Home | History | Annotate | Download | only in SelectionDAG
      1 //===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements the ScheduleDAG class, which is a base class used by
     11 // scheduling implementation classes.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "ScheduleDAGSDNodes.h"
     16 #include "InstrEmitter.h"
     17 #include "SDNodeDbgValue.h"
     18 #include "llvm/ADT/DenseMap.h"
     19 #include "llvm/ADT/SmallPtrSet.h"
     20 #include "llvm/ADT/SmallSet.h"
     21 #include "llvm/ADT/SmallVector.h"
     22 #include "llvm/ADT/Statistic.h"
     23 #include "llvm/CodeGen/MachineInstrBuilder.h"
     24 #include "llvm/CodeGen/MachineRegisterInfo.h"
     25 #include "llvm/CodeGen/SelectionDAG.h"
     26 #include "llvm/CodeGen/TargetInstrInfo.h"
     27 #include "llvm/CodeGen/TargetLowering.h"
     28 #include "llvm/CodeGen/TargetRegisterInfo.h"
     29 #include "llvm/CodeGen/TargetSubtargetInfo.h"
     30 #include "llvm/Config/llvm-config.h"
     31 #include "llvm/MC/MCInstrItineraries.h"
     32 #include "llvm/Support/CommandLine.h"
     33 #include "llvm/Support/Debug.h"
     34 #include "llvm/Support/raw_ostream.h"
     35 using namespace llvm;
     36 
     37 #define DEBUG_TYPE "pre-RA-sched"
     38 
     39 STATISTIC(LoadsClustered, "Number of loads clustered together");
     40 
     41 // This allows the latency-based scheduler to notice high latency instructions
     42 // without a target itinerary. The choice of number here has more to do with
     43 // balancing scheduler heuristics than with the actual machine latency.
     44 static cl::opt<int> HighLatencyCycles(
     45   "sched-high-latency-cycles", cl::Hidden, cl::init(10),
     46   cl::desc("Roughly estimate the number of cycles that 'long latency'"
     47            "instructions take for targets with no itinerary"));
     48 
     49 ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf)
     50     : ScheduleDAG(mf), BB(nullptr), DAG(nullptr),
     51       InstrItins(mf.getSubtarget().getInstrItineraryData()) {}
     52 
     53 /// Run - perform scheduling.
     54 ///
     55 void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb) {
     56   BB = bb;
     57   DAG = dag;
     58 
     59   // Clear the scheduler's SUnit DAG.
     60   ScheduleDAG::clearDAG();
     61   Sequence.clear();
     62 
     63   // Invoke the target's selection of scheduler.
     64   Schedule();
     65 }
     66 
     67 /// NewSUnit - Creates a new SUnit and return a ptr to it.
     68 ///
     69 SUnit *ScheduleDAGSDNodes::newSUnit(SDNode *N) {
     70 #ifndef NDEBUG
     71   const SUnit *Addr = nullptr;
     72   if (!SUnits.empty())
     73     Addr = &SUnits[0];
     74 #endif
     75   SUnits.emplace_back(N, (unsigned)SUnits.size());
     76   assert((Addr == nullptr || Addr == &SUnits[0]) &&
     77          "SUnits std::vector reallocated on the fly!");
     78   SUnits.back().OrigNode = &SUnits.back();
     79   SUnit *SU = &SUnits.back();
     80   const TargetLowering &TLI = DAG->getTargetLoweringInfo();
     81   if (!N ||
     82       (N->isMachineOpcode() &&
     83        N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF))
     84     SU->SchedulingPref = Sched::None;
     85   else
     86     SU->SchedulingPref = TLI.getSchedulingPreference(N);
     87   return SU;
     88 }
     89 
     90 SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) {
     91   SUnit *SU = newSUnit(Old->getNode());
     92   SU->OrigNode = Old->OrigNode;
     93   SU->Latency = Old->Latency;
     94   SU->isVRegCycle = Old->isVRegCycle;
     95   SU->isCall = Old->isCall;
     96   SU->isCallOp = Old->isCallOp;
     97   SU->isTwoAddress = Old->isTwoAddress;
     98   SU->isCommutable = Old->isCommutable;
     99   SU->hasPhysRegDefs = Old->hasPhysRegDefs;
    100   SU->hasPhysRegClobbers = Old->hasPhysRegClobbers;
    101   SU->isScheduleHigh = Old->isScheduleHigh;
    102   SU->isScheduleLow = Old->isScheduleLow;
    103   SU->SchedulingPref = Old->SchedulingPref;
    104   Old->isCloned = true;
    105   return SU;
    106 }
    107 
    108 /// CheckForPhysRegDependency - Check if the dependency between def and use of
    109 /// a specified operand is a physical register dependency. If so, returns the
    110 /// register and the cost of copying the register.
