Home | History | Annotate | Download | only in CodeGen
      1 //===- LiveDebugValues.cpp - Tracking Debug Value MIs ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 ///
     10 /// This pass implements a data flow analysis that propagates debug location
     11 /// information by inserting additional DBG_VALUE instructions into the machine
     12 /// instruction stream. The pass internally builds debug location liveness
     13 /// ranges to determine the points where additional DBG_VALUEs need to be
     14 /// inserted.
     15 ///
     16 /// This is a separate pass from DbgValueHistoryCalculator to facilitate
     17 /// testing and improve modularity.
     18 ///
     19 //===----------------------------------------------------------------------===//
     20 
     21 #include "llvm/ADT/DenseMap.h"
     22 #include "llvm/ADT/PostOrderIterator.h"
     23 #include "llvm/ADT/SmallPtrSet.h"
     24 #include "llvm/ADT/SmallVector.h"
     25 #include "llvm/ADT/SparseBitVector.h"
     26 #include "llvm/ADT/Statistic.h"
     27 #include "llvm/ADT/UniqueVector.h"
     28 #include "llvm/CodeGen/LexicalScopes.h"
     29 #include "llvm/CodeGen/MachineBasicBlock.h"
     30 #include "llvm/CodeGen/MachineFrameInfo.h"
     31 #include "llvm/CodeGen/MachineFunction.h"
     32 #include "llvm/CodeGen/MachineFunctionPass.h"
     33 #include "llvm/CodeGen/MachineInstr.h"
     34 #include "llvm/CodeGen/MachineInstrBuilder.h"
     35 #include "llvm/CodeGen/MachineMemOperand.h"
     36 #include "llvm/CodeGen/MachineOperand.h"
     37 #include "llvm/CodeGen/PseudoSourceValue.h"
     38 #include "llvm/CodeGen/TargetFrameLowering.h"
     39 #include "llvm/CodeGen/TargetInstrInfo.h"
     40 #include "llvm/CodeGen/TargetLowering.h"
     41 #include "llvm/CodeGen/TargetRegisterInfo.h"
     42 #include "llvm/CodeGen/TargetSubtargetInfo.h"
     43 #include "llvm/CodeGen/RegisterScavenging.h"
     44 #include "llvm/Config/llvm-config.h"
     45 #include "llvm/IR/DebugInfoMetadata.h"
     46 #include "llvm/IR/DebugLoc.h"
     47 #include "llvm/IR/Function.h"
     48 #include "llvm/IR/Module.h"
     49 #include "llvm/MC/MCRegisterInfo.h"
     50 #include "llvm/Pass.h"
     51 #include "llvm/Support/Casting.h"
     52 #include "llvm/Support/Compiler.h"
     53 #include "llvm/Support/Debug.h"
     54 #include "llvm/Support/raw_ostream.h"
     55 #include <algorithm>
     56 #include <cassert>
     57 #include <cstdint>
     58 #include <functional>
     59 #include <queue>
     60 #include <utility>
     61 #include <vector>
     62 
     63 using namespace llvm;
     64 
     65 #define DEBUG_TYPE "livedebugvalues"
     66 
     67 STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted");
     68 
     69 // If @MI is a DBG_VALUE with debug value described by a defined
     70 // register, returns the number of this register. In the other case, returns 0.
     71 static unsigned isDbgValueDescribedByReg(const MachineInstr &MI) {
     72   assert(MI.isDebugValue() && "expected a DBG_VALUE");
     73   assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE");
     74   // If location of variable is described using a register (directly
     75   // or indirectly), this register is always a first operand.
     76   return MI.getOperand(0).isReg() ? MI.getOperand(0).getReg() : 0;
     77 }
     78 
     79 namespace {
     80 
     81 class LiveDebugValues : public MachineFunctionPass {
     82 private:
     83   const TargetRegisterInfo *TRI;
     84   const TargetInstrInfo *TII;
     85   const TargetFrameLowering *TFI;
     86   BitVector CalleeSavedRegs;
     87   LexicalScopes LS;
     88 
     89   /// Keeps track of lexical scopes associated with a user value's source
     90   /// location.
     91   class UserValueScopes {
     92     DebugLoc DL;
     93     LexicalScopes &LS;
     94     SmallPtrSet<const MachineBasicBlock *, 4> LBlocks;
     95 
     96   public:
     97     UserValueScopes(DebugLoc D, LexicalScopes &L) : DL(std::move(D)), LS(L) {}
     98 
     99     /// Return true if current scope dominates at least one machine
    100     /// instruction in a given machine basic block.
    101     bool dominates(MachineBasicBlock *MBB) {
    102       if (LBlocks.empty())
    103         LS.getMachineBasicBlocks(DL, LBlocks);
    104       return LBlocks.count(MBB) != 0 || LS.dominates(DL, MBB);
    105     }
    106   };
    107 
    108   /// Based on std::pair so it can be used as an index into a DenseMap.
