Home | History | Annotate | Download | only in Support
      1 //==-- llvm/Support/ThreadPool.cpp - A ThreadPool implementation -*- C++ -*-==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements a crude C++11 based thread pool.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Support/ThreadPool.h"
     15 
     16 #include "llvm/Config/llvm-config.h"
     17 #include "llvm/Support/Threading.h"
     18 #include "llvm/Support/raw_ostream.h"
     19 
     20 using namespace llvm;
     21 
     22 #if LLVM_ENABLE_THREADS
     23 
     24 // Default to hardware_concurrency
     25 ThreadPool::ThreadPool() : ThreadPool(hardware_concurrency()) {}
     26 
     27 ThreadPool::ThreadPool(unsigned ThreadCount)
     28     : ActiveThreads(0), EnableFlag(true) {
     29   // Create ThreadCount threads that will loop forever, wait on QueueCondition
     30   // for tasks to be queued or the Pool to be destroyed.
     31   Threads.reserve(ThreadCount);
     32   for (unsigned ThreadID = 0; ThreadID < ThreadCount; ++ThreadID) {
     33     Threads.emplace_back([&] {
     34       while (true) {
     35         PackagedTaskTy Task;
     36         {
     37           std::unique_lock<std::mutex> LockGuard(QueueLock);
     38           // Wait for tasks to be pushed in the queue
     39           QueueCondition.wait(LockGuard,
     40                               [&] { return !EnableFlag || !Tasks.empty(); });
     41           // Exit condition
     42           if (!EnableFlag && Tasks.empty())
     43             return;
     44           // Yeah, we have a task, grab it and release the lock on the queue
     45 
     46           // We first need to signal that we are active before popping the queue
     47           // in order for wait() to properly detect that even if the queue is
     48           // empty, there is still a task in flight.
     49           {
     50             std::unique_lock<std::mutex> LockGuard(CompletionLock);
     51             ++ActiveThreads;
     52           }
     53           Task = std::move(Tasks.front());
     54           Tasks.pop();
     55         }
     56         // Run the task we just grabbed
     57         Task();
     58 
     59         {
     60           // Adjust `ActiveThreads`, in case someone waits on ThreadPool::wait()
     61           std::unique_lock<std::mutex> LockGuard(CompletionLock);
     62           --ActiveThreads;
     63         }
     64 
     65         // Notify task completion, in case someone waits on ThreadPool::wait()
     66         CompletionCondition.notify_all();
     67       }
     68     });
     69   }
     70 }
     71 
     72 void ThreadPool::wait() {
     73   // Wait for all threads to complete and the queue to be empty
     74   std::unique_lock<std::mutex> LockGuard(CompletionLock);
     75   // The order of the checks for ActiveThreads and Tasks.empty() matters because
     76   // any active threads might be modifying the Tasks queue, and this would be a
     77   // race.
     78   CompletionCondition.wait(LockGuard,
     79                            [&] { return !ActiveThreads && Tasks.empty(); });
     80 }
     81 
     82 std::shared_future<void> ThreadPool::asyncImpl(TaskTy Task) {
     83   /// Wrap the Task in a packaged_task to return a future object.
     84   PackagedTaskTy PackagedTask(std::move(Task));
     85   auto Future = PackagedTask.get_future();
     86   {
     87     // Lock the queue and push the new task
     88     std::unique_lock<std::mutex> LockGuard(QueueLock);
     89 
     90     // Don't allow enqueueing after disabling the pool
     91     assert(EnableFlag && "Queuing a thread during ThreadPool destruction");
     92 
     93     Tasks.push(std::move(PackagedTask));
     94   }
     95   QueueCondition.notify_one();
     96   return Future.share();
     97 }
     98 
     99 // The destructor joins all threads, waiting for completion.
    100 ThreadPool::~ThreadPool() {
    101   {
    102     std::unique_lock<std::mutex> LockGuard(QueueLock);
    103     EnableFlag = false;
    104   }
    105   QueueCondition.notify_all();
    106   for (auto &Worker : Threads)
    107     Worker.join();
    108 }
    109 
    110 #else // LLVM_ENABLE_THREADS Disabled
    111 
    112 ThreadPool::ThreadPool() : ThreadPool(0) {}
    113 
    114 // No threads are launched, issue a warning if ThreadCount is not 0
    115 ThreadPool::ThreadPool(unsigned ThreadCount)
    116     : ActiveThreads(0) {
    117   if (ThreadCount) {
    118     errs() << "Warning: request a ThreadPool with " << ThreadCount
    119            << " threads, but LLVM_ENABLE_THREADS has been turned off\n";
    120   }
    121 }
    122 
    123 void ThreadPool::wait() {
    124   // Sequential implementation running the tasks
    125   while (!Tasks.empty()) {
    126     auto Task = std::move(Tasks.front());
    127     Tasks.pop();
    128     Task();
    129   }
    130 }
    131 
    132 std::shared_future<void> ThreadPool::asyncImpl(TaskTy Task) {
    133   // Get a Future with launch::deferred execution using std::async
    134   auto Future = std::async(std::launch::deferred, std::move(Task)).share();
    135   // Wrap the future so that both ThreadPool::wait() can operate and the
    136   // returned future can be sync'ed on.
    137   PackagedTaskTy PackagedTask([Future]() { Future.get(); });
    138   Tasks.push(std::move(PackagedTask));
    139   return Future;
    140 }
    141 
    142 ThreadPool::~ThreadPool() {
    143   wait();
    144 }
    145 
    146 #endif
    147