Home | History | Annotate | Download | only in GlobalISel
      1 //===- lib/CodeGen/GlobalISel/LegalizerInfo.cpp - Legalizer ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Implement an interface to specify and query how an illegal operation on a
     11 // given type should be expanded.
     12 //
     13 // Issues to be resolved:
     14 //   + Make it fast.
     15 //   + Support weird types like i3, <7 x i3>, ...
     16 //   + Operations with more than one type (ICMP, CMPXCHG, intrinsics, ...)
     17 //
     18 //===----------------------------------------------------------------------===//
     19 
     20 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
     21 #include "llvm/ADT/SmallBitVector.h"
     22 #include "llvm/CodeGen/MachineInstr.h"
     23 #include "llvm/CodeGen/MachineOperand.h"
     24 #include "llvm/CodeGen/MachineRegisterInfo.h"
     25 #include "llvm/CodeGen/TargetOpcodes.h"
     26 #include "llvm/MC/MCInstrDesc.h"
     27 #include "llvm/MC/MCInstrInfo.h"
     28 #include "llvm/Support/Debug.h"
     29 #include "llvm/Support/ErrorHandling.h"
     30 #include "llvm/Support/LowLevelTypeImpl.h"
     31 #include "llvm/Support/MathExtras.h"
     32 #include <algorithm>
     33 #include <map>
     34 
     35 using namespace llvm;
     36 using namespace LegalizeActions;
     37 
     38 #define DEBUG_TYPE "legalizer-info"
     39 
     40 cl::opt<bool> llvm::DisableGISelLegalityCheck(
     41     "disable-gisel-legality-check",
     42     cl::desc("Don't verify that MIR is fully legal between GlobalISel passes"),
     43     cl::Hidden);
     44 
     45 raw_ostream &LegalityQuery::print(raw_ostream &OS) const {
     46   OS << Opcode << ", Tys={";
     47   for (const auto &Type : Types) {
     48     OS << Type << ", ";
     49   }
     50   OS << "}, Opcode=";
     51 
     52   OS << Opcode << ", MMOs={";
     53   for (const auto &MMODescr : MMODescrs) {
     54     OS << MMODescr.Size << ", ";
     55   }
     56   OS << "}";
     57 
     58   return OS;
     59 }
     60 
     61 LegalizeActionStep LegalizeRuleSet::apply(const LegalityQuery &Query) const {
     62   LLVM_DEBUG(dbgs() << "Applying legalizer ruleset to: "; Query.print(dbgs());
     63              dbgs() << "\n");
     64   if (Rules.empty()) {
     65     LLVM_DEBUG(dbgs() << ".. fallback to legacy rules (no rules defined)\n");
     66     return {LegalizeAction::UseLegacyRules, 0, LLT{}};
     67   }
     68   for (const auto &Rule : Rules) {
     69     if (Rule.match(Query)) {
     70       LLVM_DEBUG(dbgs() << ".. match\n");
     71       std::pair<unsigned, LLT> Mutation = Rule.determineMutation(Query);
     72       LLVM_DEBUG(dbgs() << ".. .. " << (unsigned)Rule.getAction() << ", "
     73                         << Mutation.first << ", " << Mutation.second << "\n");
     74       assert((Query.Types[Mutation.first] != Mutation.second ||
     75               Rule.getAction() == Lower ||
     76               Rule.getAction() == MoreElements ||
     77               Rule.getAction() == FewerElements) &&
     78              "Simple loop detected");
     79       return {Rule.getAction(), Mutation.first, Mutation.second};
     80     } else
     81       LLVM_DEBUG(dbgs() << ".. no match\n");
     82   }
     83   LLVM_DEBUG(dbgs() << ".. unsupported\n");
     84   return {LegalizeAction::Unsupported, 0, LLT{}};
     85 }
     86 
     87 bool LegalizeRuleSet::verifyTypeIdxsCoverage(unsigned NumTypeIdxs) const {
     88 #ifndef NDEBUG
     89   if (Rules.empty()) {
     90     LLVM_DEBUG(
     91         dbgs() << ".. type index coverage check SKIPPED: no rules defined\n");
     92     return true;
     93   }
     94   const int64_t FirstUncovered = TypeIdxsCovered.find_first_unset();
     95   if (FirstUncovered < 0) {
     96     LLVM_DEBUG(dbgs() << ".. type index coverage check SKIPPED:"
     97                          " user-defined predicate detected\n");
     98     return true;
     99   }
    100   const bool AllCovered = (FirstUncovered >= NumTypeIdxs);
    101   LLVM_DEBUG(dbgs() << ".. the first uncovered type index: " << FirstUncovered
    102                     << ", " << (AllCovered ? "OK" : "FAIL") << "\n");
    103   return AllCovered;
    104 #else
    105   return true;
    106 #endif
    107 }
    108 
    109 LegalizerInfo::LegalizerInfo() : TablesInitialized(false) {
    110   // Set defaults.