    109   using DebugVariableBase =
    110       std::pair<const DILocalVariable *, const DILocation *>;
    111   /// A potentially inlined instance of a variable.
    112   struct DebugVariable : public DebugVariableBase {
    113     DebugVariable(const DILocalVariable *Var, const DILocation *InlinedAt)
    114         : DebugVariableBase(Var, InlinedAt) {}
    115 
    116     const DILocalVariable *getVar() const { return this->first; }
    117     const DILocation *getInlinedAt() const { return this->second; }
    118 
    119     bool operator<(const DebugVariable &DV) const {
    120       if (getVar() == DV.getVar())
    121         return getInlinedAt() < DV.getInlinedAt();
    122       return getVar() < DV.getVar();
    123     }
    124   };
    125 
    126   /// A pair of debug variable and value location.
    127   struct VarLoc {
    128     const DebugVariable Var;
    129     const MachineInstr &MI; ///< Only used for cloning a new DBG_VALUE.
    130     mutable UserValueScopes UVS;
    131     enum { InvalidKind = 0, RegisterKind } Kind = InvalidKind;
    132 
    133     /// The value location. Stored separately to avoid repeatedly
    134     /// extracting it from MI.
    135     union {
    136       uint64_t RegNo;
    137       uint64_t Hash;
    138     } Loc;
    139 
    140     VarLoc(const MachineInstr &MI, LexicalScopes &LS)
    141         : Var(MI.getDebugVariable(), MI.getDebugLoc()->getInlinedAt()), MI(MI),
    142           UVS(MI.getDebugLoc(), LS) {
    143       static_assert((sizeof(Loc) == sizeof(uint64_t)),
    144                     "hash does not cover all members of Loc");
    145       assert(MI.isDebugValue() && "not a DBG_VALUE");
    146       assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE");
    147       if (int RegNo = isDbgValueDescribedByReg(MI)) {
    148         Kind = RegisterKind;
    149         Loc.RegNo = RegNo;
    150       }
    151     }
    152 
    153     /// If this variable is described by a register, return it,
    154     /// otherwise return 0.
    155     unsigned isDescribedByReg() const {
    156       if (Kind == RegisterKind)
    157         return Loc.RegNo;
    158       return 0;
    159     }
    160 
    161     /// Determine whether the lexical scope of this value's debug location
    162     /// dominates MBB.
    163     bool dominates(MachineBasicBlock &MBB) const { return UVS.dominates(&MBB); }
    164 
    165 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    166     LLVM_DUMP_METHOD void dump() const { MI.dump(); }
    167 #endif
    168 
    169     bool operator==(const VarLoc &Other) const {
    170       return Var == Other.Var && Loc.Hash == Other.Loc.Hash;
    171     }
    172 
    173     /// This operator guarantees that VarLocs are sorted by Variable first.
    174     bool operator<(const VarLoc &Other) const {
    175       if (Var == Other.Var)
    176         return Loc.Hash < Other.Loc.Hash;
    177       return Var < Other.Var;
    178     }
    179   };
    180 
    181   using VarLocMap = UniqueVector<VarLoc>;
    182   using VarLocSet = SparseBitVector<>;
    183   using VarLocInMBB = SmallDenseMap<const MachineBasicBlock *, VarLocSet>;
    184   struct TransferDebugPair {
    185     MachineInstr *TransferInst;
    186     MachineInstr *DebugInst;
    187   };
    188   using TransferMap = SmallVector<TransferDebugPair, 4>;
    189 
    190   /// This holds the working set of currently open ranges. For fast
    191   /// access, this is done both as a set of VarLocIDs, and a map of
    192   /// DebugVariable to recent VarLocID. Note that a DBG_VALUE ends all
    193   /// previous open ranges for the same variable.
    194   class OpenRangesSet {
    195     VarLocSet VarLocs;
    196     SmallDenseMap<DebugVariableBase, unsigned, 8> Vars;
    197 
    198   public:
    199     const VarLocSet &getVarLocs() const { return VarLocs; }
    200 
    201     /// Terminate all open ranges for Var by removing it from the set.
    202     void erase(DebugVariable Var) {
    203       auto It = Vars.find(Var);
    204       if (It != Vars.end()) {
    205         unsigned ID = It->second;
    206         VarLocs.reset(ID);
    207         Vars.erase(It);
    208       }
    209     }
    210 
    211     /// Terminate all open ranges listed in \c KillSet by removing
    212     /// them from the set.
