Home | History | Annotate | Download | only in GlobalISel
      1 //==- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect --*- C++ -*-==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 /// \file
     10 /// This file implements the RegBankSelect class.
     11 //===----------------------------------------------------------------------===//
     12 
     13 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
     14 #include "llvm/ADT/PostOrderIterator.h"
     15 #include "llvm/ADT/STLExtras.h"
     16 #include "llvm/ADT/SmallVector.h"
     17 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
     18 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
     19 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
     20 #include "llvm/CodeGen/GlobalISel/Utils.h"
     21 #include "llvm/CodeGen/MachineBasicBlock.h"
     22 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
     23 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
     24 #include "llvm/CodeGen/MachineFunction.h"
     25 #include "llvm/CodeGen/MachineInstr.h"
     26 #include "llvm/CodeGen/MachineOperand.h"
     27 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
     28 #include "llvm/CodeGen/MachineRegisterInfo.h"
     29 #include "llvm/CodeGen/TargetOpcodes.h"
     30 #include "llvm/CodeGen/TargetPassConfig.h"
     31 #include "llvm/CodeGen/TargetRegisterInfo.h"
     32 #include "llvm/CodeGen/TargetSubtargetInfo.h"
     33 #include "llvm/Config/llvm-config.h"
     34 #include "llvm/IR/Attributes.h"
     35 #include "llvm/IR/Function.h"
     36 #include "llvm/Pass.h"
     37 #include "llvm/Support/BlockFrequency.h"
     38 #include "llvm/Support/CommandLine.h"
     39 #include "llvm/Support/Compiler.h"
     40 #include "llvm/Support/Debug.h"
     41 #include "llvm/Support/ErrorHandling.h"
     42 #include "llvm/Support/raw_ostream.h"
     43 #include <algorithm>
     44 #include <cassert>
     45 #include <cstdint>
     46 #include <limits>
     47 #include <memory>
     48 #include <utility>
     49 
     50 #define DEBUG_TYPE "regbankselect"
     51 
     52 using namespace llvm;
     53 
     54 static cl::opt<RegBankSelect::Mode> RegBankSelectMode(
     55     cl::desc("Mode of the RegBankSelect pass"), cl::Hidden, cl::Optional,
     56     cl::values(clEnumValN(RegBankSelect::Mode::Fast, "regbankselect-fast",
     57                           "Run the Fast mode (default mapping)"),
     58                clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy",
     59                           "Use the Greedy mode (best local mapping)")));
     60 
     61 char RegBankSelect::ID = 0;
     62 
     63 INITIALIZE_PASS_BEGIN(RegBankSelect, DEBUG_TYPE,
     64                       "Assign register bank of generic virtual registers",
     65                       false, false);
     66 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
     67 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
     68 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
     69 INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE,
     70                     "Assign register bank of generic virtual registers", false,
     71                     false)
     72 
     73 RegBankSelect::RegBankSelect(Mode RunningMode)
     74     : MachineFunctionPass(ID), OptMode(RunningMode) {
     75   initializeRegBankSelectPass(*PassRegistry::getPassRegistry());
     76   if (RegBankSelectMode.getNumOccurrences() != 0) {
     77     OptMode = RegBankSelectMode;
     78     if (RegBankSelectMode != RunningMode)
     79       LLVM_DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n");
     80   }
     81 }
     82 
     83 void RegBankSelect::init(MachineFunction &MF) {
     84   RBI = MF.getSubtarget().getRegBankInfo();
     85   assert(RBI && "Cannot work without RegisterBankInfo");
     86   MRI = &MF.getRegInfo();
     87   TRI = MF.getSubtarget().getRegisterInfo();
     88   TPC = &getAnalysis<TargetPassConfig>();
     89   if (OptMode != Mode::Fast) {
     90     MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
     91     MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
     92   } else {
     93     MBFI = nullptr;
     94     MBPI = nullptr;
     95   }
     96   MIRBuilder.setMF(MF);
     97   MORE = llvm::make_unique<MachineOptimizationRemarkEmitter>(MF, MBFI);
     98 }
     99 
    100 void RegBankSelect::getAnalysisUsage(AnalysisUsage &AU) const {
    101   if (OptMode != Mode::Fast) {
    102     // We could preserve the information from these two analysis but
    103     // the APIs do not allow to do so yet.
    104     AU.addRequired<MachineBlockFrequencyInfo>();
    105     AU.addRequired<MachineBranchProbabilityInfo>();
    106   }
    107   AU.addRequired<TargetPassConfig>();
    108   getSelectionDAGFallbackAnalysisUsage(AU);
    109   MachineFunctionPass::getAnalysisUsage(AU);
    110 }
    111 
    112 bool RegBankSelect::assignmentMatch(
    113     unsigned Reg, const RegisterBankInfo::ValueMapping &ValMapping,
    114     bool &OnlyAssign) const {
    115   // By default we assume we will have to repair something.
    116   OnlyAssign = false;
    117   // Each part of a break down needs to end up in a different register.
    118   // In other word, Reg assignement does not match.
    119   if (ValMapping.NumBreakDowns > 1)
    120     return false;
    121 
    122   const RegisterBank *CurRegBank = RBI->getRegBank(Reg, *MRI, *TRI);
    123   const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank;
    124   // Reg is free of assignment, a simple assignment will make the
    125   // register bank to match.