    111   // FIXME: these two (G_ANYEXT and G_TRUNC?) can be legalized to the
    112   // fundamental load/store Jakob proposed. Once loads & stores are supported.
    113   setScalarAction(TargetOpcode::G_ANYEXT, 1, {{1, Legal}});
    114   setScalarAction(TargetOpcode::G_ZEXT, 1, {{1, Legal}});
    115   setScalarAction(TargetOpcode::G_SEXT, 1, {{1, Legal}});
    116   setScalarAction(TargetOpcode::G_TRUNC, 0, {{1, Legal}});
    117   setScalarAction(TargetOpcode::G_TRUNC, 1, {{1, Legal}});
    118 
    119   setScalarAction(TargetOpcode::G_INTRINSIC, 0, {{1, Legal}});
    120   setScalarAction(TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS, 0, {{1, Legal}});
    121 
    122   setLegalizeScalarToDifferentSizeStrategy(
    123       TargetOpcode::G_IMPLICIT_DEF, 0, narrowToSmallerAndUnsupportedIfTooSmall);
    124   setLegalizeScalarToDifferentSizeStrategy(
    125       TargetOpcode::G_ADD, 0, widenToLargerTypesAndNarrowToLargest);
    126   setLegalizeScalarToDifferentSizeStrategy(
    127       TargetOpcode::G_OR, 0, widenToLargerTypesAndNarrowToLargest);
    128   setLegalizeScalarToDifferentSizeStrategy(
    129       TargetOpcode::G_LOAD, 0, narrowToSmallerAndUnsupportedIfTooSmall);
    130   setLegalizeScalarToDifferentSizeStrategy(
    131       TargetOpcode::G_STORE, 0, narrowToSmallerAndUnsupportedIfTooSmall);
    132 
    133   setLegalizeScalarToDifferentSizeStrategy(
    134       TargetOpcode::G_BRCOND, 0, widenToLargerTypesUnsupportedOtherwise);
    135   setLegalizeScalarToDifferentSizeStrategy(
    136       TargetOpcode::G_INSERT, 0, narrowToSmallerAndUnsupportedIfTooSmall);
    137   setLegalizeScalarToDifferentSizeStrategy(
    138       TargetOpcode::G_EXTRACT, 0, narrowToSmallerAndUnsupportedIfTooSmall);
    139   setLegalizeScalarToDifferentSizeStrategy(
    140       TargetOpcode::G_EXTRACT, 1, narrowToSmallerAndUnsupportedIfTooSmall);
    141   setScalarAction(TargetOpcode::G_FNEG, 0, {{1, Lower}});
    142 }
    143 
    144 void LegalizerInfo::computeTables() {
    145   assert(TablesInitialized == false);
    146 
    147   for (unsigned OpcodeIdx = 0; OpcodeIdx <= LastOp - FirstOp; ++OpcodeIdx) {
    148     const unsigned Opcode = FirstOp + OpcodeIdx;
    149     for (unsigned TypeIdx = 0; TypeIdx != SpecifiedActions[OpcodeIdx].size();
    150          ++TypeIdx) {
    151       // 0. Collect information specified through the setAction API, i.e.