    213     void erase(const VarLocSet &KillSet, const VarLocMap &VarLocIDs) {
    214       VarLocs.intersectWithComplement(KillSet);
    215       for (unsigned ID : KillSet)
    216         Vars.erase(VarLocIDs[ID].Var);
    217     }
    218 
    219     /// Insert a new range into the set.
    220     void insert(unsigned VarLocID, DebugVariableBase Var) {
    221       VarLocs.set(VarLocID);
    222       Vars.insert({Var, VarLocID});
    223     }
    224 
    225     /// Empty the set.
    226     void clear() {
    227       VarLocs.clear();
    228       Vars.clear();
    229     }
    230 
    231     /// Return whether the set is empty or not.
    232     bool empty() const {
    233       assert(Vars.empty() == VarLocs.empty() && "open ranges are inconsistent");
    234       return VarLocs.empty();
    235     }
    236   };
    237 
    238   bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF,
    239                           unsigned &Reg);
    240   int extractSpillBaseRegAndOffset(const MachineInstr &MI, unsigned &Reg);
    241   void insertTransferDebugPair(MachineInstr &MI, OpenRangesSet &OpenRanges,
    242                                TransferMap &Transfers, VarLocMap &VarLocIDs,
    243                                unsigned OldVarID, unsigned NewReg = 0);
    244 
    245   void transferDebugValue(const MachineInstr &MI, OpenRangesSet &OpenRanges,
    246                           VarLocMap &VarLocIDs);
    247   void transferSpillInst(MachineInstr &MI, OpenRangesSet &OpenRanges,
    248                          VarLocMap &VarLocIDs, TransferMap &Transfers);
    249   void transferRegisterCopy(MachineInstr &MI, OpenRangesSet &OpenRanges,
    250                             VarLocMap &VarLocIDs, TransferMap &Transfers);
    251   void transferRegisterDef(MachineInstr &MI, OpenRangesSet &OpenRanges,
    252                            const VarLocMap &VarLocIDs);
    253   bool transferTerminatorInst(MachineInstr &MI, OpenRangesSet &OpenRanges,
    254                               VarLocInMBB &OutLocs, const VarLocMap &VarLocIDs);
    255   bool process(MachineInstr &MI, OpenRangesSet &OpenRanges,
    256                VarLocInMBB &OutLocs, VarLocMap &VarLocIDs,
    257                TransferMap &Transfers, bool transferChanges);
    258 
    259   bool join(MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs,
    260             const VarLocMap &VarLocIDs,
    261             SmallPtrSet<const MachineBasicBlock *, 16> &Visited);
    262 
    263   bool ExtendRanges(MachineFunction &MF);
    264 
    265 public:
    266   static char ID;
    267 
    268   /// Default construct and initialize the pass.
    269   LiveDebugValues();
    270 
    271   /// Tell the pass manager which passes we depend on and what
    272   /// information we preserve.
    273   void getAnalysisUsage(AnalysisUsage &AU) const override;
    274 
    275   MachineFunctionProperties getRequiredProperties() const override {
    276     return MachineFunctionProperties().set(
    277         MachineFunctionProperties::Property::NoVRegs);
    278   }
    279 
    280   /// Print to ostream with a message.
    281   void printVarLocInMBB(const MachineFunction &MF, const VarLocInMBB &V,
    282                         const VarLocMap &VarLocIDs, const char *msg,
    283                         raw_ostream &Out) const;
    284 
    285   /// Calculate the liveness information for the given machine function.
    286   bool runOnMachineFunction(MachineFunction &MF) override;
    287 };
    288 
    289 } // end anonymous namespace
    290 
    291 //===----------------------------------------------------------------------===//
    292 //            Implementation
    293 //===----------------------------------------------------------------------===//
    294 
    295 char LiveDebugValues::ID = 0;
    296 
    297 char &llvm::LiveDebugValuesID = LiveDebugValues::ID;
    298 
    299 INITIALIZE_PASS(LiveDebugValues, DEBUG_TYPE, "Live DEBUG_VALUE analysis",
    300                 false, false)
    301 
    302 /// Default construct and initialize the pass.
    303 LiveDebugValues::LiveDebugValues() : MachineFunctionPass(ID) {
    304   initializeLiveDebugValuesPass(*PassRegistry::getPassRegistry());
    305 }
    306 
    307 /// Tell the pass manager which passes we depend on and what information we
    308 /// preserve.
