Home | History | Annotate | Download | only in CodeGen
      1 //===- ShrinkWrap.cpp - Compute safe point for prolog/epilog insertion ----===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass looks for safe point where the prologue and epilogue can be
     11 // inserted.
     12 // The safe point for the prologue (resp. epilogue) is called Save
     13 // (resp. Restore).
     14 // A point is safe for prologue (resp. epilogue) if and only if
     15 // it 1) dominates (resp. post-dominates) all the frame related operations and
     16 // between 2) two executions of the Save (resp. Restore) point there is an
     17 // execution of the Restore (resp. Save) point.
     18 //
     19 // For instance, the following points are safe:
     20 // for (int i = 0; i < 10; ++i) {
     21 //   Save
     22 //   ...
     23 //   Restore
     24 // }
     25 // Indeed, the execution looks like Save -> Restore -> Save -> Restore ...
     26 // And the following points are not:
     27 // for (int i = 0; i < 10; ++i) {
     28 //   Save
     29 //   ...
     30 // }
     31 // for (int i = 0; i < 10; ++i) {
     32 //   ...
     33 //   Restore
     34 // }
     35 // Indeed, the execution looks like Save -> Save -> ... -> Restore -> Restore.
     36 //
     37 // This pass also ensures that the safe points are 3) cheaper than the regular
     38 // entry and exits blocks.
     39 //
     40 // Property #1 is ensured via the use of MachineDominatorTree and
     41 // MachinePostDominatorTree.
     42 // Property #2 is ensured via property #1 and MachineLoopInfo, i.e., both
     43 // points must be in the same loop.
     44 // Property #3 is ensured via the MachineBlockFrequencyInfo.
     45 //
     46 // If this pass found points matching all these properties, then
     47 // MachineFrameInfo is updated with this information.
     48 //
     49 //===----------------------------------------------------------------------===//
     50 
     51 #include "llvm/ADT/BitVector.h"
     52 #include "llvm/ADT/PostOrderIterator.h"
     53 #include "llvm/ADT/SetVector.h"
     54 #include "llvm/ADT/SmallVector.h"
     55 #include "llvm/ADT/Statistic.h"
     56 #include "llvm/Analysis/CFG.h"
     57 #include "llvm/CodeGen/MachineBasicBlock.h"
     58 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
     59 #include "llvm/CodeGen/MachineDominators.h"
     60 #include "llvm/CodeGen/MachineFrameInfo.h"
     61 #include "llvm/CodeGen/MachineFunction.h"
     62 #include "llvm/CodeGen/MachineFunctionPass.h"
     63 #include "llvm/CodeGen/MachineInstr.h"
     64 #include "llvm/CodeGen/MachineLoopInfo.h"
     65 #include "llvm/CodeGen/MachineOperand.h"
     66 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
     67 #include "llvm/CodeGen/MachinePostDominators.h"
     68 #include "llvm/CodeGen/RegisterClassInfo.h"
     69 #include "llvm/CodeGen/RegisterScavenging.h"
     70 #include "llvm/CodeGen/TargetFrameLowering.h"
     71 #include "llvm/CodeGen/TargetInstrInfo.h"
     72 #include "llvm/CodeGen/TargetLowering.h"
     73 #include "llvm/CodeGen/TargetRegisterInfo.h"
     74 #include "llvm/CodeGen/TargetSubtargetInfo.h"
     75 #include "llvm/IR/Attributes.h"
     76 #include "llvm/IR/Function.h"
     77 #include "llvm/MC/MCAsmInfo.h"
     78 #include "llvm/Pass.h"
     79 #include "llvm/Support/CommandLine.h"
     80 #include "llvm/Support/Debug.h"
     81 #include "llvm/Support/ErrorHandling.h"
     82 #include "llvm/Support/raw_ostream.h"
     83 #include "llvm/Target/TargetMachine.h"
     84 #include <cassert>
     85 #include <cstdint>
     86 #include <memory>
     87 
     88 using namespace llvm;
     89 
     90 #define DEBUG_TYPE "shrink-wrap"
     91 
     92 STATISTIC(NumFunc, "Number of functions");
     93 STATISTIC(NumCandidates, "Number of shrink-wrapping candidates");
     94 STATISTIC(NumCandidatesDropped,
     95           "Number of shrink-wrapping candidates dropped because of frequency");
     96 
     97 static cl::opt<cl::boolOrDefault>
     98 EnableShrinkWrapOpt("enable-shrink-wrap", cl::Hidden,
     99                     cl::desc("enable the shrink-wrapping pass"));
    100 
    101 namespace {
    102 
    103 /// Class to determine where the safe point to insert the
    104 /// prologue and epilogue are.