    152       // for specific bit sizes.
    153       // For scalar types:
    154       SizeAndActionsVec ScalarSpecifiedActions;
    155       // For pointer types:
    156       std::map<uint16_t, SizeAndActionsVec> AddressSpace2SpecifiedActions;
    157       // For vector types:
    158       std::map<uint16_t, SizeAndActionsVec> ElemSize2SpecifiedActions;
    159       for (auto LLT2Action : SpecifiedActions[OpcodeIdx][TypeIdx]) {
    160         const LLT Type = LLT2Action.first;
    161         const LegalizeAction Action = LLT2Action.second;
    162 
    163         auto SizeAction = std::make_pair(Type.getSizeInBits(), Action);
    164         if (Type.isPointer())
    165           AddressSpace2SpecifiedActions[Type.getAddressSpace()].push_back(
    166               SizeAction);
    167         else if (Type.isVector())
    168           ElemSize2SpecifiedActions[Type.getElementType().getSizeInBits()]
    169               .push_back(SizeAction);
    170         else
    171           ScalarSpecifiedActions.push_back(SizeAction);
    172       }
    173 
    174       // 1. Handle scalar types
    175       {
    176         // Decide how to handle bit sizes for which no explicit specification
    177         // was given.
    178         SizeChangeStrategy S = &unsupportedForDifferentSizes;
    179         if (TypeIdx < ScalarSizeChangeStrategies[OpcodeIdx].size() &&
    180             ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx] != nullptr)
    181           S = ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx];
    182         llvm::sort(ScalarSpecifiedActions.begin(),
    183                    ScalarSpecifiedActions.end());
    184         checkPartialSizeAndActionsVector(ScalarSpecifiedActions);
    185         setScalarAction(Opcode, TypeIdx, S(ScalarSpecifiedActions));
    186       }
    187 
    188       // 2. Handle pointer types
    189       for (auto PointerSpecifiedActions : AddressSpace2SpecifiedActions) {
    190         llvm::sort(PointerSpecifiedActions.second.begin(),
    191                    PointerSpecifiedActions.second.end());
    192         checkPartialSizeAndActionsVector(PointerSpecifiedActions.second);
    193         // For pointer types, we assume that there isn't a meaningfull way
    194         // to change the number of bits used in the pointer.
    195         setPointerAction(
    196             Opcode, TypeIdx, PointerSpecifiedActions.first,
    197             unsupportedForDifferentSizes(PointerSpecifiedActions.second));
    198       }
    199 
    200       // 3. Handle vector types
    201       SizeAndActionsVec ElementSizesSeen;
    202       for (auto VectorSpecifiedActions : ElemSize2SpecifiedActions) {
    203         llvm::sort(VectorSpecifiedActions.second.begin(),
    204                    VectorSpecifiedActions.second.end());
    205         const uint16_t ElementSize = VectorSpecifiedActions.first;
    206         ElementSizesSeen.push_back({ElementSize, Legal});
    207         checkPartialSizeAndActionsVector(VectorSpecifiedActions.second);
    208         // For vector types, we assume that the best way to adapt the number
    209         // of elements is to the next larger number of elements type for which
    210         // the vector type is legal, unless there is no such type. In that case,
    211         // legalize towards a vector type with a smaller number of elements.