    111 static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op,
    112                                       const TargetRegisterInfo *TRI,
    113                                       const TargetInstrInfo *TII,
    114                                       unsigned &PhysReg, int &Cost) {
    115   if (Op != 2 || User->getOpcode() != ISD::CopyToReg)
    116     return;
    117 
    118   unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
    119   if (TargetRegisterInfo::isVirtualRegister(Reg))
    120     return;
    121 
    122   unsigned ResNo = User->getOperand(2).getResNo();
    123   if (Def->getOpcode() == ISD::CopyFromReg &&
    124       cast<RegisterSDNode>(Def->getOperand(1))->getReg() == Reg) {
    125     PhysReg = Reg;
    126   } else if (Def->isMachineOpcode()) {
    127     const MCInstrDesc &II = TII->get(Def->getMachineOpcode());
    128     if (ResNo >= II.getNumDefs() &&
    129         II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg)
    130       PhysReg = Reg;
    131   }
    132 
    133   if (PhysReg != 0) {
    134     const TargetRegisterClass *RC =
    135         TRI->getMinimalPhysRegClass(Reg, Def->getSimpleValueType(ResNo));
    136     Cost = RC->getCopyCost();
    137   }
    138 }
    139 
    140 // Helper for AddGlue to clone node operands.
    141 static void CloneNodeWithValues(SDNode *N, SelectionDAG *DAG, ArrayRef<EVT> VTs,
    142                                 SDValue ExtraOper = SDValue()) {
    143   SmallVector<SDValue, 8> Ops(N->op_begin(), N->op_end());
    144   if (ExtraOper.getNode())
    145     Ops.push_back(ExtraOper);
    146 
    147   SDVTList VTList = DAG->getVTList(VTs);
    148   MachineSDNode::mmo_iterator Begin = nullptr, End = nullptr;
    149   MachineSDNode *MN = dyn_cast<MachineSDNode>(N);
    150 
    151   // Store memory references.
    152   if (MN) {
    153     Begin = MN->memoperands_begin();
    154     End = MN->memoperands_end();
    155   }
    156 
    157   DAG->MorphNodeTo(N, N->getOpcode(), VTList, Ops);
    158 
    159   // Reset the memory references
    160   if (MN)
    161     MN->setMemRefs(Begin, End);
    162 }
    163 
    164 static bool AddGlue(SDNode *N, SDValue Glue, bool AddGlue, SelectionDAG *DAG) {
    165   SDNode *GlueDestNode = Glue.getNode();
    166 
    167   // Don't add glue from a node to itself.
    168   if (GlueDestNode == N) return false;
    169 
    170   // Don't add a glue operand to something that already uses glue.
    171   if (GlueDestNode &&
    172       N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) {
    173     return false;
    174   }
    175   // Don't add glue to something that already has a glue value.
    176   if (N->getValueType(N->getNumValues() - 1) == MVT::Glue) return false;
    177 
    178   SmallVector<EVT, 4> VTs(N->value_begin(), N->value_end());
    179   if (AddGlue)
    180     VTs.push_back(MVT::Glue);
    181 
    182   CloneNodeWithValues(N, DAG, VTs, Glue);
    183 
    184   return true;
    185 }
    186 
    187 // Cleanup after unsuccessful AddGlue. Use the standard method of morphing the
    188 // node even though simply shrinking the value list is sufficient.
    189 static void RemoveUnusedGlue(SDNode *N, SelectionDAG *DAG) {
    190   assert((N->getValueType(N->getNumValues() - 1) == MVT::Glue &&
    191           !N->hasAnyUseOfValue(N->getNumValues() - 1)) &&
    192          "expected an unused glue value");
    193 
    194   CloneNodeWithValues(N, DAG,
    195                       makeArrayRef(N->value_begin(), N->getNumValues() - 1));
    196 }
    197 
    198 /// ClusterNeighboringLoads - Force nearby loads together by "gluing" them.
    199 /// This function finds loads of the same base and different offsets. If the
    200 /// offsets are not far apart (target specific), it add MVT::Glue inputs and
    201 /// outputs to ensure they are scheduled together and in order. This
    202 /// optimization may benefit some targets by improving cache locality.
    203 void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) {
    204   SDNode *Chain = nullptr;
    205   unsigned NumOps = Node->getNumOperands();
    206   if (Node->getOperand(NumOps-1).getValueType() == MVT::Other)
    207     Chain = Node->getOperand(NumOps-1).getNode();
    208   if (!Chain)
    209     return;
    210 
    211   // Look for other loads of the same chain. Find loads that are loading from
    212   // the same base pointer and different offsets.
    213   SmallPtrSet<SDNode*, 16> Visited;
    214   SmallVector<int64_t, 4> Offsets;
    215   DenseMap<long long, SDNode*> O2SMap;  // Map from offset to SDNode.
    216   bool Cluster = false;
    217   SDNode *Base = Node;
    218   // This algorithm requires a reasonably low use count before finding a match
    219   // to avoid uselessly blowing up compile time in large blocks.
    220   unsigned UseCount = 0;
    221   for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end();
    222        I != E && UseCount < 100; ++I, ++UseCount) {
    223     SDNode *User = *I;
    224     if (User == Node || !Visited.insert(User).second)
    225       continue;
    226     int64_t Offset1, Offset2;
    227     if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) ||
    228         Offset1 == Offset2)
    229       // FIXME: Should be ok if they addresses are identical. But earlier
    230       // optimizations really should have eliminated one of the loads.
