Home | History | Annotate | Download | only in Analysis
      1 //===-- DependenceAnalysis.cpp - DA Implementation --------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // DependenceAnalysis is an LLVM pass that analyses dependences between memory
     11 // accesses. Currently, it is an (incomplete) implementation of the approach
     12 // described in
     13 //
     14 //            Practical Dependence Testing
     15 //            Goff, Kennedy, Tseng
     16 //            PLDI 1991
     17 //
     18 // There's a single entry point that analyzes the dependence between a pair
     19 // of memory references in a function, returning either NULL, for no dependence,
     20 // or a more-or-less detailed description of the dependence between them.
     21 //
     22 // Currently, the implementation cannot propagate constraints between
     23 // coupled RDIV subscripts and lacks a multi-subscript MIV test.
     24 // Both of these are conservative weaknesses;
     25 // that is, not a source of correctness problems.
     26 //
     27 // Since Clang linearizes some array subscripts, the dependence
     28 // analysis is using SCEV->delinearize to recover the representation of multiple
     29 // subscripts, and thus avoid the more expensive and less precise MIV tests. The
     30 // delinearization is controlled by the flag -da-delinearize.
     31 //
     32 // We should pay some careful attention to the possibility of integer overflow
     33 // in the implementation of the various tests. This could happen with Add,
     34 // Subtract, or Multiply, with both APInt's and SCEV's.
     35 //
     36 // Some non-linear subscript pairs can be handled by the GCD test
     37 // (and perhaps other tests).
     38 // Should explore how often these things occur.
     39 //
     40 // Finally, it seems like certain test cases expose weaknesses in the SCEV
     41 // simplification, especially in the handling of sign and zero extensions.
     42 // It could be useful to spend time exploring these.
     43 //
     44 // Please note that this is work in progress and the interface is subject to
     45 // change.
     46 //
     47 //===----------------------------------------------------------------------===//
     48 //                                                                            //
     49 //                   In memory of Ken Kennedy, 1945 - 2007                    //
     50 //                                                                            //
     51 //===----------------------------------------------------------------------===//
     52 
     53 #include "llvm/Analysis/DependenceAnalysis.h"
     54 #include "llvm/ADT/STLExtras.h"
     55 #include "llvm/ADT/Statistic.h"
     56 #include "llvm/Analysis/AliasAnalysis.h"
     57 #include "llvm/Analysis/LoopInfo.h"
     58 #include "llvm/Analysis/ScalarEvolution.h"
     59 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
     60 #include "llvm/Analysis/ValueTracking.h"
     61 #include "llvm/Config/llvm-config.h"
     62 #include "llvm/IR/InstIterator.h"
     63 #include "llvm/IR/Module.h"
     64 #include "llvm/IR/Operator.h"
     65 #include "llvm/Support/CommandLine.h"
     66 #include "llvm/Support/Debug.h"
     67 #include "llvm/Support/ErrorHandling.h"
     68 #include "llvm/Support/raw_ostream.h"
     69 
     70 using namespace llvm;
     71 
     72 #define DEBUG_TYPE "da"
     73 
     74 //===----------------------------------------------------------------------===//
     75 // statistics
     76 
     77 STATISTIC(TotalArrayPairs, "Array pairs tested");
     78 STATISTIC(SeparableSubscriptPairs, "Separable subscript pairs");
     79 STATISTIC(CoupledSubscriptPairs, "Coupled subscript pairs");
     80 STATISTIC(NonlinearSubscriptPairs, "Nonlinear subscript pairs");
     81 STATISTIC(ZIVapplications, "ZIV applications");
     82 STATISTIC(ZIVindependence, "ZIV independence");
     83 STATISTIC(StrongSIVapplications, "Strong SIV applications");
     84 STATISTIC(StrongSIVsuccesses, "Strong SIV successes");
     85 STATISTIC(StrongSIVindependence, "Strong SIV independence");
     86 STATISTIC(WeakCrossingSIVapplications, "Weak-Crossing SIV applications");
     87 STATISTIC(WeakCrossingSIVsuccesses, "Weak-Crossing SIV successes");
     88 STATISTIC(WeakCrossingSIVindependence, "Weak-Crossing SIV independence");
     89 STATISTIC(ExactSIVapplications, "Exact SIV applications");
     90 STATISTIC(ExactSIVsuccesses, "Exact SIV successes");
     91 STATISTIC(ExactSIVindependence, "Exact SIV independence");
     92 STATISTIC(WeakZeroSIVapplications, "Weak-Zero SIV applications");
     93 STATISTIC(WeakZeroSIVsuccesses, "Weak-Zero SIV successes");
     94 STATISTIC(WeakZeroSIVindependence, "Weak-Zero SIV independence");
     95 STATISTIC(ExactRDIVapplications, "Exact RDIV applications");
     96 STATISTIC(ExactRDIVindependence, "Exact RDIV independence");
     97 STATISTIC(SymbolicRDIVapplications, "Symbolic RDIV applications");
     98 STATISTIC(SymbolicRDIVindependence, "Symbolic RDIV independence");
     99 STATISTIC(DeltaApplications, "Delta applications");
    100 STATISTIC(DeltaSuccesses, "Delta successes");
    101 STATISTIC(DeltaIndependence, "Delta independence");
    102 STATISTIC(DeltaPropagations, "Delta propagations");
    103 STATISTIC(GCDapplications, "GCD applications");
    104 STATISTIC(GCDsuccesses, "GCD successes");
    105 STATISTIC(GCDindependence, "GCD independence");
    106 STATISTIC(BanerjeeApplications, "Banerjee applications");
    107 STATISTIC(BanerjeeIndependence, "Banerjee independence");
    108 STATISTIC(BanerjeeSuccesses, "Banerjee successes");
    109 
    110 static cl::opt<bool>
    111     Delinearize("da-delinearize", cl::init(true), cl::Hidden, cl::ZeroOrMore,
    112                 cl::desc("Try to delinearize array references."));
    113 
    114 //===----------------------------------------------------------------------===//
    115 // basics
    116 
    117 DependenceAnalysis::Result
    118 DependenceAnalysis::run(Function &F, FunctionAnalysisManager &FAM) {
    119   auto &AA = FAM.getResult<AAManager>(F);
    120   auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F);
    121   auto &LI = FAM.getResult<LoopAnalysis>(F);
    122   return DependenceInfo(&F, &AA, &SE, &LI);
    123 }
    124 
    125 AnalysisKey DependenceAnalysis::Key;
    126 
    127 INITIALIZE_PASS_BEGIN(DependenceAnalysisWrapperPass, "da",
    128                       "Dependence Analysis", true, true)
    129 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
    130 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
    131 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
    132 INITIALIZE_PASS_END(DependenceAnalysisWrapperPass, "da", "Dependence Analysis",
    133                     true, true)
    134 
    135 char DependenceAnalysisWrapperPass::ID = 0;
    136 
    137 FunctionPass *llvm::createDependenceAnalysisWrapperPass() {
    138   return new DependenceAnalysisWrapperPass();
    139 }
    140 
    141 bool DependenceAnalysisWrapperPass::runOnFunction(Function &F) {
    142   auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
    143   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
    144   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    145   info.reset(new DependenceInfo(&F, &AA, &SE, &LI));
    146   return false;
    147 }
    148 
    149 DependenceInfo &DependenceAnalysisWrapperPass::getDI() const { return *info; }
    150 
    151 void DependenceAnalysisWrapperPass::releaseMemory() { info.reset(); }
    152 
    153 void DependenceAnalysisWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
    154   AU.setPreservesAll();
    155   AU.addRequiredTransitive<AAResultsWrapperPass>();
    156   AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
    157   AU.addRequiredTransitive<LoopInfoWrapperPass>();
    158 }
    159 
    160 
    161 // Used to test the dependence analyzer.
    162 // Looks through the function, noting loads and stores.
    163 // Calls depends() on every possible pair and prints out the result.
    164 // Ignores all other instructions.
    165 static void dumpExampleDependence(raw_ostream &OS, DependenceInfo *DA) {
    166   auto *F = DA->getFunction();
    167   for (inst_iterator SrcI = inst_begin(F), SrcE = inst_end(F); SrcI != SrcE;
    168        ++SrcI) {
    169     if (isa<StoreInst>(*SrcI) || isa<LoadInst>(*SrcI)) {
    170       for (inst_iterator DstI = SrcI, DstE = inst_end(F);
    171            DstI != DstE; ++DstI) {
    172         if (isa<StoreInst>(*DstI) || isa<LoadInst>(*DstI)) {
    173           OS << "da analyze - ";
    174           if (auto D = DA->depends(&*SrcI, &*DstI, true)) {
    175             D->dump(OS);
    176             for (unsigned Level = 1; Level <= D->getLevels(); Level++) {
    177               if (D->isSplitable(Level)) {
    178                 OS << "da analyze - split level = " << Level;
    179                 OS << ", iteration = " << *DA->getSplitIteration(*D, Level);
    180                 OS << "!\n";
    181               }
    182             }
    183           }
    184           else
    185             OS << "none!\n";
    186         }
    187       }
    188     }
    189   }
    190 }
    191 
    192 void DependenceAnalysisWrapperPass::print(raw_ostream &OS,
    193                                           const Module *) const {
    194   dumpExampleDependence(OS, info.get());
    195 }
    196 
    197 //===----------------------------------------------------------------------===//
    198 // Dependence methods
    199 
    200 // Returns true if this is an input dependence.
    201 bool Dependence::isInput() const {
    202   return Src->mayReadFromMemory() && Dst->mayReadFromMemory();
    203 }
    204 
    205 
    206 // Returns true if this is an output dependence.
    207 bool Dependence::isOutput() const {
    208   return Src->mayWriteToMemory() && Dst->mayWriteToMemory();
    209 }
    210 
    211 
    212 // Returns true if this is an flow (aka true)  dependence.
    213 bool Dependence::isFlow() const {
    214   return Src->mayWriteToMemory() && Dst->mayReadFromMemory();
    215 }
    216 
    217 
    218 // Returns true if this is an anti dependence.
    219 bool Dependence::isAnti() const {
    220   return Src->mayReadFromMemory() && Dst->mayWriteToMemory();
    221 }
    222 
    223 
    224 // Returns true if a particular level is scalar; that is,
    225 // if no subscript in the source or destination mention the induction
    226 // variable associated with the loop at this level.
    227 // Leave this out of line, so it will serve as a virtual method anchor
    228 bool Dependence::isScalar(unsigned level) const {
    229   return false;
    230 }
    231 
    232 
    233 //===----------------------------------------------------------------------===//
    234 // FullDependence methods
    235 
    236 FullDependence::FullDependence(Instruction *Source, Instruction *Destination,
    237                                bool PossiblyLoopIndependent,
    238                                unsigned CommonLevels)
    239     : Dependence(Source, Destination), Levels(CommonLevels),
    240       LoopIndependent(PossiblyLoopIndependent) {
    241   Consistent = true;
    242   if (CommonLevels)
    243     DV = make_unique<DVEntry[]>(CommonLevels);
    244 }
    245 
    246 // The rest are simple getters that hide the implementation.
    247 
    248 // getDirection - Returns the direction associated with a particular level.
    249 unsigned FullDependence::getDirection(unsigned Level) const {
    250   assert(0 < Level && Level <= Levels && "Level out of range");
    251   return DV[Level - 1].Direction;
    252 }
    253 
    254 
    255 // Returns the distance (or NULL) associated with a particular level.
    256 const SCEV *FullDependence::getDistance(unsigned Level) const {
    257   assert(0 < Level && Level <= Levels && "Level out of range");
    258   return DV[Level - 1].Distance;
    259 }
    260 
    261 
    262 // Returns true if a particular level is scalar; that is,
    263 // if no subscript in the source or destination mention the induction
    264 // variable associated with the loop at this level.
    265 bool FullDependence::isScalar(unsigned Level) const {
    266   assert(0 < Level && Level <= Levels && "Level out of range");
    267   return DV[Level - 1].Scalar;
    268 }
    269 
    270 
    271 // Returns true if peeling the first iteration from this loop
    272 // will break this dependence.
    273 bool FullDependence::isPeelFirst(unsigned Level) const {
    274   assert(0 < Level && Level <= Levels && "Level out of range");
    275   return DV[Level - 1].PeelFirst;
    276 }
    277 
    278 
    279 // Returns true if peeling the last iteration from this loop
    280 // will break this dependence.
    281 bool FullDependence::isPeelLast(unsigned Level) const {
    282   assert(0 < Level && Level <= Levels && "Level out of range");
    283   return DV[Level - 1].PeelLast;
    284 }
    285 
    286 
    287 // Returns true if splitting this loop will break the dependence.
    288 bool FullDependence::isSplitable(unsigned Level) const {
    289   assert(0 < Level && Level <= Levels && "Level out of range");
    290   return DV[Level - 1].Splitable;
    291 }
    292 
    293 
    294 //===----------------------------------------------------------------------===//
    295 // DependenceInfo::Constraint methods
    296 
    297 // If constraint is a point <X, Y>, returns X.
    298 // Otherwise assert.
    299 const SCEV *DependenceInfo::Constraint::getX() const {
    300   assert(Kind == Point && "Kind should be Point");
    301   return A;
    302 }
    303 
    304 
    305 // If constraint is a point <X, Y>, returns Y.
    306 // Otherwise assert.
    307 const SCEV *DependenceInfo::Constraint::getY() const {
    308   assert(Kind == Point && "Kind should be Point");
    309   return B;
    310 }
    311 
    312 
    313 // If constraint is a line AX + BY = C, returns A.
    314 // Otherwise assert.
    315 const SCEV *DependenceInfo::Constraint::getA() const {
    316   assert((Kind == Line || Kind == Distance) &&
    317          "Kind should be Line (or Distance)");
    318   return A;
    319 }
    320 
    321 
    322 // If constraint is a line AX + BY = C, returns B.
    323 // Otherwise assert.
    324 const SCEV *DependenceInfo::Constraint::getB() const {
    325   assert((Kind == Line || Kind == Distance) &&
    326          "Kind should be Line (or Distance)");
    327   return B;
    328 }
    329 
    330 
    331 // If constraint is a line AX + BY = C, returns C.
    332 // Otherwise assert.
    333 const SCEV *DependenceInfo::Constraint::getC() const {
    334   assert((Kind == Line || Kind == Distance) &&
    335          "Kind should be Line (or Distance)");
    336   return C;
    337 }
    338 
    339 
    340 // If constraint is a distance, returns D.
    341 // Otherwise assert.
    342 const SCEV *DependenceInfo::Constraint::getD() const {
    343   assert(Kind == Distance && "Kind should be Distance");
    344   return SE->getNegativeSCEV(C);
    345 }
    346 
    347 
    348 // Returns the loop associated with this constraint.
    349 const Loop *DependenceInfo::Constraint::getAssociatedLoop() const {
    350   assert((Kind == Distance || Kind == Line || Kind == Point) &&
    351          "Kind should be Distance, Line, or Point");
    352   return AssociatedLoop;
    353 }
    354 
    355 void DependenceInfo::Constraint::setPoint(const SCEV *X, const SCEV *Y,
    356                                           const Loop *CurLoop) {
    357   Kind = Point;
    358   A = X;
    359   B = Y;
    360   AssociatedLoop = CurLoop;
    361 }
    362 
    363 void DependenceInfo::Constraint::setLine(const SCEV *AA, const SCEV *BB,
    364                                          const SCEV *CC, const Loop *CurLoop) {
    365   Kind = Line;
    366   A = AA;
    367   B = BB;
    368   C = CC;
    369   AssociatedLoop = CurLoop;
    370 }
    371 
    372 void DependenceInfo::Constraint::setDistance(const SCEV *D,
    373                                              const Loop *CurLoop) {
    374   Kind = Distance;
    375   A = SE->getOne(D->getType());
    376   B = SE->getNegativeSCEV(A);
    377   C = SE->getNegativeSCEV(D);
    378   AssociatedLoop = CurLoop;
    379 }
    380 
    381 void DependenceInfo::Constraint::setEmpty() { Kind = Empty; }
    382 
    383 void DependenceInfo::Constraint::setAny(ScalarEvolution *NewSE) {
    384   SE = NewSE;
    385   Kind = Any;
    386 }
    387 
    388 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    389 // For debugging purposes. Dumps the constraint out to OS.
    390 LLVM_DUMP_METHOD void DependenceInfo::Constraint::dump(raw_ostream &OS) const {
    391   if (isEmpty())
    392     OS << " Empty\n";
    393   else if (isAny())
    394     OS << " Any\n";
    395   else if (isPoint())
    396     OS << " Point is <" << *getX() << ", " << *getY() << ">\n";
    397   else if (isDistance())
    398     OS << " Distance is " << *getD() <<
    399       " (" << *getA() << "*X + " << *getB() << "*Y = " << *getC() << ")\n";
    400   else if (isLine())
    401     OS << " Line is " << *getA() << "*X + " <<
    402       *getB() << "*Y = " << *getC() << "\n";
    403   else
    404     llvm_unreachable("unknown constraint type in Constraint::dump");
    405 }
    406 #endif
    407 
    408 
    409 // Updates X with the intersection
    410 // of the Constraints X and Y. Returns true if X has changed.
    411 // Corresponds to Figure 4 from the paper
    412 //
    413 //            Practical Dependence Testing
    414 //            Goff, Kennedy, Tseng
    415 //            PLDI 1991
    416 bool DependenceInfo::intersectConstraints(Constraint *X, const Constraint *Y) {
    417   ++DeltaApplications;
    418   LLVM_DEBUG(dbgs() << "\tintersect constraints\n");
    419   LLVM_DEBUG(dbgs() << "\t    X ="; X->dump(dbgs()));
    420   LLVM_DEBUG(dbgs() << "\t    Y ="; Y->dump(dbgs()));
    421   assert(!Y->isPoint() && "Y must not be a Point");
    422   if (X->isAny()) {
    423     if (Y->isAny())
    424       return false;
    425     *X = *Y;
    426     return true;
    427   }
    428   if (X->isEmpty())
    429     return false;
    430   if (Y->isEmpty()) {
    431     X->setEmpty();
    432     return true;
    433   }
    434 
    435   if (X->isDistance() && Y->isDistance()) {
    436     LLVM_DEBUG(dbgs() << "\t    intersect 2 distances\n");
    437     if (isKnownPredicate(CmpInst::ICMP_EQ, X->getD(), Y->getD()))
    438       return false;
    439     if (isKnownPredicate(CmpInst::ICMP_NE, X->getD(), Y->getD())) {
    440       X->setEmpty();
    441       ++DeltaSuccesses;
    442       return true;
    443     }
    444     // Hmmm, interesting situation.
    445     // I guess if either is constant, keep it and ignore the other.
    446     if (isa<SCEVConstant>(Y->getD())) {
    447       *X = *Y;
    448       return true;
    449     }
    450     return false;
    451   }
    452 
    453   // At this point, the pseudo-code in Figure 4 of the paper
    454   // checks if (X->isPoint() && Y->isPoint()).
    455   // This case can't occur in our implementation,
    456   // since a Point can only arise as the result of intersecting
    457   // two Line constraints, and the right-hand value, Y, is never
    458   // the result of an intersection.
    459   assert(!(X->isPoint() && Y->isPoint()) &&
    460          "We shouldn't ever see X->isPoint() && Y->isPoint()");
    461 
    462   if (X->isLine() && Y->isLine()) {
    463     LLVM_DEBUG(dbgs() << "\t    intersect 2 lines\n");
    464     const SCEV *Prod1 = SE->getMulExpr(X->getA(), Y->getB());
    465     const SCEV *Prod2 = SE->getMulExpr(X->getB(), Y->getA());
    466     if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2)) {
    467       // slopes are equal, so lines are parallel
    468       LLVM_DEBUG(dbgs() << "\t\tsame slope\n");
    469       Prod1 = SE->getMulExpr(X->getC(), Y->getB());
    470       Prod2 = SE->getMulExpr(X->getB(), Y->getC());
    471       if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2))
    472         return false;
    473       if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
    474         X->setEmpty();
    475         ++DeltaSuccesses;
    476         return true;
    477       }
    478       return false;
    479     }
    480     if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
    481       // slopes differ, so lines intersect
    482       LLVM_DEBUG(dbgs() << "\t\tdifferent slopes\n");
    483       const SCEV *C1B2 = SE->getMulExpr(X->getC(), Y->getB());
    484       const SCEV *C1A2 = SE->getMulExpr(X->getC(), Y->getA());
    485       const SCEV *C2B1 = SE->getMulExpr(Y->getC(), X->getB());
    486       const SCEV *C2A1 = SE->getMulExpr(Y->getC(), X->getA());
    487       const SCEV *A1B2 = SE->getMulExpr(X->getA(), Y->getB());
    488       const SCEV *A2B1 = SE->getMulExpr(Y->getA(), X->getB());
    489       const SCEVConstant *C1A2_C2A1 =
    490         dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1A2, C2A1));
    491       const SCEVConstant *C1B2_C2B1 =
    492         dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1B2, C2B1));
    493       const SCEVConstant *A1B2_A2B1 =
    494         dyn_cast<SCEVConstant>(SE->getMinusSCEV(A1B2, A2B1));
    495       const SCEVConstant *A2B1_A1B2 =
    496         dyn_cast<SCEVConstant>(SE->getMinusSCEV(A2B1, A1B2));
    497       if (!C1B2_C2B1 || !C1A2_C2A1 ||
    498           !A1B2_A2B1 || !A2B1_A1B2)
    499         return false;
    500       APInt Xtop = C1B2_C2B1->getAPInt();
    501       APInt Xbot = A1B2_A2B1->getAPInt();
    502       APInt Ytop = C1A2_C2A1->getAPInt();
    503       APInt Ybot = A2B1_A1B2->getAPInt();
    504       LLVM_DEBUG(dbgs() << "\t\tXtop = " << Xtop << "\n");
    505       LLVM_DEBUG(dbgs() << "\t\tXbot = " << Xbot << "\n");
    506       LLVM_DEBUG(dbgs() << "\t\tYtop = " << Ytop << "\n");
    507       LLVM_DEBUG(dbgs() << "\t\tYbot = " << Ybot << "\n");
    508       APInt Xq = Xtop; // these need to be initialized, even
    509       APInt Xr = Xtop; // though they're just going to be overwritten
    510       APInt::sdivrem(Xtop, Xbot, Xq, Xr);
    511       APInt Yq = Ytop;
    512       APInt Yr = Ytop;
    513       APInt::sdivrem(Ytop, Ybot, Yq, Yr);
    514       if (Xr != 0 || Yr != 0) {
    515         X->setEmpty();
    516         ++DeltaSuccesses;
    517         return true;
    518       }
    519       LLVM_DEBUG(dbgs() << "\t\tX = " << Xq << ", Y = " << Yq << "\n");
    520       if (Xq.slt(0) || Yq.slt(0)) {
    521         X->setEmpty();
    522         ++DeltaSuccesses;
    523         return true;
    524       }
    525       if (const SCEVConstant *CUB =
    526           collectConstantUpperBound(X->getAssociatedLoop(), Prod1->getType())) {
    527         const APInt &UpperBound = CUB->getAPInt();
    528         LLVM_DEBUG(dbgs() << "\t\tupper bound = " << UpperBound << "\n");
    529         if (Xq.sgt(UpperBound) || Yq.sgt(UpperBound)) {
    530           X->setEmpty();
    531           ++DeltaSuccesses;
    532           return true;
    533         }
    534       }
    535       X->setPoint(SE->getConstant(Xq),
    536                   SE->getConstant(Yq),
    537                   X->getAssociatedLoop());
    538       ++DeltaSuccesses;
    539       return true;
    540     }
    541     return false;
    542   }
    543 
    544   // if (X->isLine() && Y->isPoint()) This case can't occur.
