Home | History | Annotate | Download | only in Analysis
      1 //===- Loads.cpp - Local load analysis ------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines simple local analyses for load instructions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Analysis/Loads.h"
     15 #include "llvm/Analysis/AliasAnalysis.h"
     16 #include "llvm/Analysis/ValueTracking.h"
     17 #include "llvm/IR/DataLayout.h"
     18 #include "llvm/IR/GlobalAlias.h"
     19 #include "llvm/IR/GlobalVariable.h"
     20 #include "llvm/IR/IntrinsicInst.h"
     21 #include "llvm/IR/LLVMContext.h"
     22 #include "llvm/IR/Module.h"
     23 #include "llvm/IR/Operator.h"
     24 #include "llvm/IR/Statepoint.h"
     25 
     26 using namespace llvm;
     27 
     28 static bool isAligned(const Value *Base, const APInt &Offset, unsigned Align,
     29                       const DataLayout &DL) {
     30   APInt BaseAlign(Offset.getBitWidth(), Base->getPointerAlignment(DL));
     31 
     32   if (!BaseAlign) {
     33     Type *Ty = Base->getType()->getPointerElementType();
     34     if (!Ty->isSized())
     35       return false;
     36     BaseAlign = DL.getABITypeAlignment(Ty);
     37   }
     38 
     39   APInt Alignment(Offset.getBitWidth(), Align);
     40 
     41   assert(Alignment.isPowerOf2() && "must be a power of 2!");
     42   return BaseAlign.uge(Alignment) && !(Offset & (Alignment-1));
     43 }
     44 
     45 static bool isAligned(const Value *Base, unsigned Align, const DataLayout &DL) {
     46   Type *Ty = Base->getType();
     47   assert(Ty->isSized() && "must be sized");
     48   APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0);
     49   return isAligned(Base, Offset, Align, DL);
     50 }
     51 
     52 /// Test if V is always a pointer to allocated and suitably aligned memory for
     53 /// a simple load or store.
     54 static bool isDereferenceableAndAlignedPointer(
     55     const Value *V, unsigned Align, const APInt &Size, const DataLayout &DL,
     56     const Instruction *CtxI, const DominatorTree *DT,
     57     SmallPtrSetImpl<const Value *> &Visited) {
     58   // Already visited?  Bail out, we've likely hit unreachable code.
     59   if (!Visited.insert(V).second)
     60     return false;
     61 
     62   // Note that it is not safe to speculate into a malloc'd region because
     63   // malloc may return null.
     64 
     65   // bitcast instructions are no-ops as far as dereferenceability is concerned.
     66   if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V))
     67     return isDereferenceableAndAlignedPointer(BC->getOperand(0), Align, Size,
     68                                               DL, CtxI, DT, Visited);
     69 
     70   bool CheckForNonNull = false;
     71   APInt KnownDerefBytes(Size.getBitWidth(),
     72                         V->getPointerDereferenceableBytes(DL, CheckForNonNull));
     73   if (KnownDerefBytes.getBoolValue()) {
     74     if (KnownDerefBytes.uge(Size))
     75       if (!CheckForNonNull || isKnownNonZero(V, DL, 0, nullptr, CtxI, DT))
     76         return isAligned(V, Align, DL);
     77   }
     78 
     79   // For GEPs, determine if the indexing lands within the allocated object.
     80   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
     81     const Value *Base = GEP->getPointerOperand();
     82 
     83     APInt Offset(DL.getIndexTypeSizeInBits(GEP->getType()), 0);
     84     if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() ||
     85         !Offset.urem(APInt(Offset.getBitWidth(), Align)).isMinValue())
     86       return false;
     87 
     88     // If the base pointer is dereferenceable for Offset+Size bytes, then the
     89     // GEP (== Base + Offset) is dereferenceable for Size bytes.  If the base
     90     // pointer is aligned to Align bytes, and the Offset is divisible by Align
     91     // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also
     92     // aligned to Align bytes.
     93 
     94     // Offset and Size may have different bit widths if we have visited an
     95     // addrspacecast, so we can't do arithmetic directly on the APInt values.
     96     return isDereferenceableAndAlignedPointer(
     97         Base, Align, Offset + Size.sextOrTrunc(Offset.getBitWidth()),
     98         DL, CtxI, DT, Visited);
     99   }
    100 
    101   // For gc.relocate, look through relocations
    102   if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V))
    103     return isDereferenceableAndAlignedPointer(
    104         RelocateInst->getDerivedPtr(), Align, Size, DL, CtxI, DT, Visited);
    105 
    106   if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V))
    107     return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Align, Size,
    108                                               DL, CtxI, DT, Visited);
    109 
    110   if (auto CS = ImmutableCallSite(V))
    111     if (auto *RP = getArgumentAliasingToReturnedPointer(CS))
    112       return isDereferenceableAndAlignedPointer(RP, Align, Size, DL, CtxI, DT,
    113                                                 Visited);
    114 
    115   // If we don't know, assume the worst.