    231       continue;
    232     if (O2SMap.insert(std::make_pair(Offset1, Base)).second)
    233       Offsets.push_back(Offset1);
    234     O2SMap.insert(std::make_pair(Offset2, User));
    235     Offsets.push_back(Offset2);
    236     if (Offset2 < Offset1)
    237       Base = User;
    238     Cluster = true;
    239     // Reset UseCount to allow more matches.
    240     UseCount = 0;
    241   }
    242 
    243   if (!Cluster)
    244     return;
    245 
    246   // Sort them in increasing order.
    247   llvm::sort(Offsets.begin(), Offsets.end());
    248 
    249   // Check if the loads are close enough.
    250   SmallVector<SDNode*, 4> Loads;
    251   unsigned NumLoads = 0;
    252   int64_t BaseOff = Offsets[0];
    253   SDNode *BaseLoad = O2SMap[BaseOff];
    254   Loads.push_back(BaseLoad);
    255   for (unsigned i = 1, e = Offsets.size(); i != e; ++i) {
    256     int64_t Offset = Offsets[i];
    257     SDNode *Load = O2SMap[Offset];
    258     if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads))
    259       break; // Stop right here. Ignore loads that are further away.
    260     Loads.push_back(Load);
    261     ++NumLoads;
    262   }
    263 
    264   if (NumLoads == 0)
    265     return;
    266 
    267   // Cluster loads by adding MVT::Glue outputs and inputs. This also
    268   // ensure they are scheduled in order of increasing addresses.
    269   SDNode *Lead = Loads[0];
    270   SDValue InGlue = SDValue(nullptr, 0);
    271   if (AddGlue(Lead, InGlue, true, DAG))
    272     InGlue = SDValue(Lead, Lead->getNumValues() - 1);
    273   for (unsigned I = 1, E = Loads.size(); I != E; ++I) {
    274     bool OutGlue = I < E - 1;
    275     SDNode *Load = Loads[I];
    276 
    277     // If AddGlue fails, we could leave an unsused glue value. This should not
    278     // cause any
    279     if (AddGlue(Load, InGlue, OutGlue, DAG)) {
    280       if (OutGlue)
    281         InGlue = SDValue(Load, Load->getNumValues() - 1);
    282 
    283       ++LoadsClustered;
    284     }
    285     else if (!OutGlue && InGlue.getNode())
    286       RemoveUnusedGlue(InGlue.getNode(), DAG);
    287   }
    288 }
    289 
    290 /// ClusterNodes - Cluster certain nodes which should be scheduled together.
    291 ///
    292 void ScheduleDAGSDNodes::ClusterNodes() {
    293   for (SDNode &NI : DAG->allnodes()) {
    294     SDNode *Node = &NI;
    295     if (!Node || !Node->isMachineOpcode())
    296       continue;
    297 
    298     unsigned Opc = Node->getMachineOpcode();
    299     const MCInstrDesc &MCID = TII->get(Opc);
    300     if (MCID.mayLoad())
    301       // Cluster loads from "near" addresses into combined SUnits.
    302       ClusterNeighboringLoads(Node);
    303   }
    304 }
    305 
    306 void ScheduleDAGSDNodes::BuildSchedUnits() {
    307   // During scheduling, the NodeId field of SDNode is used to map SDNodes
    308   // to their associated SUnits by holding SUnits table indices. A value
    309   // of -1 means the SDNode does not yet have an associated SUnit.
    310   unsigned NumNodes = 0;
    311   for (SDNode &NI : DAG->allnodes()) {
    312     NI.setNodeId(-1);
    313     ++NumNodes;
    314   }
    315 
    316   // Reserve entries in the vector for each of the SUnits we are creating.  This
    317   // ensure that reallocation of the vector won't happen, so SUnit*'s won't get
    318   // invalidated.
    319   // FIXME: Multiply by 2 because we may clone nodes during scheduling.
    320   // This is a temporary workaround.
    321   SUnits.reserve(NumNodes * 2);
    322 
    323   // Add all nodes in depth first order.
    324   SmallVector<SDNode*, 64> Worklist;
    325   SmallPtrSet<SDNode*, 32> Visited;
    326   Worklist.push_back(DAG->getRoot().getNode());
    327   Visited.insert(DAG->getRoot().getNode());
    328 
    329   SmallVector<SUnit*, 8> CallSUnits;
    330   while (!Worklist.empty()) {
    331     SDNode *NI = Worklist.pop_back_val();
    332 
    333     // Add all operands to the worklist unless they've already been added.
    334     for (const SDValue &Op : NI->op_values())
    335       if (Visited.insert(Op.getNode()).second)
    336         Worklist.push_back(Op.getNode());
    337 
    338     if (isPassiveNode(NI))  // Leaf node, e.g. a TargetImmediate.
    339       continue;
    340 
    341     // If this node has already been processed, stop now.
    342     if (NI->getNodeId() != -1) continue;
    343 
    344     SUnit *NodeSUnit = newSUnit(NI);
    345 
    346     // See if anything is glued to this node, if so, add them to glued
    347     // nodes.  Nodes can have at most one glue input and one glue output.  Glue
    348     // is required to be the last operand and result of a node.
    349 
    350     // Scan up to find glued preds.
