Home | History | Annotate | Download | only in AArch64
      1 //=- AArch64InstrInfo.td - Describe the AArch64 Instructions -*- tablegen -*-=//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // AArch64 Instruction definitions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 //===----------------------------------------------------------------------===//
     15 // ARM Instruction Predicate Definitions.
     16 //
     17 def HasV8_1a         : Predicate<"Subtarget->hasV8_1aOps()">,
     18                                  AssemblerPredicate<"HasV8_1aOps", "armv8.1a">;
     19 def HasV8_2a         : Predicate<"Subtarget->hasV8_2aOps()">,
     20                                  AssemblerPredicate<"HasV8_2aOps", "armv8.2a">;
     21 def HasV8_3a         : Predicate<"Subtarget->hasV8_3aOps()">,
     22                                  AssemblerPredicate<"HasV8_3aOps", "armv8.3a">;
     23 def HasV8_4a         : Predicate<"Subtarget->hasV8_4aOps()">,
     24                                  AssemblerPredicate<"HasV8_4aOps", "armv8.4a">;
     25 def HasFPARMv8       : Predicate<"Subtarget->hasFPARMv8()">,
     26                                AssemblerPredicate<"FeatureFPARMv8", "fp-armv8">;
     27 def HasNEON          : Predicate<"Subtarget->hasNEON()">,
     28                                  AssemblerPredicate<"FeatureNEON", "neon">;
     29 def HasCrypto        : Predicate<"Subtarget->hasCrypto()">,
     30                                  AssemblerPredicate<"FeatureCrypto", "crypto">;
     31 def HasSM4           : Predicate<"Subtarget->hasSM4()">,
     32                                  AssemblerPredicate<"FeatureSM4", "sm4">;
     33 def HasSHA3          : Predicate<"Subtarget->hasSHA3()">,
     34                                  AssemblerPredicate<"FeatureSHA3", "sha3">;
     35 def HasSHA2          : Predicate<"Subtarget->hasSHA2()">,
     36                                  AssemblerPredicate<"FeatureSHA2", "sha2">;
     37 def HasAES           : Predicate<"Subtarget->hasAES()">,
     38                                  AssemblerPredicate<"FeatureAES", "aes">;
     39 def HasDotProd       : Predicate<"Subtarget->hasDotProd()">,
     40                                  AssemblerPredicate<"FeatureDotProd", "dotprod">;
     41 def HasCRC           : Predicate<"Subtarget->hasCRC()">,
     42                                  AssemblerPredicate<"FeatureCRC", "crc">;
     43 def HasLSE           : Predicate<"Subtarget->hasLSE()">,
     44                                  AssemblerPredicate<"FeatureLSE", "lse">;
     45 def HasRAS           : Predicate<"Subtarget->hasRAS()">,
     46                                  AssemblerPredicate<"FeatureRAS", "ras">;
     47 def HasRDM           : Predicate<"Subtarget->hasRDM()">,
     48                                  AssemblerPredicate<"FeatureRDM", "rdm">;
     49 def HasPerfMon       : Predicate<"Subtarget->hasPerfMon()">;
     50 def HasFullFP16      : Predicate<"Subtarget->hasFullFP16()">,
     51                                  AssemblerPredicate<"FeatureFullFP16", "fullfp16">;
     52 def HasSPE           : Predicate<"Subtarget->hasSPE()">,
     53                                  AssemblerPredicate<"FeatureSPE", "spe">;
     54 def HasFuseAES       : Predicate<"Subtarget->hasFuseAES()">,
     55                                  AssemblerPredicate<"FeatureFuseAES",
     56                                  "fuse-aes">;
     57 def HasSVE           : Predicate<"Subtarget->hasSVE()">,
     58                                  AssemblerPredicate<"FeatureSVE", "sve">;
     59 def HasRCPC          : Predicate<"Subtarget->hasRCPC()">,
     60                                  AssemblerPredicate<"FeatureRCPC", "rcpc">;
     61 
     62 def IsLE             : Predicate<"Subtarget->isLittleEndian()">;
     63 def IsBE             : Predicate<"!Subtarget->isLittleEndian()">;
     64 def UseAlternateSExtLoadCVTF32
     65     : Predicate<"Subtarget->useAlternateSExtLoadCVTF32Pattern()">;
     66 
     67 def UseNegativeImmediates
     68     : Predicate<"false">, AssemblerPredicate<"!FeatureNoNegativeImmediates",
     69                                              "NegativeImmediates">;
     70 
     71 
     72 //===----------------------------------------------------------------------===//
     73 // AArch64-specific DAG Nodes.