    126   OnlyAssign = CurRegBank == nullptr;
    127   LLVM_DEBUG(dbgs() << "Does assignment already match: ";
    128              if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none";
    129              dbgs() << " against ";
    130              assert(DesiredRegBrank && "The mapping must be valid");
    131              dbgs() << *DesiredRegBrank << '\n';);
    132   return CurRegBank == DesiredRegBrank;
    133 }
    134 
    135 bool RegBankSelect::repairReg(
    136     MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping,
    137     RegBankSelect::RepairingPlacement &RepairPt,
    138     const iterator_range<SmallVectorImpl<unsigned>::const_iterator> &NewVRegs) {
    139   if (ValMapping.NumBreakDowns != 1 && !TPC->isGlobalISelAbortEnabled())
    140     return false;
    141   assert(ValMapping.NumBreakDowns == 1 && "Not yet implemented");
    142   // An empty range of new register means no repairing.
    143   assert(NewVRegs.begin() != NewVRegs.end() && "We should not have to repair");
    144 
    145   // Assume we are repairing a use and thus, the original reg will be
    146   // the source of the repairing.
    147   unsigned Src = MO.getReg();
    148   unsigned Dst = *NewVRegs.begin();
    149 
    150   // If we repair a definition, swap the source and destination for
    151   // the repairing.
    152   if (MO.isDef())
    153     std::swap(Src, Dst);
    154 
    155   assert((RepairPt.getNumInsertPoints() == 1 ||
    156           TargetRegisterInfo::isPhysicalRegister(Dst)) &&
    157          "We are about to create several defs for Dst");
    158 
    159   // Build the instruction used to repair, then clone it at the right
    160   // places. Avoiding buildCopy bypasses the check that Src and Dst have the
    161   // same types because the type is a placeholder when this function is called.
    162   MachineInstr *MI =
    163       MIRBuilder.buildInstrNoInsert(TargetOpcode::COPY).addDef(Dst).addUse(Src);
    164   LLVM_DEBUG(dbgs() << "Copy: " << printReg(Src) << " to: " << printReg(Dst)
    165                     << '\n');
    166   // TODO:
    167   // Check if MI is legal. if not, we need to legalize all the
    168   // instructions we are going to insert.
    169   std::unique_ptr<MachineInstr *[]> NewInstrs(
    170       new MachineInstr *[RepairPt.getNumInsertPoints()]);
    171   bool IsFirst = true;
    172   unsigned Idx = 0;
    173   for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
    174     MachineInstr *CurMI;
    175     if (IsFirst)
    176       CurMI = MI;
    177     else
    178       CurMI = MIRBuilder.getMF().CloneMachineInstr(MI);
    179     InsertPt->insert(*CurMI);
    180     NewInstrs[Idx++] = CurMI;
    181     IsFirst = false;
    182   }
    183   // TODO:
    184   // Legalize NewInstrs if need be.
    185   return true;
    186 }
    187 
    188 uint64_t RegBankSelect::getRepairCost(
    189     const MachineOperand &MO,
    190     const RegisterBankInfo::ValueMapping &ValMapping) const {
    191   assert(MO.isReg() && "We should only repair register operand");
    192   assert(ValMapping.NumBreakDowns && "Nothing to map??");
    193 
    194   bool IsSameNumOfValues = ValMapping.NumBreakDowns == 1;
    195   const RegisterBank *CurRegBank = RBI->getRegBank(MO.getReg(), *MRI, *TRI);
    196   // If MO does not have a register bank, we should have just been
    197   // able to set one unless we have to break the value down.
    198   assert((!IsSameNumOfValues || CurRegBank) && "We should not have to repair");
    199   // Def: Val <- NewDefs
    200   //     Same number of values: copy
    201   //     Different number: Val = build_sequence Defs1, Defs2, ...
    202   // Use: NewSources <- Val.
    203   //     Same number of values: copy.
    204   //     Different number: Src1, Src2, ... =
    205   //           extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ...
    206   // We should remember that this value is available somewhere else to
    207   // coalesce the value.
    208 
    209   if (IsSameNumOfValues) {
    210     const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank;
    211     // If we repair a definition, swap the source and destination for
    212     // the repairing.
    213     if (MO.isDef())
    214       std::swap(CurRegBank, DesiredRegBrank);
    215     // TODO: It may be possible to actually avoid the copy.
    216     // If we repair something where the source is defined by a copy
    217     // and the source of that copy is on the right bank, we can reuse
    218     // it for free.
    219     // E.g.,
    220     // RegToRepair<BankA> = copy AlternativeSrc<BankB>
    221     // = op RegToRepair<BankA>
    222     // We can simply propagate AlternativeSrc instead of copying RegToRepair
    223     // into a new virtual register.
    224     // We would also need to propagate this information in the
    225     // repairing placement.
    226     unsigned Cost = RBI->copyCost(*DesiredRegBrank, *CurRegBank,
    227                                   RBI->getSizeInBits(MO.getReg(), *MRI, *TRI));
    228     // TODO: use a dedicated constant for ImpossibleCost.
    229     if (Cost != std::numeric_limits<unsigned>::max())
    230       return Cost;
    231     // Return the legalization cost of that repairing.
    232   }
    233   return std::numeric_limits<unsigned>::max();
    234 }
    235 
    236 const RegisterBankInfo::InstructionMapping &RegBankSelect::findBestMapping(
    237     MachineInstr &MI, RegisterBankInfo::InstructionMappings &PossibleMappings,
    238     SmallVectorImpl<RepairingPlacement> &RepairPts) {
    239   assert(!PossibleMappings.empty() &&
    240          "Do not know how to map this instruction");
    241 
    242   const RegisterBankInfo::InstructionMapping *BestMapping = nullptr;
    243   MappingCost Cost = MappingCost::ImpossibleCost();
    244   SmallVector<RepairingPlacement, 4> LocalRepairPts;
    245   for (const RegisterBankInfo::InstructionMapping *CurMapping :
    246        PossibleMappings) {
    247     MappingCost CurCost =
    248         computeMapping(MI, *CurMapping, LocalRepairPts, &Cost);
    249     if (CurCost < Cost) {
    250       LLVM_DEBUG(dbgs() << "New best: " << CurCost << '\n');
    251       Cost = CurCost;
    252       BestMapping = CurMapping;
    253       RepairPts.clear();
    254       for (RepairingPlacement &RepairPt : LocalRepairPts)
    255         RepairPts.emplace_back(std::move(RepairPt));
    256     }
    257   }
    258   if (!BestMapping && !TPC->isGlobalISelAbortEnabled()) {
    259     // If none of the mapping worked that means they are all impossible.