    309 void LiveDebugValues::getAnalysisUsage(AnalysisUsage &AU) const {
    310   AU.setPreservesCFG();
    311   MachineFunctionPass::getAnalysisUsage(AU);
    312 }
    313 
    314 //===----------------------------------------------------------------------===//
    315 //            Debug Range Extension Implementation
    316 //===----------------------------------------------------------------------===//
    317 
    318 #ifndef NDEBUG
    319 void LiveDebugValues::printVarLocInMBB(const MachineFunction &MF,
    320                                        const VarLocInMBB &V,
    321                                        const VarLocMap &VarLocIDs,
    322                                        const char *msg,
    323                                        raw_ostream &Out) const {
    324   Out << '\n' << msg << '\n';
    325   for (const MachineBasicBlock &BB : MF) {
    326     const auto &L = V.lookup(&BB);
    327     Out << "MBB: " << BB.getName() << ":\n";
    328     for (unsigned VLL : L) {
    329       const VarLoc &VL = VarLocIDs[VLL];
    330       Out << " Var: " << VL.Var.getVar()->getName();
    331       Out << " MI: ";
    332       VL.dump();
    333     }
    334   }
    335   Out << "\n";
    336 }
    337 #endif
    338 
    339 /// Given a spill instruction, extract the register and offset used to
    340 /// address the spill location in a target independent way.
    341 int LiveDebugValues::extractSpillBaseRegAndOffset(const MachineInstr &MI,
    342                                                   unsigned &Reg) {
    343   assert(MI.hasOneMemOperand() &&
    344          "Spill instruction does not have exactly one memory operand?");
    345   auto MMOI = MI.memoperands_begin();
    346   const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
    347   assert(PVal->kind() == PseudoSourceValue::FixedStack &&
    348          "Inconsistent memory operand in spill instruction");
    349   int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
    350   const MachineBasicBlock *MBB = MI.getParent();
    351   return TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
    352 }
    353 
    354 /// End all previous ranges related to @MI and start a new range from @MI
    355 /// if it is a DBG_VALUE instr.
    356 void LiveDebugValues::transferDebugValue(const MachineInstr &MI,
    357                                          OpenRangesSet &OpenRanges,
    358                                          VarLocMap &VarLocIDs) {
    359   if (!MI.isDebugValue())
    360     return;
    361   const DILocalVariable *Var = MI.getDebugVariable();
    362   const DILocation *DebugLoc = MI.getDebugLoc();
    363   const DILocation *InlinedAt = DebugLoc->getInlinedAt();
    364   assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
    365          "Expected inlined-at fields to agree");
    366 
    367   // End all previous ranges of Var.
    368   DebugVariable V(Var, InlinedAt);
    369   OpenRanges.erase(V);
    370 
    371   // Add the VarLoc to OpenRanges from this DBG_VALUE.
    372   // TODO: Currently handles DBG_VALUE which has only reg as location.
    373   if (isDbgValueDescribedByReg(MI)) {
    374     VarLoc VL(MI, LS);
    375     unsigned ID = VarLocIDs.insert(VL);
    376     OpenRanges.insert(ID, VL.Var);
    377   }
    378 }
    379 
    380 /// Create new TransferDebugPair and insert it in \p Transfers. The VarLoc
    381 /// with \p OldVarID should be deleted form \p OpenRanges and replaced with
    382 /// new VarLoc. If \p NewReg is different than default zero value then the
    383 /// new location will be register location created by the copy like instruction,
    384 /// otherwise it is variable's location on the stack.
    385 void LiveDebugValues::insertTransferDebugPair(
    386     MachineInstr &MI, OpenRangesSet &OpenRanges, TransferMap &Transfers,
    387     VarLocMap &VarLocIDs, unsigned OldVarID, unsigned NewReg) {
    388   const MachineInstr *DMI = &VarLocIDs[OldVarID].MI;
    389   MachineFunction *MF = MI.getParent()->getParent();
    390   MachineInstr *NewDMI;
    391   if (NewReg) {
    392     // Create a DBG_VALUE instruction to describe the Var in its new
    393     // register location.
    394     NewDMI = BuildMI(*MF, DMI->getDebugLoc(), DMI->getDesc(),
    395                      DMI->isIndirectDebugValue(), NewReg,
    396                      DMI->getDebugVariable(), DMI->getDebugExpression());
    397     if (DMI->isIndirectDebugValue())
    398       NewDMI->getOperand(1).setImm(DMI->getOperand(1).getImm());
    399     LLVM_DEBUG(dbgs() << "Creating DBG_VALUE inst for register copy: ";
    400                NewDMI->print(dbgs(), false, false, false, TII));
    401   } else {
    402     // Create a DBG_VALUE instruction to describe the Var in its spilled
    403     // location.
    404     unsigned SpillBase;
    405     int SpillOffset = extractSpillBaseRegAndOffset(MI, SpillBase);
    406     auto *SpillExpr = DIExpression::prepend(DMI->getDebugExpression(),
    407                                             DIExpression::NoDeref, SpillOffset);
    408     NewDMI = BuildMI(*MF, DMI->getDebugLoc(), DMI->getDesc(), true, SpillBase,
    409                      DMI->getDebugVariable(), SpillExpr);
    410     LLVM_DEBUG(dbgs() << "Creating DBG_VALUE inst for spill: ";
    411                NewDMI->print(dbgs(), false, false, false, TII));
    412   }
    413 
    414   // The newly created DBG_VALUE instruction NewDMI must be inserted after
    415   // MI. Keep track of the pairing.
