Home | History | Annotate | Download | only in CodeGen
      1 //===- StackProtector.cpp - Stack Protector Insertion ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass inserts stack protectors into functions which need them. A variable
     11 // with a random value in it is stored onto the stack before the local variables
     12 // are allocated. Upon exiting the block, the stored value is checked. If it's
     13 // changed, then there was some sort of violation and the program aborts.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #include "llvm/CodeGen/StackProtector.h"
     18 #include "llvm/ADT/SmallPtrSet.h"
     19 #include "llvm/ADT/Statistic.h"
     20 #include "llvm/Analysis/BranchProbabilityInfo.h"
     21 #include "llvm/Analysis/EHPersonalities.h"
     22 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
     23 #include "llvm/CodeGen/Passes.h"
     24 #include "llvm/CodeGen/TargetLowering.h"
     25 #include "llvm/CodeGen/TargetPassConfig.h"
     26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
     27 #include "llvm/IR/Attributes.h"
     28 #include "llvm/IR/BasicBlock.h"
     29 #include "llvm/IR/Constants.h"
     30 #include "llvm/IR/DataLayout.h"
     31 #include "llvm/IR/DebugInfo.h"
     32 #include "llvm/IR/DebugLoc.h"
     33 #include "llvm/IR/DerivedTypes.h"
     34 #include "llvm/IR/Dominators.h"
     35 #include "llvm/IR/Function.h"
     36 #include "llvm/IR/IRBuilder.h"
     37 #include "llvm/IR/Instruction.h"
     38 #include "llvm/IR/Instructions.h"
     39 #include "llvm/IR/IntrinsicInst.h"
     40 #include "llvm/IR/Intrinsics.h"
     41 #include "llvm/IR/MDBuilder.h"
     42 #include "llvm/IR/Module.h"
     43 #include "llvm/IR/Type.h"
     44 #include "llvm/IR/User.h"
     45 #include "llvm/Pass.h"
     46 #include "llvm/Support/Casting.h"
     47 #include "llvm/Support/CommandLine.h"
     48 #include "llvm/Target/TargetMachine.h"
     49 #include "llvm/Target/TargetOptions.h"
     50 #include <utility>
     51 
     52 using namespace llvm;
     53 
     54 #define DEBUG_TYPE "stack-protector"
     55 
     56 STATISTIC(NumFunProtected, "Number of functions protected");
     57 STATISTIC(NumAddrTaken, "Number of local variables that have their address"
     58                         " taken.");
     59 
     60 static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp",
     61                                           cl::init(true), cl::Hidden);
     62 
     63 char StackProtector::ID = 0;
     64 
     65 INITIALIZE_PASS_BEGIN(StackProtector, DEBUG_TYPE,
     66                       "Insert stack protectors", false, true)
     67 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
     68 INITIALIZE_PASS_END(StackProtector, DEBUG_TYPE,
     69                     "Insert stack protectors", false, true)
     70 
     71 FunctionPass *llvm::createStackProtectorPass() { return new StackProtector(); }
     72 
     73 void StackProtector::getAnalysisUsage(AnalysisUsage &AU) const {
     74   AU.addRequired<TargetPassConfig>();
     75   AU.addPreserved<DominatorTreeWrapperPass>();
     76 }
     77 
     78 bool StackProtector::runOnFunction(Function &Fn) {
     79   F = &Fn;
     80   M = F->getParent();
     81   DominatorTreeWrapperPass *DTWP =
     82       getAnalysisIfAvailable<DominatorTreeWrapperPass>();
     83   DT = DTWP ? &DTWP->getDomTree() : nullptr;
     84   TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
     85   Trip = TM->getTargetTriple();
     86   TLI = TM->getSubtargetImpl(Fn)->getTargetLowering();
     87   HasPrologue = false;
     88   HasIRCheck = false;
     89 
     90   Attribute Attr = Fn.getFnAttribute("stack-protector-buffer-size");
     91   if (Attr.isStringAttribute() &&
     92       Attr.getValueAsString().getAsInteger(10, SSPBufferSize))
     93     return false; // Invalid integer string
     94 
     95   if (!RequiresStackProtector())
     96     return false;
     97 
     98   // TODO(etienneb): Functions with funclets are not correctly supported now.