    260     // Thus, pick the first one and set an impossible repairing point.
    261     // It will trigger the failed isel mode.
    262     BestMapping = *PossibleMappings.begin();
    263     RepairPts.emplace_back(
    264         RepairingPlacement(MI, 0, *TRI, *this, RepairingPlacement::Impossible));
    265   } else
    266     assert(BestMapping && "No suitable mapping for instruction");
    267   return *BestMapping;
    268 }
    269 
    270 void RegBankSelect::tryAvoidingSplit(
    271     RegBankSelect::RepairingPlacement &RepairPt, const MachineOperand &MO,
    272     const RegisterBankInfo::ValueMapping &ValMapping) const {
    273   const MachineInstr &MI = *MO.getParent();
    274   assert(RepairPt.hasSplit() && "We should not have to adjust for split");
    275   // Splitting should only occur for PHIs or between terminators,
    276   // because we only do local repairing.
    277   assert((MI.isPHI() || MI.isTerminator()) && "Why do we split?");
    278 
    279   assert(&MI.getOperand(RepairPt.getOpIdx()) == &MO &&
    280          "Repairing placement does not match operand");
    281 
    282   // If we need splitting for phis, that means it is because we
    283   // could not find an insertion point before the terminators of
    284   // the predecessor block for this argument. In other words,
    285   // the input value is defined by one of the terminators.
    286   assert((!MI.isPHI() || !MO.isDef()) && "Need split for phi def?");
    287 
    288   // We split to repair the use of a phi or a terminator.
    289   if (!MO.isDef()) {
    290     if (MI.isTerminator()) {
    291       assert(&MI != &(*MI.getParent()->getFirstTerminator()) &&
    292              "Need to split for the first terminator?!");
    293     } else {
    294       // For the PHI case, the split may not be actually required.
    295       // In the copy case, a phi is already a copy on the incoming edge,
    296       // therefore there is no need to split.
    297       if (ValMapping.NumBreakDowns == 1)
    298         // This is a already a copy, there is nothing to do.
    299         RepairPt.switchTo(RepairingPlacement::RepairingKind::Reassign);
    300     }
    301     return;
    302   }
    303 
    304   // At this point, we need to repair a defintion of a terminator.
    305 
    306   // Technically we need to fix the def of MI on all outgoing
    307   // edges of MI to keep the repairing local. In other words, we
    308   // will create several definitions of the same register. This
    309   // does not work for SSA unless that definition is a physical
    310   // register.
    311   // However, there are other cases where we can get away with
    312   // that while still keeping the repairing local.
    313   assert(MI.isTerminator() && MO.isDef() &&
    314          "This code is for the def of a terminator");
    315 
    316   // Since we use RPO traversal, if we need to repair a definition
    317   // this means this definition could be:
    318   // 1. Used by PHIs (i.e., this VReg has been visited as part of the
    319   //    uses of a phi.), or
    320   // 2. Part of a target specific instruction (i.e., the target applied
    321   //    some register class constraints when creating the instruction.)
    322   // If the constraints come for #2, the target said that another mapping
    323   // is supported so we may just drop them. Indeed, if we do not change
    324   // the number of registers holding that value, the uses will get fixed
    325   // when we get to them.
    326   // Uses in PHIs may have already been proceeded though.
    327   // If the constraints come for #1, then, those are weak constraints and
    328   // no actual uses may rely on them. However, the problem remains mainly
    329   // the same as for #2. If the value stays in one register, we could
    330   // just switch the register bank of the definition, but we would need to
    331   // account for a repairing cost for each phi we silently change.
    332   //
    333   // In any case, if the value needs to be broken down into several
    334   // registers, the repairing is not local anymore as we need to patch
    335   // every uses to rebuild the value in just one register.
    336   //
    337   // To summarize:
    338   // - If the value is in a physical register, we can do the split and
    339   //   fix locally.
    340   // Otherwise if the value is in a virtual register:
    341   // - If the value remains in one register, we do not have to split
    342   //   just switching the register bank would do, but we need to account
    343   //   in the repairing cost all the phi we changed.
    344   // - If the value spans several registers, then we cannot do a local
    345   //   repairing.
    346 
    347   // Check if this is a physical or virtual register.
    348   unsigned Reg = MO.getReg();
    349   if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
    350     // We are going to split every outgoing edges.
    351     // Check that this is possible.
    352     // FIXME: The machine representation is currently broken
    353     // since it also several terminators in one basic block.
    354     // Because of that we would technically need a way to get
    355     // the targets of just one terminator to know which edges
    356     // we have to split.
    357     // Assert that we do not hit the ill-formed representation.
    358 
    359     // If there are other terminators before that one, some of
    360     // the outgoing edges may not be dominated by this definition.
    361     assert(&MI == &(*MI.getParent()->getFirstTerminator()) &&
    362            "Do not know which outgoing edges are relevant");
    363     const MachineInstr *Next = MI.getNextNode();
    364     assert((!Next || Next->isUnconditionalBranch()) &&
    365            "Do not know where each terminator ends up");
    366     if (Next)
    367       // If the next terminator uses Reg, this means we have
    368       // to split right after MI and thus we need a way to ask
    369       // which outgoing edges are affected.
