Home | History | Annotate | Download | only in Analysis
      1 //===- PHITransAddr.cpp - PHI Translation for Addresses -------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the PHITransAddr class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Analysis/PHITransAddr.h"
     15 #include "llvm/Analysis/InstructionSimplify.h"
     16 #include "llvm/Analysis/ValueTracking.h"
     17 #include "llvm/Config/llvm-config.h"
     18 #include "llvm/IR/Constants.h"
     19 #include "llvm/IR/Dominators.h"
     20 #include "llvm/IR/Instructions.h"
     21 #include "llvm/Support/Debug.h"
     22 #include "llvm/Support/ErrorHandling.h"
     23 #include "llvm/Support/raw_ostream.h"
     24 using namespace llvm;
     25 
     26 static bool CanPHITrans(Instruction *Inst) {
     27   if (isa<PHINode>(Inst) ||
     28       isa<GetElementPtrInst>(Inst))
     29     return true;
     30 
     31   if (isa<CastInst>(Inst) &&
     32       isSafeToSpeculativelyExecute(Inst))
     33     return true;
     34 
     35   if (Inst->getOpcode() == Instruction::Add &&
     36       isa<ConstantInt>(Inst->getOperand(1)))
     37     return true;
     38 
     39   //   cerr << "MEMDEP: Could not PHI translate: " << *Pointer;
     40   //   if (isa<BitCastInst>(PtrInst) || isa<GetElementPtrInst>(PtrInst))
     41   //     cerr << "OP:\t\t\t\t" << *PtrInst->getOperand(0);
     42   return false;
     43 }
     44 
     45 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
     46 LLVM_DUMP_METHOD void PHITransAddr::dump() const {
     47   if (!Addr) {
     48     dbgs() << "PHITransAddr: null\n";
     49     return;
     50   }
     51   dbgs() << "PHITransAddr: " << *Addr << "\n";
     52   for (unsigned i = 0, e = InstInputs.size(); i != e; ++i)
     53     dbgs() << "  Input #" << i << " is " << *InstInputs[i] << "\n";
     54 }
     55 #endif
     56 
     57 
     58 static bool VerifySubExpr(Value *Expr,
     59                           SmallVectorImpl<Instruction*> &InstInputs) {
     60   // If this is a non-instruction value, there is nothing to do.
     61   Instruction *I = dyn_cast<Instruction>(Expr);
     62   if (!I) return true;
     63 
     64   // If it's an instruction, it is either in Tmp or its operands recursively
     65   // are.
     66   SmallVectorImpl<Instruction *>::iterator Entry = find(InstInputs, I);
     67   if (Entry != InstInputs.end()) {
     68     InstInputs.erase(Entry);
     69     return true;
     70   }
     71 
     72   // If it isn't in the InstInputs list it is a subexpr incorporated into the
     73   // address.  Sanity check that it is phi translatable.
     74   if (!CanPHITrans(I)) {
     75     errs() << "Instruction in PHITransAddr is not phi-translatable:\n";
     76     errs() << *I << '\n';
     77     llvm_unreachable("Either something is missing from InstInputs or "
     78                      "CanPHITrans is wrong.");
     79   }
     80 
     81   // Validate the operands of the instruction.
     82   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
     83     if (!VerifySubExpr(I->getOperand(i), InstInputs))
     84       return false;
     85 
     86   return true;
     87 }
     88 
     89 /// Verify - Check internal consistency of this data structure.  If the
     90 /// structure is valid, it returns true.  If invalid, it prints errors and
     91 /// returns false.
     92 bool PHITransAddr::Verify() const {
     93   if (!Addr) return true;
     94 
     95   SmallVector<Instruction*, 8> Tmp(InstInputs.begin(), InstInputs.end());
     96 
     97   if (!VerifySubExpr(Addr, Tmp))
     98     return false;
     99 
    100   if (!Tmp.empty()) {
    101     errs() << "PHITransAddr contains extra instructions:\n";
    102     for (unsigned i = 0, e = InstInputs.size(); i != e; ++i)
    103       errs() << "  InstInput #" << i << " is " << *InstInputs[i] << "\n";
    104     llvm_unreachable("This is unexpected.");
    105   }
    106 
    107   // a-ok.
