reference edges to known, defined lib functions.
    475   for (auto *F : G.getLibFunctions())
    476     // While the list of lib functions doesn't have repeats, don't re-visit
    477     // anything handled above.
    478     if (!Visited.count(F))
    479       VisitRef(*F);
    480 
    481   // First remove all of the edges that are no longer present in this function.
    482   // The first step makes these edges uniformly ref edges and accumulates them
    483   // into a separate data structure so removal doesn't invalidate anything.
    484   SmallVector<Node *, 4> DeadTargets;
    485   for (Edge &E : *N) {
    486     if (RetainedEdges.count(&E.getNode()))
    487       continue;
    488 
    489     SCC &TargetC = *G.lookupSCC(E.getNode());
    490     RefSCC &TargetRC = TargetC.getOuterRefSCC();
    491     if (&TargetRC == RC && E.isCall()) {
    492       if (C != &TargetC) {
    493         // For separate SCCs this is trivial.
    494         RC->switchTrivialInternalEdgeToRef(N, E.getNode());
    495       } else {
    496         // Now update the call graph.
    497         C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, E.getNode()),
    498                                    G, N, C, AM, UR);
    499       }
    500     }
    501 
    502     // Now that this is ready for actual removal, put it into our list.
    503     DeadTargets.push_back(&E.getNode());
    504   }
    505   // Remove the easy cases quickly and actually pull them out of our list.
    506   DeadTargets.erase(
    507       llvm::remove_if(DeadTargets,
    508                       [&](Node *TargetN) {
    509                         SCC &TargetC = *G.lookupSCC(*TargetN);
    510                         RefSCC &TargetRC = TargetC.getOuterRefSCC();
    511 
    512                         // We can't trivially remove internal targets, so skip
    513                         // those.
    514                         if (&TargetRC == RC)
    515                           return false;
    516 
    517                         RC->removeOutgoingEdge(N, *TargetN);
    518                         LLVM_DEBUG(dbgs() << "Deleting outgoing edge from '"
    519                                           << N << "' to '" << TargetN << "'\n");
    520                         return true;
    521                       }),
    522       DeadTargets.end());
    523 
    524   // Now do a batch removal of the internal ref edges left.
    525   auto NewRefSCCs = RC->removeInternalRefEdge(N, DeadTargets);
    526   if (!NewRefSCCs.empty()) {
    527     // The old RefSCC is dead, mark it as such.
    528     UR.InvalidatedRefSCCs.insert(RC);
    529 
    530     // Note that we don't bother to invalidate analyses as ref-edge
    531     // connectivity is not really observable in any way and is intended
    532     // exclusively to be used for ordering of transforms rather than for
    533     // analysis conclusions.
    534 
    535     // Update RC to the "bottom".
    536     assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!");
    537     RC = &C->getOuterRefSCC();
    538     assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!");
    539 
    540     // The RC worklist is in reverse postorder, so we enqueue the new ones in
    541     // RPO except for the one which contains the source node as that is the
    542     // "bottom" we will continue processing in the bottom-up walk.
    543     assert(NewRefSCCs.front() == RC &&
    544            "New current RefSCC not first in the returned list!");
    545     for (RefSCC *NewRC : llvm::reverse(make_range(std::next(NewRefSCCs.begin()),
    546                                                   NewRefSCCs.end()))) {
    547       assert(NewRC != RC && "Should not encounter the current RefSCC further "
    548                             "in the postorder list of new RefSCCs.");
    549       UR.RCWorklist.insert(NewRC);
    550       LLVM_DEBUG(dbgs() << "Enqueuing a new RefSCC in the update worklist: "
    551                         << *NewRC << "\n");
    552     }
    553   }
    554 
    555   // Next demote all the call edges that are now ref edges. This helps make
    556   // the SCCs small which should minimize the work below as we don't want to
    557   // form cycles that this would break.
    558   for (Node *RefTarget : DemotedCallTargets) {
    559     SCC &TargetC = *G.lookupSCC(*RefTarget);
    560     RefSCC &TargetRC = TargetC.getOuterRefSCC();
    561 
    562     // The easy case is when the target RefSCC is not this RefSCC. This is
    563     // only supported when the target RefSCC is a child of this RefSCC.
    564     if (&TargetRC != RC) {
    565       assert(RC->isAncestorOf(TargetRC) &&
    566              "Cannot potentially form RefSCC cycles here!");
    567       RC->switchOutgoingEdgeToRef(N, *RefTarget);
    568       LLVM_DEBUG(dbgs() << "Switch outgoing call edge to a ref edge from '" << N
    569                         << "' to '" << *RefTarget << "'\n");
    570       continue;
    571     }
    572 
    573     // We are switching an internal call edge to a ref edge. This may split up
    574     // some SCCs.
    575     if (C != &TargetC) {
    576       // For separate SCCs this is trivial.
    577       RC->switchTrivialInternalEdgeToRef(N, *RefTarget);
    578       continue;
    579     }
    580 
    581     // Now update the call graph.