    370       assert(!Next->readsRegister(Reg) && "Need to split between terminators");
    371     // We will split all the edges and repair there.
    372   } else {
    373     // This is a virtual register defined by a terminator.
    374     if (ValMapping.NumBreakDowns == 1) {
    375       // There is nothing to repair, but we may actually lie on
    376       // the repairing cost because of the PHIs already proceeded
    377       // as already stated.
    378       // Though the code will be correct.
    379       assert(false && "Repairing cost may not be accurate");
    380     } else {
    381       // We need to do non-local repairing. Basically, patch all
    382       // the uses (i.e., phis) that we already proceeded.
    383       // For now, just say this mapping is not possible.
    384       RepairPt.switchTo(RepairingPlacement::RepairingKind::Impossible);
    385     }
    386   }
    387 }
    388 
    389 RegBankSelect::MappingCost RegBankSelect::computeMapping(
    390     MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
    391     SmallVectorImpl<RepairingPlacement> &RepairPts,
    392     const RegBankSelect::MappingCost *BestCost) {
    393   assert((MBFI || !BestCost) && "Costs comparison require MBFI");
    394 
    395   if (!InstrMapping.isValid())
    396     return MappingCost::ImpossibleCost();
    397 
    398   // If mapped with InstrMapping, MI will have the recorded cost.
    399   MappingCost Cost(MBFI ? MBFI->getBlockFreq(MI.getParent()) : 1);
    400   bool Saturated = Cost.addLocalCost(InstrMapping.getCost());
    401   assert(!Saturated && "Possible mapping saturated the cost");
    402   LLVM_DEBUG(dbgs() << "Evaluating mapping cost for: " << MI);
    403   LLVM_DEBUG(dbgs() << "With: " << InstrMapping << '\n');
    404   RepairPts.clear();
    405   if (BestCost && Cost > *BestCost) {
    406     LLVM_DEBUG(dbgs() << "Mapping is too expensive from the start\n");
    407     return Cost;
    408   }
    409 
    410   // Moreover, to realize this mapping, the register bank of each operand must
    411   // match this mapping. In other words, we may need to locally reassign the
    412   // register banks. Account for that repairing cost as well.
    413   // In this context, local means in the surrounding of MI.
    414   for (unsigned OpIdx = 0, EndOpIdx = InstrMapping.getNumOperands();
    415        OpIdx != EndOpIdx; ++OpIdx) {
    416     const MachineOperand &MO = MI.getOperand(OpIdx);
    417     if (!MO.isReg())
    418       continue;
    419     unsigned Reg = MO.getReg();
    420     if (!Reg)
    421       continue;
    422     LLVM_DEBUG(dbgs() << "Opd" << OpIdx << '\n');
    423     const RegisterBankInfo::ValueMapping &ValMapping =
    424         InstrMapping.getOperandMapping(OpIdx);
    425     // If Reg is already properly mapped, this is free.
    426     bool Assign;
    427     if (assignmentMatch(Reg, ValMapping, Assign)) {
    428       LLVM_DEBUG(dbgs() << "=> is free (match).\n");
    429       continue;
    430     }
    431     if (Assign) {
    432       LLVM_DEBUG(dbgs() << "=> is free (simple assignment).\n");
    433       RepairPts.emplace_back(RepairingPlacement(MI, OpIdx, *TRI, *this,
    434                                                 RepairingPlacement::Reassign));
    435       continue;
    436     }
    437 
    438     // Find the insertion point for the repairing code.
    439     RepairPts.emplace_back(
    440         RepairingPlacement(MI, OpIdx, *TRI, *this, RepairingPlacement::Insert));
    441     RepairingPlacement &RepairPt = RepairPts.back();
    442 
    443     // If we need to split a basic block to materialize this insertion point,
    444     // we may give a higher cost to this mapping.
    445     // Nevertheless, we may get away with the split, so try that first.
    446     if (RepairPt.hasSplit())
    447       tryAvoidingSplit(RepairPt, MO, ValMapping);
    448 
    449     // Check that the materialization of the repairing is possible.
    450     if (!RepairPt.canMaterialize()) {
    451       LLVM_DEBUG(dbgs() << "Mapping involves impossible repairing\n");
    452       return MappingCost::ImpossibleCost();
    453     }
    454 
    455     // Account for the split cost and repair cost.
    456     // Unless the cost is already saturated or we do not care about the cost.
    457     if (!BestCost || Saturated)
    458       continue;
    459 
    460     // To get accurate information we need MBFI and MBPI.
    461     // Thus, if we end up here this information should be here.
    462     assert(MBFI && MBPI && "Cost computation requires MBFI and MBPI");
    463 
    464     // FIXME: We will have to rework the repairing cost model.
    465     // The repairing cost depends on the register bank that MO has.
    466     // However, when we break down the value into different values,
    467     // MO may not have a register bank while still needing repairing.
    468     // For the fast mode, we don't compute the cost so that is fine,
    469     // but still for the repairing code, we will have to make a choice.
    470     // For the greedy mode, we should choose greedily what is the best
    471     // choice based on the next use of MO.
    472 
    473     // Sums up the repairing cost of MO at each insertion point.
    474     uint64_t RepairCost = getRepairCost(MO, ValMapping);
    475 
    476     // This is an impossible to repair cost.
    477     if (RepairCost == std::numeric_limits<unsigned>::max())
    478       return MappingCost::ImpossibleCost();
    479 
    480     // Bias used for splitting: 5%.