    416   TransferDebugPair MIP = {&MI, NewDMI};
    417   Transfers.push_back(MIP);
    418 
    419   // End all previous ranges of Var.
    420   OpenRanges.erase(VarLocIDs[OldVarID].Var);
    421 
    422   // Add the VarLoc to OpenRanges.
    423   VarLoc VL(*NewDMI, LS);
    424   unsigned LocID = VarLocIDs.insert(VL);
    425   OpenRanges.insert(LocID, VL.Var);
    426 }
    427 
    428 /// A definition of a register may mark the end of a range.
    429 void LiveDebugValues::transferRegisterDef(MachineInstr &MI,
    430                                           OpenRangesSet &OpenRanges,
    431                                           const VarLocMap &VarLocIDs) {
    432   MachineFunction *MF = MI.getMF();
    433   const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
    434   unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
    435   SparseBitVector<> KillSet;
    436   for (const MachineOperand &MO : MI.operands()) {
    437     // Determine whether the operand is a register def.  Assume that call
    438     // instructions never clobber SP, because some backends (e.g., AArch64)
    439     // never list SP in the regmask.
    440     if (MO.isReg() && MO.isDef() && MO.getReg() &&
    441         TRI->isPhysicalRegister(MO.getReg()) &&
    442         !(MI.isCall() && MO.getReg() == SP)) {
    443       // Remove ranges of all aliased registers.
    444       for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
    445         for (unsigned ID : OpenRanges.getVarLocs())
    446           if (VarLocIDs[ID].isDescribedByReg() == *RAI)
    447             KillSet.set(ID);
    448     } else if (MO.isRegMask()) {
    449       // Remove ranges of all clobbered registers. Register masks don't usually
    450       // list SP as preserved.  While the debug info may be off for an
    451       // instruction or two around callee-cleanup calls, transferring the
    452       // DEBUG_VALUE across the call is still a better user experience.
    453       for (unsigned ID : OpenRanges.getVarLocs()) {
    454         unsigned Reg = VarLocIDs[ID].isDescribedByReg();
    455         if (Reg && Reg != SP && MO.clobbersPhysReg(Reg))
    456           KillSet.set(ID);
    457       }
    458     }
    459   }
    460   OpenRanges.erase(KillSet, VarLocIDs);
    461 }
    462 
    463 /// Decide if @MI is a spill instruction and return true if it is. We use 2
    464 /// criteria to make this decision:
    465 /// - Is this instruction a store to a spill slot?
    466 /// - Is there a register operand that is both used and killed?
    467 /// TODO: Store optimization can fold spills into other stores (including
    468 /// other spills). We do not handle this yet (more than one memory operand).
    469 bool LiveDebugValues::isSpillInstruction(const MachineInstr &MI,
    470                                          MachineFunction *MF, unsigned &Reg) {
    471   const MachineFrameInfo &FrameInfo = MF->getFrameInfo();
    472   int FI;
    473   const MachineMemOperand *MMO;
    474 
    475   // TODO: Handle multiple stores folded into one.
    476   if (!MI.hasOneMemOperand())
    477     return false;
    478 
    479   // To identify a spill instruction, use the same criteria as in AsmPrinter.
    480   if (!((TII->isStoreToStackSlotPostFE(MI, FI) ||
    481          TII->hasStoreToStackSlot(MI, MMO, FI)) &&
    482         FrameInfo.isSpillSlotObjectIndex(FI)))
    483     return false;
    484 
    485   auto isKilledReg = [&](const MachineOperand MO, unsigned &Reg) {
    486     if (!MO.isReg() || !MO.isUse()) {
    487       Reg = 0;
    488       return false;
    489     }
    490     Reg = MO.getReg();
    491     return MO.isKill();
    492   };
    493 
    494   for (const MachineOperand &MO : MI.operands()) {
    495     // In a spill instruction generated by the InlineSpiller the spilled
    496     // register has its kill flag set.
    497     if (isKilledReg(MO, Reg))
    498       return true;
    499     if (Reg != 0) {
    500       // Check whether next instruction kills the spilled register.
    501       // FIXME: Current solution does not cover search for killed register in
    502       // bundles and instructions further down the chain.
    503       auto NextI = std::next(MI.getIterator());
    504       // Skip next instruction that points to basic block end iterator.
    505       if (MI.getParent()->end() == NextI)
    506         continue;
    507       unsigned RegNext;
    508       for (const MachineOperand &MONext : NextI->operands()) {
    509         // Return true if we came across the register from the
    510         // previous spill instruction that is killed in NextI.
