Home | History | Annotate | Download | only in Analysis
      1 //===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass statically checks for common and easily-identified constructs
     11 // which produce undefined or likely unintended behavior in LLVM IR.
     12 //
     13 // It is not a guarantee of correctness, in two ways. First, it isn't
     14 // comprehensive. There are checks which could be done statically which are
     15 // not yet implemented. Some of these are indicated by TODO comments, but
     16 // those aren't comprehensive either. Second, many conditions cannot be
     17 // checked statically. This pass does no dynamic instrumentation, so it
     18 // can't check for all possible problems.
     19 //
     20 // Another limitation is that it assumes all code will be executed. A store
     21 // through a null pointer in a basic block which is never reached is harmless,
     22 // but this pass will warn about it anyway. This is the main reason why most
     23 // of these checks live here instead of in the Verifier pass.
     24 //
     25 // Optimization passes may make conditions that this pass checks for more or
     26 // less obvious. If an optimization pass appears to be introducing a warning,
     27 // it may be that the optimization pass is merely exposing an existing
     28 // condition in the code.
     29 //
     30 // This code may be run before instcombine. In many cases, instcombine checks
     31 // for the same kinds of things and turns instructions with undefined behavior
     32 // into unreachable (or equivalent). Because of this, this pass makes some
     33 // effort to look through bitcasts and so on.
     34 //
     35 //===----------------------------------------------------------------------===//
     36 
     37 #include "llvm/Analysis/Lint.h"
     38 #include "llvm/ADT/APInt.h"
     39 #include "llvm/ADT/ArrayRef.h"
     40 #include "llvm/ADT/SmallPtrSet.h"
     41 #include "llvm/ADT/Twine.h"
     42 #include "llvm/Analysis/AliasAnalysis.h"
     43 #include "llvm/Analysis/AssumptionCache.h"
     44 #include "llvm/Analysis/ConstantFolding.h"
     45 #include "llvm/Analysis/InstructionSimplify.h"
     46 #include "llvm/Analysis/Loads.h"
     47 #include "llvm/Analysis/MemoryLocation.h"
     48 #include "llvm/Analysis/Passes.h"
     49 #include "llvm/Analysis/TargetLibraryInfo.h"
     50 #include "llvm/Analysis/ValueTracking.h"
     51 #include "llvm/IR/Argument.h"
     52 #include "llvm/IR/BasicBlock.h"
     53 #include "llvm/IR/CallSite.h"
     54 #include "llvm/IR/Constant.h"
     55 #include "llvm/IR/Constants.h"
     56 #include "llvm/IR/DataLayout.h"
     57 #include "llvm/IR/DerivedTypes.h"
     58 #include "llvm/IR/Dominators.h"
     59 #include "llvm/IR/Function.h"
     60 #include "llvm/IR/GlobalVariable.h"
     61 #include "llvm/IR/InstVisitor.h"
     62 #include "llvm/IR/InstrTypes.h"
     63 #include "llvm/IR/Instruction.h"
     64 #include "llvm/IR/Instructions.h"
     65 #include "llvm/IR/IntrinsicInst.h"
     66 #include "llvm/IR/LegacyPassManager.h"
     67 #include "llvm/IR/Module.h"
     68 #include "llvm/IR/Type.h"
     69 #include "llvm/IR/Value.h"
     70 #include "llvm/Pass.h"
     71 #include "llvm/Support/Casting.h"
     72 #include "llvm/Support/Debug.h"
     73 #include "llvm/Support/KnownBits.h"
     74 #include "llvm/Support/MathExtras.h"
     75 #include "llvm/Support/raw_ostream.h"
     76 #include <cassert>
     77 #include <cstdint>
     78 #include <iterator>
     79 #include <string>
     80 
     81 using namespace llvm;
     82 
     83 namespace {
     84   namespace MemRef {
     85     static const unsigned Read     = 1;
     86     static const unsigned Write    = 2;
     87     static const unsigned Callee   = 4;
     88     static const unsigned Branchee = 8;
     89   } // end namespace MemRef
     90 
     91   class Lint : public FunctionPass, public InstVisitor<Lint> {
     92     friend class InstVisitor<Lint>;
     93 
     94     void visitFunction(Function &F);
     95 
     96     void visitCallSite(CallSite CS);
     97     void visitMemoryReference(Instruction &I, Value *Ptr,
     98                               uint64_t Size, unsigned Align,