    481     const uint64_t PercentageForBias = 5;
    482     uint64_t Bias = (RepairCost * PercentageForBias + 99) / 100;
    483     // We should not need more than a couple of instructions to repair
    484     // an assignment. In other words, the computation should not
    485     // overflow because the repairing cost is free of basic block
    486     // frequency.
    487     assert(((RepairCost < RepairCost * PercentageForBias) &&
    488             (RepairCost * PercentageForBias <
    489              RepairCost * PercentageForBias + 99)) &&
    490            "Repairing involves more than a billion of instructions?!");
    491     for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
    492       assert(InsertPt->canMaterialize() && "We should not have made it here");
    493       // We will applied some basic block frequency and those uses uint64_t.
    494       if (!InsertPt->isSplit())
    495         Saturated = Cost.addLocalCost(RepairCost);
    496       else {
    497         uint64_t CostForInsertPt = RepairCost;
    498         // Again we shouldn't overflow here givent that
    499         // CostForInsertPt is frequency free at this point.
    500         assert(CostForInsertPt + Bias > CostForInsertPt &&
    501                "Repairing + split bias overflows");
    502         CostForInsertPt += Bias;
    503         uint64_t PtCost = InsertPt->frequency(*this) * CostForInsertPt;
    504         // Check if we just overflowed.
    505         if ((Saturated = PtCost < CostForInsertPt))
    506           Cost.saturate();
    507         else
    508           Saturated = Cost.addNonLocalCost(PtCost);
    509       }
    510 
    511       // Stop looking into what it takes to repair, this is already
    512       // too expensive.
    513       if (BestCost && Cost > *BestCost) {
    514         LLVM_DEBUG(dbgs() << "Mapping is too expensive, stop processing\n");
    515         return Cost;
    516       }
    517 
    518       // No need to accumulate more cost information.
    519       // We need to still gather the repairing information though.
    520       if (Saturated)
    521         break;
    522     }
    523   }
    524   LLVM_DEBUG(dbgs() << "Total cost is: " << Cost << "\n");
    525   return Cost;
    526 }
    527 
    528 bool RegBankSelect::applyMapping(
    529     MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
    530     SmallVectorImpl<RegBankSelect::RepairingPlacement> &RepairPts) {
    531   // OpdMapper will hold all the information needed for the rewritting.
    532   RegisterBankInfo::OperandsMapper OpdMapper(MI, InstrMapping, *MRI);
    533 
    534   // First, place the repairing code.
    535   for (RepairingPlacement &RepairPt : RepairPts) {
    536     if (!RepairPt.canMaterialize() ||
    537         RepairPt.getKind() == RepairingPlacement::Impossible)
    538       return false;
    539     assert(RepairPt.getKind() != RepairingPlacement::None &&
    540            "This should not make its way in the list");
    541     unsigned OpIdx = RepairPt.getOpIdx();
    542     MachineOperand &MO = MI.getOperand(OpIdx);
    543     const RegisterBankInfo::ValueMapping &ValMapping =
    544         InstrMapping.getOperandMapping(OpIdx);
    545     unsigned Reg = MO.getReg();
    546 
    547     switch (RepairPt.getKind()) {
    548     case RepairingPlacement::Reassign:
    549       assert(ValMapping.NumBreakDowns == 1 &&
    550              "Reassignment should only be for simple mapping");
    551       MRI->setRegBank(Reg, *ValMapping.BreakDown[0].RegBank);
    552       break;
    553     case RepairingPlacement::Insert:
    554       OpdMapper.createVRegs(OpIdx);
    555       if (!repairReg(MO, ValMapping, RepairPt, OpdMapper.getVRegs(OpIdx)))
    556         return false;
    557       break;
    558     default:
    559       llvm_unreachable("Other kind should not happen");
    560     }
    561   }
    562 
    563   // Second, rewrite the instruction.
    564   LLVM_DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper << '\n');
    565   RBI->applyMapping(OpdMapper);
    566 
    567   return true;
    568 }
    569 
    570 bool RegBankSelect::assignInstr(MachineInstr &MI) {
    571   LLVM_DEBUG(dbgs() << "Assign: " << MI);
    572   // Remember the repairing placement for all the operands.
    573   SmallVector<RepairingPlacement, 4> RepairPts;
    574 
    575   const RegisterBankInfo::InstructionMapping *BestMapping;
    576   if (OptMode == RegBankSelect::Mode::Fast) {
    577     BestMapping = &RBI->getInstrMapping(MI);
    578     MappingCost DefaultCost = computeMapping(MI, *BestMapping, RepairPts);
    579     (void)DefaultCost;
    580     if (DefaultCost == MappingCost::ImpossibleCost())
    581       return false;
    582   } else {
    583     RegisterBankInfo::InstructionMappings PossibleMappings =
    584         RBI->getInstrPossibleMappings(MI);
    585     if (PossibleMappings.empty())
    586       return false;
    587     BestMapping = &findBestMapping(MI, PossibleMappings, RepairPts);
    588   }
    589   // Make sure the mapping is valid for MI.
    590   assert(BestMapping->verify(MI) && "Invalid instruction mapping");
    591 
    592   LLVM_DEBUG(dbgs() << "Best Mapping: " << *BestMapping << '\n');
    593 
    594   // After this call, MI may not be valid anymore.
    595   // Do not use it.
    596   return applyMapping(MI, *BestMapping, RepairPts);
    597 }
    598 
    599 bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) {
    600   // If the ISel pipeline failed, do not bother running that pass.
    601   if (MF.getProperties().hasProperty(
    602           MachineFunctionProperties::Property::FailedISel))
    603     return false;
    604 
    605   LLVM_DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n');
    606   const Function &F = MF.getFunction();
    607   Mode SaveOptMode = OptMode;
    608   if (F.hasFnAttribute(Attribute::OptimizeNone))
    609     OptMode = Mode::Fast;
    610   init(MF);
    611 
    612 #ifndef NDEBUG
    613   // Check that our input is fully legal: we require the function to have the
    614   // Legalized property, so it should be.