    511         if (isKilledReg(MONext, RegNext) && RegNext == Reg)
    512           return true;
    513       }
    514     }
    515   }
    516   // Return false if we didn't find spilled register.
    517   return false;
    518 }
    519 
    520 /// A spilled register may indicate that we have to end the current range of
    521 /// a variable and create a new one for the spill location.
    522 /// We don't want to insert any instructions in process(), so we just create
    523 /// the DBG_VALUE without inserting it and keep track of it in \p Transfers.
    524 /// It will be inserted into the BB when we're done iterating over the
    525 /// instructions.
    526 void LiveDebugValues::transferSpillInst(MachineInstr &MI,
    527                                         OpenRangesSet &OpenRanges,
    528                                         VarLocMap &VarLocIDs,
    529                                         TransferMap &Transfers) {
    530   unsigned Reg;
    531   MachineFunction *MF = MI.getMF();
    532   if (!isSpillInstruction(MI, MF, Reg))
    533     return;
    534 
    535   // Check if the register is the location of a debug value.
    536   for (unsigned ID : OpenRanges.getVarLocs()) {
    537     if (VarLocIDs[ID].isDescribedByReg() == Reg) {
    538       LLVM_DEBUG(dbgs() << "Spilling Register " << printReg(Reg, TRI) << '('
    539                         << VarLocIDs[ID].Var.getVar()->getName() << ")\n");
    540       insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, ID);
    541       return;
    542     }
    543   }
    544 }
    545 
    546 /// If \p MI is a register copy instruction, that copies a previously tracked
    547 /// value from one register to another register that is callee saved, we
    548 /// create new DBG_VALUE instruction  described with copy destination register.
    549 void LiveDebugValues::transferRegisterCopy(MachineInstr &MI,
    550                                            OpenRangesSet &OpenRanges,
    551                                            VarLocMap &VarLocIDs,
    552                                            TransferMap &Transfers) {
    553   const MachineOperand *SrcRegOp, *DestRegOp;
    554 
    555   if (!TII->isCopyInstr(MI, SrcRegOp, DestRegOp) || !SrcRegOp->isKill() ||
    556       !DestRegOp->isDef())
    557     return;
    558 
    559   auto isCalleSavedReg = [&](unsigned Reg) {
    560     for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
    561       if (CalleeSavedRegs.test(*RAI))
    562         return true;
    563     return false;
    564   };
    565 
    566   unsigned SrcReg = SrcRegOp->getReg();
    567   unsigned DestReg = DestRegOp->getReg();
    568 
    569   // We want to recognize instructions where destination register is callee
    570   // saved register. If register that could be clobbered by the call is
    571   // included, there would be a great chance that it is going to be clobbered
    572   // soon. It is more likely that previous register location, which is callee
    573   // saved, is going to stay unclobbered longer, even if it is killed.
    574   if (!isCalleSavedReg(DestReg))
    575     return;
    576 
    577   for (unsigned ID : OpenRanges.getVarLocs()) {
    578     if (VarLocIDs[ID].isDescribedByReg() == SrcReg) {
    579       insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, ID,
    580                               DestReg);
    581       return;
    582     }
    583   }
    584 }
    585 
    586 /// Terminate all open ranges at the end of the current basic block.
    587 bool LiveDebugValues::transferTerminatorInst(MachineInstr &MI,
    588                                              OpenRangesSet &OpenRanges,
    589                                              VarLocInMBB &OutLocs,
    590                                              const VarLocMap &VarLocIDs) {
    591   bool Changed = false;
    592   const MachineBasicBlock *CurMBB = MI.getParent();
    593   if (!(MI.isTerminator() || (&MI == &CurMBB->back())))
    594     return false;
    595 
    596   if (OpenRanges.empty())
    597     return false;
    598 
    599   LLVM_DEBUG(for (unsigned ID
    600                   : OpenRanges.getVarLocs()) {
    601     // Copy OpenRanges to OutLocs, if not already present.
    602     dbgs() << "Add to OutLocs: ";
    603     VarLocIDs[ID].dump();
    604   });
    605   VarLocSet &VLS = OutLocs[CurMBB];
    606   Changed = VLS |= OpenRanges.getVarLocs();
    607   OpenRanges.clear();
    608   return Changed;
    609 }
    610 
    611 /// This routine creates OpenRanges and OutLocs.