    545   assert(!(X->isLine() && Y->isPoint()) && "This case should never occur");
    546 
    547   if (X->isPoint() && Y->isLine()) {
    548     LLVM_DEBUG(dbgs() << "\t    intersect Point and Line\n");
    549     const SCEV *A1X1 = SE->getMulExpr(Y->getA(), X->getX());
    550     const SCEV *B1Y1 = SE->getMulExpr(Y->getB(), X->getY());
    551     const SCEV *Sum = SE->getAddExpr(A1X1, B1Y1);
    552     if (isKnownPredicate(CmpInst::ICMP_EQ, Sum, Y->getC()))
    553       return false;
    554     if (isKnownPredicate(CmpInst::ICMP_NE, Sum, Y->getC())) {
    555       X->setEmpty();
    556       ++DeltaSuccesses;
    557       return true;
    558     }
    559     return false;
    560   }
    561 
    562   llvm_unreachable("shouldn't reach the end of Constraint intersection");
    563   return false;
    564 }
    565 
    566 
    567 //===----------------------------------------------------------------------===//
    568 // DependenceInfo methods
    569 
    570 // For debugging purposes. Dumps a dependence to OS.
    571 void Dependence::dump(raw_ostream &OS) const {
    572   bool Splitable = false;
    573   if (isConfused())
    574     OS << "confused";
    575   else {
    576     if (isConsistent())
    577       OS << "consistent ";
    578     if (isFlow())
    579       OS << "flow";
    580     else if (isOutput())
    581       OS << "output";
    582     else if (isAnti())
    583       OS << "anti";
    584     else if (isInput())
    585       OS << "input";
    586     unsigned Levels = getLevels();
    587     OS << " [";
    588     for (unsigned II = 1; II <= Levels; ++II) {
    589       if (isSplitable(II))
    590         Splitable = true;
    591       if (isPeelFirst(II))
    592         OS << 'p';
    593       const SCEV *Distance = getDistance(II);
    594       if (Distance)
    595         OS << *Distance;
    596       else if (isScalar(II))
    597         OS << "S";
    598       else {
    599         unsigned Direction = getDirection(II);
    600         if (Direction == DVEntry::ALL)
    601           OS << "*";
    602         else {
    603           if (Direction & DVEntry::LT)
    604             OS << "<";
    605           if (Direction & DVEntry::EQ)
    606             OS << "=";
    607           if (Direction & DVEntry::GT)
    608             OS << ">";
    609         }
    610       }
    611       if (isPeelLast(II))
    612         OS << 'p';
    613       if (II < Levels)
    614         OS << " ";
    615     }
    616     if (isLoopIndependent())
    617       OS << "|<";
    618     OS << "]";
    619     if (Splitable)
    620       OS << " splitable";
    621   }
    622   OS << "!\n";
    623 }
    624 
    625 // Returns NoAlias/MayAliass/MustAlias for two memory locations based upon their
    626 // underlaying objects. If LocA and LocB are known to not alias (for any reason:
    627 // tbaa, non-overlapping regions etc), then it is known there is no dependecy.
    628 // Otherwise the underlying objects are checked to see if they point to
    629 // different identifiable objects.
    630 static AliasResult underlyingObjectsAlias(AliasAnalysis *AA,
    631                                           const DataLayout &DL,
    632                                           const MemoryLocation &LocA,
    633                                           const MemoryLocation &LocB) {
    634   // Check the original locations (minus size) for noalias, which can happen for
    635   // tbaa, incompatible underlying object locations, etc.
    636   MemoryLocation LocAS(LocA.Ptr, MemoryLocation::UnknownSize, LocA.AATags);
    637   MemoryLocation LocBS(LocB.Ptr, MemoryLocation::UnknownSize, LocB.AATags);
    638   if (AA->alias(LocAS, LocBS) == NoAlias)
    639     return NoAlias;
    640 
    641   // Check the underlying objects are the same
    642   const Value *AObj = GetUnderlyingObject(LocA.Ptr, DL);
    643   const Value *BObj = GetUnderlyingObject(LocB.Ptr, DL);
    644 
    645   // If the underlying objects are the same, they must alias
    646   if (AObj == BObj)
    647     return MustAlias;
    648 
    649   // We may have hit the recursion limit for underlying objects, or have
    650   // underlying objects where we don't know they will alias.
    651   if (!isIdentifiedObject(AObj) || !isIdentifiedObject(BObj))
    652     return MayAlias;
    653 
    654   // Otherwise we know the objects are different and both identified objects so
    655   // must not alias.
    656   return NoAlias;
    657 }
    658 
    659 
    660 // Returns true if the load or store can be analyzed. Atomic and volatile
    661 // operations have properties which this analysis does not understand.
    662 static
    663 bool isLoadOrStore(const Instruction *I) {
    664   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
    665     return LI->isUnordered();
    666   else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
    667     return SI->isUnordered();
    668   return false;
    669 }
    670 
    671 
    672 // Examines the loop nesting of the Src and Dst
    673 // instructions and establishes their shared loops. Sets the variables
    674 // CommonLevels, SrcLevels, and MaxLevels.
    675 // The source and destination instructions needn't be contained in the same
    676 // loop. The routine establishNestingLevels finds the level of most deeply
    677 // nested loop that contains them both, CommonLevels. An instruction that's
    678 // not contained in a loop is at level = 0. MaxLevels is equal to the level
    679 // of the source plus the level of the destination, minus CommonLevels.
    680 // This lets us allocate vectors MaxLevels in length, with room for every
    681 // distinct loop referenced in both the source and destination subscripts.
    682 // The variable SrcLevels is the nesting depth of the source instruction.
    683 // It's used to help calculate distinct loops referenced by the destination.
    684 // Here's the map from loops to levels:
    685 //            0 - unused
    686 //            1 - outermost common loop
    687 //          ... - other common loops
    688 // CommonLevels - innermost common loop
    689 //          ... - loops containing Src but not Dst
    690 //    SrcLevels - innermost loop containing Src but not Dst
    691 //          ... - loops containing Dst but not Src
    692 //    MaxLevels - innermost loops containing Dst but not Src
    693 // Consider the follow code fragment:
    694 //   for (a = ...) {
    695 //     for (b = ...) {
    696 //       for (c = ...) {
    697 //         for (d = ...) {
    698 //           A[] = ...;
    699 //         }
    700 //       }
    701 //       for (e = ...) {
    702 //         for (f = ...) {
    703 //           for (g = ...) {
    704 //             ... = A[];
    705 //           }
    706 //         }
    707 //       }
    708 //     }
    709 //   }
    710 // If we're looking at the possibility of a dependence between the store
    711 // to A (the Src) and the load from A (the Dst), we'll note that they
    712 // have 2 loops in common, so CommonLevels will equal 2 and the direction
    713 // vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
    714 // A map from loop names to loop numbers would look like
    715 //     a - 1
    716 //     b - 2 = CommonLevels
    717 //     c - 3
    718 //     d - 4 = SrcLevels
    719 //     e - 5
    720 //     f - 6
    721 //     g - 7 = MaxLevels
    722 void DependenceInfo::establishNestingLevels(const Instruction *Src,
    723                                             const Instruction *Dst) {
    724   const BasicBlock *SrcBlock = Src->getParent();
    725   const BasicBlock *DstBlock = Dst->getParent();
    726   unsigned SrcLevel = LI->getLoopDepth(SrcBlock);
    727   unsigned DstLevel = LI->getLoopDepth(DstBlock);
    728   const Loop *SrcLoop = LI->getLoopFor(SrcBlock);
    729   const Loop *DstLoop = LI->getLoopFor(DstBlock);
    730   SrcLevels = SrcLevel;
    731   MaxLevels = SrcLevel + DstLevel;
    732   while (SrcLevel > DstLevel) {
    733     SrcLoop = SrcLoop->getParentLoop();
    734     SrcLevel--;
    735   }
    736   while (DstLevel > SrcLevel) {
    737     DstLoop = DstLoop->getParentLoop();
    738     DstLevel--;
    739   }
    740   while (SrcLoop != DstLoop) {
    741     SrcLoop = SrcLoop->getParentLoop();
    742     DstLoop = DstLoop->getParentLoop();
    743     SrcLevel--;
    744   }
    745   CommonLevels = SrcLevel;
    746   MaxLevels -= CommonLevels;
    747 }
    748 
    749 
    750 // Given one of the loops containing the source, return
    751 // its level index in our numbering scheme.
    752 unsigned DependenceInfo::mapSrcLoop(const Loop *SrcLoop) const {
    753   return SrcLoop->getLoopDepth();
    754 }
    755 
    756 
    757 // Given one of the loops containing the destination,
    758 // return its level index in our numbering scheme.
    759 unsigned DependenceInfo::mapDstLoop(const Loop *DstLoop) const {
    760   unsigned D = DstLoop->getLoopDepth();
    761   if (D > CommonLevels)
    762     return D - CommonLevels + SrcLevels;
    763   else
    764     return D;
    765 }
    766 
    767 
    768 // Returns true if Expression is loop invariant in LoopNest.
    769 bool DependenceInfo::isLoopInvariant(const SCEV *Expression,
    770                                      const Loop *LoopNest) const {
    771   if (!LoopNest)
    772     return true;
    773   return SE->isLoopInvariant(Expression, LoopNest) &&
    774     isLoopInvariant(Expression, LoopNest->getParentLoop());
    775 }
    776 
    777 
    778 
    779 // Finds the set of loops from the LoopNest that
    780 // have a level <= CommonLevels and are referred to by the SCEV Expression.
    781 void DependenceInfo::collectCommonLoops(const SCEV *Expression,
    782                                         const Loop *LoopNest,
    783                                         SmallBitVector &Loops) const {
    784   while (LoopNest) {
    785     unsigned Level = LoopNest->getLoopDepth();
    786     if (Level <= CommonLevels && !SE->isLoopInvariant(Expression, LoopNest))
    787       Loops.set(Level);
    788     LoopNest = LoopNest->getParentLoop();
    789   }
    790 }
    791 
    792 void DependenceInfo::unifySubscriptType(ArrayRef<Subscript *> Pairs) {
    793 
    794   unsigned widestWidthSeen = 0;
    795   Type *widestType;
    796 
    797   // Go through each pair and find the widest bit to which we need
    798   // to extend all of them.
    799   for (Subscript *Pair : Pairs) {
    800     const SCEV *Src = Pair->Src;
    801     const SCEV *Dst = Pair->Dst;
    802     IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
    803     IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
    804     if (SrcTy == nullptr || DstTy == nullptr) {
    805       assert(SrcTy == DstTy && "This function only unify integer types and "
    806              "expect Src and Dst share the same type "
    807              "otherwise.");
    808       continue;
    809     }
    810     if (SrcTy->getBitWidth() > widestWidthSeen) {
    811       widestWidthSeen = SrcTy->getBitWidth();
    812       widestType = SrcTy;
    813     }
    814     if (DstTy->getBitWidth() > widestWidthSeen) {
    815       widestWidthSeen = DstTy->getBitWidth();
    816       widestType = DstTy;
    817     }
    818   }
    819 
    820 
    821   assert(widestWidthSeen > 0);
    822 
    823   // Now extend each pair to the widest seen.
    824   for (Subscript *Pair : Pairs) {
    825     const SCEV *Src = Pair->Src;
    826     const SCEV *Dst = Pair->Dst;
    827     IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
    828     IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
    829     if (SrcTy == nullptr || DstTy == nullptr) {
    830       assert(SrcTy == DstTy && "This function only unify integer types and "
    831              "expect Src and Dst share the same type "
    832              "otherwise.");
    833       continue;
    834     }
    835     if (SrcTy->getBitWidth() < widestWidthSeen)
    836       // Sign-extend Src to widestType
    837       Pair->Src = SE->getSignExtendExpr(Src, widestType);
    838     if (DstTy->getBitWidth() < widestWidthSeen) {
    839       // Sign-extend Dst to widestType
    840       Pair->Dst = SE->getSignExtendExpr(Dst, widestType);
    841     }
    842   }
    843 }
    844 
    845 // removeMatchingExtensions - Examines a subscript pair.
    846 // If the source and destination are identically sign (or zero)
    847 // extended, it strips off the extension in an effect to simplify
    848 // the actual analysis.
    849 void DependenceInfo::removeMatchingExtensions(Subscript *Pair) {
    850   const SCEV *Src = Pair->Src;
    851   const SCEV *Dst = Pair->Dst;
    852   if ((isa<SCEVZeroExtendExpr>(Src) && isa<SCEVZeroExtendExpr>(Dst)) ||
    853       (isa<SCEVSignExtendExpr>(Src) && isa<SCEVSignExtendExpr>(Dst))) {
    854     const SCEVCastExpr *SrcCast = cast<SCEVCastExpr>(Src);
    855     const SCEVCastExpr *DstCast = cast<SCEVCastExpr>(Dst);
    856     const SCEV *SrcCastOp = SrcCast->getOperand();
    857     const SCEV *DstCastOp = DstCast->getOperand();
    858     if (SrcCastOp->getType() == DstCastOp->getType()) {
    859       Pair->Src = SrcCastOp;
    860       Pair->Dst = DstCastOp;
    861     }
    862   }
    863 }
    864 
    865 
    866 // Examine the scev and return true iff it's linear.
    867 // Collect any loops mentioned in the set of "Loops".
    868 bool DependenceInfo::checkSrcSubscript(const SCEV *Src, const Loop *LoopNest,
    869                                        SmallBitVector &Loops) {
    870   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Src);
    871   if (!AddRec)
    872     return isLoopInvariant(Src, LoopNest);
    873   const SCEV *Start = AddRec->getStart();
    874   const SCEV *Step = AddRec->getStepRecurrence(*SE);
    875   const SCEV *UB = SE->getBackedgeTakenCount(AddRec->getLoop());
    876   if (!isa<SCEVCouldNotCompute>(UB)) {
    877     if (SE->getTypeSizeInBits(Start->getType()) <
    878         SE->getTypeSizeInBits(UB->getType())) {
    879       if (!AddRec->getNoWrapFlags())
    880         return false;
    881     }
    882   }
    883   if (!isLoopInvariant(Step, LoopNest))
    884     return false;
    885   Loops.set(mapSrcLoop(AddRec->getLoop()));
    886   return checkSrcSubscript(Start, LoopNest, Loops);
    887 }
    888 
    889 
    890 
    891 // Examine the scev and return true iff it's linear.
    892 // Collect any loops mentioned in the set of "Loops".
    893 bool DependenceInfo::checkDstSubscript(const SCEV *Dst, const Loop *LoopNest,
    894                                        SmallBitVector &Loops) {
    895   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Dst);
    896   if (!AddRec)
    897     return isLoopInvariant(Dst, LoopNest);
    898   const SCEV *Start = AddRec->getStart();
    899   const SCEV *Step = AddRec->getStepRecurrence(*SE);
    900   const SCEV *UB = SE->getBackedgeTakenCount(AddRec->getLoop());
    901   if (!isa<SCEVCouldNotCompute>(UB)) {
    902     if (SE->getTypeSizeInBits(Start->getType()) <
    903         SE->getTypeSizeInBits(UB->getType())) {
    904       if (!AddRec->getNoWrapFlags())
    905         return false;
    906     }
    907   }
    908   if (!isLoopInvariant(Step, LoopNest))
    909     return false;
    910   Loops.set(mapDstLoop(AddRec->getLoop()));
    911   return checkDstSubscript(Start, LoopNest, Loops);
    912 }
    913 
    914 
    915 // Examines the subscript pair (the Src and Dst SCEVs)
    916 // and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
    917 // Collects the associated loops in a set.
    918 DependenceInfo::Subscript::ClassificationKind
    919 DependenceInfo::classifyPair(const SCEV *Src, const Loop *SrcLoopNest,
    920                              const SCEV *Dst, const Loop *DstLoopNest,
    921                              SmallBitVector &Loops) {
    922   SmallBitVector SrcLoops(MaxLevels + 1);
    923   SmallBitVector DstLoops(MaxLevels + 1);
    924   if (!checkSrcSubscript(Src, SrcLoopNest, SrcLoops))
    925     return Subscript::NonLinear;
    926   if (!checkDstSubscript(Dst, DstLoopNest, DstLoops))
    927     return Subscript::NonLinear;
    928   Loops = SrcLoops;
    929   Loops |= DstLoops;
    930   unsigned N = Loops.count();
    931   if (N == 0)
    932     return Subscript::ZIV;
    933   if (N == 1)
    934     return Subscript::SIV;
    935   if (N == 2 && (SrcLoops.count() == 0 ||
    936                  DstLoops.count() == 0 ||
    937                  (SrcLoops.count() == 1 && DstLoops.count() == 1)))
    938     return Subscript::RDIV;
    939   return Subscript::MIV;
    940 }
    941 
    942 
    943 // A wrapper around SCEV::isKnownPredicate.
    944 // Looks for cases where we're interested in comparing for equality.
    945 // If both X and Y have been identically sign or zero extended,
    946 // it strips off the (confusing) extensions before invoking
    947 // SCEV::isKnownPredicate. Perhaps, someday, the ScalarEvolution package
    948 // will be similarly updated.
    949 //
    950 // If SCEV::isKnownPredicate can't prove the predicate,
    951 // we try simple subtraction, which seems to help in some cases
    952 // involving symbolics.
    953 bool DependenceInfo::isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *X,
    954                                       const SCEV *Y) const {
    955   if (Pred == CmpInst::ICMP_EQ ||
    956       Pred == CmpInst::ICMP_NE) {
    957     if ((isa<SCEVSignExtendExpr>(X) &&
    958          isa<SCEVSignExtendExpr>(Y)) ||
    959         (isa<SCEVZeroExtendExpr>(X) &&
    960          isa<SCEVZeroExtendExpr>(Y))) {
    961       const SCEVCastExpr *CX = cast<SCEVCastExpr>(X);
    962       const SCEVCastExpr *CY = cast<SCEVCastExpr>(Y);
    963       const SCEV *Xop = CX->getOperand();
    964       const SCEV *Yop = CY->getOperand();
    965       if (Xop->getType() == Yop->getType()) {
    966         X = Xop;
    967         Y = Yop;
    968       }
    969     }
    970   }
    971   if (SE->isKnownPredicate(Pred, X, Y))
    972     return true;
    973   // If SE->isKnownPredicate can't prove the condition,
    974   // we try the brute-force approach of subtracting
    975   // and testing the difference.
    976   // By testing with SE->isKnownPredicate first, we avoid
    977   // the possibility of overflow when the arguments are constants.
    978   const SCEV *Delta = SE->getMinusSCEV(X, Y);
    979   switch (Pred) {
    980   case CmpInst::ICMP_EQ:
    981     return Delta->isZero();
    982   case CmpInst::ICMP_NE:
    983     return SE->isKnownNonZero(Delta);
    984   case CmpInst::ICMP_SGE:
    985     return SE->isKnownNonNegative(Delta);
    986   case CmpInst::ICMP_SLE:
    987     return SE->isKnownNonPositive(Delta);
    988   case CmpInst::ICMP_SGT:
    989     return SE->isKnownPositive(Delta);
    990   case CmpInst::ICMP_SLT:
    991     return SE->isKnownNegative(Delta);
    992   default:
    993     llvm_unreachable("unexpected predicate in isKnownPredicate");
    994   }
    995 }
    996 
    997 /// Compare to see if S is less than Size, using isKnownNegative(S - max(Size, 1))
    998 /// with some extra checking if S is an AddRec and we can prove less-than using
    999 /// the loop bounds.
   1000 bool DependenceInfo::isKnownLessThan(const SCEV *S, const SCEV *Size) const {
   1001   // First unify to the same type
   1002   auto *SType = dyn_cast<IntegerType>(S->getType());
   1003   auto *SizeType = dyn_cast<IntegerType>(Size->getType());
   1004   if (!SType || !SizeType)
   1005     return false;
   1006   Type *MaxType =
   1007       (SType->getBitWidth() >= SizeType->getBitWidth()) ? SType : SizeType;
   1008   S = SE->getTruncateOrZeroExtend(S, MaxType);
   1009   Size = SE->getTruncateOrZeroExtend(Size, MaxType);
   1010 
   1011   // Special check for addrecs using BE taken count
   1012   const SCEV *Bound = SE->getMinusSCEV(S, Size);
   1013   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Bound)) {
   1014     if (AddRec->isAffine()) {
   1015       const SCEV *BECount = SE->getBackedgeTakenCount(AddRec->getLoop());
   1016       if (!isa<SCEVCouldNotCompute>(BECount)) {
   1017         const SCEV *Limit = AddRec->evaluateAtIteration(BECount, *SE);
   1018         if (SE->isKnownNegative(Limit))
   1019           return true;
   1020       }
   1021     }
   1022   }
   1023 
   1024   // Check using normal isKnownNegative
   1025   const SCEV *LimitedBound =
   1026       SE->getMinusSCEV(S, SE->getSMaxExpr(Size, SE->getOne(Size->getType())));
   1027   return SE->isKnownNegative(LimitedBound);
   1028 }
   1029 
   1030 bool DependenceInfo::isKnownNonNegative(const SCEV *S, const Value *Ptr) const {
   1031   bool Inbounds = false;
   1032   if (auto *SrcGEP = dyn_cast<GetElementPtrInst>(Ptr))
   1033     Inbounds = SrcGEP->isInBounds();
   1034   if (Inbounds) {
   1035     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
   1036       if (AddRec->isAffine()) {
   1037         // We know S is for Ptr, the operand on a load/store, so doesn't wrap.
   1038         // If both parts are NonNegative, the end result will be NonNegative
   1039         if (SE->isKnownNonNegative(AddRec->getStart()) &&
   1040             SE->isKnownNonNegative(AddRec->getOperand(1)))
   1041           return true;
   1042       }
   1043     }
   1044   }
   1045 
   1046   return SE->isKnownNonNegative(S);
   1047 }
   1048 
   1049 // All subscripts are all the same type.
   1050 // Loop bound may be smaller (e.g., a char).
   1051 // Should zero extend loop bound, since it's always >= 0.