    116   return false;
    117 }
    118 
    119 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align,
    120                                               const APInt &Size,
    121                                               const DataLayout &DL,
    122                                               const Instruction *CtxI,
    123                                               const DominatorTree *DT) {
    124   SmallPtrSet<const Value *, 32> Visited;
    125   return ::isDereferenceableAndAlignedPointer(V, Align, Size, DL, CtxI, DT,
    126                                               Visited);
    127 }
    128 
    129 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align,
    130                                               const DataLayout &DL,
    131                                               const Instruction *CtxI,
    132                                               const DominatorTree *DT) {
    133   // When dereferenceability information is provided by a dereferenceable
    134   // attribute, we know exactly how many bytes are dereferenceable. If we can
    135   // determine the exact offset to the attributed variable, we can use that
    136   // information here.
    137   Type *VTy = V->getType();
    138   Type *Ty = VTy->getPointerElementType();
    139 
    140   // Require ABI alignment for loads without alignment specification
    141   if (Align == 0)
    142     Align = DL.getABITypeAlignment(Ty);
    143 
    144   if (!Ty->isSized())
    145     return false;
    146 
    147   SmallPtrSet<const Value *, 32> Visited;
    148   return ::isDereferenceableAndAlignedPointer(
    149       V, Align, APInt(DL.getIndexTypeSizeInBits(VTy), DL.getTypeStoreSize(Ty)), DL,
    150       CtxI, DT, Visited);
    151 }
    152 
    153 bool llvm::isDereferenceablePointer(const Value *V, const DataLayout &DL,
    154                                     const Instruction *CtxI,
    155                                     const DominatorTree *DT) {
    156   return isDereferenceableAndAlignedPointer(V, 1, DL, CtxI, DT);
    157 }
    158 
    159 /// Test if A and B will obviously have the same value.
    160 ///
    161 /// This includes recognizing that %t0 and %t1 will have the same
    162 /// value in code like this:
    163 /// \code
    164 ///   %t0 = getelementptr \@a, 0, 3
    165 ///   store i32 0, i32* %t0
    166 ///   %t1 = getelementptr \@a, 0, 3
    167 ///   %t2 = load i32* %t1
    168 /// \endcode
    169 ///
    170 static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
    171   // Test if the values are trivially equivalent.
    172   if (A == B)
    173     return true;
    174 
    175   // Test if the values come from identical arithmetic instructions.
    176   // Use isIdenticalToWhenDefined instead of isIdenticalTo because
    177   // this function is only used when one address use dominates the
    178   // other, which means that they'll always either have the same
    179   // value or one of them will have an undefined value.
    180   if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) ||
    181       isa<GetElementPtrInst>(A))
    182     if (const Instruction *BI = dyn_cast<Instruction>(B))
    183       if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
    184         return true;
    185 
    186   // Otherwise they may not be equivalent.
    187   return false;
    188 }
    189 
    190 /// Check if executing a load of this pointer value cannot trap.
    191 ///
    192 /// If DT and ScanFrom are specified this method performs context-sensitive
    193 /// analysis and returns true if it is safe to load immediately before ScanFrom.
    194 ///
    195 /// If it is not obviously safe to load from the specified pointer, we do
    196 /// a quick local scan of the basic block containing \c ScanFrom, to determine
    197 /// if the address is already accessed.
    198 ///
    199 /// This uses the pointee type to determine how many bytes need to be safe to
    200 /// load from the pointer.
    201 bool llvm::isSafeToLoadUnconditionally(Value *V, unsigned Align,
    202                                        const DataLayout &DL,
    203                                        Instruction *ScanFrom,
    204                                        const DominatorTree *DT) {
    205   // Zero alignment means that the load has the ABI alignment for the target
    206   if (Align == 0)
    207     Align = DL.getABITypeAlignment(V->getType()->getPointerElementType());
    208   assert(isPowerOf2_32(Align));
    209 
    210   // If DT is not specified we can't make context-sensitive query
    211   const Instruction* CtxI = DT ? ScanFrom : nullptr;
    212   if (isDereferenceableAndAlignedPointer(V, Align, DL, CtxI, DT))
    213     return true;
    214 
    215   int64_t ByteOffset = 0;
    216   Value *Base = V;
    217   Base = GetPointerBaseWithConstantOffset(V, ByteOffset, DL);
    218 
    219   if (ByteOffset < 0) // out of bounds
    220     return false;
    221 
    222   Type *BaseType = nullptr;
    223   unsigned BaseAlign = 0;
    224   if (const AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
    225     // An alloca is safe to load from as load as it is suitably aligned.