     99   // Do nothing if this is funclet-based personality.
    100   if (Fn.hasPersonalityFn()) {
    101     EHPersonality Personality = classifyEHPersonality(Fn.getPersonalityFn());
    102     if (isFuncletEHPersonality(Personality))
    103       return false;
    104   }
    105 
    106   ++NumFunProtected;
    107   return InsertStackProtectors();
    108 }
    109 
    110 /// \param [out] IsLarge is set to true if a protectable array is found and
    111 /// it is "large" ( >= ssp-buffer-size).  In the case of a structure with
    112 /// multiple arrays, this gets set if any of them is large.
    113 bool StackProtector::ContainsProtectableArray(Type *Ty, bool &IsLarge,
    114                                               bool Strong,
    115                                               bool InStruct) const {
    116   if (!Ty)
    117     return false;
    118   if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
    119     if (!AT->getElementType()->isIntegerTy(8)) {
    120       // If we're on a non-Darwin platform or we're inside of a structure, don't
    121       // add stack protectors unless the array is a character array.
    122       // However, in strong mode any array, regardless of type and size,
    123       // triggers a protector.
    124       if (!Strong && (InStruct || !Trip.isOSDarwin()))
    125         return false;
    126     }
    127 
    128     // If an array has more than SSPBufferSize bytes of allocated space, then we
    129     // emit stack protectors.
    130     if (SSPBufferSize <= M->getDataLayout().getTypeAllocSize(AT)) {
    131       IsLarge = true;
    132       return true;
    133     }
    134 
    135     if (Strong)
    136       // Require a protector for all arrays in strong mode
    137       return true;
    138   }
    139 
    140   const StructType *ST = dyn_cast<StructType>(Ty);
    141   if (!ST)
    142     return false;
    143 
    144   bool NeedsProtector = false;
    145   for (StructType::element_iterator I = ST->element_begin(),
    146                                     E = ST->element_end();
    147        I != E; ++I)
    148     if (ContainsProtectableArray(*I, IsLarge, Strong, true)) {
    149       // If the element is a protectable array and is large (>= SSPBufferSize)
    150       // then we are done.  If the protectable array is not large, then
    151       // keep looking in case a subsequent element is a large array.
    152       if (IsLarge)
    153         return true;
    154       NeedsProtector = true;
    155     }
    156 
    157   return NeedsProtector;
    158 }
    159 
    160 static bool isLifetimeInst(const Instruction *I) {
    161   if (const auto Intrinsic = dyn_cast<IntrinsicInst>(I)) {
    162     const auto Id = Intrinsic->getIntrinsicID();
    163     return Id == Intrinsic::lifetime_start || Id == Intrinsic::lifetime_end;
    164   }
    165   return false;
    166 }
    167 
    168 bool StackProtector::HasAddressTaken(const Instruction *AI) {
    169   for (const User *U : AI->users()) {
    170     if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
    171       if (AI == SI->getValueOperand())
    172         return true;
    173     } else if (const PtrToIntInst *SI = dyn_cast<PtrToIntInst>(U)) {
    174       if (AI == SI->getOperand(0))
    175         return true;
    176     } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
    177       // Ignore intrinsics that are not calls. TODO: Use isLoweredToCall().
    178       if (!isa<DbgInfoIntrinsic>(CI) && !isLifetimeInst(CI))
    179         return true;
    180     } else if (isa<InvokeInst>(U)) {
    181       return true;
    182     } else if (const SelectInst *SI = dyn_cast<SelectInst>(U)) {
    183       if (HasAddressTaken(SI))
    184         return true;
    185     } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
    186       // Keep track of what PHI nodes we have already visited to ensure
    187       // they are only visited once.