   1052 // This routine collects upper bound and extends or truncates if needed.
   1053 // Truncating is safe when subscripts are known not to wrap. Cases without
   1054 // nowrap flags should have been rejected earlier.
   1055 // Return null if no bound available.
   1056 const SCEV *DependenceInfo::collectUpperBound(const Loop *L, Type *T) const {
   1057   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
   1058     const SCEV *UB = SE->getBackedgeTakenCount(L);
   1059     return SE->getTruncateOrZeroExtend(UB, T);
   1060   }
   1061   return nullptr;
   1062 }
   1063 
   1064 
   1065 // Calls collectUpperBound(), then attempts to cast it to SCEVConstant.
   1066 // If the cast fails, returns NULL.
   1067 const SCEVConstant *DependenceInfo::collectConstantUpperBound(const Loop *L,
   1068                                                               Type *T) const {
   1069   if (const SCEV *UB = collectUpperBound(L, T))
   1070     return dyn_cast<SCEVConstant>(UB);
   1071   return nullptr;
   1072 }
   1073 
   1074 
   1075 // testZIV -
   1076 // When we have a pair of subscripts of the form [c1] and [c2],
   1077 // where c1 and c2 are both loop invariant, we attack it using
   1078 // the ZIV test. Basically, we test by comparing the two values,
   1079 // but there are actually three possible results:
   1080 // 1) the values are equal, so there's a dependence
   1081 // 2) the values are different, so there's no dependence
   1082 // 3) the values might be equal, so we have to assume a dependence.
   1083 //
   1084 // Return true if dependence disproved.
   1085 bool DependenceInfo::testZIV(const SCEV *Src, const SCEV *Dst,
   1086                              FullDependence &Result) const {
   1087   LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n");
   1088   LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n");
   1089   ++ZIVapplications;
   1090   if (isKnownPredicate(CmpInst::ICMP_EQ, Src, Dst)) {
   1091     LLVM_DEBUG(dbgs() << "    provably dependent\n");
   1092     return false; // provably dependent
   1093   }
   1094   if (isKnownPredicate(CmpInst::ICMP_NE, Src, Dst)) {
   1095     LLVM_DEBUG(dbgs() << "    provably independent\n");
   1096     ++ZIVindependence;
   1097     return true; // provably independent
   1098   }
   1099   LLVM_DEBUG(dbgs() << "    possibly dependent\n");
   1100   Result.Consistent = false;
   1101   return false; // possibly dependent
   1102 }
   1103 
   1104 
   1105 // strongSIVtest -
   1106 // From the paper, Practical Dependence Testing, Section 4.2.1
   1107 //
   1108 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 + a*i],
   1109 // where i is an induction variable, c1 and c2 are loop invariant,
   1110 //  and a is a constant, we can solve it exactly using the Strong SIV test.
   1111 //
   1112 // Can prove independence. Failing that, can compute distance (and direction).
   1113 // In the presence of symbolic terms, we can sometimes make progress.
   1114 //
   1115 // If there's a dependence,
   1116 //
   1117 //    c1 + a*i = c2 + a*i'
   1118 //
   1119 // The dependence distance is
   1120 //
   1121 //    d = i' - i = (c1 - c2)/a
   1122 //
   1123 // A dependence only exists if d is an integer and abs(d) <= U, where U is the
   1124 // loop's upper bound. If a dependence exists, the dependence direction is
   1125 // defined as
   1126 //
   1127 //                { < if d > 0
   1128 //    direction = { = if d = 0
   1129 //                { > if d < 0
   1130 //
   1131 // Return true if dependence disproved.
   1132 bool DependenceInfo::strongSIVtest(const SCEV *Coeff, const SCEV *SrcConst,
   1133                                    const SCEV *DstConst, const Loop *CurLoop,
   1134                                    unsigned Level, FullDependence &Result,
   1135                                    Constraint &NewConstraint) const {
   1136   LLVM_DEBUG(dbgs() << "\tStrong SIV test\n");
   1137   LLVM_DEBUG(dbgs() << "\t    Coeff = " << *Coeff);
   1138   LLVM_DEBUG(dbgs() << ", " << *Coeff->getType() << "\n");
   1139   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst);
   1140   LLVM_DEBUG(dbgs() << ", " << *SrcConst->getType() << "\n");
   1141   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst);
   1142   LLVM_DEBUG(dbgs() << ", " << *DstConst->getType() << "\n");
   1143   ++StrongSIVapplications;
   1144   assert(0 < Level && Level <= CommonLevels && "level out of range");
   1145   Level--;
   1146 
   1147   const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
   1148   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta);
   1149   LLVM_DEBUG(dbgs() << ", " << *Delta->getType() << "\n");
   1150 
   1151   // check that |Delta| < iteration count
   1152   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
   1153     LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound);
   1154     LLVM_DEBUG(dbgs() << ", " << *UpperBound->getType() << "\n");
   1155     const SCEV *AbsDelta =
   1156       SE->isKnownNonNegative(Delta) ? Delta : SE->getNegativeSCEV(Delta);
   1157     const SCEV *AbsCoeff =
   1158       SE->isKnownNonNegative(Coeff) ? Coeff : SE->getNegativeSCEV(Coeff);
   1159     const SCEV *Product = SE->getMulExpr(UpperBound, AbsCoeff);
   1160     if (isKnownPredicate(CmpInst::ICMP_SGT, AbsDelta, Product)) {
   1161       // Distance greater than trip count - no dependence
   1162       ++StrongSIVindependence;
   1163       ++StrongSIVsuccesses;
   1164       return true;
   1165     }
   1166   }
   1167 
   1168   // Can we compute distance?
   1169   if (isa<SCEVConstant>(Delta) && isa<SCEVConstant>(Coeff)) {
   1170     APInt ConstDelta = cast<SCEVConstant>(Delta)->getAPInt();
   1171     APInt ConstCoeff = cast<SCEVConstant>(Coeff)->getAPInt();
   1172     APInt Distance  = ConstDelta; // these need to be initialized
   1173     APInt Remainder = ConstDelta;
   1174     APInt::sdivrem(ConstDelta, ConstCoeff, Distance, Remainder);
   1175     LLVM_DEBUG(dbgs() << "\t    Distance = " << Distance << "\n");
   1176     LLVM_DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
   1177     // Make sure Coeff divides Delta exactly
   1178     if (Remainder != 0) {
   1179       // Coeff doesn't divide Distance, no dependence
   1180       ++StrongSIVindependence;
   1181       ++StrongSIVsuccesses;
   1182       return true;
   1183     }
   1184     Result.DV[Level].Distance = SE->getConstant(Distance);
   1185     NewConstraint.setDistance(SE->getConstant(Distance), CurLoop);
   1186     if (Distance.sgt(0))
   1187       Result.DV[Level].Direction &= Dependence::DVEntry::LT;
   1188     else if (Distance.slt(0))
   1189       Result.DV[Level].Direction &= Dependence::DVEntry::GT;
   1190     else
   1191       Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
   1192     ++StrongSIVsuccesses;
   1193   }
   1194   else if (Delta->isZero()) {
   1195     // since 0/X == 0
   1196     Result.DV[Level].Distance = Delta;
   1197     NewConstraint.setDistance(Delta, CurLoop);
   1198     Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
   1199     ++StrongSIVsuccesses;
   1200   }
   1201   else {
   1202     if (Coeff->isOne()) {
   1203       LLVM_DEBUG(dbgs() << "\t    Distance = " << *Delta << "\n");
   1204       Result.DV[Level].Distance = Delta; // since X/1 == X
   1205       NewConstraint.setDistance(Delta, CurLoop);
   1206     }
   1207     else {
   1208       Result.Consistent = false;
   1209       NewConstraint.setLine(Coeff,
   1210                             SE->getNegativeSCEV(Coeff),
   1211                             SE->getNegativeSCEV(Delta), CurLoop);
   1212     }
   1213 
   1214     // maybe we can get a useful direction
   1215     bool DeltaMaybeZero     = !SE->isKnownNonZero(Delta);
   1216     bool DeltaMaybePositive = !SE->isKnownNonPositive(Delta);
   1217     bool DeltaMaybeNegative = !SE->isKnownNonNegative(Delta);
   1218     bool CoeffMaybePositive = !SE->isKnownNonPositive(Coeff);
   1219     bool CoeffMaybeNegative = !SE->isKnownNonNegative(Coeff);
   1220     // The double negatives above are confusing.
   1221     // It helps to read !SE->isKnownNonZero(Delta)
   1222     // as "Delta might be Zero"
   1223     unsigned NewDirection = Dependence::DVEntry::NONE;
   1224     if ((DeltaMaybePositive && CoeffMaybePositive) ||
   1225         (DeltaMaybeNegative && CoeffMaybeNegative))
   1226       NewDirection = Dependence::DVEntry::LT;
   1227     if (DeltaMaybeZero)
   1228       NewDirection |= Dependence::DVEntry::EQ;
   1229     if ((DeltaMaybeNegative && CoeffMaybePositive) ||
   1230         (DeltaMaybePositive && CoeffMaybeNegative))
   1231       NewDirection |= Dependence::DVEntry::GT;
   1232     if (NewDirection < Result.DV[Level].Direction)
   1233       ++StrongSIVsuccesses;
   1234     Result.DV[Level].Direction &= NewDirection;
   1235   }
   1236   return false;
   1237 }
   1238 
   1239 
   1240 // weakCrossingSIVtest -
   1241 // From the paper, Practical Dependence Testing, Section 4.2.2
   1242 //
   1243 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 - a*i],
   1244 // where i is an induction variable, c1 and c2 are loop invariant,
   1245 // and a is a constant, we can solve it exactly using the
   1246 // Weak-Crossing SIV test.
   1247 //
   1248 // Given c1 + a*i = c2 - a*i', we can look for the intersection of
   1249 // the two lines, where i = i', yielding
   1250 //
   1251 //    c1 + a*i = c2 - a*i
   1252 //    2a*i = c2 - c1
   1253 //    i = (c2 - c1)/2a
   1254 //
   1255 // If i < 0, there is no dependence.
   1256 // If i > upperbound, there is no dependence.
   1257 // If i = 0 (i.e., if c1 = c2), there's a dependence with distance = 0.
   1258 // If i = upperbound, there's a dependence with distance = 0.
   1259 // If i is integral, there's a dependence (all directions).
   1260 // If the non-integer part = 1/2, there's a dependence (<> directions).
   1261 // Otherwise, there's no dependence.
   1262 //
   1263 // Can prove independence. Failing that,
   1264 // can sometimes refine the directions.
   1265 // Can determine iteration for splitting.
   1266 //
   1267 // Return true if dependence disproved.
   1268 bool DependenceInfo::weakCrossingSIVtest(
   1269     const SCEV *Coeff, const SCEV *SrcConst, const SCEV *DstConst,
   1270     const Loop *CurLoop, unsigned Level, FullDependence &Result,
   1271     Constraint &NewConstraint, const SCEV *&SplitIter) const {
   1272   LLVM_DEBUG(dbgs() << "\tWeak-Crossing SIV test\n");
   1273   LLVM_DEBUG(dbgs() << "\t    Coeff = " << *Coeff << "\n");
   1274   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
   1275   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
   1276   ++WeakCrossingSIVapplications;
   1277   assert(0 < Level && Level <= CommonLevels && "Level out of range");
   1278   Level--;
   1279   Result.Consistent = false;
   1280   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
   1281   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
   1282   NewConstraint.setLine(Coeff, Coeff, Delta, CurLoop);
   1283   if (Delta->isZero()) {
   1284     Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
   1285     Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
   1286     ++WeakCrossingSIVsuccesses;
   1287     if (!Result.DV[Level].Direction) {
   1288       ++WeakCrossingSIVindependence;
   1289       return true;
   1290     }
   1291     Result.DV[Level].Distance = Delta; // = 0
   1292     return false;
   1293   }
   1294   const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(Coeff);
   1295   if (!ConstCoeff)
   1296     return false;
   1297 
   1298   Result.DV[Level].Splitable = true;
   1299   if (SE->isKnownNegative(ConstCoeff)) {
   1300     ConstCoeff = dyn_cast<SCEVConstant>(SE->getNegativeSCEV(ConstCoeff));
   1301     assert(ConstCoeff &&
   1302            "dynamic cast of negative of ConstCoeff should yield constant");
   1303     Delta = SE->getNegativeSCEV(Delta);
   1304   }
   1305   assert(SE->isKnownPositive(ConstCoeff) && "ConstCoeff should be positive");
   1306 
   1307   // compute SplitIter for use by DependenceInfo::getSplitIteration()
   1308   SplitIter = SE->getUDivExpr(
   1309       SE->getSMaxExpr(SE->getZero(Delta->getType()), Delta),
   1310       SE->getMulExpr(SE->getConstant(Delta->getType(), 2), ConstCoeff));
   1311   LLVM_DEBUG(dbgs() << "\t    Split iter = " << *SplitIter << "\n");
   1312 
   1313   const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
   1314   if (!ConstDelta)
   1315     return false;
   1316 
   1317   // We're certain that ConstCoeff > 0; therefore,
   1318   // if Delta < 0, then no dependence.
   1319   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
   1320   LLVM_DEBUG(dbgs() << "\t    ConstCoeff = " << *ConstCoeff << "\n");
   1321   if (SE->isKnownNegative(Delta)) {
   1322     // No dependence, Delta < 0
   1323     ++WeakCrossingSIVindependence;
   1324     ++WeakCrossingSIVsuccesses;
   1325     return true;
   1326   }
   1327 
   1328   // We're certain that Delta > 0 and ConstCoeff > 0.
   1329   // Check Delta/(2*ConstCoeff) against upper loop bound
   1330   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
   1331     LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
   1332     const SCEV *ConstantTwo = SE->getConstant(UpperBound->getType(), 2);
   1333     const SCEV *ML = SE->getMulExpr(SE->getMulExpr(ConstCoeff, UpperBound),
   1334                                     ConstantTwo);
   1335     LLVM_DEBUG(dbgs() << "\t    ML = " << *ML << "\n");
   1336     if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, ML)) {
   1337       // Delta too big, no dependence
   1338       ++WeakCrossingSIVindependence;
   1339       ++WeakCrossingSIVsuccesses;
   1340       return true;
   1341     }
   1342     if (isKnownPredicate(CmpInst::ICMP_EQ, Delta, ML)) {
   1343       // i = i' = UB
   1344       Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
   1345       Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
   1346       ++WeakCrossingSIVsuccesses;
   1347       if (!Result.DV[Level].Direction) {
   1348         ++WeakCrossingSIVindependence;
   1349         return true;
   1350       }
   1351       Result.DV[Level].Splitable = false;
   1352       Result.DV[Level].Distance = SE->getZero(Delta->getType());
   1353       return false;
   1354     }
   1355   }
   1356 
   1357   // check that Coeff divides Delta
   1358   APInt APDelta = ConstDelta->getAPInt();
   1359   APInt APCoeff = ConstCoeff->getAPInt();
   1360   APInt Distance = APDelta; // these need to be initialzed
   1361   APInt Remainder = APDelta;
   1362   APInt::sdivrem(APDelta, APCoeff, Distance, Remainder);
   1363   LLVM_DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
   1364   if (Remainder != 0) {
   1365     // Coeff doesn't divide Delta, no dependence
   1366     ++WeakCrossingSIVindependence;
   1367     ++WeakCrossingSIVsuccesses;
   1368     return true;
   1369   }
   1370   LLVM_DEBUG(dbgs() << "\t    Distance = " << Distance << "\n");
   1371 
   1372   // if 2*Coeff doesn't divide Delta, then the equal direction isn't possible
   1373   APInt Two = APInt(Distance.getBitWidth(), 2, true);
   1374   Remainder = Distance.srem(Two);
   1375   LLVM_DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
   1376   if (Remainder != 0) {
   1377     // Equal direction isn't possible
   1378     Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::EQ);
   1379     ++WeakCrossingSIVsuccesses;
   1380   }
   1381   return false;
   1382 }
   1383 
   1384 
   1385 // Kirch's algorithm, from
   1386 //
   1387 //        Optimizing Supercompilers for Supercomputers
   1388 //        Michael Wolfe
   1389 //        MIT Press, 1989
   1390 //
   1391 // Program 2.1, page 29.
   1392 // Computes the GCD of AM and BM.
   1393 // Also finds a solution to the equation ax - by = gcd(a, b).
   1394 // Returns true if dependence disproved; i.e., gcd does not divide Delta.
   1395 static bool findGCD(unsigned Bits, const APInt &AM, const APInt &BM,
   1396                     const APInt &Delta, APInt &G, APInt &X, APInt &Y) {
   1397   APInt A0(Bits, 1, true), A1(Bits, 0, true);
   1398   APInt B0(Bits, 0, true), B1(Bits, 1, true);
   1399   APInt G0 = AM.abs();
   1400   APInt G1 = BM.abs();
   1401   APInt Q = G0; // these need to be initialized
   1402   APInt R = G0;
   1403   APInt::sdivrem(G0, G1, Q, R);
   1404   while (R != 0) {
   1405     APInt A2 = A0 - Q*A1; A0 = A1; A1 = A2;
   1406     APInt B2 = B0 - Q*B1; B0 = B1; B1 = B2;
   1407     G0 = G1; G1 = R;
   1408     APInt::sdivrem(G0, G1, Q, R);
   1409   }
   1410   G = G1;
   1411   LLVM_DEBUG(dbgs() << "\t    GCD = " << G << "\n");
   1412   X = AM.slt(0) ? -A1 : A1;
   1413   Y = BM.slt(0) ? B1 : -B1;
   1414 
   1415   // make sure gcd divides Delta
   1416   R = Delta.srem(G);
   1417   if (R != 0)
   1418     return true; // gcd doesn't divide Delta, no dependence
   1419   Q = Delta.sdiv(G);
   1420   X *= Q;
   1421   Y *= Q;
   1422   return false;
   1423 }
   1424 
   1425 static APInt floorOfQuotient(const APInt &A, const APInt &B) {
   1426   APInt Q = A; // these need to be initialized
   1427   APInt R = A;
   1428   APInt::sdivrem(A, B, Q, R);
   1429   if (R == 0)
   1430     return Q;
   1431   if ((A.sgt(0) && B.sgt(0)) ||
   1432       (A.slt(0) && B.slt(0)))
   1433     return Q;
   1434   else
   1435     return Q - 1;
   1436 }
   1437 
   1438 static APInt ceilingOfQuotient(const APInt &A, const APInt &B) {
   1439   APInt Q = A; // these need to be initialized
   1440   APInt R = A;
   1441   APInt::sdivrem(A, B, Q, R);
   1442   if (R == 0)
   1443     return Q;
   1444   if ((A.sgt(0) && B.sgt(0)) ||
   1445       (A.slt(0) && B.slt(0)))
   1446     return Q + 1;
   1447   else
   1448     return Q;
   1449 }
   1450 
   1451 
   1452 static
   1453 APInt maxAPInt(APInt A, APInt B) {
   1454   return A.sgt(B) ? A : B;
   1455 }
   1456 
   1457 
   1458 static
   1459 APInt minAPInt(APInt A, APInt B) {
   1460   return A.slt(B) ? A : B;
   1461 }
   1462 
   1463 
   1464 // exactSIVtest -
   1465 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*i],
   1466 // where i is an induction variable, c1 and c2 are loop invariant, and a1
   1467 // and a2 are constant, we can solve it exactly using an algorithm developed
   1468 // by Banerjee and Wolfe. See Section 2.5.3 in
   1469 //
   1470 //        Optimizing Supercompilers for Supercomputers
   1471 //        Michael Wolfe
   1472 //        MIT Press, 1989
   1473 //
   1474 // It's slower than the specialized tests (strong SIV, weak-zero SIV, etc),
   1475 // so use them if possible. They're also a bit better with symbolics and,
   1476 // in the case of the strong SIV test, can compute Distances.
   1477 //
   1478 // Return true if dependence disproved.