     99                               Type *Ty, unsigned Flags);
    100     void visitEHBeginCatch(IntrinsicInst *II);
    101     void visitEHEndCatch(IntrinsicInst *II);
    102 
    103     void visitCallInst(CallInst &I);
    104     void visitInvokeInst(InvokeInst &I);
    105     void visitReturnInst(ReturnInst &I);
    106     void visitLoadInst(LoadInst &I);
    107     void visitStoreInst(StoreInst &I);
    108     void visitXor(BinaryOperator &I);
    109     void visitSub(BinaryOperator &I);
    110     void visitLShr(BinaryOperator &I);
    111     void visitAShr(BinaryOperator &I);
    112     void visitShl(BinaryOperator &I);
    113     void visitSDiv(BinaryOperator &I);
    114     void visitUDiv(BinaryOperator &I);
    115     void visitSRem(BinaryOperator &I);
    116     void visitURem(BinaryOperator &I);
    117     void visitAllocaInst(AllocaInst &I);
    118     void visitVAArgInst(VAArgInst &I);
    119     void visitIndirectBrInst(IndirectBrInst &I);
    120     void visitExtractElementInst(ExtractElementInst &I);
    121     void visitInsertElementInst(InsertElementInst &I);
    122     void visitUnreachableInst(UnreachableInst &I);
    123 
    124     Value *findValue(Value *V, bool OffsetOk) const;
    125     Value *findValueImpl(Value *V, bool OffsetOk,
    126                          SmallPtrSetImpl<Value *> &Visited) const;
    127 
    128   public:
    129     Module *Mod;
    130     const DataLayout *DL;
    131     AliasAnalysis *AA;
    132     AssumptionCache *AC;
    133     DominatorTree *DT;
    134     TargetLibraryInfo *TLI;
    135 
    136     std::string Messages;
    137     raw_string_ostream MessagesStr;
    138 
    139     static char ID; // Pass identification, replacement for typeid
    140     Lint() : FunctionPass(ID), MessagesStr(Messages) {
    141       initializeLintPass(*PassRegistry::getPassRegistry());
    142     }
    143 
    144     bool runOnFunction(Function &F) override;
    145 
    146     void getAnalysisUsage(AnalysisUsage &AU) const override {
    147       AU.setPreservesAll();
    148       AU.addRequired<AAResultsWrapperPass>();
    149       AU.addRequired<AssumptionCacheTracker>();
    150       AU.addRequired<TargetLibraryInfoWrapperPass>();
    151       AU.addRequired<DominatorTreeWrapperPass>();
    152     }
    153     void print(raw_ostream &O, const Module *M) const override {}
    154 
    155     void WriteValues(ArrayRef<const Value *> Vs) {
    156       for (const Value *V : Vs) {
    157         if (!V)
    158           continue;
    159         if (isa<Instruction>(V)) {
    160           MessagesStr << *V << '\n';
    161         } else {
    162           V->printAsOperand(MessagesStr, true, Mod);
    163           MessagesStr << '\n';
    164         }
    165       }
    166     }
    167 
    168     /// A check failed, so printout out the condition and the message.
    169     ///
    170     /// This provides a nice place to put a breakpoint if you want to see why
    171     /// something is not correct.
    172     void CheckFailed(const Twine &Message) { MessagesStr << Message << '\n'; }
    173 
    174     /// A check failed (with values to print).
    175     ///
    176     /// This calls the Message-only version so that the above is easier to set
    177     /// a breakpoint on.
    178     template <typename T1, typename... Ts>
    179     void CheckFailed(const Twine &Message, const T1 &V1, const Ts &...Vs) {
    180       CheckFailed(Message);
    181       WriteValues({V1, Vs...});
    182     }
    183   };
    184 } // end anonymous namespace
    185 
    186 char Lint::ID = 0;
    187 INITIALIZE_PASS_BEGIN(Lint, "lint", "Statically lint-checks LLVM IR",
    188                       false, true)
    189 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
    190 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
    191 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
    192 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
    193 INITIALIZE_PASS_END(Lint, "lint", "Statically lint-checks LLVM IR",
    194                     false, true)
    195 
    196 // Assert - We know that cond should be true, if not print an error message.