    612 bool LiveDebugValues::process(MachineInstr &MI, OpenRangesSet &OpenRanges,
    613                               VarLocInMBB &OutLocs, VarLocMap &VarLocIDs,
    614                               TransferMap &Transfers, bool transferChanges) {
    615   bool Changed = false;
    616   transferDebugValue(MI, OpenRanges, VarLocIDs);
    617   transferRegisterDef(MI, OpenRanges, VarLocIDs);
    618   if (transferChanges) {
    619     transferRegisterCopy(MI, OpenRanges, VarLocIDs, Transfers);
    620     transferSpillInst(MI, OpenRanges, VarLocIDs, Transfers);
    621   }
    622   Changed = transferTerminatorInst(MI, OpenRanges, OutLocs, VarLocIDs);
    623   return Changed;
    624 }
    625 
    626 /// This routine joins the analysis results of all incoming edges in @MBB by
    627 /// inserting a new DBG_VALUE instruction at the start of the @MBB - if the same
    628 /// source variable in all the predecessors of @MBB reside in the same location.
    629 bool LiveDebugValues::join(MachineBasicBlock &MBB, VarLocInMBB &OutLocs,
    630                            VarLocInMBB &InLocs, const VarLocMap &VarLocIDs,
    631                            SmallPtrSet<const MachineBasicBlock *, 16> &Visited) {
    632   LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getName() << "\n");
    633   bool Changed = false;
    634 
    635   VarLocSet InLocsT; // Temporary incoming locations.
    636 
    637   // For all predecessors of this MBB, find the set of VarLocs that
    638   // can be joined.
    639   int NumVisited = 0;
    640   for (auto p : MBB.predecessors()) {
    641     // Ignore unvisited predecessor blocks.  As we are processing
    642     // the blocks in reverse post-order any unvisited block can
    643     // be considered to not remove any incoming values.
    644     if (!Visited.count(p))
    645       continue;
    646     auto OL = OutLocs.find(p);
    647     // Join is null in case of empty OutLocs from any of the pred.
    648     if (OL == OutLocs.end())
    649       return false;
    650 
    651     // Just copy over the Out locs to incoming locs for the first visited
    652     // predecessor, and for all other predecessors join the Out locs.
    653     if (!NumVisited)
    654       InLocsT = OL->second;
    655     else
    656       InLocsT &= OL->second;
    657     NumVisited++;
    658   }
    659 
    660   // Filter out DBG_VALUES that are out of scope.
    661   VarLocSet KillSet;
    662   for (auto ID : InLocsT)
    663     if (!VarLocIDs[ID].dominates(MBB))
    664       KillSet.set(ID);
    665   InLocsT.intersectWithComplement(KillSet);
    666 
    667   // As we are processing blocks in reverse post-order we
    668   // should have processed at least one predecessor, unless it
    669   // is the entry block which has no predecessor.
    670   assert((NumVisited || MBB.pred_empty()) &&
    671          "Should have processed at least one predecessor");
    672   if (InLocsT.empty())
    673     return false;
    674 
    675   VarLocSet &ILS = InLocs[&MBB];
    676 
    677   // Insert DBG_VALUE instructions, if not already inserted.
    678   VarLocSet Diff = InLocsT;
    679   Diff.intersectWithComplement(ILS);
    680   for (auto ID : Diff) {
    681     // This VarLoc is not found in InLocs i.e. it is not yet inserted. So, a
    682     // new range is started for the var from the mbb's beginning by inserting
    683     // a new DBG_VALUE. process() will end this range however appropriate.
    684     const VarLoc &DiffIt = VarLocIDs[ID];
    685     const MachineInstr *DMI = &DiffIt.MI;
    686     MachineInstr *MI =
    687         BuildMI(MBB, MBB.instr_begin(), DMI->getDebugLoc(), DMI->getDesc(),
    688                 DMI->isIndirectDebugValue(), DMI->getOperand(0).getReg(),
    689                 DMI->getDebugVariable(), DMI->getDebugExpression());
    690     if (DMI->isIndirectDebugValue())
    691       MI->getOperand(1).setImm(DMI->getOperand(1).getImm());
    692     LLVM_DEBUG(dbgs() << "Inserted: "; MI->dump(););
    693     ILS.set(ID);
    694     ++NumInserted;
    695     Changed = true;
    696   }
    697   return Changed;
    698 }
    699 
    700 /// Calculate the liveness information for the given machine function and
    701 /// extend ranges across basic blocks.
    702 bool LiveDebugValues::ExtendRanges(MachineFunction &MF) {
    703   LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");
    704 
    705   bool Changed = false;
    706   bool OLChanged = false;
    707   bool MBBJoined = false;
    708 
    709   VarLocMap VarLocIDs;      // Map VarLoc<>unique ID for use in bitvectors.
    710   OpenRangesSet OpenRanges; // Ranges that are open until end of bb.
    711   VarLocInMBB OutLocs;      // Ranges that exist beyond bb.
    712   VarLocInMBB InLocs;       // Ranges that are incoming after joining.
    713   TransferMap Transfers;    // DBG_VALUEs associated with spills.
    714 
    715   DenseMap<unsigned int, MachineBasicBlock *> OrderToBB;
    716   DenseMap<MachineBasicBlock *, unsigned int> BBToOrder;
    717   std::priority_queue<unsigned int, std::vector<unsigned int>,
    718                       std::greater<unsigned int>>
    719       Worklist;
    720   std::priority_queue<unsigned int, std::vector<unsigned int>,
    721                       std::greater<unsigned int>>
    722       Pending;
    723 
    724   enum : bool { dontTransferChanges = false, transferChanges = true };
    725 
    726   // Initialize every mbb with OutLocs.