    226     BaseType = AI->getAllocatedType();
    227     BaseAlign = AI->getAlignment();
    228   } else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
    229     // Global variables are not necessarily safe to load from if they are
    230     // interposed arbitrarily. Their size may change or they may be weak and
    231     // require a test to determine if they were in fact provided.
    232     if (!GV->isInterposable()) {
    233       BaseType = GV->getType()->getElementType();
    234       BaseAlign = GV->getAlignment();
    235     }
    236   }
    237 
    238   PointerType *AddrTy = cast<PointerType>(V->getType());
    239   uint64_t LoadSize = DL.getTypeStoreSize(AddrTy->getElementType());
    240 
    241   // If we found a base allocated type from either an alloca or global variable,
    242   // try to see if we are definitively within the allocated region. We need to
    243   // know the size of the base type and the loaded type to do anything in this
    244   // case.
    245   if (BaseType && BaseType->isSized()) {
    246     if (BaseAlign == 0)
    247       BaseAlign = DL.getPrefTypeAlignment(BaseType);
    248 
    249     if (Align <= BaseAlign) {
    250       // Check if the load is within the bounds of the underlying object.
    251       if (ByteOffset + LoadSize <= DL.getTypeAllocSize(BaseType) &&
    252           ((ByteOffset % Align) == 0))
    253         return true;
    254     }
    255   }
    256 
    257   if (!ScanFrom)
    258     return false;
    259 
    260   // Otherwise, be a little bit aggressive by scanning the local block where we
    261   // want to check to see if the pointer is already being loaded or stored
    262   // from/to.  If so, the previous load or store would have already trapped,
    263   // so there is no harm doing an extra load (also, CSE will later eliminate
    264   // the load entirely).
    265   BasicBlock::iterator BBI = ScanFrom->getIterator(),
    266                        E = ScanFrom->getParent()->begin();
    267 
    268   // We can at least always strip pointer casts even though we can't use the
    269   // base here.
    270   V = V->stripPointerCasts();
    271 
    272   while (BBI != E) {
    273     --BBI;
    274 
    275     // If we see a free or a call which may write to memory (i.e. which might do
    276     // a free) the pointer could be marked invalid.
    277     if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
    278         !isa<DbgInfoIntrinsic>(BBI))
    279       return false;
    280 
    281     Value *AccessedPtr;
    282     unsigned AccessedAlign;
    283     if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
    284       AccessedPtr = LI->getPointerOperand();
    285       AccessedAlign = LI->getAlignment();
    286     } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
    287       AccessedPtr = SI->getPointerOperand();
    288       AccessedAlign = SI->getAlignment();
    289     } else
    290       continue;
    291 
    292     Type *AccessedTy = AccessedPtr->getType()->getPointerElementType();
    293     if (AccessedAlign == 0)
    294       AccessedAlign = DL.getABITypeAlignment(AccessedTy);
    295     if (AccessedAlign < Align)
    296       continue;
    297 
    298     // Handle trivial cases.
    299     if (AccessedPtr == V)
    300       return true;
    301 
    302     if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) &&
    303         LoadSize <= DL.getTypeStoreSize(AccessedTy))
    304       return true;
    305   }
    306   return false;
    307 }
    308 
    309 /// DefMaxInstsToScan - the default number of maximum instructions
    310 /// to scan in the block, used by FindAvailableLoadedValue().
    311 /// FindAvailableLoadedValue() was introduced in r60148, to improve jump
    312 /// threading in part by eliminating partially redundant loads.
    313 /// At that point, the value of MaxInstsToScan was already set to '6'
    314 /// without documented explanation.
    315 cl::opt<unsigned>
    316 llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden,
    317   cl::desc("Use this to specify the default maximum number of instructions "
    318            "to scan backward from a given instruction, when searching for "
    319            "available loaded value"));
    320 
    321 Value *llvm::FindAvailableLoadedValue(LoadInst *Load,
    322                                       BasicBlock *ScanBB,
    323                                       BasicBlock::iterator &ScanFrom,
    324                                       unsigned MaxInstsToScan,
    325                                       AliasAnalysis *AA, bool *IsLoad,
    326                                       unsigned *NumScanedInst) {
    327   // Don't CSE load that is volatile or anything stronger than unordered.