    188       if (VisitedPHIs.insert(PN).second)
    189         if (HasAddressTaken(PN))
    190           return true;
    191     } else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
    192       if (HasAddressTaken(GEP))
    193         return true;
    194     } else if (const BitCastInst *BI = dyn_cast<BitCastInst>(U)) {
    195       if (HasAddressTaken(BI))
    196         return true;
    197     }
    198   }
    199   return false;
    200 }
    201 
    202 /// Check whether or not this function needs a stack protector based
    203 /// upon the stack protector level.
    204 ///
    205 /// We use two heuristics: a standard (ssp) and strong (sspstrong).
    206 /// The standard heuristic which will add a guard variable to functions that
    207 /// call alloca with a either a variable size or a size >= SSPBufferSize,
    208 /// functions with character buffers larger than SSPBufferSize, and functions
    209 /// with aggregates containing character buffers larger than SSPBufferSize. The
    210 /// strong heuristic will add a guard variables to functions that call alloca
    211 /// regardless of size, functions with any buffer regardless of type and size,
    212 /// functions with aggregates that contain any buffer regardless of type and
    213 /// size, and functions that contain stack-based variables that have had their
    214 /// address taken.
    215 bool StackProtector::RequiresStackProtector() {
    216   bool Strong = false;
    217   bool NeedsProtector = false;
    218   for (const BasicBlock &BB : *F)
    219     for (const Instruction &I : BB)
    220       if (const CallInst *CI = dyn_cast<CallInst>(&I))
    221         if (CI->getCalledFunction() ==
    222             Intrinsic::getDeclaration(F->getParent(),
    223                                       Intrinsic::stackprotector))
    224           HasPrologue = true;
    225 
    226   if (F->hasFnAttribute(Attribute::SafeStack))
    227     return false;
    228 
    229   // We are constructing the OptimizationRemarkEmitter on the fly rather than
    230   // using the analysis pass to avoid building DominatorTree and LoopInfo which
    231   // are not available this late in the IR pipeline.
    232   OptimizationRemarkEmitter ORE(F);
    233 
    234   if (F->hasFnAttribute(Attribute::StackProtectReq)) {
    235     ORE.emit([&]() {
    236       return OptimizationRemark(DEBUG_TYPE, "StackProtectorRequested", F)
    237              << "Stack protection applied to function "
    238              << ore::NV("Function", F)
    239              << " due to a function attribute or command-line switch";
    240     });
    241     NeedsProtector = true;
    242     Strong = true; // Use the same heuristic as strong to determine SSPLayout
    243   } else if (F->hasFnAttribute(Attribute::StackProtectStrong))
    244     Strong = true;
    245   else if (HasPrologue)
    246     NeedsProtector = true;
    247   else if (!F->hasFnAttribute(Attribute::StackProtect))
    248     return false;
    249 
    250   for (const BasicBlock &BB : *F) {
    251     for (const Instruction &I : BB) {
    252       if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
    253         if (AI->isArrayAllocation()) {
    254           auto RemarkBuilder = [&]() {
    255             return OptimizationRemark(DEBUG_TYPE, "StackProtectorAllocaOrArray",
    256                                       &I)
    257                    << "Stack protection applied to function "
    258                    << ore::NV("Function", F)
    259                    << " due to a call to alloca or use of a variable length "
    260                       "array";
    261           };
    262           if (const auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) {
    263             if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) {
    264               // A call to alloca with size >= SSPBufferSize requires
    265               // stack protectors.
    266               Layout.insert(std::make_pair(AI,
    267                                            MachineFrameInfo::SSPLK_LargeArray));
    268               ORE.emit(RemarkBuilder);
    269               NeedsProtector = true;
    270             } else if (Strong) {
    271               // Require protectors for all alloca calls in strong mode.