   1479 bool DependenceInfo::exactSIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
   1480                                   const SCEV *SrcConst, const SCEV *DstConst,
   1481                                   const Loop *CurLoop, unsigned Level,
   1482                                   FullDependence &Result,
   1483                                   Constraint &NewConstraint) const {
   1484   LLVM_DEBUG(dbgs() << "\tExact SIV test\n");
   1485   LLVM_DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << " = AM\n");
   1486   LLVM_DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << " = BM\n");
   1487   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
   1488   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
   1489   ++ExactSIVapplications;
   1490   assert(0 < Level && Level <= CommonLevels && "Level out of range");
   1491   Level--;
   1492   Result.Consistent = false;
   1493   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
   1494   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
   1495   NewConstraint.setLine(SrcCoeff, SE->getNegativeSCEV(DstCoeff),
   1496                         Delta, CurLoop);
   1497   const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
   1498   const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
   1499   const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
   1500   if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
   1501     return false;
   1502 
   1503   // find gcd
   1504   APInt G, X, Y;
   1505   APInt AM = ConstSrcCoeff->getAPInt();
   1506   APInt BM = ConstDstCoeff->getAPInt();
   1507   unsigned Bits = AM.getBitWidth();
   1508   if (findGCD(Bits, AM, BM, ConstDelta->getAPInt(), G, X, Y)) {
   1509     // gcd doesn't divide Delta, no dependence
   1510     ++ExactSIVindependence;
   1511     ++ExactSIVsuccesses;
   1512     return true;
   1513   }
   1514 
   1515   LLVM_DEBUG(dbgs() << "\t    X = " << X << ", Y = " << Y << "\n");
   1516 
   1517   // since SCEV construction normalizes, LM = 0
   1518   APInt UM(Bits, 1, true);
   1519   bool UMvalid = false;
   1520   // UM is perhaps unavailable, let's check
   1521   if (const SCEVConstant *CUB =
   1522       collectConstantUpperBound(CurLoop, Delta->getType())) {
   1523     UM = CUB->getAPInt();
   1524     LLVM_DEBUG(dbgs() << "\t    UM = " << UM << "\n");
   1525     UMvalid = true;
   1526   }
   1527 
   1528   APInt TU(APInt::getSignedMaxValue(Bits));
   1529   APInt TL(APInt::getSignedMinValue(Bits));
   1530 
   1531   // test(BM/G, LM-X) and test(-BM/G, X-UM)
   1532   APInt TMUL = BM.sdiv(G);
   1533   if (TMUL.sgt(0)) {
   1534     TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL));
   1535     LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
   1536     if (UMvalid) {
   1537       TU = minAPInt(TU, floorOfQuotient(UM - X, TMUL));
   1538       LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
   1539     }
   1540   }
   1541   else {
   1542     TU = minAPInt(TU, floorOfQuotient(-X, TMUL));
   1543     LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
   1544     if (UMvalid) {
   1545       TL = maxAPInt(TL, ceilingOfQuotient(UM - X, TMUL));
   1546       LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
   1547     }
   1548   }
   1549 
   1550   // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
   1551   TMUL = AM.sdiv(G);
   1552   if (TMUL.sgt(0)) {
   1553     TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL));
   1554     LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
   1555     if (UMvalid) {
   1556       TU = minAPInt(TU, floorOfQuotient(UM - Y, TMUL));
   1557       LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
   1558     }
   1559   }
   1560   else {
   1561     TU = minAPInt(TU, floorOfQuotient(-Y, TMUL));
   1562     LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
   1563     if (UMvalid) {
   1564       TL = maxAPInt(TL, ceilingOfQuotient(UM - Y, TMUL));
   1565       LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
   1566     }
   1567   }
   1568   if (TL.sgt(TU)) {
   1569     ++ExactSIVindependence;
   1570     ++ExactSIVsuccesses;
   1571     return true;
   1572   }
   1573 
   1574   // explore directions
   1575   unsigned NewDirection = Dependence::DVEntry::NONE;
   1576 
   1577   // less than
   1578   APInt SaveTU(TU); // save these
   1579   APInt SaveTL(TL);
   1580   LLVM_DEBUG(dbgs() << "\t    exploring LT direction\n");
   1581   TMUL = AM - BM;
   1582   if (TMUL.sgt(0)) {
   1583     TL = maxAPInt(TL, ceilingOfQuotient(X - Y + 1, TMUL));
   1584     LLVM_DEBUG(dbgs() << "\t\t    TL = " << TL << "\n");
   1585   }
   1586   else {
   1587     TU = minAPInt(TU, floorOfQuotient(X - Y + 1, TMUL));
   1588     LLVM_DEBUG(dbgs() << "\t\t    TU = " << TU << "\n");
   1589   }
   1590   if (TL.sle(TU)) {
   1591     NewDirection |= Dependence::DVEntry::LT;
   1592     ++ExactSIVsuccesses;
   1593   }
   1594 
   1595   // equal
   1596   TU = SaveTU; // restore
   1597   TL = SaveTL;
   1598   LLVM_DEBUG(dbgs() << "\t    exploring EQ direction\n");
   1599   if (TMUL.sgt(0)) {
   1600     TL = maxAPInt(TL, ceilingOfQuotient(X - Y, TMUL));
   1601     LLVM_DEBUG(dbgs() << "\t\t    TL = " << TL << "\n");
   1602   }
   1603   else {
   1604     TU = minAPInt(TU, floorOfQuotient(X - Y, TMUL));
   1605     LLVM_DEBUG(dbgs() << "\t\t    TU = " << TU << "\n");
   1606   }
   1607   TMUL = BM - AM;
   1608   if (TMUL.sgt(0)) {
   1609     TL = maxAPInt(TL, ceilingOfQuotient(Y - X, TMUL));
   1610     LLVM_DEBUG(dbgs() << "\t\t    TL = " << TL << "\n");
   1611   }
   1612   else {
   1613     TU = minAPInt(TU, floorOfQuotient(Y - X, TMUL));
   1614     LLVM_DEBUG(dbgs() << "\t\t    TU = " << TU << "\n");
   1615   }
   1616   if (TL.sle(TU)) {
   1617     NewDirection |= Dependence::DVEntry::EQ;
   1618     ++ExactSIVsuccesses;
   1619   }
   1620 
   1621   // greater than
   1622   TU = SaveTU; // restore
   1623   TL = SaveTL;
   1624   LLVM_DEBUG(dbgs() << "\t    exploring GT direction\n");
   1625   if (TMUL.sgt(0)) {
   1626     TL = maxAPInt(TL, ceilingOfQuotient(Y - X + 1, TMUL));
   1627     LLVM_DEBUG(dbgs() << "\t\t    TL = " << TL << "\n");
   1628   }
   1629   else {
   1630     TU = minAPInt(TU, floorOfQuotient(Y - X + 1, TMUL));
   1631     LLVM_DEBUG(dbgs() << "\t\t    TU = " << TU << "\n");
   1632   }
   1633   if (TL.sle(TU)) {
   1634     NewDirection |= Dependence::DVEntry::GT;
   1635     ++ExactSIVsuccesses;
   1636   }
   1637 
   1638   // finished
   1639   Result.DV[Level].Direction &= NewDirection;
   1640   if (Result.DV[Level].Direction == Dependence::DVEntry::NONE)
   1641     ++ExactSIVindependence;
   1642   return Result.DV[Level].Direction == Dependence::DVEntry::NONE;
   1643 }
   1644 
   1645 
   1646 
   1647 // Return true if the divisor evenly divides the dividend.
   1648 static
   1649 bool isRemainderZero(const SCEVConstant *Dividend,
   1650                      const SCEVConstant *Divisor) {
   1651   const APInt &ConstDividend = Dividend->getAPInt();
   1652   const APInt &ConstDivisor = Divisor->getAPInt();
   1653   return ConstDividend.srem(ConstDivisor) == 0;
   1654 }
   1655 
   1656 
   1657 // weakZeroSrcSIVtest -
   1658 // From the paper, Practical Dependence Testing, Section 4.2.2
   1659 //
   1660 // When we have a pair of subscripts of the form [c1] and [c2 + a*i],
   1661 // where i is an induction variable, c1 and c2 are loop invariant,
   1662 // and a is a constant, we can solve it exactly using the
   1663 // Weak-Zero SIV test.
   1664 //
   1665 // Given
   1666 //
   1667 //    c1 = c2 + a*i
   1668 //
   1669 // we get
   1670 //
   1671 //    (c1 - c2)/a = i
   1672 //
   1673 // If i is not an integer, there's no dependence.
   1674 // If i < 0 or > UB, there's no dependence.
   1675 // If i = 0, the direction is >= and peeling the
   1676 // 1st iteration will break the dependence.
   1677 // If i = UB, the direction is <= and peeling the
   1678 // last iteration will break the dependence.
   1679 // Otherwise, the direction is *.
   1680 //
   1681 // Can prove independence. Failing that, we can sometimes refine
   1682 // the directions. Can sometimes show that first or last
   1683 // iteration carries all the dependences (so worth peeling).
   1684 //
   1685 // (see also weakZeroDstSIVtest)
   1686 //
   1687 // Return true if dependence disproved.
   1688 bool DependenceInfo::weakZeroSrcSIVtest(const SCEV *DstCoeff,
   1689                                         const SCEV *SrcConst,
   1690                                         const SCEV *DstConst,
   1691                                         const Loop *CurLoop, unsigned Level,
   1692                                         FullDependence &Result,
   1693                                         Constraint &NewConstraint) const {
   1694   // For the WeakSIV test, it's possible the loop isn't common to
   1695   // the Src and Dst loops. If it isn't, then there's no need to
   1696   // record a direction.
   1697   LLVM_DEBUG(dbgs() << "\tWeak-Zero (src) SIV test\n");
   1698   LLVM_DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << "\n");
   1699   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
   1700   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
   1701   ++WeakZeroSIVapplications;
   1702   assert(0 < Level && Level <= MaxLevels && "Level out of range");
   1703   Level--;
   1704   Result.Consistent = false;
   1705   const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
   1706   NewConstraint.setLine(SE->getZero(Delta->getType()), DstCoeff, Delta,
   1707                         CurLoop);
   1708   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
   1709   if (isKnownPredicate(CmpInst::ICMP_EQ, SrcConst, DstConst)) {
   1710     if (Level < CommonLevels) {
   1711       Result.DV[Level].Direction &= Dependence::DVEntry::GE;
   1712       Result.DV[Level].PeelFirst = true;
   1713       ++WeakZeroSIVsuccesses;
   1714     }
   1715     return false; // dependences caused by first iteration
   1716   }
   1717   const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
   1718   if (!ConstCoeff)
   1719     return false;
   1720   const SCEV *AbsCoeff =
   1721     SE->isKnownNegative(ConstCoeff) ?
   1722     SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
   1723   const SCEV *NewDelta =
   1724     SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
   1725 
   1726   // check that Delta/SrcCoeff < iteration count
   1727   // really check NewDelta < count*AbsCoeff
   1728   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
   1729     LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
   1730     const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
   1731     if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
   1732       ++WeakZeroSIVindependence;
   1733       ++WeakZeroSIVsuccesses;
   1734       return true;
   1735     }
   1736     if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
   1737       // dependences caused by last iteration
   1738       if (Level < CommonLevels) {
   1739         Result.DV[Level].Direction &= Dependence::DVEntry::LE;
   1740         Result.DV[Level].PeelLast = true;
   1741         ++WeakZeroSIVsuccesses;
   1742       }
   1743       return false;
   1744     }
   1745   }
   1746 
   1747   // check that Delta/SrcCoeff >= 0
   1748   // really check that NewDelta >= 0
   1749   if (SE->isKnownNegative(NewDelta)) {
   1750     // No dependence, newDelta < 0
   1751     ++WeakZeroSIVindependence;
   1752     ++WeakZeroSIVsuccesses;
   1753     return true;
   1754   }
   1755 
   1756   // if SrcCoeff doesn't divide Delta, then no dependence
   1757   if (isa<SCEVConstant>(Delta) &&
   1758       !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
   1759     ++WeakZeroSIVindependence;
   1760     ++WeakZeroSIVsuccesses;
   1761     return true;
   1762   }
   1763   return false;
   1764 }
   1765 
   1766 
   1767 // weakZeroDstSIVtest -
   1768 // From the paper, Practical Dependence Testing, Section 4.2.2
   1769 //
   1770 // When we have a pair of subscripts of the form [c1 + a*i] and [c2],
   1771 // where i is an induction variable, c1 and c2 are loop invariant,
   1772 // and a is a constant, we can solve it exactly using the
   1773 // Weak-Zero SIV test.
   1774 //
   1775 // Given
   1776 //
   1777 //    c1 + a*i = c2
   1778 //
   1779 // we get
   1780 //
   1781 //    i = (c2 - c1)/a
   1782 //
   1783 // If i is not an integer, there's no dependence.
   1784 // If i < 0 or > UB, there's no dependence.
   1785 // If i = 0, the direction is <= and peeling the
   1786 // 1st iteration will break the dependence.
   1787 // If i = UB, the direction is >= and peeling the
   1788 // last iteration will break the dependence.
   1789 // Otherwise, the direction is *.
   1790 //
   1791 // Can prove independence. Failing that, we can sometimes refine
   1792 // the directions. Can sometimes show that first or last
   1793 // iteration carries all the dependences (so worth peeling).
   1794 //
   1795 // (see also weakZeroSrcSIVtest)
   1796 //
   1797 // Return true if dependence disproved.
   1798 bool DependenceInfo::weakZeroDstSIVtest(const SCEV *SrcCoeff,
   1799                                         const SCEV *SrcConst,
   1800                                         const SCEV *DstConst,
   1801                                         const Loop *CurLoop, unsigned Level,
   1802                                         FullDependence &Result,
   1803                                         Constraint &NewConstraint) const {
   1804   // For the WeakSIV test, it's possible the loop isn't common to the
   1805   // Src and Dst loops. If it isn't, then there's no need to record a direction.
   1806   LLVM_DEBUG(dbgs() << "\tWeak-Zero (dst) SIV test\n");
   1807   LLVM_DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << "\n");
   1808   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
   1809   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
   1810   ++WeakZeroSIVapplications;
   1811   assert(0 < Level && Level <= SrcLevels && "Level out of range");
   1812   Level--;
   1813   Result.Consistent = false;
   1814   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
   1815   NewConstraint.setLine(SrcCoeff, SE->getZero(Delta->getType()), Delta,
   1816                         CurLoop);
   1817   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
   1818   if (isKnownPredicate(CmpInst::ICMP_EQ, DstConst, SrcConst)) {
   1819     if (Level < CommonLevels) {
   1820       Result.DV[Level].Direction &= Dependence::DVEntry::LE;
   1821       Result.DV[Level].PeelFirst = true;
   1822       ++WeakZeroSIVsuccesses;
   1823     }
   1824     return false; // dependences caused by first iteration
   1825   }
   1826   const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
   1827   if (!ConstCoeff)
   1828     return false;
   1829   const SCEV *AbsCoeff =
   1830     SE->isKnownNegative(ConstCoeff) ?
   1831     SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
   1832   const SCEV *NewDelta =
   1833     SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
   1834 
   1835   // check that Delta/SrcCoeff < iteration count
   1836   // really check NewDelta < count*AbsCoeff
   1837   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
   1838     LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
   1839     const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
   1840     if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
   1841       ++WeakZeroSIVindependence;
   1842       ++WeakZeroSIVsuccesses;
   1843       return true;
   1844     }
   1845     if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
   1846       // dependences caused by last iteration
   1847       if (Level < CommonLevels) {
   1848         Result.DV[Level].Direction &= Dependence::DVEntry::GE;
   1849         Result.DV[Level].PeelLast = true;
   1850         ++WeakZeroSIVsuccesses;
   1851       }
   1852       return false;
   1853     }
   1854   }
   1855 
   1856   // check that Delta/SrcCoeff >= 0
   1857   // really check that NewDelta >= 0
   1858   if (SE->isKnownNegative(NewDelta)) {
   1859     // No dependence, newDelta < 0
   1860     ++WeakZeroSIVindependence;
   1861     ++WeakZeroSIVsuccesses;
   1862     return true;
   1863   }
   1864 
   1865   // if SrcCoeff doesn't divide Delta, then no dependence
   1866   if (isa<SCEVConstant>(Delta) &&
   1867       !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
   1868     ++WeakZeroSIVindependence;
   1869     ++WeakZeroSIVsuccesses;
   1870     return true;
   1871   }
   1872   return false;
   1873 }
   1874 
   1875 
   1876 // exactRDIVtest - Tests the RDIV subscript pair for dependence.
   1877 // Things of the form [c1 + a*i] and [c2 + b*j],
   1878 // where i and j are induction variable, c1 and c2 are loop invariant,
   1879 // and a and b are constants.
   1880 // Returns true if any possible dependence is disproved.
   1881 // Marks the result as inconsistent.
   1882 // Works in some cases that symbolicRDIVtest doesn't, and vice versa.
   1883 bool DependenceInfo::exactRDIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
   1884                                    const SCEV *SrcConst, const SCEV *DstConst,
   1885                                    const Loop *SrcLoop, const Loop *DstLoop,
   1886                                    FullDependence &Result) const {
   1887   LLVM_DEBUG(dbgs() << "\tExact RDIV test\n");
   1888   LLVM_DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << " = AM\n");
   1889   LLVM_DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << " = BM\n");
   1890   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
   1891   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
   1892   ++ExactRDIVapplications;
   1893   Result.Consistent = false;
   1894   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
   1895   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
   1896   const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
   1897   const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
   1898   const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
   1899   if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
   1900     return false;
   1901 
   1902   // find gcd
   1903   APInt G, X, Y;
   1904   APInt AM = ConstSrcCoeff->getAPInt();
   1905   APInt BM = ConstDstCoeff->getAPInt();
   1906   unsigned Bits = AM.getBitWidth();
   1907   if (findGCD(Bits, AM, BM, ConstDelta->getAPInt(), G, X, Y)) {
   1908     // gcd doesn't divide Delta, no dependence
   1909     ++ExactRDIVindependence;
   1910     return true;
   1911   }
   1912 
   1913   LLVM_DEBUG(dbgs() << "\t    X = " << X << ", Y = " << Y << "\n");
   1914 
   1915   // since SCEV construction seems to normalize, LM = 0
   1916   APInt SrcUM(Bits, 1, true);
   1917   bool SrcUMvalid = false;
   1918   // SrcUM is perhaps unavailable, let's check
   1919   if (const SCEVConstant *UpperBound =
   1920       collectConstantUpperBound(SrcLoop, Delta->getType())) {
   1921     SrcUM = UpperBound->getAPInt();
   1922     LLVM_DEBUG(dbgs() << "\t    SrcUM = " << SrcUM << "\n");
   1923     SrcUMvalid = true;
   1924   }
   1925 
   1926   APInt DstUM(Bits, 1, true);
   1927   bool DstUMvalid = false;
   1928   // UM is perhaps unavailable, let's check
   1929   if (const SCEVConstant *UpperBound =
   1930       collectConstantUpperBound(DstLoop, Delta->getType())) {
   1931     DstUM = UpperBound->getAPInt();
   1932     LLVM_DEBUG(dbgs() << "\t    DstUM = " << DstUM << "\n");
   1933     DstUMvalid = true;
   1934   }
   1935 
   1936   APInt TU(APInt::getSignedMaxValue(Bits));
   1937   APInt TL(APInt::getSignedMinValue(Bits));
   1938 
   1939   // test(BM/G, LM-X) and test(-BM/G, X-UM)
   1940   APInt TMUL = BM.sdiv(G);
   1941   if (TMUL.sgt(0)) {
   1942     TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL));
   1943     LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
   1944     if (SrcUMvalid) {
   1945       TU = minAPInt(TU, floorOfQuotient(SrcUM - X, TMUL));
   1946       LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
   1947     }
   1948   }
   1949   else {
   1950     TU = minAPInt(TU, floorOfQuotient(-X, TMUL));
   1951     LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
   1952     if (SrcUMvalid) {
   1953       TL = maxAPInt(TL, ceilingOfQuotient(SrcUM - X, TMUL));
   1954       LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
   1955     }
   1956   }
   1957 
   1958   // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
   1959   TMUL = AM.sdiv(G);
   1960   if (TMUL.sgt(0)) {
   1961     TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL));
   1962     LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
   1963     if (DstUMvalid) {
   1964       TU = minAPInt(TU, floorOfQuotient(DstUM - Y, TMUL));
   1965       LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
   1966     }
   1967   }
   1968   else {
   1969     TU = minAPInt(TU, floorOfQuotient(-Y, TMUL));
   1970     LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
   1971     if (DstUMvalid) {
   1972       TL = maxAPInt(TL, ceilingOfQuotient(DstUM - Y, TMUL));
   1973       LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
   1974     }
   1975   }
   1976   if (TL.sgt(TU))
   1977     ++ExactRDIVindependence;
   1978   return TL.sgt(TU);
   1979 }
   1980 
   1981 
   1982 // symbolicRDIVtest -
   1983 // In Section 4.5 of the Practical Dependence Testing paper,the authors
   1984 // introduce a special case of Banerjee's Inequalities (also called the
   1985 // Extreme-Value Test) that can handle some of the SIV and RDIV cases,
   1986 // particularly cases with symbolics. Since it's only able to disprove
   1987 // dependence (not compute distances or directions), we'll use it as a
   1988 // fall back for the other tests.
   1989 //
   1990 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
   1991 // where i and j are induction variables and c1 and c2 are loop invariants,
   1992 // we can use the symbolic tests to disprove some dependences, serving as a
   1993 // backup for the RDIV test. Note that i and j can be the same variable,
   1994 // letting this test serve as a backup for the various SIV tests.
   1995 //
   1996 // For a dependence to exist, c1 + a1*i must equal c2 + a2*j for some
   1997 //  0 <= i <= N1 and some 0 <= j <= N2, where N1 and N2 are the (normalized)
   1998 // loop bounds for the i and j loops, respectively. So, ...
   1999 //
   2000 // c1 + a1*i = c2 + a2*j
   2001 // a1*i - a2*j = c2 - c1
   2002 //
   2003 // To test for a dependence, we compute c2 - c1 and make sure it's in the
   2004 // range of the maximum and minimum possible values of a1*i - a2*j.
   2005 // Considering the signs of a1 and a2, we have 4 possible cases:
   2006 //
   2007 // 1) If a1 >= 0 and a2 >= 0, then
   2008 //        a1*0 - a2*N2 <= c2 - c1 <= a1*N1 - a2*0
   2009 //              -a2*N2 <= c2 - c1 <= a1*N1
   2010 //
   2011 // 2) If a1 >= 0 and a2 <= 0, then
   2012 //        a1*0 - a2*0 <= c2 - c1 <= a1*N1 - a2*N2
   2013 //                  0 <= c2 - c1 <= a1*N1 - a2*N2
   2014 //
   2015 // 3) If a1 <= 0 and a2 >= 0, then
   2016 //        a1*N1 - a2*N2 <= c2 - c1 <= a1*0 - a2*0
   2017 //        a1*N1 - a2*N2 <= c2 - c1 <= 0
   2018 //
   2019 // 4) If a1 <= 0 and a2 <= 0, then
   2020 //        a1*N1 - a2*0  <= c2 - c1 <= a1*0 - a2*N2
   2021 //        a1*N1         <= c2 - c1 <=       -a2*N2
   2022 //
   2023 // return true if dependence disproved
   2024 bool DependenceInfo::symbolicRDIVtest(const SCEV *A1, const SCEV *A2,
   2025                                       const SCEV *C1, const SCEV *C2,
   2026                                       const Loop *Loop1,
   2027                                       const Loop *Loop2) const {
   2028   ++SymbolicRDIVapplications;
   2029   LLVM_DEBUG(dbgs() << "\ttry symbolic RDIV test\n");
   2030   LLVM_DEBUG(dbgs() << "\t    A1 = " << *A1);
   2031   LLVM_DEBUG(dbgs() << ", type = " << *A1->getType() << "\n");
   2032   LLVM_DEBUG(dbgs() << "\t    A2 = " << *A2 << "\n");
   2033   LLVM_DEBUG(dbgs() << "\t    C1 = " << *C1 << "\n");
   2034   LLVM_DEBUG(dbgs() << "\t    C2 = " << *C2 << "\n");
   2035   const SCEV *N1 = collectUpperBound(Loop1, A1->getType());
   2036   const SCEV *N2 = collectUpperBound(Loop2, A1->getType());
   2037   LLVM_DEBUG(if (N1) dbgs() << "\t    N1 = " << *N1 << "\n");
   2038   LLVM_DEBUG(if (N2) dbgs() << "\t    N2 = " << *N2 << "\n");
   2039   const SCEV *C2_C1 = SE->getMinusSCEV(C2, C1);
   2040   const SCEV *C1_C2 = SE->getMinusSCEV(C1, C2);
   2041   LLVM_DEBUG(dbgs() << "\t    C2 - C1 = " << *C2_C1 << "\n");
   2042   LLVM_DEBUG(dbgs() << "\t    C1 - C2 = " << *C1_C2 << "\n");
   2043   if (SE->isKnownNonNegative(A1)) {
   2044     if (SE->isKnownNonNegative(A2)) {
   2045       // A1 >= 0 && A2 >= 0
   2046       if (N1) {
   2047         // make sure that c2 - c1 <= a1*N1
   2048         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
   2049         LLVM_DEBUG(dbgs() << "\t    A1*N1 = " << *A1N1 << "\n");
   2050         if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1)) {
   2051           ++SymbolicRDIVindependence;
   2052           return true;
   2053         }
   2054       }
   2055       if (N2) {
   2056         // make sure that -a2*N2 <= c2 - c1, or a2*N2 >= c1 - c2
   2057         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
   2058         LLVM_DEBUG(dbgs() << "\t    A2*N2 = " << *A2N2 << "\n");
   2059         if (isKnownPredicate(CmpInst::ICMP_SLT, A2N2, C1_C2)) {
   2060           ++SymbolicRDIVindependence;
   2061           return true;
   2062         }
   2063       }
   2064     }
   2065     else if (SE->isKnownNonPositive(A2)) {
   2066       // a1 >= 0 && a2 <= 0
   2067       if (N1 && N2) {
   2068         // make sure that c2 - c1 <= a1*N1 - a2*N2
   2069         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
   2070         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
   2071         const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
   2072         LLVM_DEBUG(dbgs() << "\t    A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
   2073         if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1_A2N2)) {
   2074           ++SymbolicRDIVindependence;
   2075           return true;
   2076         }
   2077       }
   2078       // make sure that 0 <= c2 - c1
   2079       if (SE->isKnownNegative(C2_C1)) {
   2080         ++SymbolicRDIVindependence;
   2081         return true;
   2082       }
   2083     }
   2084   }
   2085   else if (SE->isKnownNonPositive(A1)) {
   2086     if (SE->isKnownNonNegative(A2)) {
   2087       // a1 <= 0 && a2 >= 0
   2088       if (N1 && N2) {
   2089         // make sure that a1*N1 - a2*N2 <= c2 - c1
   2090         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
   2091         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
   2092         const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
   2093         LLVM_DEBUG(dbgs() << "\t    A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
   2094         if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1_A2N2, C2_C1)) {
   2095           ++SymbolicRDIVindependence;
   2096           return true;
   2097         }
   2098       }
   2099       // make sure that c2 - c1 <= 0
   2100       if (SE->isKnownPositive(C2_C1)) {
   2101         ++SymbolicRDIVindependence;
   2102         return true;
   2103       }
   2104     }
   2105     else if (SE->isKnownNonPositive(A2)) {
   2106       // a1 <= 0 && a2 <= 0
   2107       if (N1) {
   2108         // make sure that a1*N1 <= c2 - c1
   2109         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
   2110         LLVM_DEBUG(dbgs() << "\t    A1*N1 = " << *A1N1 << "\n");
   2111         if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1, C2_C1)) {
   2112           ++SymbolicRDIVindependence;
   2113           return true;
   2114         }
   2115       }
   2116       if (N2) {
   2117         // make sure that c2 - c1 <= -a2*N2, or c1 - c2 >= a2*N2
   2118         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
   2119         LLVM_DEBUG(dbgs() << "\t    A2*N2 = " << *A2N2 << "\n");
   2120         if (isKnownPredicate(CmpInst::ICMP_SLT, C1_C2, A2N2)) {
   2121           ++SymbolicRDIVindependence;
   2122           return true;
   2123         }
   2124       }
   2125     }
   2126   }
   2127   return false;
   2128 }
   2129 
   2130 
   2131 // testSIV -
   2132 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 - a2*i]
   2133 // where i is an induction variable, c1 and c2 are loop invariant, and a1 and
   2134 // a2 are constant, we attack it with an SIV test. While they can all be
   2135 // solved with the Exact SIV test, it's worthwhile to use simpler tests when
   2136 // they apply; they're cheaper and sometimes more precise.