    108   return true;
    109 }
    110 
    111 
    112 /// IsPotentiallyPHITranslatable - If this needs PHI translation, return true
    113 /// if we have some hope of doing it.  This should be used as a filter to
    114 /// avoid calling PHITranslateValue in hopeless situations.
    115 bool PHITransAddr::IsPotentiallyPHITranslatable() const {
    116   // If the input value is not an instruction, or if it is not defined in CurBB,
    117   // then we don't need to phi translate it.
    118   Instruction *Inst = dyn_cast<Instruction>(Addr);
    119   return !Inst || CanPHITrans(Inst);
    120 }
    121 
    122 
    123 static void RemoveInstInputs(Value *V,
    124                              SmallVectorImpl<Instruction*> &InstInputs) {
    125   Instruction *I = dyn_cast<Instruction>(V);
    126   if (!I) return;
    127 
    128   // If the instruction is in the InstInputs list, remove it.
    129   SmallVectorImpl<Instruction *>::iterator Entry = find(InstInputs, I);
    130   if (Entry != InstInputs.end()) {
    131     InstInputs.erase(Entry);
    132     return;
    133   }
    134 
    135   assert(!isa<PHINode>(I) && "Error, removing something that isn't an input");
    136 
    137   // Otherwise, it must have instruction inputs itself.  Zap them recursively.
    138   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
    139     if (Instruction *Op = dyn_cast<Instruction>(I->getOperand(i)))
    140       RemoveInstInputs(Op, InstInputs);
    141   }
    142 }
    143 
    144 Value *PHITransAddr::PHITranslateSubExpr(Value *V, BasicBlock *CurBB,
    145                                          BasicBlock *PredBB,
    146                                          const DominatorTree *DT) {
    147   // If this is a non-instruction value, it can't require PHI translation.
    148   Instruction *Inst = dyn_cast<Instruction>(V);
    149   if (!Inst) return V;
    150 
    151   // Determine whether 'Inst' is an input to our PHI translatable expression.
    152   bool isInput = is_contained(InstInputs, Inst);
    153 
    154   // Handle inputs instructions if needed.
    155   if (isInput) {
    156     if (Inst->getParent() != CurBB) {
    157       // If it is an input defined in a different block, then it remains an
    158       // input.
    159       return Inst;
    160     }
    161 
    162     // If 'Inst' is defined in this block and is an input that needs to be phi
    163     // translated, we need to incorporate the value into the expression or fail.
    164 
    165     // In either case, the instruction itself isn't an input any longer.
    166     InstInputs.erase(find(InstInputs, Inst));
    167 
    168     // If this is a PHI, go ahead and translate it.
    169     if (PHINode *PN = dyn_cast<PHINode>(Inst))
    170       return AddAsInput(PN->getIncomingValueForBlock(PredBB));
    171 
    172     // If this is a non-phi value, and it is analyzable, we can incorporate it
    173     // into the expression by making all instruction operands be inputs.
    174     if (!CanPHITrans(Inst))
    175       return nullptr;
    176 
    177     // All instruction operands are now inputs (and of course, they may also be
    178     // defined in this block, so they may need to be phi translated themselves.
    179     for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
    180       if (Instruction *Op = dyn_cast<Instruction>(Inst->getOperand(i)))
    181         InstInputs.push_back(Op);
    182   }
    183 
    184   // Ok, it must be an intermediate result (either because it started that way
    185   // or because we just incorporated it into the expression).  See if its
    186   // operands need to be phi translated, and if so, reconstruct it.