    615   // FIXME: This should be in the MachineVerifier.
    616   if (!DisableGISelLegalityCheck)
    617     if (const MachineInstr *MI = machineFunctionIsIllegal(MF)) {
    618       reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect",
    619                          "instruction is not legal", *MI);
    620       return false;
    621     }
    622 #endif
    623 
    624   // Walk the function and assign register banks to all operands.
    625   // Use a RPOT to make sure all registers are assigned before we choose
    626   // the best mapping of the current instruction.
    627   ReversePostOrderTraversal<MachineFunction*> RPOT(&MF);
    628   for (MachineBasicBlock *MBB : RPOT) {
    629     // Set a sensible insertion point so that subsequent calls to
    630     // MIRBuilder.
    631     MIRBuilder.setMBB(*MBB);
    632     for (MachineBasicBlock::iterator MII = MBB->begin(), End = MBB->end();
    633          MII != End;) {
    634       // MI might be invalidated by the assignment, so move the
    635       // iterator before hand.
    636       MachineInstr &MI = *MII++;
    637 
    638       // Ignore target-specific instructions: they should use proper regclasses.
    639       if (isTargetSpecificOpcode(MI.getOpcode()))
    640         continue;
    641 
    642       if (!assignInstr(MI)) {
    643         reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect",
    644                            "unable to map instruction", MI);
    645         return false;
    646       }
    647     }
    648   }
    649   OptMode = SaveOptMode;
    650   return false;
    651 }
    652 
    653 //------------------------------------------------------------------------------
    654 //                  Helper Classes Implementation
    655 //------------------------------------------------------------------------------
    656 RegBankSelect::RepairingPlacement::RepairingPlacement(
    657     MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo &TRI, Pass &P,
    658     RepairingPlacement::RepairingKind Kind)
    659     // Default is, we are going to insert code to repair OpIdx.
    660     : Kind(Kind), OpIdx(OpIdx),
    661       CanMaterialize(Kind != RepairingKind::Impossible), P(P) {
    662   const MachineOperand &MO = MI.getOperand(OpIdx);
    663   assert(MO.isReg() && "Trying to repair a non-reg operand");
    664 
    665   if (Kind != RepairingKind::Insert)
    666     return;
    667 
    668   // Repairings for definitions happen after MI, uses happen before.
    669   bool Before = !MO.isDef();
    670 
    671   // Check if we are done with MI.
    672   if (!MI.isPHI() && !MI.isTerminator()) {
    673     addInsertPoint(MI, Before);
    674     // We are done with the initialization.
    675     return;
    676   }
    677 
    678   // Now, look for the special cases.
    679   if (MI.isPHI()) {
    680     // - PHI must be the first instructions:
    681     //   * Before, we have to split the related incoming edge.
    682     //   * After, move the insertion point past the last phi.
    683     if (!Before) {
    684       MachineBasicBlock::iterator It = MI.getParent()->getFirstNonPHI();
    685       if (It != MI.getParent()->end())
    686         addInsertPoint(*It, /*Before*/ true);
    687       else
    688         addInsertPoint(*(--It), /*Before*/ false);
    689       return;
    690     }
    691     // We repair a use of a phi, we may need to split the related edge.
    692     MachineBasicBlock &Pred = *MI.getOperand(OpIdx + 1).getMBB();
    693     // Check if we can move the insertion point prior to the
    694     // terminators of the predecessor.
    695     unsigned Reg = MO.getReg();
    696     MachineBasicBlock::iterator It = Pred.getLastNonDebugInstr();
    697     for (auto Begin = Pred.begin(); It != Begin && It->isTerminator(); --It)
    698       if (It->modifiesRegister(Reg, &TRI)) {
    699         // We cannot hoist the repairing code in the predecessor.
    700         // Split the edge.
    701         addInsertPoint(Pred, *MI.getParent());
    702         return;
    703       }
    704     // At this point, we can insert in Pred.
    705 
    706     // - If It is invalid, Pred is empty and we can insert in Pred
    707     //   wherever we want.
    708     // - If It is valid, It is the first non-terminator, insert after It.
    709     if (It == Pred.end())
    710       addInsertPoint(Pred, /*Beginning*/ false);
    711     else
    712       addInsertPoint(*It, /*Before*/ false);
    713   } else {
    714     // - Terminators must be the last instructions:
    715     //   * Before, move the insert point before the first terminator.
    716     //   * After, we have to split the outcoming edges.
    717     unsigned Reg = MO.getReg();
    718     if (Before) {
    719       // Check whether Reg is defined by any terminator.
    720       MachineBasicBlock::iterator It = MI;
    721       for (auto Begin = MI.getParent()->begin();
    722            --It != Begin && It->isTerminator();)
    723         if (It->modifiesRegister(Reg, &TRI)) {
    724           // Insert the repairing code right after the definition.
    725           addInsertPoint(*It, /*Before*/ false);
    726           return;
    727         }
    728       addInsertPoint(*It, /*Before*/ true);
    729       return;
    730     }
    731     // Make sure Reg is not redefined by other terminators, otherwise
    732     // we do not know how to split.
    733     for (MachineBasicBlock::iterator It = MI, End = MI.getParent()->end();
    734          ++It != End;)
    735       // The machine verifier should reject this kind of code.
    736       assert(It->modifiesRegister(Reg, &TRI) && "Do not know where to split");
    737     // Split each outcoming edges.