    105 /// Unlike the paper from Fred C. Chow, PLDI'88, that introduces the
    106 /// shrink-wrapping term for prologue/epilogue placement, this pass
    107 /// does not rely on expensive data-flow analysis. Instead we use the
    108 /// dominance properties and loop information to decide which point
    109 /// are safe for such insertion.
    110 class ShrinkWrap : public MachineFunctionPass {
    111   /// Hold callee-saved information.
    112   RegisterClassInfo RCI;
    113   MachineDominatorTree *MDT;
    114   MachinePostDominatorTree *MPDT;
    115 
    116   /// Current safe point found for the prologue.
    117   /// The prologue will be inserted before the first instruction
    118   /// in this basic block.
    119   MachineBasicBlock *Save;
    120 
    121   /// Current safe point found for the epilogue.
    122   /// The epilogue will be inserted before the first terminator instruction
    123   /// in this basic block.
    124   MachineBasicBlock *Restore;
    125 
    126   /// Hold the information of the basic block frequency.
    127   /// Use to check the profitability of the new points.
    128   MachineBlockFrequencyInfo *MBFI;
    129 
    130   /// Hold the loop information. Used to determine if Save and Restore
    131   /// are in the same loop.
    132   MachineLoopInfo *MLI;
    133 
    134   // Emit remarks.
    135   MachineOptimizationRemarkEmitter *ORE = nullptr;
    136 
    137   /// Frequency of the Entry block.
    138   uint64_t EntryFreq;
    139 
    140   /// Current opcode for frame setup.
    141   unsigned FrameSetupOpcode;
    142 
    143   /// Current opcode for frame destroy.
    144   unsigned FrameDestroyOpcode;
    145 
    146   /// Stack pointer register, used by llvm.{savestack,restorestack}
    147   unsigned SP;
    148 
    149   /// Entry block.
    150   const MachineBasicBlock *Entry;
    151 
    152   using SetOfRegs = SmallSetVector<unsigned, 16>;
    153 
    154   /// Registers that need to be saved for the current function.
    155   mutable SetOfRegs CurrentCSRs;
    156 
    157   /// Current MachineFunction.
    158   MachineFunction *MachineFunc;
    159 
    160   /// Check if \p MI uses or defines a callee-saved register or
    161   /// a frame index. If this is the case, this means \p MI must happen
    162   /// after Save and before Restore.
    163   bool useOrDefCSROrFI(const MachineInstr &MI, RegScavenger *RS) const;
    164 
    165   const SetOfRegs &getCurrentCSRs(RegScavenger *RS) const {
    166     if (CurrentCSRs.empty()) {
    167       BitVector SavedRegs;
    168       const TargetFrameLowering *TFI =
    169           MachineFunc->getSubtarget().getFrameLowering();
    170 
    171       TFI->determineCalleeSaves(*MachineFunc, SavedRegs, RS);
    172 
    173       for (int Reg = SavedRegs.find_first(); Reg != -1;
    174            Reg = SavedRegs.find_next(Reg))
    175         CurrentCSRs.insert((unsigned)Reg);
    176     }
    177     return CurrentCSRs;
    178   }
    179 
    180   /// Update the Save and Restore points such that \p MBB is in
    181   /// the region that is dominated by Save and post-dominated by Restore
    182   /// and Save and Restore still match the safe point definition.