    212         SizeAndActionsVec NumElementsActions;
    213         for (SizeAndAction BitsizeAndAction : VectorSpecifiedActions.second) {
    214           assert(BitsizeAndAction.first % ElementSize == 0);
    215           const uint16_t NumElements = BitsizeAndAction.first / ElementSize;
    216           NumElementsActions.push_back({NumElements, BitsizeAndAction.second});
    217         }
    218         setVectorNumElementAction(
    219             Opcode, TypeIdx, ElementSize,
    220             moreToWiderTypesAndLessToWidest(NumElementsActions));
    221       }
    222       llvm::sort(ElementSizesSeen.begin(), ElementSizesSeen.end());
    223       SizeChangeStrategy VectorElementSizeChangeStrategy =
    224           &unsupportedForDifferentSizes;
    225       if (TypeIdx < VectorElementSizeChangeStrategies[OpcodeIdx].size() &&
    226           VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx] != nullptr)
    227         VectorElementSizeChangeStrategy =
    228             VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx];
    229       setScalarInVectorAction(
    230           Opcode, TypeIdx, VectorElementSizeChangeStrategy(ElementSizesSeen));
    231     }
    232   }
    233 
    234   TablesInitialized = true;
    235 }
    236 
    237 // FIXME: inefficient implementation for now. Without ComputeValueVTs we're
    238 // probably going to need specialized lookup structures for various types before
    239 // we have any hope of doing well with something like <13 x i3>. Even the common
    240 // cases should do better than what we have now.
    241 std::pair<LegalizeAction, LLT>
    242 LegalizerInfo::getAspectAction(const InstrAspect &Aspect) const {
    243   assert(TablesInitialized && "backend forgot to call computeTables");
    244   // These *have* to be implemented for now, they're the fundamental basis of
    245   // how everything else is transformed.
    246   if (Aspect.Type.isScalar() || Aspect.Type.isPointer())
    247     return findScalarLegalAction(Aspect);
    248   assert(Aspect.Type.isVector());
    249   return findVectorLegalAction(Aspect);
    250 }
    251 
    252 /// Helper function to get LLT for the given type index.
    253 static LLT getTypeFromTypeIdx(const MachineInstr &MI,
    254                               const MachineRegisterInfo &MRI, unsigned OpIdx,
    255                               unsigned TypeIdx) {
    256   assert(TypeIdx < MI.getNumOperands() && "Unexpected TypeIdx");
    257   // G_UNMERGE_VALUES has variable number of operands, but there is only
    258   // one source type and one destination type as all destinations must be the
    259   // same type. So, get the last operand if TypeIdx == 1.
    260   if (MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && TypeIdx == 1)
    261     return MRI.getType(MI.getOperand(MI.getNumOperands() - 1).getReg());
    262   return MRI.getType(MI.getOperand(OpIdx).getReg());
    263 }
    264 
    265 unsigned LegalizerInfo::getOpcodeIdxForOpcode(unsigned Opcode) const {
    266   assert(Opcode >= FirstOp && Opcode <= LastOp && "Unsupported opcode");
    267   return Opcode - FirstOp;
    268 }
    269 
    270 unsigned LegalizerInfo::getActionDefinitionsIdx(unsigned Opcode) const {
    271   unsigned OpcodeIdx = getOpcodeIdxForOpcode(Opcode);
    272   if (unsigned Alias = RulesForOpcode[OpcodeIdx].getAlias()) {
    273     LLVM_DEBUG(dbgs() << ".. opcode " << Opcode << " is aliased to " << Alias
    274                       << "\n");
    275     OpcodeIdx = getOpcodeIdxForOpcode(Alias);