   2137 //
   2138 // Return true if dependence disproved.
   2139 bool DependenceInfo::testSIV(const SCEV *Src, const SCEV *Dst, unsigned &Level,
   2140                              FullDependence &Result, Constraint &NewConstraint,
   2141                              const SCEV *&SplitIter) const {
   2142   LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n");
   2143   LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n");
   2144   const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
   2145   const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
   2146   if (SrcAddRec && DstAddRec) {
   2147     const SCEV *SrcConst = SrcAddRec->getStart();
   2148     const SCEV *DstConst = DstAddRec->getStart();
   2149     const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
   2150     const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
   2151     const Loop *CurLoop = SrcAddRec->getLoop();
   2152     assert(CurLoop == DstAddRec->getLoop() &&
   2153            "both loops in SIV should be same");
   2154     Level = mapSrcLoop(CurLoop);
   2155     bool disproven;
   2156     if (SrcCoeff == DstCoeff)
   2157       disproven = strongSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
   2158                                 Level, Result, NewConstraint);
   2159     else if (SrcCoeff == SE->getNegativeSCEV(DstCoeff))
   2160       disproven = weakCrossingSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
   2161                                       Level, Result, NewConstraint, SplitIter);
   2162     else
   2163       disproven = exactSIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop,
   2164                                Level, Result, NewConstraint);
   2165     return disproven ||
   2166       gcdMIVtest(Src, Dst, Result) ||
   2167       symbolicRDIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop, CurLoop);
   2168   }
   2169   if (SrcAddRec) {
   2170     const SCEV *SrcConst = SrcAddRec->getStart();
   2171     const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
   2172     const SCEV *DstConst = Dst;
   2173     const Loop *CurLoop = SrcAddRec->getLoop();
   2174     Level = mapSrcLoop(CurLoop);
   2175     return weakZeroDstSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
   2176                               Level, Result, NewConstraint) ||
   2177       gcdMIVtest(Src, Dst, Result);
   2178   }
   2179   if (DstAddRec) {
   2180     const SCEV *DstConst = DstAddRec->getStart();
   2181     const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
   2182     const SCEV *SrcConst = Src;
   2183     const Loop *CurLoop = DstAddRec->getLoop();
   2184     Level = mapDstLoop(CurLoop);
   2185     return weakZeroSrcSIVtest(DstCoeff, SrcConst, DstConst,
   2186                               CurLoop, Level, Result, NewConstraint) ||
   2187       gcdMIVtest(Src, Dst, Result);
   2188   }
   2189   llvm_unreachable("SIV test expected at least one AddRec");
   2190   return false;
   2191 }
   2192 
   2193 
   2194 // testRDIV -
   2195 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
   2196 // where i and j are induction variables, c1 and c2 are loop invariant,
   2197 // and a1 and a2 are constant, we can solve it exactly with an easy adaptation
   2198 // of the Exact SIV test, the Restricted Double Index Variable (RDIV) test.
   2199 // It doesn't make sense to talk about distance or direction in this case,
   2200 // so there's no point in making special versions of the Strong SIV test or
   2201 // the Weak-crossing SIV test.
   2202 //
   2203 // With minor algebra, this test can also be used for things like
   2204 // [c1 + a1*i + a2*j][c2].
   2205 //
   2206 // Return true if dependence disproved.
   2207 bool DependenceInfo::testRDIV(const SCEV *Src, const SCEV *Dst,
   2208                               FullDependence &Result) const {
   2209   // we have 3 possible situations here:
   2210   //   1) [a*i + b] and [c*j + d]
   2211   //   2) [a*i + c*j + b] and [d]
   2212   //   3) [b] and [a*i + c*j + d]
   2213   // We need to find what we've got and get organized
   2214 
   2215   const SCEV *SrcConst, *DstConst;
   2216   const SCEV *SrcCoeff, *DstCoeff;
   2217   const Loop *SrcLoop, *DstLoop;
   2218 
   2219   LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n");
   2220   LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n");
   2221   const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
   2222   const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
   2223   if (SrcAddRec && DstAddRec) {
   2224     SrcConst = SrcAddRec->getStart();
   2225     SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
   2226     SrcLoop = SrcAddRec->getLoop();
   2227     DstConst = DstAddRec->getStart();
   2228     DstCoeff = DstAddRec->getStepRecurrence(*SE);
   2229     DstLoop = DstAddRec->getLoop();
   2230   }
   2231   else if (SrcAddRec) {
   2232     if (const SCEVAddRecExpr *tmpAddRec =
   2233         dyn_cast<SCEVAddRecExpr>(SrcAddRec->getStart())) {
   2234       SrcConst = tmpAddRec->getStart();
   2235       SrcCoeff = tmpAddRec->getStepRecurrence(*SE);
   2236       SrcLoop = tmpAddRec->getLoop();
   2237       DstConst = Dst;
   2238       DstCoeff = SE->getNegativeSCEV(SrcAddRec->getStepRecurrence(*SE));
   2239       DstLoop = SrcAddRec->getLoop();
   2240     }
   2241     else
   2242       llvm_unreachable("RDIV reached by surprising SCEVs");
   2243   }
   2244   else if (DstAddRec) {
   2245     if (const SCEVAddRecExpr *tmpAddRec =
   2246         dyn_cast<SCEVAddRecExpr>(DstAddRec->getStart())) {
   2247       DstConst = tmpAddRec->getStart();
   2248       DstCoeff = tmpAddRec->getStepRecurrence(*SE);
   2249       DstLoop = tmpAddRec->getLoop();
   2250       SrcConst = Src;
   2251       SrcCoeff = SE->getNegativeSCEV(DstAddRec->getStepRecurrence(*SE));
   2252       SrcLoop = DstAddRec->getLoop();
   2253     }
   2254     else
   2255       llvm_unreachable("RDIV reached by surprising SCEVs");
   2256   }
   2257   else
   2258     llvm_unreachable("RDIV expected at least one AddRec");
   2259   return exactRDIVtest(SrcCoeff, DstCoeff,
   2260                        SrcConst, DstConst,
   2261                        SrcLoop, DstLoop,
   2262                        Result) ||
   2263     gcdMIVtest(Src, Dst, Result) ||
   2264     symbolicRDIVtest(SrcCoeff, DstCoeff,
   2265                      SrcConst, DstConst,
   2266                      SrcLoop, DstLoop);
   2267 }
   2268 
   2269 
   2270 // Tests the single-subscript MIV pair (Src and Dst) for dependence.
   2271 // Return true if dependence disproved.
   2272 // Can sometimes refine direction vectors.
   2273 bool DependenceInfo::testMIV(const SCEV *Src, const SCEV *Dst,
   2274                              const SmallBitVector &Loops,
   2275                              FullDependence &Result) const {
   2276   LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n");
   2277   LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n");
   2278   Result.Consistent = false;
   2279   return gcdMIVtest(Src, Dst, Result) ||
   2280     banerjeeMIVtest(Src, Dst, Loops, Result);
   2281 }
   2282 
   2283 
   2284 // Given a product, e.g., 10*X*Y, returns the first constant operand,
   2285 // in this case 10. If there is no constant part, returns NULL.
   2286 static
   2287 const SCEVConstant *getConstantPart(const SCEV *Expr) {
   2288   if (const auto *Constant = dyn_cast<SCEVConstant>(Expr))
   2289     return Constant;
   2290   else if (const auto *Product = dyn_cast<SCEVMulExpr>(Expr))
   2291     if (const auto *Constant = dyn_cast<SCEVConstant>(Product->getOperand(0)))
   2292       return Constant;
   2293   return nullptr;
   2294 }
   2295 
   2296 
   2297 //===----------------------------------------------------------------------===//
   2298 // gcdMIVtest -
   2299 // Tests an MIV subscript pair for dependence.
   2300 // Returns true if any possible dependence is disproved.
   2301 // Marks the result as inconsistent.
   2302 // Can sometimes disprove the equal direction for 1 or more loops,
   2303 // as discussed in Michael Wolfe's book,
   2304 // High Performance Compilers for Parallel Computing, page 235.
   2305 //
   2306 // We spend some effort (code!) to handle cases like
   2307 // [10*i + 5*N*j + 15*M + 6], where i and j are induction variables,
   2308 // but M and N are just loop-invariant variables.
   2309 // This should help us handle linearized subscripts;
   2310 // also makes this test a useful backup to the various SIV tests.
   2311 //
   2312 // It occurs to me that the presence of loop-invariant variables
   2313 // changes the nature of the test from "greatest common divisor"
   2314 // to "a common divisor".
   2315 bool DependenceInfo::gcdMIVtest(const SCEV *Src, const SCEV *Dst,
   2316                                 FullDependence &Result) const {
   2317   LLVM_DEBUG(dbgs() << "starting gcd\n");
   2318   ++GCDapplications;
   2319   unsigned BitWidth = SE->getTypeSizeInBits(Src->getType());
   2320   APInt RunningGCD = APInt::getNullValue(BitWidth);
   2321 
   2322   // Examine Src coefficients.
   2323   // Compute running GCD and record source constant.
   2324   // Because we're looking for the constant at the end of the chain,
   2325   // we can't quit the loop just because the GCD == 1.
   2326   const SCEV *Coefficients = Src;
   2327   while (const SCEVAddRecExpr *AddRec =
   2328          dyn_cast<SCEVAddRecExpr>(Coefficients)) {
   2329     const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
   2330     // If the coefficient is the product of a constant and other stuff,
   2331     // we can use the constant in the GCD computation.
   2332     const auto *Constant = getConstantPart(Coeff);
   2333     if (!Constant)
   2334       return false;
   2335     APInt ConstCoeff = Constant->getAPInt();
   2336     RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
   2337     Coefficients = AddRec->getStart();
   2338   }
   2339   const SCEV *SrcConst = Coefficients;
   2340 
   2341   // Examine Dst coefficients.
   2342   // Compute running GCD and record destination constant.
   2343   // Because we're looking for the constant at the end of the chain,
   2344   // we can't quit the loop just because the GCD == 1.
   2345   Coefficients = Dst;
   2346   while (const SCEVAddRecExpr *AddRec =
   2347          dyn_cast<SCEVAddRecExpr>(Coefficients)) {
   2348     const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
   2349     // If the coefficient is the product of a constant and other stuff,
   2350     // we can use the constant in the GCD computation.
   2351     const auto *Constant = getConstantPart(Coeff);
   2352     if (!Constant)
   2353       return false;
   2354     APInt ConstCoeff = Constant->getAPInt();
   2355     RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
   2356     Coefficients = AddRec->getStart();
   2357   }
   2358   const SCEV *DstConst = Coefficients;
   2359 
   2360   APInt ExtraGCD = APInt::getNullValue(BitWidth);
   2361   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
   2362   LLVM_DEBUG(dbgs() << "    Delta = " << *Delta << "\n");
   2363   const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Delta);
   2364   if (const SCEVAddExpr *Sum = dyn_cast<SCEVAddExpr>(Delta)) {
   2365     // If Delta is a sum of products, we may be able to make further progress.
   2366     for (unsigned Op = 0, Ops = Sum->getNumOperands(); Op < Ops; Op++) {
   2367       const SCEV *Operand = Sum->getOperand(Op);
   2368       if (isa<SCEVConstant>(Operand)) {
   2369         assert(!Constant && "Surprised to find multiple constants");
   2370         Constant = cast<SCEVConstant>(Operand);
   2371       }
   2372       else if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Operand)) {
   2373         // Search for constant operand to participate in GCD;
   2374         // If none found; return false.
   2375         const SCEVConstant *ConstOp = getConstantPart(Product);
   2376         if (!ConstOp)
   2377           return false;
   2378         APInt ConstOpValue = ConstOp->getAPInt();
   2379         ExtraGCD = APIntOps::GreatestCommonDivisor(ExtraGCD,
   2380                                                    ConstOpValue.abs());
   2381       }
   2382       else
   2383         return false;
   2384     }
   2385   }
   2386   if (!Constant)
   2387     return false;
   2388   APInt ConstDelta = cast<SCEVConstant>(Constant)->getAPInt();
   2389   LLVM_DEBUG(dbgs() << "    ConstDelta = " << ConstDelta << "\n");
   2390   if (ConstDelta == 0)
   2391     return false;
   2392   RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ExtraGCD);
   2393   LLVM_DEBUG(dbgs() << "    RunningGCD = " << RunningGCD << "\n");
   2394   APInt Remainder = ConstDelta.srem(RunningGCD);
   2395   if (Remainder != 0) {
   2396     ++GCDindependence;
   2397     return true;
   2398   }
   2399 
   2400   // Try to disprove equal directions.
   2401   // For example, given a subscript pair [3*i + 2*j] and [i' + 2*j' - 1],
   2402   // the code above can't disprove the dependence because the GCD = 1.
   2403   // So we consider what happen if i = i' and what happens if j = j'.
   2404   // If i = i', we can simplify the subscript to [2*i + 2*j] and [2*j' - 1],
   2405   // which is infeasible, so we can disallow the = direction for the i level.
   2406   // Setting j = j' doesn't help matters, so we end up with a direction vector
   2407   // of [<>, *]
   2408   //
   2409   // Given A[5*i + 10*j*M + 9*M*N] and A[15*i + 20*j*M - 21*N*M + 5],
   2410   // we need to remember that the constant part is 5 and the RunningGCD should
   2411   // be initialized to ExtraGCD = 30.
   2412   LLVM_DEBUG(dbgs() << "    ExtraGCD = " << ExtraGCD << '\n');
   2413 
   2414   bool Improved = false;
   2415   Coefficients = Src;
   2416   while (const SCEVAddRecExpr *AddRec =
   2417          dyn_cast<SCEVAddRecExpr>(Coefficients)) {
   2418     Coefficients = AddRec->getStart();
   2419     const Loop *CurLoop = AddRec->getLoop();
   2420     RunningGCD = ExtraGCD;
   2421     const SCEV *SrcCoeff = AddRec->getStepRecurrence(*SE);
   2422     const SCEV *DstCoeff = SE->getMinusSCEV(SrcCoeff, SrcCoeff);
   2423     const SCEV *Inner = Src;
   2424     while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
   2425       AddRec = cast<SCEVAddRecExpr>(Inner);
   2426       const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
   2427       if (CurLoop == AddRec->getLoop())
   2428         ; // SrcCoeff == Coeff
   2429       else {
   2430         // If the coefficient is the product of a constant and other stuff,
   2431         // we can use the constant in the GCD computation.
   2432         Constant = getConstantPart(Coeff);
   2433         if (!Constant)
   2434           return false;
   2435         APInt ConstCoeff = Constant->getAPInt();
   2436         RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
   2437       }
   2438       Inner = AddRec->getStart();
   2439     }
   2440     Inner = Dst;
   2441     while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
   2442       AddRec = cast<SCEVAddRecExpr>(Inner);
   2443       const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
   2444       if (CurLoop == AddRec->getLoop())
   2445         DstCoeff = Coeff;
   2446       else {
   2447         // If the coefficient is the product of a constant and other stuff,
   2448         // we can use the constant in the GCD computation.
   2449         Constant = getConstantPart(Coeff);
   2450         if (!Constant)
   2451           return false;
   2452         APInt ConstCoeff = Constant->getAPInt();
   2453         RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
   2454       }
   2455       Inner = AddRec->getStart();
   2456     }
   2457     Delta = SE->getMinusSCEV(SrcCoeff, DstCoeff);
   2458     // If the coefficient is the product of a constant and other stuff,
   2459     // we can use the constant in the GCD computation.
   2460     Constant = getConstantPart(Delta);
   2461     if (!Constant)
   2462       // The difference of the two coefficients might not be a product
   2463       // or constant, in which case we give up on this direction.
   2464       continue;
   2465     APInt ConstCoeff = Constant->getAPInt();
   2466     RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
   2467     LLVM_DEBUG(dbgs() << "\tRunningGCD = " << RunningGCD << "\n");
   2468     if (RunningGCD != 0) {
   2469       Remainder = ConstDelta.srem(RunningGCD);
   2470       LLVM_DEBUG(dbgs() << "\tRemainder = " << Remainder << "\n");
   2471       if (Remainder != 0) {
   2472         unsigned Level = mapSrcLoop(CurLoop);
   2473         Result.DV[Level - 1].Direction &= unsigned(~Dependence::DVEntry::EQ);
   2474         Improved = true;
   2475       }
   2476     }
   2477   }
   2478   if (Improved)
   2479     ++GCDsuccesses;
   2480   LLVM_DEBUG(dbgs() << "all done\n");
   2481   return false;
   2482 }
   2483 
   2484 
   2485 //===----------------------------------------------------------------------===//
   2486 // banerjeeMIVtest -
   2487 // Use Banerjee's Inequalities to test an MIV subscript pair.
   2488 // (Wolfe, in the race-car book, calls this the Extreme Value Test.)
   2489 // Generally follows the discussion in Section 2.5.2 of
   2490 //
   2491 //    Optimizing Supercompilers for Supercomputers
   2492 //    Michael Wolfe
   2493 //
   2494 // The inequalities given on page 25 are simplified in that loops are
   2495 // normalized so that the lower bound is always 0 and the stride is always 1.
   2496 // For example, Wolfe gives
   2497 //
   2498 //     LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
   2499 //
   2500 // where A_k is the coefficient of the kth index in the source subscript,
   2501 // B_k is the coefficient of the kth index in the destination subscript,
   2502 // U_k is the upper bound of the kth index, L_k is the lower bound of the Kth
   2503 // index, and N_k is the stride of the kth index. Since all loops are normalized
   2504 // by the SCEV package, N_k = 1 and L_k = 0, allowing us to simplify the
   2505 // equation to
   2506 //
   2507 //     LB^<_k = (A^-_k - B_k)^- (U_k - 0 - 1) + (A_k - B_k)0 - B_k 1
   2508 //            = (A^-_k - B_k)^- (U_k - 1)  - B_k
   2509 //
   2510 // Similar simplifications are possible for the other equations.
   2511 //
   2512 // When we can't determine the number of iterations for a loop,
   2513 // we use NULL as an indicator for the worst case, infinity.
   2514 // When computing the upper bound, NULL denotes +inf;
   2515 // for the lower bound, NULL denotes -inf.
   2516 //
   2517 // Return true if dependence disproved.
   2518 bool DependenceInfo::banerjeeMIVtest(const SCEV *Src, const SCEV *Dst,
   2519                                      const SmallBitVector &Loops,
   2520                                      FullDependence &Result) const {
   2521   LLVM_DEBUG(dbgs() << "starting Banerjee\n");
   2522   ++BanerjeeApplications;
   2523   LLVM_DEBUG(dbgs() << "    Src = " << *Src << '\n');
   2524   const SCEV *A0;
   2525   CoefficientInfo *A = collectCoeffInfo(Src, true, A0);
   2526   LLVM_DEBUG(dbgs() << "    Dst = " << *Dst << '\n');
   2527   const SCEV *B0;
   2528   CoefficientInfo *B = collectCoeffInfo(Dst, false, B0);
   2529   BoundInfo *Bound = new BoundInfo[MaxLevels + 1];
   2530   const SCEV *Delta = SE->getMinusSCEV(B0, A0);
   2531   LLVM_DEBUG(dbgs() << "\tDelta = " << *Delta << '\n');
   2532 
   2533   // Compute bounds for all the * directions.