    738     MachineBasicBlock &Src = *MI.getParent();
    739     for (auto &Succ : Src.successors())
    740       addInsertPoint(Src, Succ);
    741   }
    742 }
    743 
    744 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr &MI,
    745                                                        bool Before) {
    746   addInsertPoint(*new InstrInsertPoint(MI, Before));
    747 }
    748 
    749 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &MBB,
    750                                                        bool Beginning) {
    751   addInsertPoint(*new MBBInsertPoint(MBB, Beginning));
    752 }
    753 
    754 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &Src,
    755                                                        MachineBasicBlock &Dst) {
    756   addInsertPoint(*new EdgeInsertPoint(Src, Dst, P));
    757 }
    758 
    759 void RegBankSelect::RepairingPlacement::addInsertPoint(
    760     RegBankSelect::InsertPoint &Point) {
    761   CanMaterialize &= Point.canMaterialize();
    762   HasSplit |= Point.isSplit();
    763   InsertPoints.emplace_back(&Point);
    764 }
    765 
    766 RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr &Instr,
    767                                                   bool Before)
    768     : InsertPoint(), Instr(Instr), Before(Before) {
    769   // Since we do not support splitting, we do not need to update
    770   // liveness and such, so do not do anything with P.
    771   assert((!Before || !Instr.isPHI()) &&
    772          "Splitting before phis requires more points");
    773   assert((!Before || !Instr.getNextNode() || !Instr.getNextNode()->isPHI()) &&
    774          "Splitting between phis does not make sense");
    775 }
    776 
    777 void RegBankSelect::InstrInsertPoint::materialize() {
    778   if (isSplit()) {
    779     // Slice and return the beginning of the new block.
    780     // If we need to split between the terminators, we theoritically
    781     // need to know where the first and second set of terminators end
    782     // to update the successors properly.
    783     // Now, in pratice, we should have a maximum of 2 branch
    784     // instructions; one conditional and one unconditional. Therefore
    785     // we know how to update the successor by looking at the target of
    786     // the unconditional branch.
    787     // If we end up splitting at some point, then, we should update
    788     // the liveness information and such. I.e., we would need to
    789     // access P here.
    790     // The machine verifier should actually make sure such cases
    791     // cannot happen.
    792     llvm_unreachable("Not yet implemented");
    793   }
    794   // Otherwise the insertion point is just the current or next
    795   // instruction depending on Before. I.e., there is nothing to do
    796   // here.
    797 }
    798 
    799 bool RegBankSelect::InstrInsertPoint::isSplit() const {
    800   // If the insertion point is after a terminator, we need to split.
    801   if (!Before)
    802     return Instr.isTerminator();
    803   // If we insert before an instruction that is after a terminator,
    804   // we are still after a terminator.
    805   return Instr.getPrevNode() && Instr.getPrevNode()->isTerminator();
    806 }
    807 
    808 uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass &P) const {
    809   // Even if we need to split, because we insert between terminators,
    810   // this split has actually the same frequency as the instruction.
    811   const MachineBlockFrequencyInfo *MBFI =
    812       P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
    813   if (!MBFI)
    814     return 1;
    815   return MBFI->getBlockFreq(Instr.getParent()).getFrequency();
    816 }
    817 
    818 uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass &P) const {
    819   const MachineBlockFrequencyInfo *MBFI =
    820       P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
    821   if (!MBFI)
    822     return 1;
    823   return MBFI->getBlockFreq(&MBB).getFrequency();
    824 }
    825 
    826 void RegBankSelect::EdgeInsertPoint::materialize() {
    827   // If we end up repairing twice at the same place before materializing the
    828   // insertion point, we may think we have to split an edge twice.
    829   // We should have a factory for the insert point such that identical points
    830   // are the same instance.
    831   assert(Src.isSuccessor(DstOrSplit) && DstOrSplit->isPredecessor(&Src) &&
    832          "This point has already been split");
    833   MachineBasicBlock *NewBB = Src.SplitCriticalEdge(DstOrSplit, P);
    834   assert(NewBB && "Invalid call to materialize");
    835   // We reuse the destination block to hold the information of the new block.
    836   DstOrSplit = NewBB;
    837 }
    838 
    839 uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass &P) const {
    840   const MachineBlockFrequencyInfo *MBFI =
    841       P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
    842   if (!MBFI)
    843     return 1;
    844   if (WasMaterialized)
    845     return MBFI->getBlockFreq(DstOrSplit).getFrequency();
    846 
    847   const MachineBranchProbabilityInfo *MBPI =
    848       P.getAnalysisIfAvailable<MachineBranchProbabilityInfo>();
    849   if (!MBPI)
    850     return 1;
    851   // The basic block will be on the edge.
    852   return (MBFI->getBlockFreq(&Src) * MBPI->getEdgeProbability(&Src, DstOrSplit))
    853       .getFrequency();
    854 }
    855 
    856 bool RegBankSelect::EdgeInsertPoint::canMaterialize() const {
    857   // If this is not a critical edge, we should not have used this insert
    858   // point. Indeed, either the successor or the predecessor should
    859   // have do.
    860   assert(Src.succ_size() > 1 && DstOrSplit->pred_size() > 1 &&
    861          "Edge is not critical");
    862   return Src.canSplitCriticalEdge(DstOrSplit);
    863 }
    864 
    865 RegBankSelect::MappingCost::MappingCost(const BlockFrequency &LocalFreq)
    866     : LocalFreq(LocalFreq.getFrequency()) {}
    867 
    868 bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost) {
    869   // Check if this overflows.
    870   if (LocalCost + Cost < LocalCost) {
    871     saturate();
    872     return true;
    873   }
    874   LocalCost += Cost;
    875   return isSaturated();
    876 }
    877 
    878 bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost) {
    879   // Check if this overflows.