    197 #define Assert(C, ...) \
    198     do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
    199 
    200 // Lint::run - This is the main Analysis entry point for a
    201 // function.
    202 //
    203 bool Lint::runOnFunction(Function &F) {
    204   Mod = F.getParent();
    205   DL = &F.getParent()->getDataLayout();
    206   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
    207   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
    208   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    209   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
    210   visit(F);
    211   dbgs() << MessagesStr.str();
    212   Messages.clear();
    213   return false;
    214 }
    215 
    216 void Lint::visitFunction(Function &F) {
    217   // This isn't undefined behavior, it's just a little unusual, and it's a
    218   // fairly common mistake to neglect to name a function.
    219   Assert(F.hasName() || F.hasLocalLinkage(),
    220          "Unusual: Unnamed function with non-local linkage", &F);
    221 
    222   // TODO: Check for irreducible control flow.
    223 }
    224 
    225 void Lint::visitCallSite(CallSite CS) {
    226   Instruction &I = *CS.getInstruction();
    227   Value *Callee = CS.getCalledValue();
    228 
    229   visitMemoryReference(I, Callee, MemoryLocation::UnknownSize, 0, nullptr,
    230                        MemRef::Callee);
    231 
    232   if (Function *F = dyn_cast<Function>(findValue(Callee,
    233                                                  /*OffsetOk=*/false))) {
    234     Assert(CS.getCallingConv() == F->getCallingConv(),
    235            "Undefined behavior: Caller and callee calling convention differ",
    236            &I);
    237 
    238     FunctionType *FT = F->getFunctionType();
    239     unsigned NumActualArgs = CS.arg_size();
    240 
    241     Assert(FT->isVarArg() ? FT->getNumParams() <= NumActualArgs
    242                           : FT->getNumParams() == NumActualArgs,
    243            "Undefined behavior: Call argument count mismatches callee "
    244            "argument count",
    245            &I);
    246 
    247     Assert(FT->getReturnType() == I.getType(),
    248            "Undefined behavior: Call return type mismatches "
    249            "callee return type",
    250            &I);
    251 
    252     // Check argument types (in case the callee was casted) and attributes.
    253     // TODO: Verify that caller and callee attributes are compatible.
    254     Function::arg_iterator PI = F->arg_begin(), PE = F->arg_end();
    255     CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
    256     for (; AI != AE; ++AI) {
    257       Value *Actual = *AI;
    258       if (PI != PE) {
    259         Argument *Formal = &*PI++;
    260         Assert(Formal->getType() == Actual->getType(),
    261                "Undefined behavior: Call argument type mismatches "
    262                "callee parameter type",
    263                &I);
    264 
    265         // Check that noalias arguments don't alias other arguments. This is
    266         // not fully precise because we don't know the sizes of the dereferenced
    267         // memory regions.
    268         if (Formal->hasNoAliasAttr() && Actual->getType()->isPointerTy()) {
    269           AttributeList PAL = CS.getAttributes();
    270           unsigned ArgNo = 0;
    271           for (CallSite::arg_iterator BI = CS.arg_begin(); BI != AE; ++BI) {
    272             // Skip ByVal arguments since they will be memcpy'd to the callee's
    273             // stack so we're not really passing the pointer anyway.
    274             if (PAL.hasParamAttribute(ArgNo++, Attribute::ByVal))
    275               continue;
    276             if (AI != BI && (*BI)->getType()->isPointerTy()) {
    277               AliasResult Result = AA->alias(*AI, *BI);
    278               Assert(Result != MustAlias && Result != PartialAlias,
    279                      "Unusual: noalias argument aliases another argument", &I);
    280             }
    281           }
    282         }
    283 
    284         // Check that an sret argument points to valid memory.