    187 
    188   if (CastInst *Cast = dyn_cast<CastInst>(Inst)) {
    189     if (!isSafeToSpeculativelyExecute(Cast)) return nullptr;
    190     Value *PHIIn = PHITranslateSubExpr(Cast->getOperand(0), CurBB, PredBB, DT);
    191     if (!PHIIn) return nullptr;
    192     if (PHIIn == Cast->getOperand(0))
    193       return Cast;
    194 
    195     // Find an available version of this cast.
    196 
    197     // Constants are trivial to find.
    198     if (Constant *C = dyn_cast<Constant>(PHIIn))
    199       return AddAsInput(ConstantExpr::getCast(Cast->getOpcode(),
    200                                               C, Cast->getType()));
    201 
    202     // Otherwise we have to see if a casted version of the incoming pointer
    203     // is available.  If so, we can use it, otherwise we have to fail.
    204     for (User *U : PHIIn->users()) {
    205       if (CastInst *CastI = dyn_cast<CastInst>(U))
    206         if (CastI->getOpcode() == Cast->getOpcode() &&
    207             CastI->getType() == Cast->getType() &&
    208             (!DT || DT->dominates(CastI->getParent(), PredBB)))
    209           return CastI;
    210     }
    211     return nullptr;
    212   }
    213 
    214   // Handle getelementptr with at least one PHI translatable operand.
    215   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
    216     SmallVector<Value*, 8> GEPOps;
    217     bool AnyChanged = false;
    218     for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) {
    219       Value *GEPOp = PHITranslateSubExpr(GEP->getOperand(i), CurBB, PredBB, DT);
    220       if (!GEPOp) return nullptr;
    221 
    222       AnyChanged |= GEPOp != GEP->getOperand(i);
    223       GEPOps.push_back(GEPOp);
    224     }
    225 
    226     if (!AnyChanged)
    227       return GEP;
    228 
    229     // Simplify the GEP to handle 'gep x, 0' -> x etc.
    230     if (Value *V = SimplifyGEPInst(GEP->getSourceElementType(),
    231                                    GEPOps, {DL, TLI, DT, AC})) {
    232       for (unsigned i = 0, e = GEPOps.size(); i != e; ++i)
    233         RemoveInstInputs(GEPOps[i], InstInputs);
    234 
    235       return AddAsInput(V);
    236     }
    237 
    238     // Scan to see if we have this GEP available.
    239     Value *APHIOp = GEPOps[0];
    240     for (User *U : APHIOp->users()) {
    241       if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U))
    242         if (GEPI->getType() == GEP->getType() &&
    243             GEPI->getNumOperands() == GEPOps.size() &&
    244             GEPI->getParent()->getParent() == CurBB->getParent() &&
    245             (!DT || DT->dominates(GEPI->getParent(), PredBB))) {
    246           if (std::equal(GEPOps.begin(), GEPOps.end(), GEPI->op_begin()))
    247             return GEPI;
    248         }
    249     }
    250     return nullptr;
    251   }
    252 
    253   // Handle add with a constant RHS.
    254   if (Inst->getOpcode() == Instruction::Add &&
    255       isa<ConstantInt>(Inst->getOperand(1))) {
    256     // PHI translate the LHS.
    257     Constant *RHS = cast<ConstantInt>(Inst->getOperand(1));
    258     bool isNSW = cast<BinaryOperator>(Inst)->hasNoSignedWrap();
    259     bool isNUW = cast<BinaryOperator>(Inst)->hasNoUnsignedWrap();
    260 
    261     Value *LHS = PHITranslateSubExpr(Inst->getOperand(0), CurBB, PredBB, DT);
    262     if (!LHS) return nullptr;
    263 
    264     // If the PHI translated LHS is an add of a constant, fold the immediates.
    265     if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(LHS))
    266       if (BOp->getOpcode() == Instruction::Add)
    267         if (ConstantInt *CI = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
    268           LHS = BOp->getOperand(0);
    269           RHS = ConstantExpr::getAdd(RHS, CI);
    270           isNSW = isNUW = false;
    271 
    272           // If the old 'LHS' was an input, add the new 'LHS' as an input.