    351     SDNode *N = NI;
    352     while (N->getNumOperands() &&
    353            N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) {
    354       N = N->getOperand(N->getNumOperands()-1).getNode();
    355       assert(N->getNodeId() == -1 && "Node already inserted!");
    356       N->setNodeId(NodeSUnit->NodeNum);
    357       if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
    358         NodeSUnit->isCall = true;
    359     }
    360 
    361     // Scan down to find any glued succs.
    362     N = NI;
    363     while (N->getValueType(N->getNumValues()-1) == MVT::Glue) {
    364       SDValue GlueVal(N, N->getNumValues()-1);
    365 
    366       // There are either zero or one users of the Glue result.
    367       bool HasGlueUse = false;
    368       for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
    369            UI != E; ++UI)
    370         if (GlueVal.isOperandOf(*UI)) {
    371           HasGlueUse = true;
    372           assert(N->getNodeId() == -1 && "Node already inserted!");
    373           N->setNodeId(NodeSUnit->NodeNum);
    374           N = *UI;
    375           if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
    376             NodeSUnit->isCall = true;
    377           break;
    378         }
    379       if (!HasGlueUse) break;
    380     }
    381 
    382     if (NodeSUnit->isCall)
    383       CallSUnits.push_back(NodeSUnit);
    384 
    385     // Schedule zero-latency TokenFactor below any nodes that may increase the
    386     // schedule height. Otherwise, ancestors of the TokenFactor may appear to
    387     // have false stalls.
    388     if (NI->getOpcode() == ISD::TokenFactor)
    389       NodeSUnit->isScheduleLow = true;
    390 
    391     // If there are glue operands involved, N is now the bottom-most node
    392     // of the sequence of nodes that are glued together.
    393     // Update the SUnit.
    394     NodeSUnit->setNode(N);
    395     assert(N->getNodeId() == -1 && "Node already inserted!");
    396     N->setNodeId(NodeSUnit->NodeNum);
    397 
    398     // Compute NumRegDefsLeft. This must be done before AddSchedEdges.
    399     InitNumRegDefsLeft(NodeSUnit);
    400 
    401     // Assign the Latency field of NodeSUnit using target-provided information.
    402     computeLatency(NodeSUnit);
    403   }
    404 
    405   // Find all call operands.
    406   while (!CallSUnits.empty()) {
    407     SUnit *SU = CallSUnits.pop_back_val();
    408     for (const SDNode *SUNode = SU->getNode(); SUNode;
    409          SUNode = SUNode->getGluedNode()) {
    410       if (SUNode->getOpcode() != ISD::CopyToReg)
    411         continue;
    412       SDNode *SrcN = SUNode->getOperand(2).getNode();
    413       if (isPassiveNode(SrcN)) continue;   // Not scheduled.
    414       SUnit *SrcSU = &SUnits[SrcN->getNodeId()];
    415       SrcSU->isCallOp = true;
    416     }
    417   }
    418 }
    419 
    420 void ScheduleDAGSDNodes::AddSchedEdges() {
    421   const TargetSubtargetInfo &ST = MF.getSubtarget();
    422 
    423   // Check to see if the scheduler cares about latencies.
    424   bool UnitLatencies = forceUnitLatencies();
    425 
    426   // Pass 2: add the preds, succs, etc.
    427   for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
    428     SUnit *SU = &SUnits[su];
    429     SDNode *MainNode = SU->getNode();
    430 
    431     if (MainNode->isMachineOpcode()) {
    432       unsigned Opc = MainNode->getMachineOpcode();
    433       const MCInstrDesc &MCID = TII->get(Opc);
    434       for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
    435         if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
    436           SU->isTwoAddress = true;
    437           break;
    438         }
    439       }
    440       if (MCID.isCommutable())
    441         SU->isCommutable = true;
    442     }
    443 
    444     // Find all predecessors and successors of the group.
    445     for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) {
    446       if (N->isMachineOpcode() &&
    447           TII->get(N->getMachineOpcode()).getImplicitDefs()) {
    448         SU->hasPhysRegClobbers = true;
    449         unsigned NumUsed = InstrEmitter::CountResults(N);
    450         while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1))
    451           --NumUsed;    // Skip over unused values at the end.
    452         if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs())
    453           SU->hasPhysRegDefs = true;
    454       }
    455 
    456       for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
    457         SDNode *OpN = N->getOperand(i).getNode();
    458         if (isPassiveNode(OpN)) continue;   // Not scheduled.
    459         SUnit *OpSU = &SUnits[OpN->getNodeId()];
    460         assert(OpSU && "Node has no SUnit!");
    461         if (OpSU == SU) continue;           // In the same group.
    462 
    463         EVT OpVT = N->getOperand(i).getValueType();
    464         assert(OpVT != MVT::Glue && "Glued nodes should be in same sunit!");
    465         bool isChain = OpVT == MVT::Other;
    466 
    467         unsigned PhysReg = 0;
    468         int Cost = 1;
    469         // Determine if this is a physical register dependency.
    470         CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost);
    471         assert((PhysReg == 0 || !isChain) &&
    472                "Chain dependence via physreg data?");
    473         // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler
    474         // emits a copy from the physical register to a virtual register unless
    475         // it requires a cross class copy (cost < 0). That means we are only
    476         // treating "expensive to copy" register dependency as physical register
    477         // dependency. This may change in the future though.