    285         if (Formal->hasStructRetAttr() && Actual->getType()->isPointerTy()) {
    286           Type *Ty =
    287             cast<PointerType>(Formal->getType())->getElementType();
    288           visitMemoryReference(I, Actual, DL->getTypeStoreSize(Ty),
    289                                DL->getABITypeAlignment(Ty), Ty,
    290                                MemRef::Read | MemRef::Write);
    291         }
    292       }
    293     }
    294   }
    295 
    296   if (CS.isCall()) {
    297     const CallInst *CI = cast<CallInst>(CS.getInstruction());
    298     if (CI->isTailCall()) {
    299       const AttributeList &PAL = CI->getAttributes();
    300       unsigned ArgNo = 0;
    301       for (Value *Arg : CS.args()) {
    302         // Skip ByVal arguments since they will be memcpy'd to the callee's
    303         // stack anyway.
    304         if (PAL.hasParamAttribute(ArgNo++, Attribute::ByVal))
    305           continue;
    306         Value *Obj = findValue(Arg, /*OffsetOk=*/true);
    307         Assert(!isa<AllocaInst>(Obj),
    308                "Undefined behavior: Call with \"tail\" keyword references "
    309                "alloca",
    310                &I);
    311       }
    312     }
    313   }
    314 
    315 
    316   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I))
    317     switch (II->getIntrinsicID()) {
    318     default: break;
    319 
    320     // TODO: Check more intrinsics
    321 
    322     case Intrinsic::memcpy: {
    323       MemCpyInst *MCI = cast<MemCpyInst>(&I);
    324       // TODO: If the size is known, use it.
    325       visitMemoryReference(I, MCI->getDest(), MemoryLocation::UnknownSize,
    326                            MCI->getDestAlignment(), nullptr, MemRef::Write);
    327       visitMemoryReference(I, MCI->getSource(), MemoryLocation::UnknownSize,
    328                            MCI->getSourceAlignment(), nullptr, MemRef::Read);
    329 
    330       // Check that the memcpy arguments don't overlap. The AliasAnalysis API
    331       // isn't expressive enough for what we really want to do. Known partial
    332       // overlap is not distinguished from the case where nothing is known.
    333       uint64_t Size = 0;
    334       if (const ConstantInt *Len =
    335               dyn_cast<ConstantInt>(findValue(MCI->getLength(),
    336                                               /*OffsetOk=*/false)))
    337         if (Len->getValue().isIntN(32))
    338           Size = Len->getValue().getZExtValue();
    339       Assert(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) !=
    340                  MustAlias,
    341              "Undefined behavior: memcpy source and destination overlap", &I);
    342       break;
    343     }
    344     case Intrinsic::memmove: {
    345       MemMoveInst *MMI = cast<MemMoveInst>(&I);
    346       // TODO: If the size is known, use it.
    347       visitMemoryReference(I, MMI->getDest(), MemoryLocation::UnknownSize,
    348                            MMI->getDestAlignment(), nullptr, MemRef::Write);
    349       visitMemoryReference(I, MMI->getSource(), MemoryLocation::UnknownSize,
    350                            MMI->getSourceAlignment(), nullptr, MemRef::Read);
    351       break;
    352     }
    353     case Intrinsic::memset: {
    354       MemSetInst *MSI = cast<MemSetInst>(&I);
    355       // TODO: If the size is known, use it.
    356       visitMemoryReference(I, MSI->getDest(), MemoryLocation::UnknownSize,
    357                            MSI->getDestAlignment(), nullptr, MemRef::Write);
    358       break;
    359     }
    360 
    361     case Intrinsic::vastart:
    362       Assert(I.getParent()->getParent()->isVarArg(),
    363              "Undefined behavior: va_start called in a non-varargs function",
    364              &I);
    365 
    366       visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0,
    367                            nullptr, MemRef::Read | MemRef::Write);
    368       break;
    369     case Intrinsic::vacopy:
    370       visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0,
    371                            nullptr, MemRef::Write);
    372       visitMemoryReference(I, CS.getArgument(1), MemoryLocation::UnknownSize, 0,
    373                            nullptr, MemRef::Read);
    374       break;
    375     case Intrinsic::vaend:
    376       visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0,
    377                            nullptr, MemRef::Read | MemRef::Write);
    378       break;
    379 
    380     case Intrinsic::stackrestore:
    381       // Stackrestore doesn't read or write memory, but it sets the
    382       // stack pointer, which the compiler may read from or write to
    383       // at any time, so check it for both readability and writeability.