   2534   LLVM_DEBUG(dbgs() << "\tBounds[*]\n");
   2535   for (unsigned K = 1; K <= MaxLevels; ++K) {
   2536     Bound[K].Iterations = A[K].Iterations ? A[K].Iterations : B[K].Iterations;
   2537     Bound[K].Direction = Dependence::DVEntry::ALL;
   2538     Bound[K].DirSet = Dependence::DVEntry::NONE;
   2539     findBoundsALL(A, B, Bound, K);
   2540 #ifndef NDEBUG
   2541     LLVM_DEBUG(dbgs() << "\t    " << K << '\t');
   2542     if (Bound[K].Lower[Dependence::DVEntry::ALL])
   2543       LLVM_DEBUG(dbgs() << *Bound[K].Lower[Dependence::DVEntry::ALL] << '\t');
   2544     else
   2545       LLVM_DEBUG(dbgs() << "-inf\t");
   2546     if (Bound[K].Upper[Dependence::DVEntry::ALL])
   2547       LLVM_DEBUG(dbgs() << *Bound[K].Upper[Dependence::DVEntry::ALL] << '\n');
   2548     else
   2549       LLVM_DEBUG(dbgs() << "+inf\n");
   2550 #endif
   2551   }
   2552 
   2553   // Test the *, *, *, ... case.
   2554   bool Disproved = false;
   2555   if (testBounds(Dependence::DVEntry::ALL, 0, Bound, Delta)) {
   2556     // Explore the direction vector hierarchy.
   2557     unsigned DepthExpanded = 0;
   2558     unsigned NewDeps = exploreDirections(1, A, B, Bound,
   2559                                          Loops, DepthExpanded, Delta);
   2560     if (NewDeps > 0) {
   2561       bool Improved = false;
   2562       for (unsigned K = 1; K <= CommonLevels; ++K) {
   2563         if (Loops[K]) {
   2564           unsigned Old = Result.DV[K - 1].Direction;
   2565           Result.DV[K - 1].Direction = Old & Bound[K].DirSet;
   2566           Improved |= Old != Result.DV[K - 1].Direction;
   2567           if (!Result.DV[K - 1].Direction) {
   2568             Improved = false;
   2569             Disproved = true;
   2570             break;
   2571           }
   2572         }
   2573       }
   2574       if (Improved)
   2575         ++BanerjeeSuccesses;
   2576     }
   2577     else {
   2578       ++BanerjeeIndependence;
   2579       Disproved = true;
   2580     }
   2581   }
   2582   else {
   2583     ++BanerjeeIndependence;
   2584     Disproved = true;
   2585   }
   2586   delete [] Bound;
   2587   delete [] A;
   2588   delete [] B;
   2589   return Disproved;
   2590 }
   2591 
   2592 
   2593 // Hierarchically expands the direction vector
   2594 // search space, combining the directions of discovered dependences
   2595 // in the DirSet field of Bound. Returns the number of distinct
   2596 // dependences discovered. If the dependence is disproved,
   2597 // it will return 0.
   2598 unsigned DependenceInfo::exploreDirections(unsigned Level, CoefficientInfo *A,
   2599                                            CoefficientInfo *B, BoundInfo *Bound,
   2600                                            const SmallBitVector &Loops,
   2601                                            unsigned &DepthExpanded,
   2602                                            const SCEV *Delta) const {
   2603   if (Level > CommonLevels) {
   2604     // record result
   2605     LLVM_DEBUG(dbgs() << "\t[");
   2606     for (unsigned K = 1; K <= CommonLevels; ++K) {
   2607       if (Loops[K]) {
   2608         Bound[K].DirSet |= Bound[K].Direction;
   2609 #ifndef NDEBUG
   2610         switch (Bound[K].Direction) {
   2611         case Dependence::DVEntry::LT:
   2612           LLVM_DEBUG(dbgs() << " <");
   2613           break;
   2614         case Dependence::DVEntry::EQ:
   2615           LLVM_DEBUG(dbgs() << " =");
   2616           break;
   2617         case Dependence::DVEntry::GT:
   2618           LLVM_DEBUG(dbgs() << " >");
   2619           break;
   2620         case Dependence::DVEntry::ALL:
   2621           LLVM_DEBUG(dbgs() << " *");
   2622           break;
   2623         default:
   2624           llvm_unreachable("unexpected Bound[K].Direction");
   2625         }
   2626 #endif
   2627       }
   2628     }
   2629     LLVM_DEBUG(dbgs() << " ]\n");
   2630     return 1;
   2631   }
   2632   if (Loops[Level]) {
   2633     if (Level > DepthExpanded) {
   2634       DepthExpanded = Level;
   2635       // compute bounds for <, =, > at current level
   2636       findBoundsLT(A, B, Bound, Level);
   2637       findBoundsGT(A, B, Bound, Level);
   2638       findBoundsEQ(A, B, Bound, Level);
   2639 #ifndef NDEBUG
   2640       LLVM_DEBUG(dbgs() << "\tBound for level = " << Level << '\n');
   2641       LLVM_DEBUG(dbgs() << "\t    <\t");
   2642       if (Bound[Level].Lower[Dependence::DVEntry::LT])
   2643         LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::LT]
   2644                           << '\t');
   2645       else
   2646         LLVM_DEBUG(dbgs() << "-inf\t");
   2647       if (Bound[Level].Upper[Dependence::DVEntry::LT])
   2648         LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::LT]
   2649                           << '\n');
   2650       else
   2651         LLVM_DEBUG(dbgs() << "+inf\n");
   2652       LLVM_DEBUG(dbgs() << "\t    =\t");
   2653       if (Bound[Level].Lower[Dependence::DVEntry::EQ])
   2654         LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::EQ]
   2655                           << '\t');
   2656       else
   2657         LLVM_DEBUG(dbgs() << "-inf\t");
   2658       if (Bound[Level].Upper[Dependence::DVEntry::EQ])
   2659         LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::EQ]
   2660                           << '\n');
   2661       else
   2662         LLVM_DEBUG(dbgs() << "+inf\n");
   2663       LLVM_DEBUG(dbgs() << "\t    >\t");
   2664       if (Bound[Level].Lower[Dependence::DVEntry::GT])
   2665         LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::GT]
   2666                           << '\t');
   2667       else
   2668         LLVM_DEBUG(dbgs() << "-inf\t");
   2669       if (Bound[Level].Upper[Dependence::DVEntry::GT])
   2670         LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::GT]
   2671                           << '\n');
   2672       else
   2673         LLVM_DEBUG(dbgs() << "+inf\n");
   2674 #endif
   2675     }
   2676 
   2677     unsigned NewDeps = 0;
   2678 
   2679     // test bounds for <, *, *, ...
   2680     if (testBounds(Dependence::DVEntry::LT, Level, Bound, Delta))
   2681       NewDeps += exploreDirections(Level + 1, A, B, Bound,
   2682                                    Loops, DepthExpanded, Delta);
   2683 
   2684     // Test bounds for =, *, *, ...
   2685     if (testBounds(Dependence::DVEntry::EQ, Level, Bound, Delta))
   2686       NewDeps += exploreDirections(Level + 1, A, B, Bound,
   2687                                    Loops, DepthExpanded, Delta);
   2688 
   2689     // test bounds for >, *, *, ...
   2690     if (testBounds(Dependence::DVEntry::GT, Level, Bound, Delta))
   2691       NewDeps += exploreDirections(Level + 1, A, B, Bound,
   2692                                    Loops, DepthExpanded, Delta);
   2693 
   2694     Bound[Level].Direction = Dependence::DVEntry::ALL;
   2695     return NewDeps;
   2696   }
   2697   else
   2698     return exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded, Delta);
   2699 }
   2700 
   2701 
   2702 // Returns true iff the current bounds are plausible.
   2703 bool DependenceInfo::testBounds(unsigned char DirKind, unsigned Level,
   2704                                 BoundInfo *Bound, const SCEV *Delta) const {
   2705   Bound[Level].Direction = DirKind;
   2706   if (const SCEV *LowerBound = getLowerBound(Bound))
   2707     if (isKnownPredicate(CmpInst::ICMP_SGT, LowerBound, Delta))
   2708       return false;
   2709   if (const SCEV *UpperBound = getUpperBound(Bound))
   2710     if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, UpperBound))
   2711       return false;
   2712   return true;
   2713 }
   2714 
   2715 
   2716 // Computes the upper and lower bounds for level K
   2717 // using the * direction. Records them in Bound.
   2718 // Wolfe gives the equations
   2719 //
   2720 //    LB^*_k = (A^-_k - B^+_k)(U_k - L_k) + (A_k - B_k)L_k
   2721 //    UB^*_k = (A^+_k - B^-_k)(U_k - L_k) + (A_k - B_k)L_k
   2722 //
   2723 // Since we normalize loops, we can simplify these equations to
   2724 //
   2725 //    LB^*_k = (A^-_k - B^+_k)U_k
   2726 //    UB^*_k = (A^+_k - B^-_k)U_k
   2727 //
   2728 // We must be careful to handle the case where the upper bound is unknown.
   2729 // Note that the lower bound is always <= 0
   2730 // and the upper bound is always >= 0.
   2731 void DependenceInfo::findBoundsALL(CoefficientInfo *A, CoefficientInfo *B,
   2732                                    BoundInfo *Bound, unsigned K) const {
   2733   Bound[K].Lower[Dependence::DVEntry::ALL] = nullptr; // Default value = -infinity.
   2734   Bound[K].Upper[Dependence::DVEntry::ALL] = nullptr; // Default value = +infinity.
   2735   if (Bound[K].Iterations) {
   2736     Bound[K].Lower[Dependence::DVEntry::ALL] =
   2737       SE->getMulExpr(SE->getMinusSCEV(A[K].NegPart, B[K].PosPart),
   2738                      Bound[K].Iterations);
   2739     Bound[K].Upper[Dependence::DVEntry::ALL] =
   2740       SE->getMulExpr(SE->getMinusSCEV(A[K].PosPart, B[K].NegPart),
   2741                      Bound[K].Iterations);
   2742   }
   2743   else {
   2744     // If the difference is 0, we won't need to know the number of iterations.
   2745     if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].NegPart, B[K].PosPart))
   2746       Bound[K].Lower[Dependence::DVEntry::ALL] =
   2747           SE->getZero(A[K].Coeff->getType());
   2748     if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].PosPart, B[K].NegPart))
   2749       Bound[K].Upper[Dependence::DVEntry::ALL] =
   2750           SE->getZero(A[K].Coeff->getType());
   2751   }
   2752 }
   2753 
   2754 
   2755 // Computes the upper and lower bounds for level K
   2756 // using the = direction. Records them in Bound.
   2757 // Wolfe gives the equations
   2758 //
   2759 //    LB^=_k = (A_k - B_k)^- (U_k - L_k) + (A_k - B_k)L_k
   2760 //    UB^=_k = (A_k - B_k)^+ (U_k - L_k) + (A_k - B_k)L_k
   2761 //
   2762 // Since we normalize loops, we can simplify these equations to
   2763 //
   2764 //    LB^=_k = (A_k - B_k)^- U_k
   2765 //    UB^=_k = (A_k - B_k)^+ U_k
   2766 //
   2767 // We must be careful to handle the case where the upper bound is unknown.
   2768 // Note that the lower bound is always <= 0
   2769 // and the upper bound is always >= 0.
   2770 void DependenceInfo::findBoundsEQ(CoefficientInfo *A, CoefficientInfo *B,
   2771                                   BoundInfo *Bound, unsigned K) const {
   2772   Bound[K].Lower[Dependence::DVEntry::EQ] = nullptr; // Default value = -infinity.
   2773   Bound[K].Upper[Dependence::DVEntry::EQ] = nullptr; // Default value = +infinity.
   2774   if (Bound[K].Iterations) {
   2775     const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
   2776     const SCEV *NegativePart = getNegativePart(Delta);
   2777     Bound[K].Lower[Dependence::DVEntry::EQ] =
   2778       SE->getMulExpr(NegativePart, Bound[K].Iterations);
   2779     const SCEV *PositivePart = getPositivePart(Delta);
   2780     Bound[K].Upper[Dependence::DVEntry::EQ] =
   2781       SE->getMulExpr(PositivePart, Bound[K].Iterations);
   2782   }
   2783   else {
   2784     // If the positive/negative part of the difference is 0,
   2785     // we won't need to know the number of iterations.
   2786     const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
   2787     const SCEV *NegativePart = getNegativePart(Delta);
   2788     if (NegativePart->isZero())
   2789       Bound[K].Lower[Dependence::DVEntry::EQ] = NegativePart; // Zero
   2790     const SCEV *PositivePart = getPositivePart(Delta);
   2791     if (PositivePart->isZero())
   2792       Bound[K].Upper[Dependence::DVEntry::EQ] = PositivePart; // Zero
   2793   }
   2794 }
   2795 
   2796 
   2797 // Computes the upper and lower bounds for level K
   2798 // using the < direction. Records them in Bound.
   2799 // Wolfe gives the equations
   2800 //
   2801 //    LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
   2802 //    UB^<_k = (A^+_k - B_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
   2803 //
   2804 // Since we normalize loops, we can simplify these equations to
   2805 //
   2806 //    LB^<_k = (A^-_k - B_k)^- (U_k - 1) - B_k
   2807 //    UB^<_k = (A^+_k - B_k)^+ (U_k - 1) - B_k
   2808 //
   2809 // We must be careful to handle the case where the upper bound is unknown.
   2810 void DependenceInfo::findBoundsLT(CoefficientInfo *A, CoefficientInfo *B,
   2811                                   BoundInfo *Bound, unsigned K) const {
   2812   Bound[K].Lower[Dependence::DVEntry::LT] = nullptr; // Default value = -infinity.
   2813   Bound[K].Upper[Dependence::DVEntry::LT] = nullptr; // Default value = +infinity.
   2814   if (Bound[K].Iterations) {
   2815     const SCEV *Iter_1 = SE->getMinusSCEV(
   2816         Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
   2817     const SCEV *NegPart =
   2818       getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
   2819     Bound[K].Lower[Dependence::DVEntry::LT] =
   2820       SE->getMinusSCEV(SE->getMulExpr(NegPart, Iter_1), B[K].Coeff);
   2821     const SCEV *PosPart =
   2822       getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
   2823     Bound[K].Upper[Dependence::DVEntry::LT] =
   2824       SE->getMinusSCEV(SE->getMulExpr(PosPart, Iter_1), B[K].Coeff);
   2825   }
   2826   else {
   2827     // If the positive/negative part of the difference is 0,
   2828     // we won't need to know the number of iterations.
   2829     const SCEV *NegPart =
   2830       getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
   2831     if (NegPart->isZero())
   2832       Bound[K].Lower[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
   2833     const SCEV *PosPart =
   2834       getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
   2835     if (PosPart->isZero())
   2836       Bound[K].Upper[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
   2837   }
   2838 }
   2839 
   2840 
   2841 // Computes the upper and lower bounds for level K
   2842 // using the > direction. Records them in Bound.
   2843 // Wolfe gives the equations
   2844 //
   2845 //    LB^>_k = (A_k - B^+_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
   2846 //    UB^>_k = (A_k - B^-_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
   2847 //
   2848 // Since we normalize loops, we can simplify these equations to
   2849 //
   2850 //    LB^>_k = (A_k - B^+_k)^- (U_k - 1) + A_k
   2851 //    UB^>_k = (A_k - B^-_k)^+ (U_k - 1) + A_k
   2852 //
   2853 // We must be careful to handle the case where the upper bound is unknown.
   2854 void DependenceInfo::findBoundsGT(CoefficientInfo *A, CoefficientInfo *B,
   2855                                   BoundInfo *Bound, unsigned K) const {
   2856   Bound[K].Lower[Dependence::DVEntry::GT] = nullptr; // Default value = -infinity.
   2857   Bound[K].Upper[Dependence::DVEntry::GT] = nullptr; // Default value = +infinity.
   2858   if (Bound[K].Iterations) {
   2859     const SCEV *Iter_1 = SE->getMinusSCEV(
   2860         Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
   2861     const SCEV *NegPart =
   2862       getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
   2863     Bound[K].Lower[Dependence::DVEntry::GT] =
   2864       SE->getAddExpr(SE->getMulExpr(NegPart, Iter_1), A[K].Coeff);
   2865     const SCEV *PosPart =
   2866       getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
   2867     Bound[K].Upper[Dependence::DVEntry::GT] =
   2868       SE->getAddExpr(SE->getMulExpr(PosPart, Iter_1), A[K].Coeff);
   2869   }
   2870   else {
   2871     // If the positive/negative part of the difference is 0,
   2872     // we won't need to know the number of iterations.
   2873     const SCEV *NegPart = getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
   2874     if (NegPart->isZero())
   2875       Bound[K].Lower[Dependence::DVEntry::GT] = A[K].Coeff;
   2876     const SCEV *PosPart = getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
   2877     if (PosPart->isZero())
   2878       Bound[K].Upper[Dependence::DVEntry::GT] = A[K].Coeff;
   2879   }
   2880 }
   2881 
   2882 
   2883 // X^+ = max(X, 0)
   2884 const SCEV *DependenceInfo::getPositivePart(const SCEV *X) const {
   2885   return SE->getSMaxExpr(X, SE->getZero(X->getType()));
   2886 }
   2887 
   2888 
   2889 // X^- = min(X, 0)
   2890 const SCEV *DependenceInfo::getNegativePart(const SCEV *X) const {
   2891   return SE->getSMinExpr(X, SE->getZero(X->getType()));
   2892 }
   2893 
   2894 
   2895 // Walks through the subscript,
   2896 // collecting each coefficient, the associated loop bounds,
   2897 // and recording its positive and negative parts for later use.
   2898 DependenceInfo::CoefficientInfo *
   2899 DependenceInfo::collectCoeffInfo(const SCEV *Subscript, bool SrcFlag,
   2900                                  const SCEV *&Constant) const {
   2901   const SCEV *Zero = SE->getZero(Subscript->getType());
   2902   CoefficientInfo *CI = new CoefficientInfo[MaxLevels + 1];
   2903   for (unsigned K = 1; K <= MaxLevels; ++K) {
   2904     CI[K].Coeff = Zero;
   2905     CI[K].PosPart = Zero;
   2906     CI[K].NegPart = Zero;
   2907     CI[K].Iterations = nullptr;
   2908   }
   2909   while (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Subscript)) {
   2910     const Loop *L = AddRec->getLoop();
   2911     unsigned K = SrcFlag ? mapSrcLoop(L) : mapDstLoop(L);
   2912     CI[K].Coeff = AddRec->getStepRecurrence(*SE);
   2913     CI[K].PosPart = getPositivePart(CI[K].Coeff);
   2914     CI[K].NegPart = getNegativePart(CI[K].Coeff);
   2915     CI[K].Iterations = collectUpperBound(L, Subscript->getType());
   2916     Subscript = AddRec->getStart();
   2917   }
   2918   Constant = Subscript;
   2919 #ifndef NDEBUG
   2920   LLVM_DEBUG(dbgs() << "\tCoefficient Info\n");
   2921   for (unsigned K = 1; K <= MaxLevels; ++K) {
   2922     LLVM_DEBUG(dbgs() << "\t    " << K << "\t" << *CI[K].Coeff);
   2923     LLVM_DEBUG(dbgs() << "\tPos Part = ");
   2924     LLVM_DEBUG(dbgs() << *CI[K].PosPart);
   2925     LLVM_DEBUG(dbgs() << "\tNeg Part = ");
   2926     LLVM_DEBUG(dbgs() << *CI[K].NegPart);
   2927     LLVM_DEBUG(dbgs() << "\tUpper Bound = ");
   2928     if (CI[K].Iterations)
   2929       LLVM_DEBUG(dbgs() << *CI[K].Iterations);
   2930     else
   2931       LLVM_DEBUG(dbgs() << "+inf");
   2932     LLVM_DEBUG(dbgs() << '\n');
   2933   }
   2934   LLVM_DEBUG(dbgs() << "\t    Constant = " << *Subscript << '\n');
   2935 #endif
   2936   return CI;
   2937 }
   2938 
   2939 
   2940 // Looks through all the bounds info and
   2941 // computes the lower bound given the current direction settings
   2942 // at each level. If the lower bound for any level is -inf,
   2943 // the result is -inf.
   2944 const SCEV *DependenceInfo::getLowerBound(BoundInfo *Bound) const {
   2945   const SCEV *Sum = Bound[1].Lower[Bound[1].Direction];
   2946   for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
   2947     if (Bound[K].Lower[Bound[K].Direction])
   2948       Sum = SE->getAddExpr(Sum, Bound[K].Lower[Bound[K].Direction]);
   2949     else
   2950       Sum = nullptr;
   2951   }
   2952   return Sum;
   2953 }
   2954 
   2955 
   2956 // Looks through all the bounds info and
   2957 // computes the upper bound given the current direction settings
   2958 // at each level. If the upper bound at any level is +inf,
   2959 // the result is +inf.
   2960 const SCEV *DependenceInfo::getUpperBound(BoundInfo *Bound) const {
   2961   const SCEV *Sum = Bound[1].Upper[Bound[1].Direction];
   2962   for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
   2963     if (Bound[K].Upper[Bound[K].Direction])
   2964       Sum = SE->getAddExpr(Sum, Bound[K].Upper[Bound[K].Direction]);
   2965     else
   2966       Sum = nullptr;
   2967   }
   2968   return Sum;
   2969 }
   2970 
   2971 
   2972 //===----------------------------------------------------------------------===//
   2973 // Constraint manipulation for Delta test.
   2974 
   2975 // Given a linear SCEV,
   2976 // return the coefficient (the step)
   2977 // corresponding to the specified loop.
   2978 // If there isn't one, return 0.
   2979 // For example, given a*i + b*j + c*k, finding the coefficient
   2980 // corresponding to the j loop would yield b.
   2981 const SCEV *DependenceInfo::findCoefficient(const SCEV *Expr,
   2982                                             const Loop *TargetLoop) const {
   2983   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
   2984   if (!AddRec)
   2985     return SE->getZero(Expr->getType());
   2986   if (AddRec->getLoop() == TargetLoop)
   2987     return AddRec->getStepRecurrence(*SE);
   2988   return findCoefficient(AddRec->getStart(), TargetLoop);
   2989 }
   2990 
   2991 
   2992 // Given a linear SCEV,
   2993 // return the SCEV given by zeroing out the coefficient
   2994 // corresponding to the specified loop.
   2995 // For example, given a*i + b*j + c*k, zeroing the coefficient
   2996 // corresponding to the j loop would yield a*i + c*k.
   2997 const SCEV *DependenceInfo::zeroCoefficient(const SCEV *Expr,
   2998                                             const Loop *TargetLoop) const {
   2999   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
   3000   if (!AddRec)
   3001     return Expr; // ignore
   3002   if (AddRec->getLoop() == TargetLoop)
   3003     return AddRec->getStart();
   3004   return SE->getAddRecExpr(zeroCoefficient(AddRec->getStart(), TargetLoop),
   3005                            AddRec->getStepRecurrence(*SE),
   3006                            AddRec->getLoop(),
   3007                            AddRec->getNoWrapFlags());
   3008 }
   3009 
   3010 
   3011 // Given a linear SCEV Expr,
   3012 // return the SCEV given by adding some Value to the
   3013 // coefficient corresponding to the specified TargetLoop.