     74 //
     75 
     76 // SDTBinaryArithWithFlagsOut - RES1, FLAGS = op LHS, RHS
     77 def SDTBinaryArithWithFlagsOut : SDTypeProfile<2, 2,
     78                                               [SDTCisSameAs<0, 2>,
     79                                                SDTCisSameAs<0, 3>,
     80                                                SDTCisInt<0>, SDTCisVT<1, i32>]>;
     81 
     82 // SDTBinaryArithWithFlagsIn - RES1, FLAGS = op LHS, RHS, FLAGS
     83 def SDTBinaryArithWithFlagsIn : SDTypeProfile<1, 3,
     84                                             [SDTCisSameAs<0, 1>,
     85                                              SDTCisSameAs<0, 2>,
     86                                              SDTCisInt<0>,
     87                                              SDTCisVT<3, i32>]>;
     88 
     89 // SDTBinaryArithWithFlagsInOut - RES1, FLAGS = op LHS, RHS, FLAGS
     90 def SDTBinaryArithWithFlagsInOut : SDTypeProfile<2, 3,
     91                                             [SDTCisSameAs<0, 2>,
     92                                              SDTCisSameAs<0, 3>,
     93                                              SDTCisInt<0>,
     94                                              SDTCisVT<1, i32>,
     95                                              SDTCisVT<4, i32>]>;
     96 
     97 def SDT_AArch64Brcond  : SDTypeProfile<0, 3,
     98                                      [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>,
     99                                       SDTCisVT<2, i32>]>;
    100 def SDT_AArch64cbz : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisVT<1, OtherVT>]>;
    101 def SDT_AArch64tbz : SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>,
    102                                         SDTCisVT<2, OtherVT>]>;
    103 
    104 
    105 def SDT_AArch64CSel  : SDTypeProfile<1, 4,
    106                                    [SDTCisSameAs<0, 1>,
    107                                     SDTCisSameAs<0, 2>,
    108                                     SDTCisInt<3>,
    109                                     SDTCisVT<4, i32>]>;
    110 def SDT_AArch64CCMP : SDTypeProfile<1, 5,
    111                                     [SDTCisVT<0, i32>,
    112                                      SDTCisInt<1>,
    113                                      SDTCisSameAs<1, 2>,
    114                                      SDTCisInt<3>,
    115                                      SDTCisInt<4>,
    116                                      SDTCisVT<5, i32>]>;
    117 def SDT_AArch64FCCMP : SDTypeProfile<1, 5,
    118                                      [SDTCisVT<0, i32>,
    119                                       SDTCisFP<1>,
    120                                       SDTCisSameAs<1, 2>,
    121                                       SDTCisInt<3>,
    122                                       SDTCisInt<4>,
    123                                       SDTCisVT<5, i32>]>;
    124 def SDT_AArch64FCmp   : SDTypeProfile<0, 2,
    125                                    [SDTCisFP<0>,
    126                                     SDTCisSameAs<0, 1>]>;
    127 def SDT_AArch64Dup   : SDTypeProfile<1, 1, [SDTCisVec<0>]>;
    128 def SDT_AArch64DupLane   : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisInt<2>]>;
    129 def SDT_AArch64Zip   : SDTypeProfile<1, 2, [SDTCisVec<0>,
    130                                           SDTCisSameAs<0, 1>,
    131                                           SDTCisSameAs<0, 2>]>;
    132 def SDT_AArch64MOVIedit : SDTypeProfile<1, 1, [SDTCisInt<1>]>;
    133 def SDT_AArch64MOVIshift : SDTypeProfile<1, 2, [SDTCisInt<1>, SDTCisInt<2>]>;
    134 def SDT_AArch64vecimm : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>,
    135                                            SDTCisInt<2>, SDTCisInt<3>]>;
    136 def SDT_AArch64UnaryVec: SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisSameAs<0,1>]>;
    137 def SDT_AArch64ExtVec: SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>,
    138                                           SDTCisSameAs<0,2>, SDTCisInt<3>]>;
    139 def SDT_AArch64vshift : SDTypeProfile<1, 2, [SDTCisSameAs<0,1>, SDTCisInt<2>]>;
    140 
    141 def SDT_AArch64unvec : SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisSameAs<0,1>]>;
    142 def SDT_AArch64fcmpz : SDTypeProfile<1, 1, []>;
    143 def SDT_AArch64fcmp  : SDTypeProfile<1, 2, [SDTCisSameAs<1,2>]>;
    144 def SDT_AArch64binvec : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>,
    145                                            SDTCisSameAs<0,2>]>;
    146 def SDT_AArch64trivec : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>,
    147                                            SDTCisSameAs<0,2>,
    148                                            SDTCisSameAs<0,3>]>;
    149 def SDT_AArch64TCRET : SDTypeProfile<0, 2, [SDTCisPtrTy<0>]>;
    150 def SDT_AArch64PREFETCH : SDTypeProfile<0, 2, [SDTCisVT<0, i32>, SDTCisPtrTy<1>]>;
    151 
    152 def SDT_AArch64ITOF  : SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisSameAs<0,1>]>;
    153 
    154 def SDT_AArch64TLSDescCall : SDTypeProfile<0, -2, [SDTCisPtrTy<0>,
    155                                                  SDTCisPtrTy<1>]>;
    156 
    157 // Generates the general dynamic sequences, i.e.