    183   /// Such point may not exist and Save and/or Restore may be null after
    184   /// this call.
    185   void updateSaveRestorePoints(MachineBasicBlock &MBB, RegScavenger *RS);
    186 
    187   /// Initialize the pass for \p MF.
    188   void init(MachineFunction &MF) {
    189     RCI.runOnMachineFunction(MF);
    190     MDT = &getAnalysis<MachineDominatorTree>();
    191     MPDT = &getAnalysis<MachinePostDominatorTree>();
    192     Save = nullptr;
    193     Restore = nullptr;
    194     MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
    195     MLI = &getAnalysis<MachineLoopInfo>();
    196     ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
    197     EntryFreq = MBFI->getEntryFreq();
    198     const TargetSubtargetInfo &Subtarget = MF.getSubtarget();
    199     const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
    200     FrameSetupOpcode = TII.getCallFrameSetupOpcode();
    201     FrameDestroyOpcode = TII.getCallFrameDestroyOpcode();
    202     SP = Subtarget.getTargetLowering()->getStackPointerRegisterToSaveRestore();
    203     Entry = &MF.front();
    204     CurrentCSRs.clear();
    205     MachineFunc = &MF;
    206 
    207     ++NumFunc;
    208   }
    209 
    210   /// Check whether or not Save and Restore points are still interesting for
    211   /// shrink-wrapping.
    212   bool ArePointsInteresting() const { return Save != Entry && Save && Restore; }
    213 
    214   /// Check if shrink wrapping is enabled for this target and function.
    215   static bool isShrinkWrapEnabled(const MachineFunction &MF);
    216 
    217 public:
    218   static char ID;
    219 
    220   ShrinkWrap() : MachineFunctionPass(ID) {
    221     initializeShrinkWrapPass(*PassRegistry::getPassRegistry());
    222   }
    223 
    224   void getAnalysisUsage(AnalysisUsage &AU) const override {
    225     AU.setPreservesAll();
    226     AU.addRequired<MachineBlockFrequencyInfo>();
    227     AU.addRequired<MachineDominatorTree>();
    228     AU.addRequired<MachinePostDominatorTree>();
    229     AU.addRequired<MachineLoopInfo>();
    230     AU.addRequired<MachineOptimizationRemarkEmitterPass>();
    231     MachineFunctionPass::getAnalysisUsage(AU);
    232   }
    233 
    234   MachineFunctionProperties getRequiredProperties() const override {
    235     return MachineFunctionProperties().set(
    236       MachineFunctionProperties::Property::NoVRegs);
    237   }
    238 
    239   StringRef getPassName() const override { return "Shrink Wrapping analysis"; }
    240 
    241   /// Perform the shrink-wrapping analysis and update
    242   /// the MachineFrameInfo attached to \p MF with the results.
    243   bool runOnMachineFunction(MachineFunction &MF) override;
    244 };
    245 
    246 } // end anonymous namespace
    247 
    248 char ShrinkWrap::ID = 0;
    249 
    250 char &llvm::ShrinkWrapID = ShrinkWrap::ID;
    251 
    252 INITIALIZE_PASS_BEGIN(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false)
    253 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
    254 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
    255 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
    256 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
    257 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
    258 INITIALIZE_PASS_END(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false)
    259 
    260 bool ShrinkWrap::useOrDefCSROrFI(const MachineInstr &MI,
    261                                  RegScavenger *RS) const {
    262   if (MI.getOpcode() == FrameSetupOpcode ||
    263       MI.getOpcode() == FrameDestroyOpcode) {
    264     LLVM_DEBUG(dbgs() << "Frame instruction: " << MI << '\n');
    265     return true;
    266   }
    267   for (const MachineOperand &MO : MI.operands()) {
    268     bool UseOrDefCSR = false;
    269     if (MO.isReg()) {
    270       // Ignore instructions like DBG_VALUE which don't read/def the register.