    478         if (Cost >= 0 && !StressSched)
    479           PhysReg = 0;
    480 
    481         // If this is a ctrl dep, latency is 1.
    482         unsigned OpLatency = isChain ? 1 : OpSU->Latency;
    483         // Special-case TokenFactor chains as zero-latency.
    484         if(isChain && OpN->getOpcode() == ISD::TokenFactor)
    485           OpLatency = 0;
    486 
    487         SDep Dep = isChain ? SDep(OpSU, SDep::Barrier)
    488           : SDep(OpSU, SDep::Data, PhysReg);
    489         Dep.setLatency(OpLatency);
    490         if (!isChain && !UnitLatencies) {
    491           computeOperandLatency(OpN, N, i, Dep);
    492           ST.adjustSchedDependency(OpSU, SU, Dep);
    493         }
    494 
    495         if (!SU->addPred(Dep) && !Dep.isCtrl() && OpSU->NumRegDefsLeft > 1) {
    496           // Multiple register uses are combined in the same SUnit. For example,
    497           // we could have a set of glued nodes with all their defs consumed by
    498           // another set of glued nodes. Register pressure tracking sees this as
    499           // a single use, so to keep pressure balanced we reduce the defs.
    500           //
    501           // We can't tell (without more book-keeping) if this results from
    502           // glued nodes or duplicate operands. As long as we don't reduce
    503           // NumRegDefsLeft to zero, we handle the common cases well.
    504           --OpSU->NumRegDefsLeft;
    505         }
    506       }
    507     }
    508   }
    509 }
    510 
    511 /// BuildSchedGraph - Build the SUnit graph from the selection dag that we
    512 /// are input.  This SUnit graph is similar to the SelectionDAG, but
    513 /// excludes nodes that aren't interesting to scheduling, and represents
    514 /// glued together nodes with a single SUnit.
    515 void ScheduleDAGSDNodes::BuildSchedGraph(AliasAnalysis *AA) {
    516   // Cluster certain nodes which should be scheduled together.
    517   ClusterNodes();
    518   // Populate the SUnits array.
    519   BuildSchedUnits();
    520   // Compute all the scheduling dependencies between nodes.
    521   AddSchedEdges();
    522 }
    523 
    524 // Initialize NumNodeDefs for the current Node's opcode.
    525 void ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs() {
    526   // Check for phys reg copy.
    527   if (!Node)
    528     return;
    529 
    530   if (!Node->isMachineOpcode()) {
    531     if (Node->getOpcode() == ISD::CopyFromReg)
    532       NodeNumDefs = 1;
    533     else
    534       NodeNumDefs = 0;
    535     return;
    536   }
    537   unsigned POpc = Node->getMachineOpcode();
    538   if (POpc == TargetOpcode::IMPLICIT_DEF) {
    539     // No register need be allocated for this.
    540     NodeNumDefs = 0;
    541     return;
    542   }
    543   if (POpc == TargetOpcode::PATCHPOINT &&
    544       Node->getValueType(0) == MVT::Other) {
    545     // PATCHPOINT is defined to have one result, but it might really have none
    546     // if we're not using CallingConv::AnyReg. Don't mistake the chain for a
    547     // real definition.
    548     NodeNumDefs = 0;
    549     return;
    550   }
    551   unsigned NRegDefs = SchedDAG->TII->get(Node->getMachineOpcode()).getNumDefs();
    552   // Some instructions define regs that are not represented in the selection DAG
    553   // (e.g. unused flags). See tMOVi8. Make sure we don't access past NumValues.
    554   NodeNumDefs = std::min(Node->getNumValues(), NRegDefs);
    555   DefIdx = 0;
    556 }
    557 
    558 // Construct a RegDefIter for this SUnit and find the first valid value.
    559 ScheduleDAGSDNodes::RegDefIter::RegDefIter(const SUnit *SU,
    560                                            const ScheduleDAGSDNodes *SD)
    561   : SchedDAG(SD), Node(SU->getNode()), DefIdx(0), NodeNumDefs(0) {
    562   InitNodeNumDefs();
    563   Advance();
    564 }
    565 
    566 // Advance to the next valid value defined by the SUnit.
    567 void ScheduleDAGSDNodes::RegDefIter::Advance() {
    568   for (;Node;) { // Visit all glued nodes.
    569     for (;DefIdx < NodeNumDefs; ++DefIdx) {
    570       if (!Node->hasAnyUseOfValue(DefIdx))
    571         continue;
    572       ValueType = Node->getSimpleValueType(DefIdx);
    573       ++DefIdx;
    574       return; // Found a normal regdef.
    575     }
    576     Node = Node->getGluedNode();
    577     if (!Node) {
    578       return; // No values left to visit.
    579     }
    580     InitNodeNumDefs();
    581   }
    582 }
    583 
    584 void ScheduleDAGSDNodes::InitNumRegDefsLeft(SUnit *SU) {
    585   assert(SU->NumRegDefsLeft == 0 && "expect a new node");
    586   for (RegDefIter I(SU, this); I.IsValid(); I.Advance()) {
    587     assert(SU->NumRegDefsLeft < USHRT_MAX && "overflow is ok but unexpected");
    588     ++SU->NumRegDefsLeft;
    589   }
    590 }
    591 
    592 void ScheduleDAGSDNodes::computeLatency(SUnit *SU) {
    593   SDNode *N = SU->getNode();
    594 
    595   // TokenFactor operands are considered zero latency, and some schedulers
    596   // (e.g. Top-Down list) may rely on the fact that operand latency is nonzero
    597   // whenever node latency is nonzero.