    727   // We are not looking at any spill instructions during the initial pass
    728   // over the BBs. The LiveDebugVariables pass has already created DBG_VALUE
    729   // instructions for spills of registers that are known to be user variables
    730   // within the BB in which the spill occurs.
    731   for (auto &MBB : MF)
    732     for (auto &MI : MBB)
    733       process(MI, OpenRanges, OutLocs, VarLocIDs, Transfers,
    734               dontTransferChanges);
    735 
    736   LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs,
    737                               "OutLocs after initialization", dbgs()));
    738 
    739   ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
    740   unsigned int RPONumber = 0;
    741   for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) {
    742     OrderToBB[RPONumber] = *RI;
    743     BBToOrder[*RI] = RPONumber;
    744     Worklist.push(RPONumber);
    745     ++RPONumber;
    746   }
    747   // This is a standard "union of predecessor outs" dataflow problem.
    748   // To solve it, we perform join() and process() using the two worklist method
    749   // until the ranges converge.
    750   // Ranges have converged when both worklists are empty.
    751   SmallPtrSet<const MachineBasicBlock *, 16> Visited;
    752   while (!Worklist.empty() || !Pending.empty()) {
    753     // We track what is on the pending worklist to avoid inserting the same
    754     // thing twice.  We could avoid this with a custom priority queue, but this
    755     // is probably not worth it.
    756     SmallPtrSet<MachineBasicBlock *, 16> OnPending;
    757     LLVM_DEBUG(dbgs() << "Processing Worklist\n");
    758     while (!Worklist.empty()) {
    759       MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
    760       Worklist.pop();
    761       MBBJoined = join(*MBB, OutLocs, InLocs, VarLocIDs, Visited);
    762       Visited.insert(MBB);
    763       if (MBBJoined) {
    764         MBBJoined = false;
    765         Changed = true;
    766         // Now that we have started to extend ranges across BBs we need to
    767         // examine spill instructions to see whether they spill registers that
    768         // correspond to user variables.
    769         for (auto &MI : *MBB)
    770           OLChanged |= process(MI, OpenRanges, OutLocs, VarLocIDs, Transfers,
    771                                transferChanges);
    772 
    773         // Add any DBG_VALUE instructions necessitated by spills.
    774         for (auto &TR : Transfers)
    775           MBB->insertAfter(MachineBasicBlock::iterator(*TR.TransferInst),
    776                            TR.DebugInst);
    777         Transfers.clear();
    778 
    779         LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs,
    780                                     "OutLocs after propagating", dbgs()));
    781         LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs,
    782                                     "InLocs after propagating", dbgs()));
    783 
    784         if (OLChanged) {
    785           OLChanged = false;
    786           for (auto s : MBB->successors())
    787             if (OnPending.insert(s).second) {
    788               Pending.push(BBToOrder[s]);
    789             }
    790         }
    791       }
    792     }
    793     Worklist.swap(Pending);
    794     // At this point, pending must be empty, since it was just the empty
    795     // worklist
    796     assert(Pending.empty() && "Pending should be empty");
    797   }
    798 
    799   LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, "Final OutLocs", dbgs()));
    800   LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, "Final InLocs", dbgs()));
    801   return Changed;
    802 }
    803 
    804 bool LiveDebugValues::runOnMachineFunction(MachineFunction &MF) {
    805   if (!MF.getFunction().getSubprogram())
    806     // LiveDebugValues will already have removed all DBG_VALUEs.
    807     return false;
    808 
    809   // Skip functions from NoDebug compilation units.
    810   if (MF.getFunction().getSubprogram()->getUnit()->getEmissionKind() ==
    811       DICompileUnit::NoDebug)
    812     return false;
    813 
    814   TRI = MF.getSubtarget().getRegisterInfo();
    815   TII = MF.getSubtarget().getInstrInfo();
    816   TFI = MF.getSubtarget().getFrameLowering();
    817   TFI->determineCalleeSaves(MF, CalleeSavedRegs,
    818                             make_unique<RegScavenger>().get());
    819   LS.initialize(MF);
    820 
    821   bool Changed = ExtendRanges(MF);
    822   return Changed;
    823 }
    824