    271       if (!MO.isDef() && !MO.readsReg())
    272         continue;
    273       unsigned PhysReg = MO.getReg();
    274       if (!PhysReg)
    275         continue;
    276       assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
    277              "Unallocated register?!");
    278       // The stack pointer is not normally described as a callee-saved register
    279       // in calling convention definitions, so we need to watch for it
    280       // separately. An SP mentioned by a call instruction, we can ignore,
    281       // though, as it's harmless and we do not want to effectively disable tail
    282       // calls by forcing the restore point to post-dominate them.
    283       UseOrDefCSR = (!MI.isCall() && PhysReg == SP) ||
    284                     RCI.getLastCalleeSavedAlias(PhysReg);
    285     } else if (MO.isRegMask()) {
    286       // Check if this regmask clobbers any of the CSRs.
    287       for (unsigned Reg : getCurrentCSRs(RS)) {
    288         if (MO.clobbersPhysReg(Reg)) {
    289           UseOrDefCSR = true;
    290           break;
    291         }
    292       }
    293     }
    294     // Skip FrameIndex operands in DBG_VALUE instructions.
    295     if (UseOrDefCSR || (MO.isFI() && !MI.isDebugValue())) {
    296       LLVM_DEBUG(dbgs() << "Use or define CSR(" << UseOrDefCSR << ") or FI("
    297                         << MO.isFI() << "): " << MI << '\n');
    298       return true;
    299     }
    300   }
    301   return false;
    302 }
    303 
    304 /// Helper function to find the immediate (post) dominator.
    305 template <typename ListOfBBs, typename DominanceAnalysis>
    306 static MachineBasicBlock *FindIDom(MachineBasicBlock &Block, ListOfBBs BBs,
    307                                    DominanceAnalysis &Dom) {
    308   MachineBasicBlock *IDom = &Block;
    309   for (MachineBasicBlock *BB : BBs) {
    310     IDom = Dom.findNearestCommonDominator(IDom, BB);
    311     if (!IDom)
    312       break;
    313   }
    314   if (IDom == &Block)
    315     return nullptr;
    316   return IDom;
    317 }
    318 
    319 void ShrinkWrap::updateSaveRestorePoints(MachineBasicBlock &MBB,
    320                                          RegScavenger *RS) {
    321   // Get rid of the easy cases first.
    322   if (!Save)
    323     Save = &MBB;
    324   else
    325     Save = MDT->findNearestCommonDominator(Save, &MBB);
    326 
    327   if (!Save) {
    328     LLVM_DEBUG(dbgs() << "Found a block that is not reachable from Entry\n");
    329     return;
    330   }
    331 
    332   if (!Restore)
    333     Restore = &MBB;
    334   else if (MPDT->getNode(&MBB)) // If the block is not in the post dom tree, it
    335                                 // means the block never returns. If that's the
    336                                 // case, we don't want to call
    337                                 // `findNearestCommonDominator`, which will
    338                                 // return `Restore`.
    339     Restore = MPDT->findNearestCommonDominator(Restore, &MBB);
    340   else
    341     Restore = nullptr; // Abort, we can't find a restore point in this case.
    342 
    343   // Make sure we would be able to insert the restore code before the
    344   // terminator.
    345   if (Restore == &MBB) {
    346     for (const MachineInstr &Terminator : MBB.terminators()) {
    347       if (!useOrDefCSROrFI(Terminator, RS))
    348         continue;
    349       // One of the terminator needs to happen before the restore point.
    350       if (MBB.succ_empty()) {
    351         Restore = nullptr; // Abort, we can't find a restore point in this case.
    352         break;
    353       }
    354       // Look for a restore point that post-dominates all the successors.