    273           if (is_contained(InstInputs, BOp)) {
    274             RemoveInstInputs(BOp, InstInputs);
    275             AddAsInput(LHS);
    276           }
    277         }
    278 
    279     // See if the add simplifies away.
    280     if (Value *Res = SimplifyAddInst(LHS, RHS, isNSW, isNUW, {DL, TLI, DT, AC})) {
    281       // If we simplified the operands, the LHS is no longer an input, but Res
    282       // is.
    283       RemoveInstInputs(LHS, InstInputs);
    284       return AddAsInput(Res);
    285     }
    286 
    287     // If we didn't modify the add, just return it.
    288     if (LHS == Inst->getOperand(0) && RHS == Inst->getOperand(1))
    289       return Inst;
    290 
    291     // Otherwise, see if we have this add available somewhere.
    292     for (User *U : LHS->users()) {
    293       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U))
    294         if (BO->getOpcode() == Instruction::Add &&
    295             BO->getOperand(0) == LHS && BO->getOperand(1) == RHS &&
    296             BO->getParent()->getParent() == CurBB->getParent() &&
    297             (!DT || DT->dominates(BO->getParent(), PredBB)))
    298           return BO;
    299     }
    300 
    301     return nullptr;
    302   }
    303 
    304   // Otherwise, we failed.
    305   return nullptr;
    306 }
    307 
    308 
    309 /// PHITranslateValue - PHI translate the current address up the CFG from
    310 /// CurBB to Pred, updating our state to reflect any needed changes.  If
    311 /// 'MustDominate' is true, the translated value must dominate
    312 /// PredBB.  This returns true on failure and sets Addr to null.
    313 bool PHITransAddr::PHITranslateValue(BasicBlock *CurBB, BasicBlock *PredBB,
    314                                      const DominatorTree *DT,
    315                                      bool MustDominate) {
    316   assert(DT || !MustDominate);
    317   assert(Verify() && "Invalid PHITransAddr!");
    318   if (DT && DT->isReachableFromEntry(PredBB))
    319     Addr =
    320         PHITranslateSubExpr(Addr, CurBB, PredBB, MustDominate ? DT : nullptr);
    321   else
    322     Addr = nullptr;
    323   assert(Verify() && "Invalid PHITransAddr!");
    324 
    325   if (MustDominate)
    326     // Make sure the value is live in the predecessor.
    327     if (Instruction *Inst = dyn_cast_or_null<Instruction>(Addr))
    328       if (!DT->dominates(Inst->getParent(), PredBB))
    329         Addr = nullptr;
    330 
    331   return Addr == nullptr;
    332 }
    333 
    334 /// PHITranslateWithInsertion - PHI translate this value into the specified
    335 /// predecessor block, inserting a computation of the value if it is
    336 /// unavailable.
    337 ///
    338 /// All newly created instructions are added to the NewInsts list.  This
    339 /// returns null on failure.
    340 ///
    341 Value *PHITransAddr::
    342 PHITranslateWithInsertion(BasicBlock *CurBB, BasicBlock *PredBB,
    343                           const DominatorTree &DT,
    344                           SmallVectorImpl<Instruction*> &NewInsts) {
    345   unsigned NISize = NewInsts.size();
    346 
    347   // Attempt to PHI translate with insertion.
    348   Addr = InsertPHITranslatedSubExpr(Addr, CurBB, PredBB, DT, NewInsts);
    349 
    350   // If successful, return the new value.
    351   if (Addr) return Addr;
    352 
    353   // If not, destroy any intermediate instructions inserted.
    354   while (NewInsts.size() != NISize)
    355     NewInsts.pop_back_val()->eraseFromParent();
    356   return nullptr;
    357 }
    358 
    359 
    360 /// InsertPHITranslatedPointer - Insert a computation of the PHI translated
    361 /// version of 'V' for the edge PredBB->CurBB into the end of the PredBB
    362 /// block.  All newly created instructions are added to the NewInsts list.
    363 /// This returns null on failure.