    598   if (N && N->getOpcode() == ISD::TokenFactor) {
    599     SU->Latency = 0;
    600     return;
    601   }
    602 
    603   // Check to see if the scheduler cares about latencies.
    604   if (forceUnitLatencies()) {
    605     SU->Latency = 1;
    606     return;
    607   }
    608 
    609   if (!InstrItins || InstrItins->isEmpty()) {
    610     if (N && N->isMachineOpcode() &&
    611         TII->isHighLatencyDef(N->getMachineOpcode()))
    612       SU->Latency = HighLatencyCycles;
    613     else
    614       SU->Latency = 1;
    615     return;
    616   }
    617 
    618   // Compute the latency for the node.  We use the sum of the latencies for
    619   // all nodes glued together into this SUnit.
    620   SU->Latency = 0;
    621   for (SDNode *N = SU->getNode(); N; N = N->getGluedNode())
    622     if (N->isMachineOpcode())
    623       SU->Latency += TII->getInstrLatency(InstrItins, N);
    624 }
    625 
    626 void ScheduleDAGSDNodes::computeOperandLatency(SDNode *Def, SDNode *Use,
    627                                                unsigned OpIdx, SDep& dep) const{
    628   // Check to see if the scheduler cares about latencies.
    629   if (forceUnitLatencies())
    630     return;
    631 
    632   if (dep.getKind() != SDep::Data)
    633     return;
    634 
    635   unsigned DefIdx = Use->getOperand(OpIdx).getResNo();
    636   if (Use->isMachineOpcode())
    637     // Adjust the use operand index by num of defs.
    638     OpIdx += TII->get(Use->getMachineOpcode()).getNumDefs();
    639   int Latency = TII->getOperandLatency(InstrItins, Def, DefIdx, Use, OpIdx);
    640   if (Latency > 1 && Use->getOpcode() == ISD::CopyToReg &&
    641       !BB->succ_empty()) {
    642     unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
    643     if (TargetRegisterInfo::isVirtualRegister(Reg))
    644       // This copy is a liveout value. It is likely coalesced, so reduce the
    645       // latency so not to penalize the def.
    646       // FIXME: need target specific adjustment here?
    647       Latency = (Latency > 1) ? Latency - 1 : 1;
    648   }
    649   if (Latency >= 0)
    650     dep.setLatency(Latency);
    651 }
    652 
    653 void ScheduleDAGSDNodes::dumpNode(const SUnit *SU) const {
    654   // Cannot completely remove virtual function even in release mode.
    655 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    656   if (!SU->getNode()) {
    657     dbgs() << "PHYS REG COPY\n";
    658     return;
    659   }
    660 
    661   SU->getNode()->dump(DAG);
    662   dbgs() << "\n";
    663   SmallVector<SDNode *, 4> GluedNodes;
    664   for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode())
    665     GluedNodes.push_back(N);
    666   while (!GluedNodes.empty()) {
    667     dbgs() << "    ";
    668     GluedNodes.back()->dump(DAG);
    669     dbgs() << "\n";
    670     GluedNodes.pop_back();
    671   }
    672 #endif
    673 }
    674 
    675 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    676 void ScheduleDAGSDNodes::dumpSchedule() const {
    677   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
    678     if (SUnit *SU = Sequence[i])
    679       SU->dump(this);
    680     else
    681       dbgs() << "**** NOOP ****\n";
    682   }
    683 }
    684 #endif
    685 
    686 #ifndef NDEBUG
    687 /// VerifyScheduledSequence - Verify that all SUnits were scheduled and that
    688 /// their state is consistent with the nodes listed in Sequence.
    689 ///
    690 void ScheduleDAGSDNodes::VerifyScheduledSequence(bool isBottomUp) {
    691   unsigned ScheduledNodes = ScheduleDAG::VerifyScheduledDAG(isBottomUp);
    692   unsigned Noops = 0;
    693   for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
    694     if (!Sequence[i])
    695       ++Noops;
    696   assert(Sequence.size() - Noops == ScheduledNodes &&
    697          "The number of nodes scheduled doesn't match the expected number!");
    698 }
    699 #endif // NDEBUG
    700 
    701 /// ProcessSDDbgValues - Process SDDbgValues associated with this node.
    702 static void
    703 ProcessSDDbgValues(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter,
    704                    SmallVectorImpl<std::pair<unsigned, MachineInstr*> > &Orders,
    705                    DenseMap<SDValue, unsigned> &VRBaseMap, unsigned Order) {
    706   if (!N->getHasDebugValue())
    707     return;
    708 
    709   // Opportunistically insert immediate dbg_value uses, i.e. those with the same
    710   // source order number as N.