    355       // The immediate post-dominator is what we are looking for.
    356       Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT);
    357       break;
    358     }
    359   }
    360 
    361   if (!Restore) {
    362     LLVM_DEBUG(
    363         dbgs() << "Restore point needs to be spanned on several blocks\n");
    364     return;
    365   }
    366 
    367   // Make sure Save and Restore are suitable for shrink-wrapping:
    368   // 1. all path from Save needs to lead to Restore before exiting.
    369   // 2. all path to Restore needs to go through Save from Entry.
    370   // We achieve that by making sure that:
    371   // A. Save dominates Restore.
    372   // B. Restore post-dominates Save.
    373   // C. Save and Restore are in the same loop.
    374   bool SaveDominatesRestore = false;
    375   bool RestorePostDominatesSave = false;
    376   while (Save && Restore &&
    377          (!(SaveDominatesRestore = MDT->dominates(Save, Restore)) ||
    378           !(RestorePostDominatesSave = MPDT->dominates(Restore, Save)) ||
    379           // Post-dominance is not enough in loops to ensure that all uses/defs
    380           // are after the prologue and before the epilogue at runtime.
    381           // E.g.,
    382           // while(1) {
    383           //  Save
    384           //  Restore
    385           //   if (...)
    386           //     break;
    387           //  use/def CSRs
    388           // }
    389           // All the uses/defs of CSRs are dominated by Save and post-dominated
    390           // by Restore. However, the CSRs uses are still reachable after
    391           // Restore and before Save are executed.
    392           //
    393           // For now, just push the restore/save points outside of loops.
    394           // FIXME: Refine the criteria to still find interesting cases
    395           // for loops.
    396           MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) {
    397     // Fix (A).
    398     if (!SaveDominatesRestore) {
    399       Save = MDT->findNearestCommonDominator(Save, Restore);
    400       continue;
    401     }
    402     // Fix (B).
    403     if (!RestorePostDominatesSave)
    404       Restore = MPDT->findNearestCommonDominator(Restore, Save);
    405 
    406     // Fix (C).
    407     if (Save && Restore &&
    408         (MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) {
    409       if (MLI->getLoopDepth(Save) > MLI->getLoopDepth(Restore)) {
    410         // Push Save outside of this loop if immediate dominator is different
    411         // from save block. If immediate dominator is not different, bail out.
    412         Save = FindIDom<>(*Save, Save->predecessors(), *MDT);
    413         if (!Save)
    414           break;
    415       } else {
    416         // If the loop does not exit, there is no point in looking
    417         // for a post-dominator outside the loop.
    418         SmallVector<MachineBasicBlock*, 4> ExitBlocks;
    419         MLI->getLoopFor(Restore)->getExitingBlocks(ExitBlocks);
    420         // Push Restore outside of this loop.
    421         // Look for the immediate post-dominator of the loop exits.
    422         MachineBasicBlock *IPdom = Restore;
    423         for (MachineBasicBlock *LoopExitBB: ExitBlocks) {
    424           IPdom = FindIDom<>(*IPdom, LoopExitBB->successors(), *MPDT);
    425           if (!IPdom)
    426             break;
    427         }
    428         // If the immediate post-dominator is not in a less nested loop,
    429         // then we are stuck in a program with an infinite loop.
    430         // In that case, we will not find a safe point, hence, bail out.