    328   if (!Load->isUnordered())
    329     return nullptr;
    330 
    331   return FindAvailablePtrLoadStore(
    332       Load->getPointerOperand(), Load->getType(), Load->isAtomic(), ScanBB,
    333       ScanFrom, MaxInstsToScan, AA, IsLoad, NumScanedInst);
    334 }
    335 
    336 Value *llvm::FindAvailablePtrLoadStore(Value *Ptr, Type *AccessTy,
    337                                        bool AtLeastAtomic, BasicBlock *ScanBB,
    338                                        BasicBlock::iterator &ScanFrom,
    339                                        unsigned MaxInstsToScan,
    340                                        AliasAnalysis *AA, bool *IsLoadCSE,
    341                                        unsigned *NumScanedInst) {
    342   if (MaxInstsToScan == 0)
    343     MaxInstsToScan = ~0U;
    344 
    345   const DataLayout &DL = ScanBB->getModule()->getDataLayout();
    346 
    347   // Try to get the store size for the type.
    348   uint64_t AccessSize = DL.getTypeStoreSize(AccessTy);
    349 
    350   Value *StrippedPtr = Ptr->stripPointerCasts();
    351 
    352   while (ScanFrom != ScanBB->begin()) {
    353     // We must ignore debug info directives when counting (otherwise they
    354     // would affect codegen).
    355     Instruction *Inst = &*--ScanFrom;
    356     if (isa<DbgInfoIntrinsic>(Inst))
    357       continue;
    358 
    359     // Restore ScanFrom to expected value in case next test succeeds
    360     ScanFrom++;
    361 
    362     if (NumScanedInst)
    363       ++(*NumScanedInst);
    364 
    365     // Don't scan huge blocks.
    366     if (MaxInstsToScan-- == 0)
    367       return nullptr;
    368 
    369     --ScanFrom;
    370     // If this is a load of Ptr, the loaded value is available.
    371     // (This is true even if the load is volatile or atomic, although
    372     // those cases are unlikely.)
    373     if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
    374       if (AreEquivalentAddressValues(
    375               LI->getPointerOperand()->stripPointerCasts(), StrippedPtr) &&
    376           CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) {
    377 
    378         // We can value forward from an atomic to a non-atomic, but not the
    379         // other way around.
    380         if (LI->isAtomic() < AtLeastAtomic)
    381           return nullptr;
    382 
    383         if (IsLoadCSE)
    384             *IsLoadCSE = true;
    385         return LI;
    386       }
    387 
    388     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
    389       Value *StorePtr = SI->getPointerOperand()->stripPointerCasts();
    390       // If this is a store through Ptr, the value is available!
    391       // (This is true even if the store is volatile or atomic, although
    392       // those cases are unlikely.)
    393       if (AreEquivalentAddressValues(StorePtr, StrippedPtr) &&
    394           CastInst::isBitOrNoopPointerCastable(SI->getValueOperand()->getType(),
    395                                                AccessTy, DL)) {
    396 
    397         // We can value forward from an atomic to a non-atomic, but not the
    398         // other way around.
    399         if (SI->isAtomic() < AtLeastAtomic)
    400           return nullptr;
    401 
    402         if (IsLoadCSE)
    403           *IsLoadCSE = false;
    404         return SI->getOperand(0);
    405       }
    406 
    407       // If both StrippedPtr and StorePtr reach all the way to an alloca or
    408       // global and they are different, ignore the store. This is a trivial form
    409       // of alias analysis that is important for reg2mem'd code.
    410       if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) &&
    411           (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) &&
    412           StrippedPtr != StorePtr)
    413         continue;
    414 
    415       // If we have alias analysis and it says the store won't modify the loaded
    416       // value, ignore the store.
    417       if (AA && !isModSet(AA->getModRefInfo(SI, StrippedPtr, AccessSize)))
    418         continue;
    419 
    420       // Otherwise the store that may or may not alias the pointer, bail out.
    421       ++ScanFrom;
    422       return nullptr;
    423     }
    424 
    425     // If this is some other instruction that may clobber Ptr, bail out.
    426     if (Inst->mayWriteToMemory()) {
    427       // If alias analysis claims that it really won't modify the load,
    428       // ignore it.
    429       if (AA && !isModSet(AA->getModRefInfo(Inst, StrippedPtr, AccessSize)))
    430         continue;
    431 
    432       // May modify the pointer, bail out.
    433       ++ScanFrom;
    434       return nullptr;
    435     }
    436   }
    437 
    438   // Got to the start of the block, we didn't find it, but are done for this
    439   // block.
    440   return nullptr;
    441 }
    442