    711   MachineBasicBlock *BB = Emitter.getBlock();
    712   MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos();
    713   for (auto DV : DAG->GetDbgValues(N)) {
    714     if (DV->isInvalidated())
    715       continue;
    716     unsigned DVOrder = DV->getOrder();
    717     if (!Order || DVOrder == Order) {
    718       MachineInstr *DbgMI = Emitter.EmitDbgValue(DV, VRBaseMap);
    719       if (DbgMI) {
    720         Orders.push_back({DVOrder, DbgMI});
    721         BB->insert(InsertPos, DbgMI);
    722       }
    723       DV->setIsInvalidated();
    724     }
    725   }
    726 }
    727 
    728 // ProcessSourceNode - Process nodes with source order numbers. These are added
    729 // to a vector which EmitSchedule uses to determine how to insert dbg_value
    730 // instructions in the right order.
    731 static void
    732 ProcessSourceNode(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter,
    733                   DenseMap<SDValue, unsigned> &VRBaseMap,
    734                   SmallVectorImpl<std::pair<unsigned, MachineInstr*> > &Orders,
    735                   SmallSet<unsigned, 8> &Seen) {
    736   unsigned Order = N->getIROrder();
    737   if (!Order || !Seen.insert(Order).second) {
    738     // Process any valid SDDbgValues even if node does not have any order
    739     // assigned.
    740     ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, 0);
    741     return;
    742   }
    743 
    744   MachineBasicBlock *BB = Emitter.getBlock();
    745   auto IP = Emitter.getInsertPos();
    746   if (IP == BB->begin() || BB->back().isPHI() ||
    747       // Fast-isel may have inserted some instructions, in which case the
    748       // BB->back().isPHI() test will not fire when we want it to.
    749       std::prev(IP)->isPHI()) {
    750     // Did not insert any instruction.
    751     Orders.push_back({Order, (MachineInstr *)nullptr});
    752     return;
    753   }
    754 
    755   Orders.push_back({Order, &*std::prev(IP)});
    756   ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, Order);
    757 }
    758 
    759 void ScheduleDAGSDNodes::
    760 EmitPhysRegCopy(SUnit *SU, DenseMap<SUnit*, unsigned> &VRBaseMap,
    761                 MachineBasicBlock::iterator InsertPos) {
    762   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
    763        I != E; ++I) {
    764     if (I->isCtrl()) continue;  // ignore chain preds
    765     if (I->getSUnit()->CopyDstRC) {
    766       // Copy to physical register.
    767       DenseMap<SUnit*, unsigned>::iterator VRI = VRBaseMap.find(I->getSUnit());
    768       assert(VRI != VRBaseMap.end() && "Node emitted out of order - late");
    769       // Find the destination physical register.
    770       unsigned Reg = 0;
    771       for (SUnit::const_succ_iterator II = SU->Succs.begin(),
    772              EE = SU->Succs.end(); II != EE; ++II) {
    773         if (II->isCtrl()) continue;  // ignore chain preds
    774         if (II->getReg()) {
    775           Reg = II->getReg();
    776           break;
    777         }
    778       }
    779       BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), Reg)
    780         .addReg(VRI->second);
    781     } else {
    782       // Copy from physical register.
    783       assert(I->getReg() && "Unknown physical register!");
    784       unsigned VRBase = MRI.createVirtualRegister(SU->CopyDstRC);
    785       bool isNew = VRBaseMap.insert(std::make_pair(SU, VRBase)).second;
    786       (void)isNew; // Silence compiler warning.
    787       assert(isNew && "Node emitted out of order - early");
    788       BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), VRBase)
    789         .addReg(I->getReg());
    790     }
    791     break;
    792   }
    793 }
    794 
    795 /// EmitSchedule - Emit the machine code in scheduled order. Return the new
    796 /// InsertPos and MachineBasicBlock that contains this insertion
    797 /// point. ScheduleDAGSDNodes holds a BB pointer for convenience, but this does
    798 /// not necessarily refer to returned BB. The emitter may split blocks.
    799 MachineBasicBlock *ScheduleDAGSDNodes::
    800 EmitSchedule(MachineBasicBlock::iterator &InsertPos) {
    801   InstrEmitter Emitter(BB, InsertPos);
    802   DenseMap<SDValue, unsigned> VRBaseMap;
    803   DenseMap<SUnit*, unsigned> CopyVRBaseMap;
    804   SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders;
    805   SmallSet<unsigned, 8> Seen;
    806   bool HasDbg = DAG->hasDebugValues();
    807 
    808   // If this is the first BB, emit byval parameter dbg_value's.
    809   if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) {
    810     SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin();
    811     SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd();
    812     for (; PDI != PDE; ++PDI) {
    813       MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap);
    814       if (DbgMI)
    815         BB->insert(InsertPos, DbgMI);
    816     }
    817   }
    818 
    819   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
    820     SUnit *SU = Sequence[i];
    821     if (!SU) {
    822       // Null SUnit* is a noop.
    823       TII->insertNoop(*Emitter.getBlock(), InsertPos);
    824       continue;
    825     }
    826 
    827     // For pre-regalloc scheduling, create instructions corresponding to the
    828     // SDNode and any glued SDNodes and append them to the block.
    829     if (!SU->getNode()) {
    830       // Emit a copy.