    384       visitMemoryReference(I, CS.getArgument(0), MemoryLocation::UnknownSize, 0,
    385                            nullptr, MemRef::Read | MemRef::Write);
    386       break;
    387     }
    388 }
    389 
    390 void Lint::visitCallInst(CallInst &I) {
    391   return visitCallSite(&I);
    392 }
    393 
    394 void Lint::visitInvokeInst(InvokeInst &I) {
    395   return visitCallSite(&I);
    396 }
    397 
    398 void Lint::visitReturnInst(ReturnInst &I) {
    399   Function *F = I.getParent()->getParent();
    400   Assert(!F->doesNotReturn(),
    401          "Unusual: Return statement in function with noreturn attribute", &I);
    402 
    403   if (Value *V = I.getReturnValue()) {
    404     Value *Obj = findValue(V, /*OffsetOk=*/true);
    405     Assert(!isa<AllocaInst>(Obj), "Unusual: Returning alloca value", &I);
    406   }
    407 }
    408 
    409 // TODO: Check that the reference is in bounds.
    410 // TODO: Check readnone/readonly function attributes.
    411 void Lint::visitMemoryReference(Instruction &I,
    412                                 Value *Ptr, uint64_t Size, unsigned Align,
    413                                 Type *Ty, unsigned Flags) {
    414   // If no memory is being referenced, it doesn't matter if the pointer
    415   // is valid.
    416   if (Size == 0)
    417     return;
    418 
    419   Value *UnderlyingObject = findValue(Ptr, /*OffsetOk=*/true);
    420   Assert(!isa<ConstantPointerNull>(UnderlyingObject),
    421          "Undefined behavior: Null pointer dereference", &I);
    422   Assert(!isa<UndefValue>(UnderlyingObject),
    423          "Undefined behavior: Undef pointer dereference", &I);
    424   Assert(!isa<ConstantInt>(UnderlyingObject) ||
    425              !cast<ConstantInt>(UnderlyingObject)->isMinusOne(),
    426          "Unusual: All-ones pointer dereference", &I);
    427   Assert(!isa<ConstantInt>(UnderlyingObject) ||
    428              !cast<ConstantInt>(UnderlyingObject)->isOne(),
    429          "Unusual: Address one pointer dereference", &I);
    430 
    431   if (Flags & MemRef::Write) {
    432     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(UnderlyingObject))
    433       Assert(!GV->isConstant(), "Undefined behavior: Write to read-only memory",
    434              &I);
    435     Assert(!isa<Function>(UnderlyingObject) &&
    436                !isa<BlockAddress>(UnderlyingObject),
    437            "Undefined behavior: Write to text section", &I);
    438   }
    439   if (Flags & MemRef::Read) {
    440     Assert(!isa<Function>(UnderlyingObject), "Unusual: Load from function body",
    441            &I);
    442     Assert(!isa<BlockAddress>(UnderlyingObject),
    443            "Undefined behavior: Load from block address", &I);
    444   }
    445   if (Flags & MemRef::Callee) {
    446     Assert(!isa<BlockAddress>(UnderlyingObject),
    447            "Undefined behavior: Call to block address", &I);
    448   }
    449   if (Flags & MemRef::Branchee) {
    450     Assert(!isa<Constant>(UnderlyingObject) ||
    451                isa<BlockAddress>(UnderlyingObject),
    452            "Undefined behavior: Branch to non-blockaddress", &I);
    453   }
    454 
    455   // Check for buffer overflows and misalignment.
    456   // Only handles memory references that read/write something simple like an
    457   // alloca instruction or a global variable.
    458   int64_t Offset = 0;
    459   if (Value *Base = GetPointerBaseWithConstantOffset(Ptr, Offset, *DL)) {
    460     // OK, so the access is to a constant offset from Ptr.  Check that Ptr is
    461     // something we can handle and if so extract the size of this base object
    462     // along with its alignment.