    880   if (NonLocalCost + Cost < NonLocalCost) {
    881     saturate();
    882     return true;
    883   }
    884   NonLocalCost += Cost;
    885   return isSaturated();
    886 }
    887 
    888 bool RegBankSelect::MappingCost::isSaturated() const {
    889   return LocalCost == UINT64_MAX - 1 && NonLocalCost == UINT64_MAX &&
    890          LocalFreq == UINT64_MAX;
    891 }
    892 
    893 void RegBankSelect::MappingCost::saturate() {
    894   *this = ImpossibleCost();
    895   --LocalCost;
    896 }
    897 
    898 RegBankSelect::MappingCost RegBankSelect::MappingCost::ImpossibleCost() {
    899   return MappingCost(UINT64_MAX, UINT64_MAX, UINT64_MAX);
    900 }
    901 
    902 bool RegBankSelect::MappingCost::operator<(const MappingCost &Cost) const {
    903   // Sort out the easy cases.
    904   if (*this == Cost)
    905     return false;
    906   // If one is impossible to realize the other is cheaper unless it is
    907   // impossible as well.
    908   if ((*this == ImpossibleCost()) || (Cost == ImpossibleCost()))
    909     return (*this == ImpossibleCost()) < (Cost == ImpossibleCost());
    910   // If one is saturated the other is cheaper, unless it is saturated
    911   // as well.
    912   if (isSaturated() || Cost.isSaturated())
    913     return isSaturated() < Cost.isSaturated();
    914   // At this point we know both costs hold sensible values.
    915 
    916   // If both values have a different base frequency, there is no much
    917   // we can do but to scale everything.
    918   // However, if they have the same base frequency we can avoid making
    919   // complicated computation.
    920   uint64_t ThisLocalAdjust;
    921   uint64_t OtherLocalAdjust;
    922   if (LLVM_LIKELY(LocalFreq == Cost.LocalFreq)) {
    923 
    924     // At this point, we know the local costs are comparable.
    925     // Do the case that do not involve potential overflow first.
    926     if (NonLocalCost == Cost.NonLocalCost)
    927       // Since the non-local costs do not discriminate on the result,
    928       // just compare the local costs.
    929       return LocalCost < Cost.LocalCost;
    930 
    931     // The base costs are comparable so we may only keep the relative
    932     // value to increase our chances of avoiding overflows.
    933     ThisLocalAdjust = 0;
    934     OtherLocalAdjust = 0;
    935     if (LocalCost < Cost.LocalCost)
    936       OtherLocalAdjust = Cost.LocalCost - LocalCost;
    937     else
    938       ThisLocalAdjust = LocalCost - Cost.LocalCost;
    939   } else {
    940     ThisLocalAdjust = LocalCost;
    941     OtherLocalAdjust = Cost.LocalCost;
    942   }
    943 
    944   // The non-local costs are comparable, just keep the relative value.
    945   uint64_t ThisNonLocalAdjust = 0;
    946   uint64_t OtherNonLocalAdjust = 0;
    947   if (NonLocalCost < Cost.NonLocalCost)
    948     OtherNonLocalAdjust = Cost.NonLocalCost - NonLocalCost;
    949   else
    950     ThisNonLocalAdjust = NonLocalCost - Cost.NonLocalCost;
    951   // Scale everything to make them comparable.
    952   uint64_t ThisScaledCost = ThisLocalAdjust * LocalFreq;
    953   // Check for overflow on that operation.
    954   bool ThisOverflows = ThisLocalAdjust && (ThisScaledCost < ThisLocalAdjust ||
    955                                            ThisScaledCost < LocalFreq);
    956   uint64_t OtherScaledCost = OtherLocalAdjust * Cost.LocalFreq;
    957   // Check for overflow on the last operation.
    958   bool OtherOverflows =
    959       OtherLocalAdjust &&
    960       (OtherScaledCost < OtherLocalAdjust || OtherScaledCost < Cost.LocalFreq);
    961   // Add the non-local costs.
    962   ThisOverflows |= ThisNonLocalAdjust &&
    963                    ThisScaledCost + ThisNonLocalAdjust < ThisNonLocalAdjust;
    964   ThisScaledCost += ThisNonLocalAdjust;
    965   OtherOverflows |= OtherNonLocalAdjust &&
    966                     OtherScaledCost + OtherNonLocalAdjust < OtherNonLocalAdjust;
    967   OtherScaledCost += OtherNonLocalAdjust;
    968   // If both overflows, we cannot compare without additional
    969   // precision, e.g., APInt. Just give up on that case.
    970   if (ThisOverflows && OtherOverflows)
    971     return false;
    972   // If one overflows but not the other, we can still compare.
    973   if (ThisOverflows || OtherOverflows)
    974     return ThisOverflows < OtherOverflows;
    975   // Otherwise, just compare the values.
    976   return ThisScaledCost < OtherScaledCost;
    977 }
    978 
    979 bool RegBankSelect::MappingCost::operator==(const MappingCost &Cost) const {
    980   return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost &&
    981          LocalFreq == Cost.LocalFreq;
    982 }
    983 
    984 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    985 LLVM_DUMP_METHOD void RegBankSelect::MappingCost::dump() const {
    986   print(dbgs());
    987   dbgs() << '\n';
    988 }
    989 #endif
    990 
    991 void RegBankSelect::MappingCost::print(raw_ostream &OS) const {
    992   if (*this == ImpossibleCost()) {
    993     OS << "impossible";
    994     return;
    995   }
    996   if (isSaturated()) {
    997     OS << "saturated";
    998     return;
    999   }
   1000   OS << LocalFreq << " * " << LocalCost << " + " << NonLocalCost;
   1001 }
   1002