Home | History | Annotate | Download | only in CodeGen
      1 //===---- LatencyPriorityQueue.cpp - A latency-oriented priority queue ----===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the LatencyPriorityQueue class, which is a
     11 // SchedulingPriorityQueue that schedules using latency information to
     12 // reduce the length of the critical path through the basic block.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "llvm/CodeGen/LatencyPriorityQueue.h"
     17 #include "llvm/Config/llvm-config.h"
     18 #include "llvm/Support/Debug.h"
     19 #include "llvm/Support/raw_ostream.h"
     20 using namespace llvm;
     21 
     22 #define DEBUG_TYPE "scheduler"
     23 
     24 bool latency_sort::operator()(const SUnit *LHS, const SUnit *RHS) const {
     25   // The isScheduleHigh flag allows nodes with wraparound dependencies that
     26   // cannot easily be modeled as edges with latencies to be scheduled as
     27   // soon as possible in a top-down schedule.
     28   if (LHS->isScheduleHigh && !RHS->isScheduleHigh)
     29     return false;
     30   if (!LHS->isScheduleHigh && RHS->isScheduleHigh)
     31     return true;
     32 
     33   unsigned LHSNum = LHS->NodeNum;
     34   unsigned RHSNum = RHS->NodeNum;
     35 
     36   // The most important heuristic is scheduling the critical path.
     37   unsigned LHSLatency = PQ->getLatency(LHSNum);
     38   unsigned RHSLatency = PQ->getLatency(RHSNum);
     39   if (LHSLatency < RHSLatency) return true;
     40   if (LHSLatency > RHSLatency) return false;
     41 
     42   // After that, if two nodes have identical latencies, look to see if one will
     43   // unblock more other nodes than the other.
     44   unsigned LHSBlocked = PQ->getNumSolelyBlockNodes(LHSNum);
     45   unsigned RHSBlocked = PQ->getNumSolelyBlockNodes(RHSNum);
     46   if (LHSBlocked < RHSBlocked) return true;
     47   if (LHSBlocked > RHSBlocked) return false;
     48 
     49   // Finally, just to provide a stable ordering, use the node number as a
     50   // deciding factor.
     51   return RHSNum < LHSNum;
     52 }
     53 
     54 
     55 /// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor
     56 /// of SU, return it, otherwise return null.
     57 SUnit *LatencyPriorityQueue::getSingleUnscheduledPred(SUnit *SU) {
     58   SUnit *OnlyAvailablePred = nullptr;
     59   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
     60        I != E; ++I) {
     61     SUnit &Pred = *I->getSUnit();
     62     if (!Pred.isScheduled) {
     63       // We found an available, but not scheduled, predecessor.  If it's the
     64       // only one we have found, keep track of it... otherwise give up.
     65       if (OnlyAvailablePred && OnlyAvailablePred != &Pred)
     66         return nullptr;
     67       OnlyAvailablePred = &Pred;
     68     }
     69   }
     70 
     71   return OnlyAvailablePred;
     72 }
     73 
     74 void LatencyPriorityQueue::push(SUnit *SU) {
     75   // Look at all of the successors of this node.  Count the number of nodes that
     76   // this node is the sole unscheduled node for.
     77   unsigned NumNodesBlocking = 0;
     78   for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
     79        I != E; ++I) {
     80     if (getSingleUnscheduledPred(I->getSUnit()) == SU)
     81       ++NumNodesBlocking;
     82   }
     83   NumNodesSolelyBlocking[SU->NodeNum] = NumNodesBlocking;
     84 
     85   Queue.push_back(SU);
     86 }
     87 
     88 
     89 // scheduledNode - As nodes are scheduled, we look to see if there are any
     90 // successor nodes that have a single unscheduled predecessor.  If so, that
     91 // single predecessor has a higher priority, since scheduling it will make
     92 // the node available.
     93 void LatencyPriorityQueue::scheduledNode(SUnit *SU) {
     94   for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
     95        I != E; ++I) {
     96     AdjustPriorityOfUnscheduledPreds(I->getSUnit());
     97   }
     98 }
     99 
    100 /// AdjustPriorityOfUnscheduledPreds - One of the predecessors of SU was just
    101 /// scheduled.  If SU is not itself available, then there is at least one
    102 /// predecessor node that has not been scheduled yet.  If SU has exactly ONE
    103 /// unscheduled predecessor, we want to increase its priority: it getting
    104 /// scheduled will make this node available, so it is better than some other
    105 /// node of the same priority that will not make a node available.
    106 void LatencyPriorityQueue::AdjustPriorityOfUnscheduledPreds(SUnit *SU) {
    107   if (SU->isAvailable) return;  // All preds scheduled.
    108 
    109   SUnit *OnlyAvailablePred = getSingleUnscheduledPred(SU);
    110   if (!OnlyAvailablePred || !OnlyAvailablePred->isAvailable) return;
    111 
    112   // Okay, we found a single predecessor that is available, but not scheduled.
    113   // Since it is available, it must be in the priority queue.  First remove it.
    114   remove(OnlyAvailablePred);
    115 
    116   // Reinsert the node into the priority queue, which recomputes its
    117   // NumNodesSolelyBlocking value.
    118   push(OnlyAvailablePred);
    119 }
    120 
    121 SUnit *LatencyPriorityQueue::pop() {
    122   if (empty()) return nullptr;
    123   std::vector<SUnit *>::iterator Best = Queue.begin();
    124   for (std::vector<SUnit *>::iterator I = std::next(Queue.begin()),
    125        E = Queue.end(); I != E; ++I)
    126     if (Picker(*Best, *I))
    127       Best = I;
    128   SUnit *V = *Best;
    129   if (Best != std::prev(Queue.end()))
    130     std::swap(*Best, Queue.back());
    131   Queue.pop_back();
    132   return V;
    133 }
    134 
    135 void LatencyPriorityQueue::remove(SUnit *SU) {
    136   assert(!Queue.empty() && "Queue is empty!");
    137   std::vector<SUnit *>::iterator I = find(Queue, SU);
    138   assert(I != Queue.end() && "Queue doesn't contain the SU being removed!");
    139   if (I != std::prev(Queue.end()))
    140     std::swap(*I, Queue.back());
    141   Queue.pop_back();
    142 }
    143 
    144 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    145 LLVM_DUMP_METHOD void LatencyPriorityQueue::dump(ScheduleDAG *DAG) const {
    146   dbgs() << "Latency Priority Queue\n";
    147   dbgs() << "  Number of Queue Entries: " << Queue.size() << "\n";
    148   for (auto const &SU : Queue) {
    149     dbgs() << "    ";
    150     SU->dump(DAG);
    151   }
    152 }
    153 #endif
    154