   3014 // For example, given a*i + b*j + c*k, adding 1 to the coefficient
   3015 // corresponding to the j loop would yield a*i + (b+1)*j + c*k.
   3016 const SCEV *DependenceInfo::addToCoefficient(const SCEV *Expr,
   3017                                              const Loop *TargetLoop,
   3018                                              const SCEV *Value) const {
   3019   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
   3020   if (!AddRec) // create a new addRec
   3021     return SE->getAddRecExpr(Expr,
   3022                              Value,
   3023                              TargetLoop,
   3024                              SCEV::FlagAnyWrap); // Worst case, with no info.
   3025   if (AddRec->getLoop() == TargetLoop) {
   3026     const SCEV *Sum = SE->getAddExpr(AddRec->getStepRecurrence(*SE), Value);
   3027     if (Sum->isZero())
   3028       return AddRec->getStart();
   3029     return SE->getAddRecExpr(AddRec->getStart(),
   3030                              Sum,
   3031                              AddRec->getLoop(),
   3032                              AddRec->getNoWrapFlags());
   3033   }
   3034   if (SE->isLoopInvariant(AddRec, TargetLoop))
   3035     return SE->getAddRecExpr(AddRec, Value, TargetLoop, SCEV::FlagAnyWrap);
   3036   return SE->getAddRecExpr(
   3037       addToCoefficient(AddRec->getStart(), TargetLoop, Value),
   3038       AddRec->getStepRecurrence(*SE), AddRec->getLoop(),
   3039       AddRec->getNoWrapFlags());
   3040 }
   3041 
   3042 
   3043 // Review the constraints, looking for opportunities
   3044 // to simplify a subscript pair (Src and Dst).
   3045 // Return true if some simplification occurs.
   3046 // If the simplification isn't exact (that is, if it is conservative
   3047 // in terms of dependence), set consistent to false.
   3048 // Corresponds to Figure 5 from the paper
   3049 //
   3050 //            Practical Dependence Testing
   3051 //            Goff, Kennedy, Tseng
   3052 //            PLDI 1991
   3053 bool DependenceInfo::propagate(const SCEV *&Src, const SCEV *&Dst,
   3054                                SmallBitVector &Loops,
   3055                                SmallVectorImpl<Constraint> &Constraints,
   3056                                bool &Consistent) {
   3057   bool Result = false;
   3058   for (unsigned LI : Loops.set_bits()) {
   3059     LLVM_DEBUG(dbgs() << "\t    Constraint[" << LI << "] is");
   3060     LLVM_DEBUG(Constraints[LI].dump(dbgs()));
   3061     if (Constraints[LI].isDistance())
   3062       Result |= propagateDistance(Src, Dst, Constraints[LI], Consistent);
   3063     else if (Constraints[LI].isLine())
   3064       Result |= propagateLine(Src, Dst, Constraints[LI], Consistent);
   3065     else if (Constraints[LI].isPoint())
   3066       Result |= propagatePoint(Src, Dst, Constraints[LI]);
   3067   }
   3068   return Result;
   3069 }
   3070 
   3071 
   3072 // Attempt to propagate a distance
   3073 // constraint into a subscript pair (Src and Dst).
   3074 // Return true if some simplification occurs.
   3075 // If the simplification isn't exact (that is, if it is conservative
   3076 // in terms of dependence), set consistent to false.
   3077 bool DependenceInfo::propagateDistance(const SCEV *&Src, const SCEV *&Dst,
   3078                                        Constraint &CurConstraint,
   3079                                        bool &Consistent) {
   3080   const Loop *CurLoop = CurConstraint.getAssociatedLoop();
   3081   LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
   3082   const SCEV *A_K = findCoefficient(Src, CurLoop);
   3083   if (A_K->isZero())
   3084     return false;
   3085   const SCEV *DA_K = SE->getMulExpr(A_K, CurConstraint.getD());
   3086   Src = SE->getMinusSCEV(Src, DA_K);
   3087   Src = zeroCoefficient(Src, CurLoop);
   3088   LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
   3089   LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
   3090   Dst = addToCoefficient(Dst, CurLoop, SE->getNegativeSCEV(A_K));
   3091   LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
   3092   if (!findCoefficient(Dst, CurLoop)->isZero())
   3093     Consistent = false;
   3094   return true;
   3095 }
   3096 
   3097 
   3098 // Attempt to propagate a line
   3099 // constraint into a subscript pair (Src and Dst).
   3100 // Return true if some simplification occurs.
   3101 // If the simplification isn't exact (that is, if it is conservative
   3102 // in terms of dependence), set consistent to false.
   3103 bool DependenceInfo::propagateLine(const SCEV *&Src, const SCEV *&Dst,
   3104                                    Constraint &CurConstraint,
   3105                                    bool &Consistent) {
   3106   const Loop *CurLoop = CurConstraint.getAssociatedLoop();
   3107   const SCEV *A = CurConstraint.getA();
   3108   const SCEV *B = CurConstraint.getB();
   3109   const SCEV *C = CurConstraint.getC();
   3110   LLVM_DEBUG(dbgs() << "\t\tA = " << *A << ", B = " << *B << ", C = " << *C
   3111                     << "\n");
   3112   LLVM_DEBUG(dbgs() << "\t\tSrc = " << *Src << "\n");
   3113   LLVM_DEBUG(dbgs() << "\t\tDst = " << *Dst << "\n");
   3114   if (A->isZero()) {
   3115     const SCEVConstant *Bconst = dyn_cast<SCEVConstant>(B);
   3116     const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
   3117     if (!Bconst || !Cconst) return false;
   3118     APInt Beta = Bconst->getAPInt();
   3119     APInt Charlie = Cconst->getAPInt();
   3120     APInt CdivB = Charlie.sdiv(Beta);
   3121     assert(Charlie.srem(Beta) == 0 && "C should be evenly divisible by B");
   3122     const SCEV *AP_K = findCoefficient(Dst, CurLoop);
   3123     //    Src = SE->getAddExpr(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
   3124     Src = SE->getMinusSCEV(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
   3125     Dst = zeroCoefficient(Dst, CurLoop);
   3126     if (!findCoefficient(Src, CurLoop)->isZero())
   3127       Consistent = false;
   3128   }
   3129   else if (B->isZero()) {
   3130     const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
   3131     const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
   3132     if (!Aconst || !Cconst) return false;
   3133     APInt Alpha = Aconst->getAPInt();
   3134     APInt Charlie = Cconst->getAPInt();
   3135     APInt CdivA = Charlie.sdiv(Alpha);
   3136     assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
   3137     const SCEV *A_K = findCoefficient(Src, CurLoop);
   3138     Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
   3139     Src = zeroCoefficient(Src, CurLoop);
   3140     if (!findCoefficient(Dst, CurLoop)->isZero())
   3141       Consistent = false;
   3142   }
   3143   else if (isKnownPredicate(CmpInst::ICMP_EQ, A, B)) {
   3144     const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
   3145     const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
   3146     if (!Aconst || !Cconst) return false;
   3147     APInt Alpha = Aconst->getAPInt();
   3148     APInt Charlie = Cconst->getAPInt();
   3149     APInt CdivA = Charlie.sdiv(Alpha);
   3150     assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
   3151     const SCEV *A_K = findCoefficient(Src, CurLoop);
   3152     Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
   3153     Src = zeroCoefficient(Src, CurLoop);
   3154     Dst = addToCoefficient(Dst, CurLoop, A_K);
   3155     if (!findCoefficient(Dst, CurLoop)->isZero())
   3156       Consistent = false;
   3157   }
   3158   else {
   3159     // paper is incorrect here, or perhaps just misleading
   3160     const SCEV *A_K = findCoefficient(Src, CurLoop);
   3161     Src = SE->getMulExpr(Src, A);
   3162     Dst = SE->getMulExpr(Dst, A);
   3163     Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, C));
   3164     Src = zeroCoefficient(Src, CurLoop);
   3165     Dst = addToCoefficient(Dst, CurLoop, SE->getMulExpr(A_K, B));
   3166     if (!findCoefficient(Dst, CurLoop)->isZero())
   3167       Consistent = false;
   3168   }
   3169   LLVM_DEBUG(dbgs() << "\t\tnew Src = " << *Src << "\n");
   3170   LLVM_DEBUG(dbgs() << "\t\tnew Dst = " << *Dst << "\n");
   3171   return true;
   3172 }
   3173 
   3174 
   3175 // Attempt to propagate a point
   3176 // constraint into a subscript pair (Src and Dst).
   3177 // Return true if some simplification occurs.
   3178 bool DependenceInfo::propagatePoint(const SCEV *&Src, const SCEV *&Dst,
   3179                                     Constraint &CurConstraint) {
   3180   const Loop *CurLoop = CurConstraint.getAssociatedLoop();
   3181   const SCEV *A_K = findCoefficient(Src, CurLoop);
   3182   const SCEV *AP_K = findCoefficient(Dst, CurLoop);
   3183   const SCEV *XA_K = SE->getMulExpr(A_K, CurConstraint.getX());
   3184   const SCEV *YAP_K = SE->getMulExpr(AP_K, CurConstraint.getY());
   3185   LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
   3186   Src = SE->getAddExpr(Src, SE->getMinusSCEV(XA_K, YAP_K));
   3187   Src = zeroCoefficient(Src, CurLoop);
   3188   LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
   3189   LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
   3190   Dst = zeroCoefficient(Dst, CurLoop);
   3191   LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
   3192   return true;
   3193 }
   3194 
   3195 
   3196 // Update direction vector entry based on the current constraint.
   3197 void DependenceInfo::updateDirection(Dependence::DVEntry &Level,
   3198                                      const Constraint &CurConstraint) const {
   3199   LLVM_DEBUG(dbgs() << "\tUpdate direction, constraint =");
   3200   LLVM_DEBUG(CurConstraint.dump(dbgs()));
   3201   if (CurConstraint.isAny())
   3202     ; // use defaults
   3203   else if (CurConstraint.isDistance()) {
   3204     // this one is consistent, the others aren't
   3205     Level.Scalar = false;
   3206     Level.Distance = CurConstraint.getD();
   3207     unsigned NewDirection = Dependence::DVEntry::NONE;
   3208     if (!SE->isKnownNonZero(Level.Distance)) // if may be zero
   3209       NewDirection = Dependence::DVEntry::EQ;
   3210     if (!SE->isKnownNonPositive(Level.Distance)) // if may be positive
   3211       NewDirection |= Dependence::DVEntry::LT;
   3212     if (!SE->isKnownNonNegative(Level.Distance)) // if may be negative
   3213       NewDirection |= Dependence::DVEntry::GT;
   3214     Level.Direction &= NewDirection;
   3215   }
   3216   else if (CurConstraint.isLine()) {
   3217     Level.Scalar = false;
   3218     Level.Distance = nullptr;
   3219     // direction should be accurate
   3220   }
   3221   else if (CurConstraint.isPoint()) {
   3222     Level.Scalar = false;
   3223     Level.Distance = nullptr;
   3224     unsigned NewDirection = Dependence::DVEntry::NONE;
   3225     if (!isKnownPredicate(CmpInst::ICMP_NE,
   3226                           CurConstraint.getY(),
   3227                           CurConstraint.getX()))
   3228       // if X may be = Y
   3229       NewDirection |= Dependence::DVEntry::EQ;
   3230     if (!isKnownPredicate(CmpInst::ICMP_SLE,
   3231                           CurConstraint.getY(),
   3232                           CurConstraint.getX()))
   3233       // if Y may be > X
   3234       NewDirection |= Dependence::DVEntry::LT;
   3235     if (!isKnownPredicate(CmpInst::ICMP_SGE,
   3236                           CurConstraint.getY(),
   3237                           CurConstraint.getX()))
   3238       // if Y may be < X
   3239       NewDirection |= Dependence::DVEntry::GT;
   3240     Level.Direction &= NewDirection;
   3241   }
   3242   else
   3243     llvm_unreachable("constraint has unexpected kind");
   3244 }
   3245 
   3246 /// Check if we can delinearize the subscripts. If the SCEVs representing the
   3247 /// source and destination array references are recurrences on a nested loop,
   3248 /// this function flattens the nested recurrences into separate recurrences
   3249 /// for each loop level.
   3250 bool DependenceInfo::tryDelinearize(Instruction *Src, Instruction *Dst,
   3251                                     SmallVectorImpl<Subscript> &Pair) {
   3252   assert(isLoadOrStore(Src) && "instruction is not load or store");
   3253   assert(isLoadOrStore(Dst) && "instruction is not load or store");
   3254   Value *SrcPtr = getLoadStorePointerOperand(Src);
   3255   Value *DstPtr = getLoadStorePointerOperand(Dst);
   3256 
   3257   Loop *SrcLoop = LI->getLoopFor(Src->getParent());
   3258   Loop *DstLoop = LI->getLoopFor(Dst->getParent());
   3259 
   3260   // Below code mimics the code in Delinearization.cpp
   3261   const SCEV *SrcAccessFn =
   3262     SE->getSCEVAtScope(SrcPtr, SrcLoop);
   3263   const SCEV *DstAccessFn =
   3264     SE->getSCEVAtScope(DstPtr, DstLoop);
   3265 
   3266   const SCEVUnknown *SrcBase =
   3267       dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
   3268   const SCEVUnknown *DstBase =
   3269       dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
   3270 
   3271   if (!SrcBase || !DstBase || SrcBase != DstBase)
   3272     return false;
   3273 
   3274   const SCEV *ElementSize = SE->getElementSize(Src);
   3275   if (ElementSize != SE->getElementSize(Dst))
   3276     return false;
   3277 
   3278   const SCEV *SrcSCEV = SE->getMinusSCEV(SrcAccessFn, SrcBase);
   3279   const SCEV *DstSCEV = SE->getMinusSCEV(DstAccessFn, DstBase);
   3280 
   3281   const SCEVAddRecExpr *SrcAR = dyn_cast<SCEVAddRecExpr>(SrcSCEV);
   3282   const SCEVAddRecExpr *DstAR = dyn_cast<SCEVAddRecExpr>(DstSCEV);
   3283   if (!SrcAR || !DstAR || !SrcAR->isAffine() || !DstAR->isAffine())
   3284     return false;
   3285 
   3286   // First step: collect parametric terms in both array references.
   3287   SmallVector<const SCEV *, 4> Terms;
   3288   SE->collectParametricTerms(SrcAR, Terms);
   3289   SE->collectParametricTerms(DstAR, Terms);
   3290 
   3291   // Second step: find subscript sizes.
   3292   SmallVector<const SCEV *, 4> Sizes;
   3293   SE->findArrayDimensions(Terms, Sizes, ElementSize);
   3294 
   3295   // Third step: compute the access functions for each subscript.
   3296   SmallVector<const SCEV *, 4> SrcSubscripts, DstSubscripts;
   3297   SE->computeAccessFunctions(SrcAR, SrcSubscripts, Sizes);
   3298   SE->computeAccessFunctions(DstAR, DstSubscripts, Sizes);
   3299 
   3300   // Fail when there is only a subscript: that's a linearized access function.
   3301   if (SrcSubscripts.size() < 2 || DstSubscripts.size() < 2 ||
   3302       SrcSubscripts.size() != DstSubscripts.size())
   3303     return false;
   3304 
   3305   int size = SrcSubscripts.size();
   3306 
   3307   // Statically check that the array bounds are in-range. The first subscript we
   3308   // don't have a size for and it cannot overflow into another subscript, so is
   3309   // always safe. The others need to be 0 <= subscript[i] < bound, for both src
   3310   // and dst.
   3311   // FIXME: It may be better to record these sizes and add them as constraints
   3312   // to the dependency checks.
   3313   for (int i = 1; i < size; ++i) {
   3314     if (!isKnownNonNegative(SrcSubscripts[i], SrcPtr))
   3315       return false;
   3316 
   3317     if (!isKnownLessThan(SrcSubscripts[i], Sizes[i - 1]))
   3318       return false;
   3319 
   3320     if (!isKnownNonNegative(DstSubscripts[i], DstPtr))
   3321       return false;
   3322 
   3323     if (!isKnownLessThan(DstSubscripts[i], Sizes[i - 1]))
   3324       return false;
   3325   }
   3326 
   3327   LLVM_DEBUG({
   3328     dbgs() << "\nSrcSubscripts: ";
   3329     for (int i = 0; i < size; i++)
   3330       dbgs() << *SrcSubscripts[i];
   3331     dbgs() << "\nDstSubscripts: ";
   3332     for (int i = 0; i < size; i++)
   3333       dbgs() << *DstSubscripts[i];
   3334   });
   3335 
   3336   // The delinearization transforms a single-subscript MIV dependence test into
   3337   // a multi-subscript SIV dependence test that is easier to compute. So we
   3338   // resize Pair to contain as many pairs of subscripts as the delinearization
   3339   // has found, and then initialize the pairs following the delinearization.
   3340   Pair.resize(size);
   3341   for (int i = 0; i < size; ++i) {
   3342     Pair[i].Src = SrcSubscripts[i];
   3343     Pair[i].Dst = DstSubscripts[i];
   3344     unifySubscriptType(&Pair[i]);
   3345   }
   3346 
   3347   return true;
   3348 }
   3349 
   3350 //===----------------------------------------------------------------------===//
   3351 
   3352 #ifndef NDEBUG
   3353 // For debugging purposes, dump a small bit vector to dbgs().
   3354 static void dumpSmallBitVector(SmallBitVector &BV) {
   3355   dbgs() << "{";
   3356   for (unsigned VI : BV.set_bits()) {
   3357     dbgs() << VI;
   3358     if (BV.find_next(VI) >= 0)
   3359       dbgs() << ' ';
   3360   }
   3361   dbgs() << "}\n";
   3362 }
   3363 #endif
   3364 
   3365 // depends -
   3366 // Returns NULL if there is no dependence.
   3367 // Otherwise, return a Dependence with as many details as possible.
   3368 // Corresponds to Section 3.1 in the paper
   3369 //
   3370 //            Practical Dependence Testing
   3371 //            Goff, Kennedy, Tseng
   3372 //            PLDI 1991
   3373 //
   3374 // Care is required to keep the routine below, getSplitIteration(),
   3375 // up to date with respect to this routine.
   3376 std::unique_ptr<Dependence>
   3377 DependenceInfo::depends(Instruction *Src, Instruction *Dst,
   3378                         bool PossiblyLoopIndependent) {
   3379   if (Src == Dst)
   3380     PossiblyLoopIndependent = false;
   3381 
   3382   if ((!Src->mayReadFromMemory() && !Src->mayWriteToMemory()) ||
   3383       (!Dst->mayReadFromMemory() && !Dst->mayWriteToMemory()))
   3384     // if both instructions don't reference memory, there's no dependence
   3385     return nullptr;
   3386 
   3387   if (!isLoadOrStore(Src) || !isLoadOrStore(Dst)) {
   3388     // can only analyze simple loads and stores, i.e., no calls, invokes, etc.
   3389     LLVM_DEBUG(dbgs() << "can only handle simple loads and stores\n");
   3390     return make_unique<Dependence>(Src, Dst);
   3391   }
   3392 
   3393   assert(isLoadOrStore(Src) && "instruction is not load or store");
   3394   assert(isLoadOrStore(Dst) && "instruction is not load or store");
   3395   Value *SrcPtr = getLoadStorePointerOperand(Src);
   3396   Value *DstPtr = getLoadStorePointerOperand(Dst);
   3397 
   3398   switch (underlyingObjectsAlias(AA, F->getParent()->getDataLayout(),
   3399                                  MemoryLocation::get(Dst),
   3400                                  MemoryLocation::get(Src))) {
   3401   case MayAlias:
   3402   case PartialAlias:
   3403     // cannot analyse objects if we don't understand their aliasing.
   3404     LLVM_DEBUG(dbgs() << "can't analyze may or partial alias\n");
   3405     return make_unique<Dependence>(Src, Dst);
   3406   case NoAlias:
   3407     // If the objects noalias, they are distinct, accesses are independent.
   3408     LLVM_DEBUG(dbgs() << "no alias\n");
   3409     return nullptr;
   3410   case MustAlias:
   3411     break; // The underlying objects alias; test accesses for dependence.
   3412   }
   3413 
   3414   // establish loop nesting levels
   3415   establishNestingLevels(Src, Dst);
   3416   LLVM_DEBUG(dbgs() << "    common nesting levels = " << CommonLevels << "\n");
   3417   LLVM_DEBUG(dbgs() << "    maximum nesting levels = " << MaxLevels << "\n");
   3418 
   3419   FullDependence Result(Src, Dst, PossiblyLoopIndependent, CommonLevels);
   3420   ++TotalArrayPairs;
   3421 
   3422   unsigned Pairs = 1;
   3423   SmallVector<Subscript, 2> Pair(Pairs);
   3424   const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
   3425   const SCEV *DstSCEV = SE->getSCEV(DstPtr);
   3426   LLVM_DEBUG(dbgs() << "    SrcSCEV = " << *SrcSCEV << "\n");
   3427   LLVM_DEBUG(dbgs() << "    DstSCEV = " << *DstSCEV << "\n");
   3428   Pair[0].Src = SrcSCEV;
   3429   Pair[0].Dst = DstSCEV;
   3430 
   3431   if (Delinearize) {
   3432     if (tryDelinearize(Src, Dst, Pair)) {
   3433       LLVM_DEBUG(dbgs() << "    delinearized\n");
   3434       Pairs = Pair.size();
   3435     }
   3436   }
   3437 
   3438   for (unsigned P = 0; P < Pairs; ++P) {
   3439     Pair[P].Loops.resize(MaxLevels + 1);
   3440     Pair[P].GroupLoops.resize(MaxLevels + 1);
   3441     Pair[P].Group.resize(Pairs);
   3442     removeMatchingExtensions(&Pair[P]);
   3443     Pair[P].Classification =
   3444       classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
   3445                    Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
   3446                    Pair[P].Loops);
   3447     Pair[P].GroupLoops = Pair[P].Loops;
   3448     Pair[P].Group.set(P);
   3449     LLVM_DEBUG(dbgs() << "    subscript " << P << "\n");
   3450     LLVM_DEBUG(dbgs() << "\tsrc = " << *Pair[P].Src << "\n");
   3451     LLVM_DEBUG(dbgs() << "\tdst = " << *Pair[P].Dst << "\n");
   3452     LLVM_DEBUG(dbgs() << "\tclass = " << Pair[P].Classification << "\n");
   3453     LLVM_DEBUG(dbgs() << "\tloops = ");
   3454     LLVM_DEBUG(dumpSmallBitVector(Pair[P].Loops));
   3455   }
   3456 
   3457   SmallBitVector Separable(Pairs);
   3458   SmallBitVector Coupled(Pairs);
   3459 
   3460   // Partition subscripts into separable and minimally-coupled groups
   3461   // Algorithm in paper is algorithmically better;
   3462   // this may be faster in practice. Check someday.