    831       EmitPhysRegCopy(SU, CopyVRBaseMap, InsertPos);
    832       continue;
    833     }
    834 
    835     SmallVector<SDNode *, 4> GluedNodes;
    836     for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode())
    837       GluedNodes.push_back(N);
    838     while (!GluedNodes.empty()) {
    839       SDNode *N = GluedNodes.back();
    840       Emitter.EmitNode(N, SU->OrigNode != SU, SU->isCloned, VRBaseMap);
    841       // Remember the source order of the inserted instruction.
    842       if (HasDbg)
    843         ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen);
    844       GluedNodes.pop_back();
    845     }
    846     Emitter.EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned,
    847                      VRBaseMap);
    848     // Remember the source order of the inserted instruction.
    849     if (HasDbg)
    850       ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders,
    851                         Seen);
    852   }
    853 
    854   // Insert all the dbg_values which have not already been inserted in source
    855   // order sequence.
    856   if (HasDbg) {
    857     MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI();
    858 
    859     // Sort the source order instructions and use the order to insert debug
    860     // values. Use stable_sort so that DBG_VALUEs are inserted in the same order
    861     // regardless of the host's implementation fo std::sort.
    862     std::stable_sort(Orders.begin(), Orders.end(), less_first());
    863     std::stable_sort(DAG->DbgBegin(), DAG->DbgEnd(),
    864                      [](const SDDbgValue *LHS, const SDDbgValue *RHS) {
    865                        return LHS->getOrder() < RHS->getOrder();
    866                      });
    867 
    868     SDDbgInfo::DbgIterator DI = DAG->DbgBegin();
    869     SDDbgInfo::DbgIterator DE = DAG->DbgEnd();
    870     // Now emit the rest according to source order.
    871     unsigned LastOrder = 0;
    872     for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) {
    873       unsigned Order = Orders[i].first;
    874       MachineInstr *MI = Orders[i].second;
    875       // Insert all SDDbgValue's whose order(s) are before "Order".
    876       if (!MI)
    877         continue;
    878       for (; DI != DE; ++DI) {
    879         if ((*DI)->getOrder() < LastOrder || (*DI)->getOrder() >= Order)
    880           break;
    881         if ((*DI)->isInvalidated())
    882           continue;
    883 
    884         MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap);
    885         if (DbgMI) {
    886           if (!LastOrder)
    887             // Insert to start of the BB (after PHIs).
    888             BB->insert(BBBegin, DbgMI);
    889           else {
    890             // Insert at the instruction, which may be in a different
    891             // block, if the block was split by a custom inserter.
    892             MachineBasicBlock::iterator Pos = MI;
    893             MI->getParent()->insert(Pos, DbgMI);
    894           }
    895         }
    896       }
    897       LastOrder = Order;
    898     }
    899     // Add trailing DbgValue's before the terminator. FIXME: May want to add
    900     // some of them before one or more conditional branches?
    901     SmallVector<MachineInstr*, 8> DbgMIs;
    902     for (; DI != DE; ++DI) {
    903       if ((*DI)->isInvalidated())
    904         continue;
    905       assert((*DI)->getOrder() >= LastOrder &&
    906              "emitting DBG_VALUE out of order");
    907       if (MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap))
    908         DbgMIs.push_back(DbgMI);
    909     }
    910 
    911     MachineBasicBlock *InsertBB = Emitter.getBlock();
    912     MachineBasicBlock::iterator Pos = InsertBB->getFirstTerminator();
    913     InsertBB->insert(Pos, DbgMIs.begin(), DbgMIs.end());
    914 
    915     SDDbgInfo::DbgLabelIterator DLI = DAG->DbgLabelBegin();
    916     SDDbgInfo::DbgLabelIterator DLE = DAG->DbgLabelEnd();
    917     // Now emit the rest according to source order.
    918     LastOrder = 0;
    919     for (const auto &InstrOrder : Orders) {
    920       unsigned Order = InstrOrder.first;
    921       MachineInstr *MI = InstrOrder.second;
    922       if (!MI)
    923         continue;
    924 
    925       // Insert all SDDbgLabel's whose order(s) are before "Order".
    926       for (; DLI != DLE &&
    927              (*DLI)->getOrder() >= LastOrder && (*DLI)->getOrder() < Order;
    928              ++DLI) {
    929         MachineInstr *DbgMI = Emitter.EmitDbgLabel(*DLI);
    930         if (DbgMI) {
    931           if (!LastOrder)
    932             // Insert to start of the BB (after PHIs).
    933             BB->insert(BBBegin, DbgMI);
    934           else {
    935             // Insert at the instruction, which may be in a different
    936             // block, if the block was split by a custom inserter.
    937             MachineBasicBlock::iterator Pos = MI;
    938             MI->getParent()->insert(Pos, DbgMI);
    939           }
    940         }
    941       }
    942       if (DLI == DLE)
    943         break;
    944 
    945       LastOrder = Order;
    946     }
    947   }
    948 
    949   InsertPos = Emitter.getInsertPos();
    950   return Emitter.getBlock();
    951 }
    952 
    953 /// Return the basic block label.
    954 std::string ScheduleDAGSDNodes::getDAGName() const {
    955   return "sunit-dag." + BB->getFullName();
    956 }
    957