    276     LLVM_DEBUG(dbgs() << ".. opcode " << Alias << " is aliased to "
    277                       << RulesForOpcode[OpcodeIdx].getAlias() << "\n");
    278     assert(RulesForOpcode[OpcodeIdx].getAlias() == 0 && "Cannot chain aliases");
    279   }
    280 
    281   return OpcodeIdx;
    282 }
    283 
    284 const LegalizeRuleSet &
    285 LegalizerInfo::getActionDefinitions(unsigned Opcode) const {
    286   unsigned OpcodeIdx = getActionDefinitionsIdx(Opcode);
    287   return RulesForOpcode[OpcodeIdx];
    288 }
    289 
    290 LegalizeRuleSet &LegalizerInfo::getActionDefinitionsBuilder(unsigned Opcode) {
    291   unsigned OpcodeIdx = getActionDefinitionsIdx(Opcode);
    292   auto &Result = RulesForOpcode[OpcodeIdx];
    293   assert(!Result.isAliasedByAnother() && "Modifying this opcode will modify aliases");
    294   return Result;
    295 }
    296 
    297 LegalizeRuleSet &LegalizerInfo::getActionDefinitionsBuilder(
    298     std::initializer_list<unsigned> Opcodes) {
    299   unsigned Representative = *Opcodes.begin();
    300 
    301   assert(Opcodes.begin() != Opcodes.end() &&
    302          Opcodes.begin() + 1 != Opcodes.end() &&
    303          "Initializer list must have at least two opcodes");
    304 
    305   for (auto I = Opcodes.begin() + 1, E = Opcodes.end(); I != E; ++I)
    306     aliasActionDefinitions(Representative, *I);
    307 
    308   auto &Return = getActionDefinitionsBuilder(Representative);
    309   Return.setIsAliasedByAnother();
    310   return Return;
    311 }
    312 
    313 void LegalizerInfo::aliasActionDefinitions(unsigned OpcodeTo,
    314                                            unsigned OpcodeFrom) {
    315   assert(OpcodeTo != OpcodeFrom && "Cannot alias to self");
    316   assert(OpcodeTo >= FirstOp && OpcodeTo <= LastOp && "Unsupported opcode");
    317   const unsigned OpcodeFromIdx = getOpcodeIdxForOpcode(OpcodeFrom);
    318   RulesForOpcode[OpcodeFromIdx].aliasTo(OpcodeTo);
    319 }
    320 
    321 LegalizeActionStep
    322 LegalizerInfo::getAction(const LegalityQuery &Query) const {
    323   LegalizeActionStep Step = getActionDefinitions(Query.Opcode).apply(Query);
    324   if (Step.Action != LegalizeAction::UseLegacyRules) {
    325     return Step;
    326   }
    327 
    328   for (unsigned i = 0; i < Query.Types.size(); ++i) {
    329     auto Action = getAspectAction({Query.Opcode, i, Query.Types[i]});
    330     if (Action.first != Legal) {
    331       LLVM_DEBUG(dbgs() << ".. (legacy) Type " << i
    332                         << " Action=" << (unsigned)Action.first << ", "
    333                         << Action.second << "\n");
    334       return {Action.first, i, Action.second};
    335     } else
    336       LLVM_DEBUG(dbgs() << ".. (legacy) Type " << i << " Legal\n");
    337   }
    338   LLVM_DEBUG(dbgs() << ".. (legacy) Legal\n");
    339   return {Legal, 0, LLT{}};
    340 }
    341 
    342 LegalizeActionStep
    343 LegalizerInfo::getAction(const MachineInstr &MI,
    344                          const MachineRegisterInfo &MRI) const {
    345   SmallVector<LLT, 2> Types;
    346   SmallBitVector SeenTypes(8);
    347   const MCOperandInfo *OpInfo = MI.getDesc().OpInfo;
    348   // FIXME: probably we'll need to cache the results here somehow?
    349   for (unsigned i = 0; i < MI.getDesc().getNumOperands(); ++i) {
    350     if (!OpInfo[i].isGenericType())
    351       continue;
    352 
    353     // We must only record actions once for each TypeIdx; otherwise we'd
    354     // try to legalize operands multiple times down the line.