    463     uint64_t BaseSize = MemoryLocation::UnknownSize;
    464     unsigned BaseAlign = 0;
    465 
    466     if (AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
    467       Type *ATy = AI->getAllocatedType();
    468       if (!AI->isArrayAllocation() && ATy->isSized())
    469         BaseSize = DL->getTypeAllocSize(ATy);
    470       BaseAlign = AI->getAlignment();
    471       if (BaseAlign == 0 && ATy->isSized())
    472         BaseAlign = DL->getABITypeAlignment(ATy);
    473     } else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
    474       // If the global may be defined differently in another compilation unit
    475       // then don't warn about funky memory accesses.
    476       if (GV->hasDefinitiveInitializer()) {
    477         Type *GTy = GV->getValueType();
    478         if (GTy->isSized())
    479           BaseSize = DL->getTypeAllocSize(GTy);
    480         BaseAlign = GV->getAlignment();
    481         if (BaseAlign == 0 && GTy->isSized())
    482           BaseAlign = DL->getABITypeAlignment(GTy);
    483       }
    484     }
    485 
    486     // Accesses from before the start or after the end of the object are not
    487     // defined.
    488     Assert(Size == MemoryLocation::UnknownSize ||
    489                BaseSize == MemoryLocation::UnknownSize ||
    490                (Offset >= 0 && Offset + Size <= BaseSize),
    491            "Undefined behavior: Buffer overflow", &I);
    492 
    493     // Accesses that say that the memory is more aligned than it is are not
    494     // defined.
    495     if (Align == 0 && Ty && Ty->isSized())
    496       Align = DL->getABITypeAlignment(Ty);
    497     Assert(!BaseAlign || Align <= MinAlign(BaseAlign, Offset),
    498            "Undefined behavior: Memory reference address is misaligned", &I);
    499   }
    500 }
    501 
    502 void Lint::visitLoadInst(LoadInst &I) {
    503   visitMemoryReference(I, I.getPointerOperand(),
    504                        DL->getTypeStoreSize(I.getType()), I.getAlignment(),
    505                        I.getType(), MemRef::Read);
    506 }
    507 
    508 void Lint::visitStoreInst(StoreInst &I) {
    509   visitMemoryReference(I, I.getPointerOperand(),
    510                        DL->getTypeStoreSize(I.getOperand(0)->getType()),
    511                        I.getAlignment(),
    512                        I.getOperand(0)->getType(), MemRef::Write);
    513 }
    514 
    515 void Lint::visitXor(BinaryOperator &I) {
    516   Assert(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)),
    517          "Undefined result: xor(undef, undef)", &I);
    518 }
    519 
    520 void Lint::visitSub(BinaryOperator &I) {
    521   Assert(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)),
    522          "Undefined result: sub(undef, undef)", &I);
    523 }
    524 
    525 void Lint::visitLShr(BinaryOperator &I) {
    526   if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(1),
    527                                                         /*OffsetOk=*/false)))
    528     Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
    529            "Undefined result: Shift count out of range", &I);
    530 }
    531 
    532 void Lint::visitAShr(BinaryOperator &I) {
    533   if (ConstantInt *CI =
    534           dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
    535     Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
    536            "Undefined result: Shift count out of range", &I);
    537 }
    538 
    539 void Lint::visitShl(BinaryOperator &I) {
    540   if (ConstantInt *CI =
    541           dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
    542     Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
    543            "Undefined result: Shift count out of range", &I);
    544 }
    545 
    546 static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT,
    547                    AssumptionCache *AC) {
    548   // Assume undef could be zero.