    272               Layout.insert(std::make_pair(AI,
    273                                            MachineFrameInfo::SSPLK_SmallArray));
    274               ORE.emit(RemarkBuilder);
    275               NeedsProtector = true;
    276             }
    277           } else {
    278             // A call to alloca with a variable size requires protectors.
    279             Layout.insert(std::make_pair(AI,
    280                                          MachineFrameInfo::SSPLK_LargeArray));
    281             ORE.emit(RemarkBuilder);
    282             NeedsProtector = true;
    283           }
    284           continue;
    285         }
    286 
    287         bool IsLarge = false;
    288         if (ContainsProtectableArray(AI->getAllocatedType(), IsLarge, Strong)) {
    289           Layout.insert(std::make_pair(AI, IsLarge
    290                                        ? MachineFrameInfo::SSPLK_LargeArray
    291                                        : MachineFrameInfo::SSPLK_SmallArray));
    292           ORE.emit([&]() {
    293             return OptimizationRemark(DEBUG_TYPE, "StackProtectorBuffer", &I)
    294                    << "Stack protection applied to function "
    295                    << ore::NV("Function", F)
    296                    << " due to a stack allocated buffer or struct containing a "
    297                       "buffer";
    298           });
    299           NeedsProtector = true;
    300           continue;
    301         }
    302 
    303         if (Strong && HasAddressTaken(AI)) {
    304           ++NumAddrTaken;
    305           Layout.insert(std::make_pair(AI, MachineFrameInfo::SSPLK_AddrOf));
    306           ORE.emit([&]() {
    307             return OptimizationRemark(DEBUG_TYPE, "StackProtectorAddressTaken",
    308                                       &I)
    309                    << "Stack protection applied to function "
    310                    << ore::NV("Function", F)
    311                    << " due to the address of a local variable being taken";
    312           });
    313           NeedsProtector = true;
    314         }
    315       }
    316     }
    317   }
    318 
    319   return NeedsProtector;
    320 }
    321 
    322 /// Create a stack guard loading and populate whether SelectionDAG SSP is
    323 /// supported.
    324 static Value *getStackGuard(const TargetLoweringBase *TLI, Module *M,
    325                             IRBuilder<> &B,
    326                             bool *SupportsSelectionDAGSP = nullptr) {
    327   if (Value *Guard = TLI->getIRStackGuard(B))
    328     return B.CreateLoad(Guard, true, "StackGuard");
    329 
    330   // Use SelectionDAG SSP handling, since there isn't an IR guard.
    331   //
    332   // This is more or less weird, since we optionally output whether we
    333   // should perform a SelectionDAG SP here. The reason is that it's strictly
    334   // defined as !TLI->getIRStackGuard(B), where getIRStackGuard is also
    335   // mutating. There is no way to get this bit without mutating the IR, so
    336   // getting this bit has to happen in this right time.
    337   //
    338   // We could have define a new function TLI::supportsSelectionDAGSP(), but that
    339   // will put more burden on the backends' overriding work, especially when it
    340   // actually conveys the same information getIRStackGuard() already gives.
    341   if (SupportsSelectionDAGSP)
    342     *SupportsSelectionDAGSP = true;
    343   TLI->insertSSPDeclarations(*M);
    344   return B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackguard));
    345 }
    346 
    347 /// Insert code into the entry block that stores the stack guard
    348 /// variable onto the stack:
    349 ///
    350 ///   entry:
    351 ///     StackGuardSlot = alloca i8*
    352 ///     StackGuard = <stack guard>
    353 ///     call void @llvm.stackprotector(StackGuard, StackGuardSlot)
    354 ///
    355 /// Returns true if the platform/triple supports the stackprotectorcreate pseudo
    356 /// node.