    582     C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, *RefTarget), G, N,
    583                                C, AM, UR);
    584   }
    585 
    586   // Now promote ref edges into call edges.
    587   for (Node *CallTarget : PromotedRefTargets) {
    588     SCC &TargetC = *G.lookupSCC(*CallTarget);
    589     RefSCC &TargetRC = TargetC.getOuterRefSCC();
    590 
    591     // The easy case is when the target RefSCC is not this RefSCC. This is
    592     // only supported when the target RefSCC is a child of this RefSCC.
    593     if (&TargetRC != RC) {
    594       assert(RC->isAncestorOf(TargetRC) &&
    595              "Cannot potentially form RefSCC cycles here!");
    596       RC->switchOutgoingEdgeToCall(N, *CallTarget);
    597       LLVM_DEBUG(dbgs() << "Switch outgoing ref edge to a call edge from '" << N
    598                         << "' to '" << *CallTarget << "'\n");
    599       continue;
    600     }
    601     LLVM_DEBUG(dbgs() << "Switch an internal ref edge to a call edge from '"
    602                       << N << "' to '" << *CallTarget << "'\n");
    603 
    604     // Otherwise we are switching an internal ref edge to a call edge. This
    605     // may merge away some SCCs, and we add those to the UpdateResult. We also
    606     // need to make sure to update the worklist in the event SCCs have moved
    607     // before the current one in the post-order sequence
    608     bool HasFunctionAnalysisProxy = false;
    609     auto InitialSCCIndex = RC->find(*C) - RC->begin();
    610     bool FormedCycle = RC->switchInternalEdgeToCall(
    611         N, *CallTarget, [&](ArrayRef<SCC *> MergedSCCs) {
    612           for (SCC *MergedC : MergedSCCs) {
    613             assert(MergedC != &TargetC && "Cannot merge away the target SCC!");
    614 
    615             HasFunctionAnalysisProxy |=
    616                 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(
    617                     *MergedC) != nullptr;
    618 
    619             // Mark that this SCC will no longer be valid.
    620             UR.InvalidatedSCCs.insert(MergedC);
    621 
    622             // FIXME: We should really do a 'clear' here to forcibly release
    623             // memory, but we don't have a good way of doing that and
    624             // preserving the function analyses.
    625             auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
    626             PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
    627             AM.invalidate(*MergedC, PA);
    628           }
    629         });
    630 
    631     // If we formed a cycle by creating this call, we need to update more data
    632     // structures.
    633     if (FormedCycle) {
    634       C = &TargetC;
    635       assert(G.lookupSCC(N) == C && "Failed to update current SCC!");
    636 
    637       // If one of the invalidated SCCs had a cached proxy to a function
    638       // analysis manager, we need to create a proxy in the new current SCC as
    639       // the invalidated SCCs had their functions moved.
    640       if (HasFunctionAnalysisProxy)
    641         AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G);
    642 
    643       // Any analyses cached for this SCC are no longer precise as the shape
    644       // has changed by introducing this cycle. However, we have taken care to
    645       // update the proxies so it remains valide.
    646       auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
    647       PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
    648       AM.invalidate(*C, PA);
    649     }
    650     auto NewSCCIndex = RC->find(*C) - RC->begin();
    651     // If we have actually moved an SCC to be topologically "below" the current
    652     // one due to merging, we will need to revisit the current SCC after
    653     // visiting those moved SCCs.
    654     //
    655     // It is critical that we *do not* revisit the current SCC unless we
    656     // actually move SCCs in the process of merging because otherwise we may
    657     // form a cycle where an SCC is split apart, merged, split, merged and so
    658     // on infinitely.
    659     if (InitialSCCIndex < NewSCCIndex) {
    660       // Put our current SCC back onto the worklist as we'll visit other SCCs
    661       // that are now definitively ordered prior to the current one in the
    662       // post-order sequence, and may end up observing more precise context to
    663       // optimize the current SCC.
    664       UR.CWorklist.insert(C);
    665       LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist: " << *C
    666                         << "\n");
    667       // Enqueue in reverse order as we pop off the back of the worklist.
    668       for (SCC &MovedC : llvm::reverse(make_range(RC->begin() + InitialSCCIndex,
    669                                                   RC->begin() + NewSCCIndex))) {
    670         UR.CWorklist.insert(&MovedC);
    671         LLVM_DEBUG(dbgs() << "Enqueuing a newly earlier in post-order SCC: "
    672                           << MovedC << "\n");
    673       }
    674     }
    675   }
    676 
    677   assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!");
    678   assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!");
    679   assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!");
    680 
    681   // Record the current RefSCC and SCC for higher layers of the CGSCC pass
    682   // manager now that all the updates have been applied.
    683   if (RC != &InitialRC)
    684     UR.UpdatedRC = RC;
    685   if (C != &InitialC)
    686     UR.UpdatedC = C;
    687 
    688   return *C;
    689 }
    690