    355     unsigned TypeIdx = OpInfo[i].getGenericTypeIndex();
    356     if (SeenTypes[TypeIdx])
    357       continue;
    358 
    359     SeenTypes.set(TypeIdx);
    360 
    361     LLT Ty = getTypeFromTypeIdx(MI, MRI, i, TypeIdx);
    362     Types.push_back(Ty);
    363   }
    364 
    365   SmallVector<LegalityQuery::MemDesc, 2> MemDescrs;
    366   for (const auto &MMO : MI.memoperands())
    367     MemDescrs.push_back(
    368         {MMO->getSize() /* in bytes */ * 8, MMO->getOrdering()});
    369 
    370   return getAction({MI.getOpcode(), Types, MemDescrs});
    371 }
    372 
    373 bool LegalizerInfo::isLegal(const MachineInstr &MI,
    374                             const MachineRegisterInfo &MRI) const {
    375   return getAction(MI, MRI).Action == Legal;
    376 }
    377 
    378 bool LegalizerInfo::legalizeCustom(MachineInstr &MI, MachineRegisterInfo &MRI,
    379                                    MachineIRBuilder &MIRBuilder) const {
    380   return false;
    381 }
    382 
    383 LegalizerInfo::SizeAndActionsVec
    384 LegalizerInfo::increaseToLargerTypesAndDecreaseToLargest(
    385     const SizeAndActionsVec &v, LegalizeAction IncreaseAction,
    386     LegalizeAction DecreaseAction) {
    387   SizeAndActionsVec result;
    388   unsigned LargestSizeSoFar = 0;
    389   if (v.size() >= 1 && v[0].first != 1)
    390     result.push_back({1, IncreaseAction});
    391   for (size_t i = 0; i < v.size(); ++i) {
    392     result.push_back(v[i]);
    393     LargestSizeSoFar = v[i].first;
    394     if (i + 1 < v.size() && v[i + 1].first != v[i].first + 1) {
    395       result.push_back({LargestSizeSoFar + 1, IncreaseAction});
    396       LargestSizeSoFar = v[i].first + 1;
    397     }
    398   }
    399   result.push_back({LargestSizeSoFar + 1, DecreaseAction});
    400   return result;
    401 }
    402 
    403 LegalizerInfo::SizeAndActionsVec
    404 LegalizerInfo::decreaseToSmallerTypesAndIncreaseToSmallest(
    405     const SizeAndActionsVec &v, LegalizeAction DecreaseAction,
    406     LegalizeAction IncreaseAction) {
    407   SizeAndActionsVec result;
    408   if (v.size() == 0 || v[0].first != 1)
    409     result.push_back({1, IncreaseAction});
    410   for (size_t i = 0; i < v.size(); ++i) {
    411     result.push_back(v[i]);
    412     if (i + 1 == v.size() || v[i + 1].first != v[i].first + 1) {
    413       result.push_back({v[i].first + 1, DecreaseAction});
    414     }
    415   }
    416   return result;
    417 }
    418 
    419 LegalizerInfo::SizeAndAction
    420 LegalizerInfo::findAction(const SizeAndActionsVec &Vec, const uint32_t Size) {
    421   assert(Size >= 1);
    422   // Find the last element in Vec that has a bitsize equal to or smaller than
    423   // the requested bit size.
    424   // That is the element just before the first element that is bigger than Size.
    425   auto VecIt = std::upper_bound(
    426       Vec.begin(), Vec.end(), Size,
    427       [](const uint32_t Size, const SizeAndAction lhs) -> bool {
    428         return Size < lhs.first;
    429       });
    430   assert(VecIt != Vec.begin() && "Does Vec not start with size 1?");
    431   --VecIt;
    432   int VecIdx = VecIt - Vec.begin();
    433 
    434   LegalizeAction Action = Vec[VecIdx].second;
    435   switch (Action) {
    436   case Legal:
    437   case Lower:
    438   case Libcall:
    439   case Custom:
    440     return {Size, Action};
    441   case FewerElements:
    442     // FIXME: is this special case still needed and correct?
    443     // Special case for scalarization:
    444     if (Vec == SizeAndActionsVec({{1, FewerElements}}))
    445       return {1, FewerElements};
    446     LLVM_FALLTHROUGH;
    447   case NarrowScalar: {
    448     // The following needs to be a loop, as for now, we do allow needing to
    449     // go over "Unsupported" bit sizes before finding a legalizable bit size.