    357 static bool CreatePrologue(Function *F, Module *M, ReturnInst *RI,
    358                            const TargetLoweringBase *TLI, AllocaInst *&AI) {
    359   bool SupportsSelectionDAGSP = false;
    360   IRBuilder<> B(&F->getEntryBlock().front());
    361   PointerType *PtrTy = Type::getInt8PtrTy(RI->getContext());
    362   AI = B.CreateAlloca(PtrTy, nullptr, "StackGuardSlot");
    363 
    364   Value *GuardSlot = getStackGuard(TLI, M, B, &SupportsSelectionDAGSP);
    365   B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackprotector),
    366                {GuardSlot, AI});
    367   return SupportsSelectionDAGSP;
    368 }
    369 
    370 /// InsertStackProtectors - Insert code into the prologue and epilogue of the
    371 /// function.
    372 ///
    373 ///  - The prologue code loads and stores the stack guard onto the stack.
    374 ///  - The epilogue checks the value stored in the prologue against the original
    375 ///    value. It calls __stack_chk_fail if they differ.
    376 bool StackProtector::InsertStackProtectors() {
    377   // If the target wants to XOR the frame pointer into the guard value, it's
    378   // impossible to emit the check in IR, so the target *must* support stack
    379   // protection in SDAG.
    380   bool SupportsSelectionDAGSP =
    381       TLI->useStackGuardXorFP() ||
    382       (EnableSelectionDAGSP && !TM->Options.EnableFastISel);
    383   AllocaInst *AI = nullptr;       // Place on stack that stores the stack guard.
    384 
    385   for (Function::iterator I = F->begin(), E = F->end(); I != E;) {
    386     BasicBlock *BB = &*I++;
    387     ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator());
    388     if (!RI)
    389       continue;
    390 
    391     // Generate prologue instrumentation if not already generated.
    392     if (!HasPrologue) {
    393       HasPrologue = true;
    394       SupportsSelectionDAGSP &= CreatePrologue(F, M, RI, TLI, AI);
    395     }
    396 
    397     // SelectionDAG based code generation. Nothing else needs to be done here.
    398     // The epilogue instrumentation is postponed to SelectionDAG.
    399     if (SupportsSelectionDAGSP)
    400       break;
    401 
    402     // Set HasIRCheck to true, so that SelectionDAG will not generate its own
    403     // version. SelectionDAG called 'shouldEmitSDCheck' to check whether
    404     // instrumentation has already been generated.
    405     HasIRCheck = true;
    406 
    407     // Generate epilogue instrumentation. The epilogue intrumentation can be
    408     // function-based or inlined depending on which mechanism the target is
    409     // providing.
    410     if (Value* GuardCheck = TLI->getSSPStackGuardCheck(*M)) {
    411       // Generate the function-based epilogue instrumentation.
    412       // The target provides a guard check function, generate a call to it.
    413       IRBuilder<> B(RI);
    414       LoadInst *Guard = B.CreateLoad(AI, true, "Guard");
    415       CallInst *Call = B.CreateCall(GuardCheck, {Guard});
    416       llvm::Function *Function = cast<llvm::Function>(GuardCheck);
    417       Call->setAttributes(Function->getAttributes());
    418       Call->setCallingConv(Function->getCallingConv());
    419     } else {
    420       // Generate the epilogue with inline instrumentation.
    421       // If we do not support SelectionDAG based tail calls, generate IR level
    422       // tail calls.
    423       //
    424       // For each block with a return instruction, convert this:
    425       //
    426       //   return:
    427       //     ...
    428       //     ret ...
    429       //
    430       // into this:
    431       //
    432       //   return:
    433       //     ...
    434       //     %1 = <stack guard>
    435       //     %2 = load StackGuardSlot
    436       //     %3 = cmp i1 %1, %2
    437       //     br i1 %3, label %SP_return, label %CallStackCheckFailBlk
    438       //
    439       //   SP_return:
    440       //     ret ...