   3463   //
   3464   // Here's an example of how it works. Consider this code:
   3465   //
   3466   //   for (i = ...) {
   3467   //     for (j = ...) {
   3468   //       for (k = ...) {
   3469   //         for (l = ...) {
   3470   //           for (m = ...) {
   3471   //             A[i][j][k][m] = ...;
   3472   //             ... = A[0][j][l][i + j];
   3473   //           }
   3474   //         }
   3475   //       }
   3476   //     }
   3477   //   }
   3478   //
   3479   // There are 4 subscripts here:
   3480   //    0 [i] and [0]
   3481   //    1 [j] and [j]
   3482   //    2 [k] and [l]
   3483   //    3 [m] and [i + j]
   3484   //
   3485   // We've already classified each subscript pair as ZIV, SIV, etc.,
   3486   // and collected all the loops mentioned by pair P in Pair[P].Loops.
   3487   // In addition, we've initialized Pair[P].GroupLoops to Pair[P].Loops
   3488   // and set Pair[P].Group = {P}.
   3489   //
   3490   //      Src Dst    Classification Loops  GroupLoops Group
   3491   //    0 [i] [0]         SIV       {1}      {1}        {0}
   3492   //    1 [j] [j]         SIV       {2}      {2}        {1}
   3493   //    2 [k] [l]         RDIV      {3,4}    {3,4}      {2}
   3494   //    3 [m] [i + j]     MIV       {1,2,5}  {1,2,5}    {3}
   3495   //
   3496   // For each subscript SI 0 .. 3, we consider each remaining subscript, SJ.
   3497   // So, 0 is compared against 1, 2, and 3; 1 is compared against 2 and 3, etc.
   3498   //
   3499   // We begin by comparing 0 and 1. The intersection of the GroupLoops is empty.
   3500   // Next, 0 and 2. Again, the intersection of their GroupLoops is empty.
   3501   // Next 0 and 3. The intersection of their GroupLoop = {1}, not empty,
   3502   // so Pair[3].Group = {0,3} and Done = false (that is, 0 will not be added
   3503   // to either Separable or Coupled).
   3504   //
   3505   // Next, we consider 1 and 2. The intersection of the GroupLoops is empty.
   3506   // Next, 1 and 3. The intersectionof their GroupLoops = {2}, not empty,
   3507   // so Pair[3].Group = {0, 1, 3} and Done = false.
   3508   //
   3509   // Next, we compare 2 against 3. The intersection of the GroupLoops is empty.
   3510   // Since Done remains true, we add 2 to the set of Separable pairs.
   3511   //
   3512   // Finally, we consider 3. There's nothing to compare it with,
   3513   // so Done remains true and we add it to the Coupled set.
   3514   // Pair[3].Group = {0, 1, 3} and GroupLoops = {1, 2, 5}.
   3515   //
   3516   // In the end, we've got 1 separable subscript and 1 coupled group.
   3517   for (unsigned SI = 0; SI < Pairs; ++SI) {
   3518     if (Pair[SI].Classification == Subscript::NonLinear) {
   3519       // ignore these, but collect loops for later
   3520       ++NonlinearSubscriptPairs;
   3521       collectCommonLoops(Pair[SI].Src,
   3522                          LI->getLoopFor(Src->getParent()),
   3523                          Pair[SI].Loops);
   3524       collectCommonLoops(Pair[SI].Dst,
   3525                          LI->getLoopFor(Dst->getParent()),
   3526                          Pair[SI].Loops);
   3527       Result.Consistent = false;
   3528     } else if (Pair[SI].Classification == Subscript::ZIV) {
   3529       // always separable
   3530       Separable.set(SI);
   3531     }
   3532     else {
   3533       // SIV, RDIV, or MIV, so check for coupled group
   3534       bool Done = true;
   3535       for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
   3536         SmallBitVector Intersection = Pair[SI].GroupLoops;
   3537         Intersection &= Pair[SJ].GroupLoops;
   3538         if (Intersection.any()) {
   3539           // accumulate set of all the loops in group
   3540           Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
   3541           // accumulate set of all subscripts in group
   3542           Pair[SJ].Group |= Pair[SI].Group;
   3543           Done = false;
   3544         }
   3545       }
   3546       if (Done) {
   3547         if (Pair[SI].Group.count() == 1) {
   3548           Separable.set(SI);
   3549           ++SeparableSubscriptPairs;
   3550         }
   3551         else {
   3552           Coupled.set(SI);
   3553           ++CoupledSubscriptPairs;
   3554         }
   3555       }
   3556     }
   3557   }
   3558 
   3559   LLVM_DEBUG(dbgs() << "    Separable = ");
   3560   LLVM_DEBUG(dumpSmallBitVector(Separable));
   3561   LLVM_DEBUG(dbgs() << "    Coupled = ");
   3562   LLVM_DEBUG(dumpSmallBitVector(Coupled));
   3563 
   3564   Constraint NewConstraint;
   3565   NewConstraint.setAny(SE);
   3566 
   3567   // test separable subscripts
   3568   for (unsigned SI : Separable.set_bits()) {
   3569     LLVM_DEBUG(dbgs() << "testing subscript " << SI);
   3570     switch (Pair[SI].Classification) {
   3571     case Subscript::ZIV:
   3572       LLVM_DEBUG(dbgs() << ", ZIV\n");
   3573       if (testZIV(Pair[SI].Src, Pair[SI].Dst, Result))
   3574         return nullptr;
   3575       break;
   3576     case Subscript::SIV: {
   3577       LLVM_DEBUG(dbgs() << ", SIV\n");
   3578       unsigned Level;
   3579       const SCEV *SplitIter = nullptr;
   3580       if (testSIV(Pair[SI].Src, Pair[SI].Dst, Level, Result, NewConstraint,
   3581                   SplitIter))
   3582         return nullptr;
   3583       break;
   3584     }
   3585     case Subscript::RDIV:
   3586       LLVM_DEBUG(dbgs() << ", RDIV\n");
   3587       if (testRDIV(Pair[SI].Src, Pair[SI].Dst, Result))
   3588         return nullptr;
   3589       break;
   3590     case Subscript::MIV:
   3591       LLVM_DEBUG(dbgs() << ", MIV\n");
   3592       if (testMIV(Pair[SI].Src, Pair[SI].Dst, Pair[SI].Loops, Result))
   3593         return nullptr;
   3594       break;
   3595     default:
   3596       llvm_unreachable("subscript has unexpected classification");
   3597     }
   3598   }
   3599 
   3600   if (Coupled.count()) {
   3601     // test coupled subscript groups
   3602     LLVM_DEBUG(dbgs() << "starting on coupled subscripts\n");
   3603     LLVM_DEBUG(dbgs() << "MaxLevels + 1 = " << MaxLevels + 1 << "\n");
   3604     SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
   3605     for (unsigned II = 0; II <= MaxLevels; ++II)
   3606       Constraints[II].setAny(SE);
   3607     for (unsigned SI : Coupled.set_bits()) {
   3608       LLVM_DEBUG(dbgs() << "testing subscript group " << SI << " { ");
   3609       SmallBitVector Group(Pair[SI].Group);
   3610       SmallBitVector Sivs(Pairs);
   3611       SmallBitVector Mivs(Pairs);
   3612       SmallBitVector ConstrainedLevels(MaxLevels + 1);
   3613       SmallVector<Subscript *, 4> PairsInGroup;
   3614       for (unsigned SJ : Group.set_bits()) {
   3615         LLVM_DEBUG(dbgs() << SJ << " ");
   3616         if (Pair[SJ].Classification == Subscript::SIV)
   3617           Sivs.set(SJ);
   3618         else
   3619           Mivs.set(SJ);
   3620         PairsInGroup.push_back(&Pair[SJ]);
   3621       }
   3622       unifySubscriptType(PairsInGroup);
   3623       LLVM_DEBUG(dbgs() << "}\n");
   3624       while (Sivs.any()) {
   3625         bool Changed = false;
   3626         for (unsigned SJ : Sivs.set_bits()) {
   3627           LLVM_DEBUG(dbgs() << "testing subscript " << SJ << ", SIV\n");
   3628           // SJ is an SIV subscript that's part of the current coupled group
   3629           unsigned Level;
   3630           const SCEV *SplitIter = nullptr;
   3631           LLVM_DEBUG(dbgs() << "SIV\n");
   3632           if (testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level, Result, NewConstraint,
   3633                       SplitIter))
   3634             return nullptr;
   3635           ConstrainedLevels.set(Level);
   3636           if (intersectConstraints(&Constraints[Level], &NewConstraint)) {
   3637             if (Constraints[Level].isEmpty()) {
   3638               ++DeltaIndependence;
   3639               return nullptr;
   3640             }
   3641             Changed = true;
   3642           }
   3643           Sivs.reset(SJ);
   3644         }
   3645         if (Changed) {
   3646           // propagate, possibly creating new SIVs and ZIVs
   3647           LLVM_DEBUG(dbgs() << "    propagating\n");
   3648           LLVM_DEBUG(dbgs() << "\tMivs = ");
   3649           LLVM_DEBUG(dumpSmallBitVector(Mivs));
   3650           for (unsigned SJ : Mivs.set_bits()) {
   3651             // SJ is an MIV subscript that's part of the current coupled group
   3652             LLVM_DEBUG(dbgs() << "\tSJ = " << SJ << "\n");
   3653             if (propagate(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops,
   3654                           Constraints, Result.Consistent)) {
   3655               LLVM_DEBUG(dbgs() << "\t    Changed\n");
   3656               ++DeltaPropagations;
   3657               Pair[SJ].Classification =
   3658                 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
   3659                              Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
   3660                              Pair[SJ].Loops);
   3661               switch (Pair[SJ].Classification) {
   3662               case Subscript::ZIV:
   3663                 LLVM_DEBUG(dbgs() << "ZIV\n");
   3664                 if (testZIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
   3665                   return nullptr;
   3666                 Mivs.reset(SJ);
   3667                 break;
   3668               case Subscript::SIV:
   3669                 Sivs.set(SJ);
   3670                 Mivs.reset(SJ);
   3671                 break;
   3672               case Subscript::RDIV:
   3673               case Subscript::MIV:
   3674                 break;
   3675               default:
   3676                 llvm_unreachable("bad subscript classification");
   3677               }
   3678             }
   3679           }
   3680         }
   3681       }
   3682 
   3683       // test & propagate remaining RDIVs
   3684       for (unsigned SJ : Mivs.set_bits()) {
   3685         if (Pair[SJ].Classification == Subscript::RDIV) {
   3686           LLVM_DEBUG(dbgs() << "RDIV test\n");
   3687           if (testRDIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
   3688             return nullptr;
   3689           // I don't yet understand how to propagate RDIV results
   3690           Mivs.reset(SJ);
   3691         }
   3692       }
   3693 
   3694       // test remaining MIVs
   3695       // This code is temporary.
   3696       // Better to somehow test all remaining subscripts simultaneously.
   3697       for (unsigned SJ : Mivs.set_bits()) {
   3698         if (Pair[SJ].Classification == Subscript::MIV) {
   3699           LLVM_DEBUG(dbgs() << "MIV test\n");
   3700           if (testMIV(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops, Result))
   3701             return nullptr;
   3702         }
   3703         else
   3704           llvm_unreachable("expected only MIV subscripts at this point");
   3705       }
   3706 
   3707       // update Result.DV from constraint vector
   3708       LLVM_DEBUG(dbgs() << "    updating\n");
   3709       for (unsigned SJ : ConstrainedLevels.set_bits()) {
   3710         if (SJ > CommonLevels)
   3711           break;
   3712         updateDirection(Result.DV[SJ - 1], Constraints[SJ]);
   3713         if (Result.DV[SJ - 1].Direction == Dependence::DVEntry::NONE)
   3714           return nullptr;
   3715       }
   3716     }
   3717   }
   3718 
   3719   // Make sure the Scalar flags are set correctly.
   3720   SmallBitVector CompleteLoops(MaxLevels + 1);
   3721   for (unsigned SI = 0; SI < Pairs; ++SI)
   3722     CompleteLoops |= Pair[SI].Loops;
   3723   for (unsigned II = 1; II <= CommonLevels; ++II)
   3724     if (CompleteLoops[II])
   3725       Result.DV[II - 1].Scalar = false;
   3726 
   3727   if (PossiblyLoopIndependent) {
   3728     // Make sure the LoopIndependent flag is set correctly.
   3729     // All directions must include equal, otherwise no
   3730     // loop-independent dependence is possible.
   3731     for (unsigned II = 1; II <= CommonLevels; ++II) {
   3732       if (!(Result.getDirection(II) & Dependence::DVEntry::EQ)) {
   3733         Result.LoopIndependent = false;
   3734         break;
   3735       }
   3736     }
   3737   }
   3738   else {
   3739     // On the other hand, if all directions are equal and there's no
   3740     // loop-independent dependence possible, then no dependence exists.
   3741     bool AllEqual = true;
   3742     for (unsigned II = 1; II <= CommonLevels; ++II) {
   3743       if (Result.getDirection(II) != Dependence::DVEntry::EQ) {
   3744         AllEqual = false;
   3745         break;
   3746       }
   3747     }
   3748     if (AllEqual)
   3749       return nullptr;
   3750   }
   3751 
   3752   return make_unique<FullDependence>(std::move(Result));
   3753 }
   3754 
   3755 
   3756 
   3757 //===----------------------------------------------------------------------===//
   3758 // getSplitIteration -
   3759 // Rather than spend rarely-used space recording the splitting iteration
   3760 // during the Weak-Crossing SIV test, we re-compute it on demand.
   3761 // The re-computation is basically a repeat of the entire dependence test,
   3762 // though simplified since we know that the dependence exists.
   3763 // It's tedious, since we must go through all propagations, etc.
   3764 //
   3765 // Care is required to keep this code up to date with respect to the routine
   3766 // above, depends().
   3767 //
   3768 // Generally, the dependence analyzer will be used to build
   3769 // a dependence graph for a function (basically a map from instructions
   3770 // to dependences). Looking for cycles in the graph shows us loops
   3771 // that cannot be trivially vectorized/parallelized.
   3772 //
   3773 // We can try to improve the situation by examining all the dependences
   3774 // that make up the cycle, looking for ones we can break.
   3775 // Sometimes, peeling the first or last iteration of a loop will break
   3776 // dependences, and we've got flags for those possibilities.
   3777 // Sometimes, splitting a loop at some other iteration will do the trick,
   3778 // and we've got a flag for that case. Rather than waste the space to
   3779 // record the exact iteration (since we rarely know), we provide
   3780 // a method that calculates the iteration. It's a drag that it must work
   3781 // from scratch, but wonderful in that it's possible.
   3782 //
   3783 // Here's an example:
   3784 //
   3785 //    for (i = 0; i < 10; i++)
   3786 //        A[i] = ...
   3787 //        ... = A[11 - i]
   3788 //
   3789 // There's a loop-carried flow dependence from the store to the load,
   3790 // found by the weak-crossing SIV test. The dependence will have a flag,
   3791 // indicating that the dependence can be broken by splitting the loop.
   3792 // Calling getSplitIteration will return 5.
   3793 // Splitting the loop breaks the dependence, like so:
   3794 //
   3795 //    for (i = 0; i <= 5; i++)
   3796 //        A[i] = ...
   3797 //        ... = A[11 - i]
   3798 //    for (i = 6; i < 10; i++)
   3799 //        A[i] = ...
   3800 //        ... = A[11 - i]
   3801 //
   3802 // breaks the dependence and allows us to vectorize/parallelize
   3803 // both loops.
   3804 const SCEV *DependenceInfo::getSplitIteration(const Dependence &Dep,
   3805                                               unsigned SplitLevel) {
   3806   assert(Dep.isSplitable(SplitLevel) &&
   3807          "Dep should be splitable at SplitLevel");
   3808   Instruction *Src = Dep.getSrc();
   3809   Instruction *Dst = Dep.getDst();
   3810   assert(Src->mayReadFromMemory() || Src->mayWriteToMemory());
   3811   assert(Dst->mayReadFromMemory() || Dst->mayWriteToMemory());
   3812   assert(isLoadOrStore(Src));
   3813   assert(isLoadOrStore(Dst));
   3814   Value *SrcPtr = getLoadStorePointerOperand(Src);
   3815   Value *DstPtr = getLoadStorePointerOperand(Dst);
   3816   assert(underlyingObjectsAlias(AA, F->getParent()->getDataLayout(),
   3817                                 MemoryLocation::get(Dst),
   3818                                 MemoryLocation::get(Src)) == MustAlias);
   3819 
   3820   // establish loop nesting levels
   3821   establishNestingLevels(Src, Dst);
   3822 
   3823   FullDependence Result(Src, Dst, false, CommonLevels);
   3824 
   3825   unsigned Pairs = 1;
   3826   SmallVector<Subscript, 2> Pair(Pairs);
   3827   const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
   3828   const SCEV *DstSCEV = SE->getSCEV(DstPtr);
   3829   Pair[0].Src = SrcSCEV;
   3830   Pair[0].Dst = DstSCEV;
   3831 
   3832   if (Delinearize) {
   3833     if (tryDelinearize(Src, Dst, Pair)) {
   3834       LLVM_DEBUG(dbgs() << "    delinearized\n");
   3835       Pairs = Pair.size();
   3836     }
   3837   }
   3838 
   3839   for (unsigned P = 0; P < Pairs; ++P) {
   3840     Pair[P].Loops.resize(MaxLevels + 1);
   3841     Pair[P].GroupLoops.resize(MaxLevels + 1);
   3842     Pair[P].Group.resize(Pairs);
   3843     removeMatchingExtensions(&Pair[P]);
   3844     Pair[P].Classification =
   3845       classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
   3846                    Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
   3847                    Pair[P].Loops);
   3848     Pair[P].GroupLoops = Pair[P].Loops;
   3849     Pair[P].Group.set(P);
   3850   }
   3851 
   3852   SmallBitVector Separable(Pairs);
   3853   SmallBitVector Coupled(Pairs);
   3854 
   3855   // partition subscripts into separable and minimally-coupled groups
   3856   for (unsigned SI = 0; SI < Pairs; ++SI) {
   3857     if (Pair[SI].Classification == Subscript::NonLinear) {
   3858       // ignore these, but collect loops for later
   3859       collectCommonLoops(Pair[SI].Src,
   3860                          LI->getLoopFor(Src->getParent()),
   3861                          Pair[SI].Loops);
   3862       collectCommonLoops(Pair[SI].Dst,
   3863                          LI->getLoopFor(Dst->getParent()),
   3864                          Pair[SI].Loops);
   3865       Result.Consistent = false;
   3866     }
   3867     else if (Pair[SI].Classification == Subscript::ZIV)
   3868       Separable.set(SI);
   3869     else {
   3870       // SIV, RDIV, or MIV, so check for coupled group
   3871       bool Done = true;
   3872       for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
   3873         SmallBitVector Intersection = Pair[SI].GroupLoops;
   3874         Intersection &= Pair[SJ].GroupLoops;
   3875         if (Intersection.any()) {
   3876           // accumulate set of all the loops in group
   3877           Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
   3878           // accumulate set of all subscripts in group
   3879           Pair[SJ].Group |= Pair[SI].Group;
   3880           Done = false;
   3881         }
   3882       }
   3883       if (Done) {
   3884         if (Pair[SI].Group.count() == 1)
   3885           Separable.set(SI);
   3886         else
   3887           Coupled.set(SI);
   3888       }
   3889     }
   3890   }
   3891 
   3892   Constraint NewConstraint;
   3893   NewConstraint.setAny(SE);
   3894 
   3895   // test separable subscripts
   3896   for (unsigned SI : Separable.set_bits()) {
   3897     switch (Pair[SI].Classification) {
   3898     case Subscript::SIV: {
   3899       unsigned Level;
   3900       const SCEV *SplitIter = nullptr;
   3901       (void) testSIV(Pair[SI].Src, Pair[SI].Dst, Level,
   3902                      Result, NewConstraint, SplitIter);
   3903       if (Level == SplitLevel) {
   3904         assert(SplitIter != nullptr);
   3905         return SplitIter;
   3906       }
   3907       break;
   3908     }
   3909     case Subscript::ZIV:
   3910     case Subscript::RDIV:
   3911     case Subscript::MIV:
   3912       break;
   3913     default:
   3914       llvm_unreachable("subscript has unexpected classification");
   3915     }
   3916   }
   3917 
   3918   if (Coupled.count()) {
   3919     // test coupled subscript groups
   3920     SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
   3921     for (unsigned II = 0; II <= MaxLevels; ++II)
   3922       Constraints[II].setAny(SE);
   3923     for (unsigned SI : Coupled.set_bits()) {
   3924       SmallBitVector Group(Pair[SI].Group);
   3925       SmallBitVector Sivs(Pairs);
   3926       SmallBitVector Mivs(Pairs);
   3927       SmallBitVector ConstrainedLevels(MaxLevels + 1);
   3928       for (unsigned SJ : Group.set_bits()) {
   3929         if (Pair[SJ].Classification == Subscript::SIV)
   3930           Sivs.set(SJ);
   3931         else
   3932           Mivs.set(SJ);
   3933       }
   3934       while (Sivs.any()) {
   3935         bool Changed = false;
   3936         for (unsigned SJ : Sivs.set_bits()) {
   3937           // SJ is an SIV subscript that's part of the current coupled group
   3938           unsigned Level;
   3939           const SCEV *SplitIter = nullptr;
   3940           (void) testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level,
   3941                          Result, NewConstraint, SplitIter);
   3942           if (Level == SplitLevel && SplitIter)
   3943             return SplitIter;
   3944           ConstrainedLevels.set(Level);
   3945           if (intersectConstraints(&Constraints[Level], &NewConstraint))
   3946             Changed = true;
   3947           Sivs.reset(SJ);
   3948         }
   3949         if (Changed) {
   3950           // propagate, possibly creating new SIVs and ZIVs
   3951           for (unsigned SJ : Mivs.set_bits()) {
   3952             // SJ is an MIV subscript that's part of the current coupled group
   3953             if (propagate(Pair[SJ].Src, Pair[SJ].Dst,
   3954                           Pair[SJ].Loops, Constraints, Result.Consistent)) {
   3955               Pair[SJ].Classification =
   3956                 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
   3957                              Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
   3958                              Pair[SJ].Loops);
   3959               switch (Pair[SJ].Classification) {
   3960               case Subscript::ZIV:
   3961                 Mivs.reset(SJ);
   3962                 break;
   3963               case Subscript::SIV:
   3964                 Sivs.set(SJ);
   3965                 Mivs.reset(SJ);
   3966                 break;
   3967               case Subscript::RDIV:
   3968               case Subscript::MIV:
   3969                 break;
   3970               default:
   3971                 llvm_unreachable("bad subscript classification");
   3972               }
   3973             }
   3974           }
   3975         }
   3976       }
   3977     }
   3978   }
   3979   llvm_unreachable("somehow reached end of routine");
   3980   return nullptr;
   3981 }
   3982