    450     // e.g. (s8, WidenScalar), (s9, Unsupported), (s32, Legal). if Size==8,
    451     // we need to iterate over s9, and then to s32 to return (s32, Legal).
    452     // If we want to get rid of the below loop, we should have stronger asserts
    453     // when building the SizeAndActionsVecs, probably not allowing
    454     // "Unsupported" unless at the ends of the vector.
    455     for (int i = VecIdx - 1; i >= 0; --i)
    456       if (!needsLegalizingToDifferentSize(Vec[i].second) &&
    457           Vec[i].second != Unsupported)
    458         return {Vec[i].first, Action};
    459     llvm_unreachable("");
    460   }
    461   case WidenScalar:
    462   case MoreElements: {
    463     // See above, the following needs to be a loop, at least for now.
    464     for (std::size_t i = VecIdx + 1; i < Vec.size(); ++i)
    465       if (!needsLegalizingToDifferentSize(Vec[i].second) &&
    466           Vec[i].second != Unsupported)
    467         return {Vec[i].first, Action};
    468     llvm_unreachable("");
    469   }
    470   case Unsupported:
    471     return {Size, Unsupported};
    472   case NotFound:
    473   case UseLegacyRules:
    474     llvm_unreachable("NotFound");
    475   }
    476   llvm_unreachable("Action has an unknown enum value");
    477 }
    478 
    479 std::pair<LegalizeAction, LLT>
    480 LegalizerInfo::findScalarLegalAction(const InstrAspect &Aspect) const {
    481   assert(Aspect.Type.isScalar() || Aspect.Type.isPointer());
    482   if (Aspect.Opcode < FirstOp || Aspect.Opcode > LastOp)
    483     return {NotFound, LLT()};
    484   const unsigned OpcodeIdx = getOpcodeIdxForOpcode(Aspect.Opcode);
    485   if (Aspect.Type.isPointer() &&
    486       AddrSpace2PointerActions[OpcodeIdx].find(Aspect.Type.getAddressSpace()) ==
    487           AddrSpace2PointerActions[OpcodeIdx].end()) {
    488     return {NotFound, LLT()};
    489   }
    490   const SmallVector<SizeAndActionsVec, 1> &Actions =
    491       Aspect.Type.isPointer()
    492           ? AddrSpace2PointerActions[OpcodeIdx]
    493                 .find(Aspect.Type.getAddressSpace())
    494                 ->second
    495           : ScalarActions[OpcodeIdx];
    496   if (Aspect.Idx >= Actions.size())
    497     return {NotFound, LLT()};
    498   const SizeAndActionsVec &Vec = Actions[Aspect.Idx];
    499   // FIXME: speed up this search, e.g. by using a results cache for repeated
    500   // queries?
    501   auto SizeAndAction = findAction(Vec, Aspect.Type.getSizeInBits());
    502   return {SizeAndAction.second,
    503           Aspect.Type.isScalar() ? LLT::scalar(SizeAndAction.first)
    504                                  : LLT::pointer(Aspect.Type.getAddressSpace(),
    505                                                 SizeAndAction.first)};
    506 }
    507 
    508 std::pair<LegalizeAction, LLT>
    509 LegalizerInfo::findVectorLegalAction(const InstrAspect &Aspect) const {
    510   assert(Aspect.Type.isVector());
    511   // First legalize the vector element size, then legalize the number of
    512   // lanes in the vector.