    364 ///
    365 Value *PHITransAddr::
    366 InsertPHITranslatedSubExpr(Value *InVal, BasicBlock *CurBB,
    367                            BasicBlock *PredBB, const DominatorTree &DT,
    368                            SmallVectorImpl<Instruction*> &NewInsts) {
    369   // See if we have a version of this value already available and dominating
    370   // PredBB.  If so, there is no need to insert a new instance of it.
    371   PHITransAddr Tmp(InVal, DL, AC);
    372   if (!Tmp.PHITranslateValue(CurBB, PredBB, &DT, /*MustDominate=*/true))
    373     return Tmp.getAddr();
    374 
    375   // We don't need to PHI translate values which aren't instructions.
    376   auto *Inst = dyn_cast<Instruction>(InVal);
    377   if (!Inst)
    378     return nullptr;
    379 
    380   // Handle cast of PHI translatable value.
    381   if (CastInst *Cast = dyn_cast<CastInst>(Inst)) {
    382     if (!isSafeToSpeculativelyExecute(Cast)) return nullptr;
    383     Value *OpVal = InsertPHITranslatedSubExpr(Cast->getOperand(0),
    384                                               CurBB, PredBB, DT, NewInsts);
    385     if (!OpVal) return nullptr;
    386 
    387     // Otherwise insert a cast at the end of PredBB.
    388     CastInst *New = CastInst::Create(Cast->getOpcode(), OpVal, InVal->getType(),
    389                                      InVal->getName() + ".phi.trans.insert",
    390                                      PredBB->getTerminator());
    391     New->setDebugLoc(Inst->getDebugLoc());
    392     NewInsts.push_back(New);
    393     return New;
    394   }
    395 
    396   // Handle getelementptr with at least one PHI operand.
    397   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
    398     SmallVector<Value*, 8> GEPOps;
    399     BasicBlock *CurBB = GEP->getParent();
    400     for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) {
    401       Value *OpVal = InsertPHITranslatedSubExpr(GEP->getOperand(i),
    402                                                 CurBB, PredBB, DT, NewInsts);
    403       if (!OpVal) return nullptr;
    404       GEPOps.push_back(OpVal);
    405     }
    406 
    407     GetElementPtrInst *Result = GetElementPtrInst::Create(
    408         GEP->getSourceElementType(), GEPOps[0], makeArrayRef(GEPOps).slice(1),
    409         InVal->getName() + ".phi.trans.insert", PredBB->getTerminator());
    410     Result->setDebugLoc(Inst->getDebugLoc());
    411     Result->setIsInBounds(GEP->isInBounds());
    412     NewInsts.push_back(Result);
    413     return Result;
    414   }
    415 
    416 #if 0
    417   // FIXME: This code works, but it is unclear that we actually want to insert
    418   // a big chain of computation in order to make a value available in a block.
    419   // This needs to be evaluated carefully to consider its cost trade offs.
    420 
    421   // Handle add with a constant RHS.
    422   if (Inst->getOpcode() == Instruction::Add &&
    423       isa<ConstantInt>(Inst->getOperand(1))) {
    424     // PHI translate the LHS.
    425     Value *OpVal = InsertPHITranslatedSubExpr(Inst->getOperand(0),
    426                                               CurBB, PredBB, DT, NewInsts);
    427     if (OpVal == 0) return 0;
    428 
    429     BinaryOperator *Res = BinaryOperator::CreateAdd(OpVal, Inst->getOperand(1),
    430                                            InVal->getName()+".phi.trans.insert",
    431                                                     PredBB->getTerminator());
    432     Res->setHasNoSignedWrap(cast<BinaryOperator>(Inst)->hasNoSignedWrap());
    433     Res->setHasNoUnsignedWrap(cast<BinaryOperator>(Inst)->hasNoUnsignedWrap());
    434     NewInsts.push_back(Res);
    435     return Res;
    436   }
    437 #endif
    438 
    439   return nullptr;
    440 }
    441