    549   if (isa<UndefValue>(V))
    550     return true;
    551 
    552   VectorType *VecTy = dyn_cast<VectorType>(V->getType());
    553   if (!VecTy) {
    554     KnownBits Known = computeKnownBits(V, DL, 0, AC, dyn_cast<Instruction>(V), DT);
    555     return Known.isZero();
    556   }
    557 
    558   // Per-component check doesn't work with zeroinitializer
    559   Constant *C = dyn_cast<Constant>(V);
    560   if (!C)
    561     return false;
    562 
    563   if (C->isZeroValue())
    564     return true;
    565 
    566   // For a vector, KnownZero will only be true if all values are zero, so check
    567   // this per component
    568   for (unsigned I = 0, N = VecTy->getNumElements(); I != N; ++I) {
    569     Constant *Elem = C->getAggregateElement(I);
    570     if (isa<UndefValue>(Elem))
    571       return true;
    572 
    573     KnownBits Known = computeKnownBits(Elem, DL);
    574     if (Known.isZero())
    575       return true;
    576   }
    577 
    578   return false;
    579 }
    580 
    581 void Lint::visitSDiv(BinaryOperator &I) {
    582   Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
    583          "Undefined behavior: Division by zero", &I);
    584 }
    585 
    586 void Lint::visitUDiv(BinaryOperator &I) {
    587   Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
    588          "Undefined behavior: Division by zero", &I);
    589 }
    590 
    591 void Lint::visitSRem(BinaryOperator &I) {
    592   Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
    593          "Undefined behavior: Division by zero", &I);
    594 }
    595 
    596 void Lint::visitURem(BinaryOperator &I) {
    597   Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
    598          "Undefined behavior: Division by zero", &I);
    599 }
    600 
    601 void Lint::visitAllocaInst(AllocaInst &I) {
    602   if (isa<ConstantInt>(I.getArraySize()))
    603     // This isn't undefined behavior, it's just an obvious pessimization.
    604     Assert(&I.getParent()->getParent()->getEntryBlock() == I.getParent(),
    605            "Pessimization: Static alloca outside of entry block", &I);
    606 
    607   // TODO: Check for an unusual size (MSB set?)
    608 }
    609 
    610 void Lint::visitVAArgInst(VAArgInst &I) {
    611   visitMemoryReference(I, I.getOperand(0), MemoryLocation::UnknownSize, 0,
    612                        nullptr, MemRef::Read | MemRef::Write);
    613 }
    614 
    615 void Lint::visitIndirectBrInst(IndirectBrInst &I) {
    616   visitMemoryReference(I, I.getAddress(), MemoryLocation::UnknownSize, 0,
    617                        nullptr, MemRef::Branchee);
    618 
    619   Assert(I.getNumDestinations() != 0,
    620          "Undefined behavior: indirectbr with no destinations", &I);
    621 }
    622 
    623 void Lint::visitExtractElementInst(ExtractElementInst &I) {
    624   if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getIndexOperand(),
    625                                                         /*OffsetOk=*/false)))
    626     Assert(CI->getValue().ult(I.getVectorOperandType()->getNumElements()),
    627            "Undefined result: extractelement index out of range", &I);
    628 }
    629 
    630 void Lint::visitInsertElementInst(InsertElementInst &I) {
    631   if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(2),
    632                                                         /*OffsetOk=*/false)))
    633     Assert(CI->getValue().ult(I.getType()->getNumElements()),
    634            "Undefined result: insertelement index out of range", &I);
    635 }
    636 
    637 void Lint::visitUnreachableInst(UnreachableInst &I) {
    638   // This isn't undefined behavior, it's merely suspicious.
    639   Assert(&I == &I.getParent()->front() ||
    640              std::prev(I.getIterator())->mayHaveSideEffects(),
    641          "Unusual: unreachable immediately preceded by instruction without "
    642          "side effects",
    643          &I);
    644 }
    645 
    646 /// findValue - Look through bitcasts and simple memory reference patterns
    647 /// to identify an equivalent, but more informative, value.  If OffsetOk
    648 /// is true, look through getelementptrs with non-zero offsets too.
    649 ///
    650 /// Most analysis passes don't require this logic, because instcombine
    651 /// will simplify most of these kinds of things away. But it's a goal of
    652 /// this Lint pass to be useful even on non-optimized IR.
    653 Value *Lint::findValue(Value *V, bool OffsetOk) const {
    654   SmallPtrSet<Value *, 4> Visited;
    655   return findValueImpl(V, OffsetOk, Visited);
    656 }
    657 
    658 /// findValueImpl - Implementation helper for findValue.
    659 Value *Lint::findValueImpl(Value *V, bool OffsetOk,
    660                            SmallPtrSetImpl<Value *> &Visited) const {
    661   // Detect self-referential values.