    513   if (Aspect.Opcode < FirstOp || Aspect.Opcode > LastOp)
    514     return {NotFound, Aspect.Type};
    515   const unsigned OpcodeIdx = getOpcodeIdxForOpcode(Aspect.Opcode);
    516   const unsigned TypeIdx = Aspect.Idx;
    517   if (TypeIdx >= ScalarInVectorActions[OpcodeIdx].size())
    518     return {NotFound, Aspect.Type};
    519   const SizeAndActionsVec &ElemSizeVec =
    520       ScalarInVectorActions[OpcodeIdx][TypeIdx];
    521 
    522   LLT IntermediateType;
    523   auto ElementSizeAndAction =
    524       findAction(ElemSizeVec, Aspect.Type.getScalarSizeInBits());
    525   IntermediateType =
    526       LLT::vector(Aspect.Type.getNumElements(), ElementSizeAndAction.first);
    527   if (ElementSizeAndAction.second != Legal)
    528     return {ElementSizeAndAction.second, IntermediateType};
    529 
    530   auto i = NumElements2Actions[OpcodeIdx].find(
    531       IntermediateType.getScalarSizeInBits());
    532   if (i == NumElements2Actions[OpcodeIdx].end()) {
    533     return {NotFound, IntermediateType};
    534   }
    535   const SizeAndActionsVec &NumElementsVec = (*i).second[TypeIdx];
    536   auto NumElementsAndAction =
    537       findAction(NumElementsVec, IntermediateType.getNumElements());
    538   return {NumElementsAndAction.second,
    539           LLT::vector(NumElementsAndAction.first,
    540                       IntermediateType.getScalarSizeInBits())};
    541 }
    542 
    543 /// \pre Type indices of every opcode form a dense set starting from 0.
    544 void LegalizerInfo::verify(const MCInstrInfo &MII) const {
    545 #ifndef NDEBUG
    546   std::vector<unsigned> FailedOpcodes;
    547   for (unsigned Opcode = FirstOp; Opcode <= LastOp; ++Opcode) {
    548     const MCInstrDesc &MCID = MII.get(Opcode);
    549     const unsigned NumTypeIdxs = std::accumulate(
    550         MCID.opInfo_begin(), MCID.opInfo_end(), 0U,
    551         [](unsigned Acc, const MCOperandInfo &OpInfo) {
    552           return OpInfo.isGenericType()
    553                      ? std::max(OpInfo.getGenericTypeIndex() + 1U, Acc)
    554                      : Acc;
    555         });
    556     LLVM_DEBUG(dbgs() << MII.getName(Opcode) << " (opcode " << Opcode
    557                       << "): " << NumTypeIdxs << " type ind"
    558                       << (NumTypeIdxs == 1 ? "ex" : "ices") << "\n");
    559     const LegalizeRuleSet &RuleSet = getActionDefinitions(Opcode);
    560     if (!RuleSet.verifyTypeIdxsCoverage(NumTypeIdxs))
    561       FailedOpcodes.push_back(Opcode);
    562   }
    563   if (!FailedOpcodes.empty()) {
    564     errs() << "The following opcodes have ill-defined legalization rules:";
    565     for (unsigned Opcode : FailedOpcodes)
    566       errs() << " " << MII.getName(Opcode);
    567     errs() << "\n";
    568 
    569     report_fatal_error("ill-defined LegalizerInfo"
    570                        ", try -debug-only=legalizer-info for details");
    571   }
    572 #endif
    573 }
    574 
    575 #ifndef NDEBUG
    576 // FIXME: This should be in the MachineVerifier, but it can't use the
    577 // LegalizerInfo as it's currently in the separate GlobalISel library.
    578 // Note that RegBankSelected property already checked in the verifier
    579 // has the same layering problem, but we only use inline methods so
    580 // end up not needing to link against the GlobalISel library.
    581 const MachineInstr *llvm::machineFunctionIsIllegal(const MachineFunction &MF) {
    582   if (const LegalizerInfo *MLI = MF.getSubtarget().getLegalizerInfo()) {
    583     const MachineRegisterInfo &MRI = MF.getRegInfo();
    584     for (const MachineBasicBlock &MBB : MF)
    585       for (const MachineInstr &MI : MBB)
    586         if (isPreISelGenericOpcode(MI.getOpcode()) && !MLI->isLegal(MI, MRI))
    587 	  return &MI;
    588   }
    589   return nullptr;
    590 }
    591 #endif
    592