    441       //
    442       //   CallStackCheckFailBlk:
    443       //     call void @__stack_chk_fail()
    444       //     unreachable
    445 
    446       // Create the FailBB. We duplicate the BB every time since the MI tail
    447       // merge pass will merge together all of the various BB into one including
    448       // fail BB generated by the stack protector pseudo instruction.
    449       BasicBlock *FailBB = CreateFailBB();
    450 
    451       // Split the basic block before the return instruction.
    452       BasicBlock *NewBB = BB->splitBasicBlock(RI->getIterator(), "SP_return");
    453 
    454       // Update the dominator tree if we need to.
    455       if (DT && DT->isReachableFromEntry(BB)) {
    456         DT->addNewBlock(NewBB, BB);
    457         DT->addNewBlock(FailBB, BB);
    458       }
    459 
    460       // Remove default branch instruction to the new BB.
    461       BB->getTerminator()->eraseFromParent();
    462 
    463       // Move the newly created basic block to the point right after the old
    464       // basic block so that it's in the "fall through" position.
    465       NewBB->moveAfter(BB);
    466 
    467       // Generate the stack protector instructions in the old basic block.
    468       IRBuilder<> B(BB);
    469       Value *Guard = getStackGuard(TLI, M, B);
    470       LoadInst *LI2 = B.CreateLoad(AI, true);
    471       Value *Cmp = B.CreateICmpEQ(Guard, LI2);
    472       auto SuccessProb =
    473           BranchProbabilityInfo::getBranchProbStackProtector(true);
    474       auto FailureProb =
    475           BranchProbabilityInfo::getBranchProbStackProtector(false);
    476       MDNode *Weights = MDBuilder(F->getContext())
    477                             .createBranchWeights(SuccessProb.getNumerator(),
    478                                                  FailureProb.getNumerator());
    479       B.CreateCondBr(Cmp, NewBB, FailBB, Weights);
    480     }
    481   }
    482 
    483   // Return if we didn't modify any basic blocks. i.e., there are no return
    484   // statements in the function.
    485   return HasPrologue;
    486 }
    487 
    488 /// CreateFailBB - Create a basic block to jump to when the stack protector
    489 /// check fails.
    490 BasicBlock *StackProtector::CreateFailBB() {
    491   LLVMContext &Context = F->getContext();
    492   BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F);
    493   IRBuilder<> B(FailBB);
    494   B.SetCurrentDebugLocation(DebugLoc::get(0, 0, F->getSubprogram()));
    495   if (Trip.isOSOpenBSD()) {
    496     Constant *StackChkFail =
    497         M->getOrInsertFunction("__stack_smash_handler",
    498                                Type::getVoidTy(Context),
    499                                Type::getInt8PtrTy(Context));
    500 
    501     B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH"));
    502   } else {
    503     Constant *StackChkFail =
    504         M->getOrInsertFunction("__stack_chk_fail", Type::getVoidTy(Context));
    505 
    506     B.CreateCall(StackChkFail, {});
    507   }
    508   B.CreateUnreachable();
    509   return FailBB;
    510 }
    511 
    512 bool StackProtector::shouldEmitSDCheck(const BasicBlock &BB) const {
    513   return HasPrologue && !HasIRCheck && dyn_cast<ReturnInst>(BB.getTerminator());
    514 }
    515 
    516 void StackProtector::copyToMachineFrameInfo(MachineFrameInfo &MFI) const {
    517   if (Layout.empty())
    518     return;
    519 
    520   for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) {
    521     if (MFI.isDeadObjectIndex(I))
    522       continue;
    523 
    524     const AllocaInst *AI = MFI.getObjectAllocation(I);
    525     if (!AI)
    526       continue;
    527 
    528     SSPLayoutMap::const_iterator LI = Layout.find(AI);
    529     if (LI == Layout.end())
    530       continue;
    531 
    532     MFI.setObjectSSPLayout(I, LI->second);
    533   }
    534 }
    535