    431         if (IPdom && MLI->getLoopDepth(IPdom) < MLI->getLoopDepth(Restore))
    432           Restore = IPdom;
    433         else {
    434           Restore = nullptr;
    435           break;
    436         }
    437       }
    438     }
    439   }
    440 }
    441 
    442 static bool giveUpWithRemarks(MachineOptimizationRemarkEmitter *ORE,
    443                               StringRef RemarkName, StringRef RemarkMessage,
    444                               const DiagnosticLocation &Loc,
    445                               const MachineBasicBlock *MBB) {
    446   ORE->emit([&]() {
    447     return MachineOptimizationRemarkMissed(DEBUG_TYPE, RemarkName, Loc, MBB)
    448            << RemarkMessage;
    449   });
    450 
    451   LLVM_DEBUG(dbgs() << RemarkMessage << '\n');
    452   return false;
    453 }
    454 
    455 bool ShrinkWrap::runOnMachineFunction(MachineFunction &MF) {
    456   if (skipFunction(MF.getFunction()) || MF.empty() || !isShrinkWrapEnabled(MF))
    457     return false;
    458 
    459   LLVM_DEBUG(dbgs() << "**** Analysing " << MF.getName() << '\n');
    460 
    461   init(MF);
    462 
    463   ReversePostOrderTraversal<MachineBasicBlock *> RPOT(&*MF.begin());
    464   if (containsIrreducibleCFG<MachineBasicBlock *>(RPOT, *MLI)) {
    465     // If MF is irreducible, a block may be in a loop without
    466     // MachineLoopInfo reporting it. I.e., we may use the
    467     // post-dominance property in loops, which lead to incorrect
    468     // results. Moreover, we may miss that the prologue and
    469     // epilogue are not in the same loop, leading to unbalanced
    470     // construction/deconstruction of the stack frame.
    471     return giveUpWithRemarks(ORE, "UnsupportedIrreducibleCFG",
    472                              "Irreducible CFGs are not supported yet.",
    473                              MF.getFunction().getSubprogram(), &MF.front());
    474   }
    475 
    476   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
    477   std::unique_ptr<RegScavenger> RS(
    478       TRI->requiresRegisterScavenging(MF) ? new RegScavenger() : nullptr);
    479 
    480   for (MachineBasicBlock &MBB : MF) {
    481     LLVM_DEBUG(dbgs() << "Look into: " << MBB.getNumber() << ' '
    482                       << MBB.getName() << '\n');
    483 
    484     if (MBB.isEHFuncletEntry())
    485       return giveUpWithRemarks(ORE, "UnsupportedEHFunclets",
    486                                "EH Funclets are not supported yet.",
    487                                MBB.front().getDebugLoc(), &MBB);
    488 
    489     if (MBB.isEHPad()) {
    490       // Push the prologue and epilogue outside of
    491       // the region that may throw by making sure
    492       // that all the landing pads are at least at the
    493       // boundary of the save and restore points.
    494       // The problem with exceptions is that the throw
    495       // is not properly modeled and in particular, a
    496       // basic block can jump out from the middle.
    497       updateSaveRestorePoints(MBB, RS.get());
    498       if (!ArePointsInteresting()) {
    499         LLVM_DEBUG(dbgs() << "EHPad prevents shrink-wrapping\n");
    500         return false;
    501       }
    502       continue;
    503     }
    504 
    505     for (const MachineInstr &MI : MBB) {
    506       if (!useOrDefCSROrFI(MI, RS.get()))
    507         continue;
    508       // Save (resp. restore) point must dominate (resp. post dominate)
    509       // MI. Look for the proper basic block for those.
    510       updateSaveRestorePoints(MBB, RS.get());
    511       // If we are at a point where we cannot improve the placement of
    512       // save/restore instructions, just give up.
    513       if (!ArePointsInteresting()) {
    514         LLVM_DEBUG(dbgs() << "No Shrink wrap candidate found\n");
    515         return false;
    516       }
    517       // No need to look for other instructions, this basic block
    518       // will already be part of the handled region.
    519       break;
    520     }
    521   }
    522   if (!ArePointsInteresting()) {
    523     // If the points are not interesting at this point, then they must be null
    524     // because it means we did not encounter any frame/CSR related code.
    525     // Otherwise, we would have returned from the previous loop.