    662   if (!Visited.insert(V).second)
    663     return UndefValue::get(V->getType());
    664 
    665   // TODO: Look through sext or zext cast, when the result is known to
    666   // be interpreted as signed or unsigned, respectively.
    667   // TODO: Look through eliminable cast pairs.
    668   // TODO: Look through calls with unique return values.
    669   // TODO: Look through vector insert/extract/shuffle.
    670   V = OffsetOk ? GetUnderlyingObject(V, *DL) : V->stripPointerCasts();
    671   if (LoadInst *L = dyn_cast<LoadInst>(V)) {
    672     BasicBlock::iterator BBI = L->getIterator();
    673     BasicBlock *BB = L->getParent();
    674     SmallPtrSet<BasicBlock *, 4> VisitedBlocks;
    675     for (;;) {
    676       if (!VisitedBlocks.insert(BB).second)
    677         break;
    678       if (Value *U =
    679           FindAvailableLoadedValue(L, BB, BBI, DefMaxInstsToScan, AA))
    680         return findValueImpl(U, OffsetOk, Visited);
    681       if (BBI != BB->begin()) break;
    682       BB = BB->getUniquePredecessor();
    683       if (!BB) break;
    684       BBI = BB->end();
    685     }
    686   } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
    687     if (Value *W = PN->hasConstantValue())
    688       if (W != V)
    689         return findValueImpl(W, OffsetOk, Visited);
    690   } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
    691     if (CI->isNoopCast(*DL))
    692       return findValueImpl(CI->getOperand(0), OffsetOk, Visited);
    693   } else if (ExtractValueInst *Ex = dyn_cast<ExtractValueInst>(V)) {
    694     if (Value *W = FindInsertedValue(Ex->getAggregateOperand(),
    695                                      Ex->getIndices()))
    696       if (W != V)
    697         return findValueImpl(W, OffsetOk, Visited);
    698   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
    699     // Same as above, but for ConstantExpr instead of Instruction.
    700     if (Instruction::isCast(CE->getOpcode())) {
    701       if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()),
    702                                CE->getOperand(0)->getType(), CE->getType(),
    703                                *DL))
    704         return findValueImpl(CE->getOperand(0), OffsetOk, Visited);
    705     } else if (CE->getOpcode() == Instruction::ExtractValue) {
    706       ArrayRef<unsigned> Indices = CE->getIndices();
    707       if (Value *W = FindInsertedValue(CE->getOperand(0), Indices))
    708         if (W != V)
    709           return findValueImpl(W, OffsetOk, Visited);
    710     }
    711   }
    712 
    713   // As a last resort, try SimplifyInstruction or constant folding.
    714   if (Instruction *Inst = dyn_cast<Instruction>(V)) {
    715     if (Value *W = SimplifyInstruction(Inst, {*DL, TLI, DT, AC}))
    716       return findValueImpl(W, OffsetOk, Visited);
    717   } else if (auto *C = dyn_cast<Constant>(V)) {
    718     if (Value *W = ConstantFoldConstant(C, *DL, TLI))
    719       if (W && W != V)
    720         return findValueImpl(W, OffsetOk, Visited);
    721   }
    722 
    723   return V;
    724 }
    725 
    726 //===----------------------------------------------------------------------===//
    727 //  Implement the public interfaces to this file...
    728 //===----------------------------------------------------------------------===//
    729 
    730 FunctionPass *llvm::createLintPass() {
    731   return new Lint();
    732 }
    733 
    734 /// lintFunction - Check a function for errors, printing messages on stderr.
    735 ///
    736 void llvm::lintFunction(const Function &f) {
    737   Function &F = const_cast<Function&>(f);
    738   assert(!F.isDeclaration() && "Cannot lint external functions");
    739 
    740   legacy::FunctionPassManager FPM(F.getParent());
    741   Lint *V = new Lint();
    742   FPM.add(V);
    743   FPM.run(F);
    744 }
    745 
    746 /// lintModule - Check a module for errors, printing messages on stderr.
    747 ///
    748 void llvm::lintModule(const Module &M) {
    749   legacy::PassManager PM;
    750   Lint *V = new Lint();
    751   PM.add(V);
    752   PM.run(const_cast<Module&>(M));
    753 }
    754