    526     assert(!Save && !Restore && "We miss a shrink-wrap opportunity?!");
    527     LLVM_DEBUG(dbgs() << "Nothing to shrink-wrap\n");
    528     return false;
    529   }
    530 
    531   LLVM_DEBUG(dbgs() << "\n ** Results **\nFrequency of the Entry: " << EntryFreq
    532                     << '\n');
    533 
    534   const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
    535   do {
    536     LLVM_DEBUG(dbgs() << "Shrink wrap candidates (#, Name, Freq):\nSave: "
    537                       << Save->getNumber() << ' ' << Save->getName() << ' '
    538                       << MBFI->getBlockFreq(Save).getFrequency()
    539                       << "\nRestore: " << Restore->getNumber() << ' '
    540                       << Restore->getName() << ' '
    541                       << MBFI->getBlockFreq(Restore).getFrequency() << '\n');
    542 
    543     bool IsSaveCheap, TargetCanUseSaveAsPrologue = false;
    544     if (((IsSaveCheap = EntryFreq >= MBFI->getBlockFreq(Save).getFrequency()) &&
    545          EntryFreq >= MBFI->getBlockFreq(Restore).getFrequency()) &&
    546         ((TargetCanUseSaveAsPrologue = TFI->canUseAsPrologue(*Save)) &&
    547          TFI->canUseAsEpilogue(*Restore)))
    548       break;
    549     LLVM_DEBUG(
    550         dbgs() << "New points are too expensive or invalid for the target\n");
    551     MachineBasicBlock *NewBB;
    552     if (!IsSaveCheap || !TargetCanUseSaveAsPrologue) {
    553       Save = FindIDom<>(*Save, Save->predecessors(), *MDT);
    554       if (!Save)
    555         break;
    556       NewBB = Save;
    557     } else {
    558       // Restore is expensive.
    559       Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT);
    560       if (!Restore)
    561         break;
    562       NewBB = Restore;
    563     }
    564     updateSaveRestorePoints(*NewBB, RS.get());
    565   } while (Save && Restore);
    566 
    567   if (!ArePointsInteresting()) {
    568     ++NumCandidatesDropped;
    569     return false;
    570   }
    571 
    572   LLVM_DEBUG(dbgs() << "Final shrink wrap candidates:\nSave: "
    573                     << Save->getNumber() << ' ' << Save->getName()
    574                     << "\nRestore: " << Restore->getNumber() << ' '
    575                     << Restore->getName() << '\n');
    576 
    577   MachineFrameInfo &MFI = MF.getFrameInfo();
    578   MFI.setSavePoint(Save);
    579   MFI.setRestorePoint(Restore);
    580   ++NumCandidates;
    581   return false;
    582 }
    583 
    584 bool ShrinkWrap::isShrinkWrapEnabled(const MachineFunction &MF) {
    585   const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
    586 
    587   switch (EnableShrinkWrapOpt) {
    588   case cl::BOU_UNSET:
    589     return TFI->enableShrinkWrapping(MF) &&
    590            // Windows with CFI has some limitations that make it impossible
    591            // to use shrink-wrapping.
    592            !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
    593            // Sanitizers look at the value of the stack at the location
    594            // of the crash. Since a crash can happen anywhere, the
    595            // frame must be lowered before anything else happen for the
    596            // sanitizers to be able to get a correct stack frame.
    597            !(MF.getFunction().hasFnAttribute(Attribute::SanitizeAddress) ||
    598              MF.getFunction().hasFnAttribute(Attribute::SanitizeThread) ||
    599              MF.getFunction().hasFnAttribute(Attribute::SanitizeMemory) ||
    600              MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress));
    601   // If EnableShrinkWrap is set, it takes precedence on whatever the
    602   // target sets. The rational is that we assume we want to test
    603   // something related to shrink-wrapping.
    604   case cl::BOU_TRUE:
    605     return true;
    606   case cl::BOU_FALSE:
    607     return false;
    608   }
    609   llvm_unreachable("Invalid shrink-wrapping state");
    610 }
    611