    158 //  adrp  x0, :tlsdesc:var
    159 //  ldr   x1, [x0, #:tlsdesc_lo12:var]
    160 //  add   x0, x0, #:tlsdesc_lo12:var
    161 //  .tlsdesccall var
    162 //  blr   x1
    163 
    164 // (the TPIDR_EL0 offset is put directly in X0, hence no "result" here)
    165 // number of operands (the variable)
    166 def SDT_AArch64TLSDescCallSeq : SDTypeProfile<0,1,
    167                                           [SDTCisPtrTy<0>]>;
    168 
    169 def SDT_AArch64WrapperLarge : SDTypeProfile<1, 4,
    170                                         [SDTCisVT<0, i64>, SDTCisVT<1, i32>,
    171                                          SDTCisSameAs<1, 2>, SDTCisSameAs<1, 3>,
    172                                          SDTCisSameAs<1, 4>]>;
    173 
    174 
    175 // Node definitions.
    176 def AArch64adrp          : SDNode<"AArch64ISD::ADRP", SDTIntUnaryOp, []>;
    177 def AArch64addlow        : SDNode<"AArch64ISD::ADDlow", SDTIntBinOp, []>;
    178 def AArch64LOADgot       : SDNode<"AArch64ISD::LOADgot", SDTIntUnaryOp>;
    179 def AArch64callseq_start : SDNode<"ISD::CALLSEQ_START",
    180                                 SDCallSeqStart<[ SDTCisVT<0, i32>,
    181                                                  SDTCisVT<1, i32> ]>,
    182                                 [SDNPHasChain, SDNPOutGlue]>;
    183 def AArch64callseq_end   : SDNode<"ISD::CALLSEQ_END",
    184                                 SDCallSeqEnd<[ SDTCisVT<0, i32>,
    185                                                SDTCisVT<1, i32> ]>,
    186                                 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
    187 def AArch64call          : SDNode<"AArch64ISD::CALL",
    188                                 SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>,
    189                                 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
    190                                  SDNPVariadic]>;
    191 def AArch64brcond        : SDNode<"AArch64ISD::BRCOND", SDT_AArch64Brcond,
    192                                 [SDNPHasChain]>;
    193 def AArch64cbz           : SDNode<"AArch64ISD::CBZ", SDT_AArch64cbz,
    194                                 [SDNPHasChain]>;
    195 def AArch64cbnz           : SDNode<"AArch64ISD::CBNZ", SDT_AArch64cbz,
    196                                 [SDNPHasChain]>;
    197 def AArch64tbz           : SDNode<"AArch64ISD::TBZ", SDT_AArch64tbz,
    198                                 [SDNPHasChain]>;
    199 def AArch64tbnz           : SDNode<"AArch64ISD::TBNZ", SDT_AArch64tbz,
    200                                 [SDNPHasChain]>;
    201 
    202 
    203 def AArch64csel          : SDNode<"AArch64ISD::CSEL", SDT_AArch64CSel>;
    204 def AArch64csinv         : SDNode<"AArch64ISD::CSINV", SDT_AArch64CSel>;
    205 def AArch64csneg         : SDNode<"AArch64ISD::CSNEG", SDT_AArch64CSel>;
    206 def AArch64csinc         : SDNode<"AArch64ISD::CSINC", SDT_AArch64CSel>;
    207 def AArch64retflag       : SDNode<"AArch64ISD::RET_FLAG", SDTNone,
    208                                 [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
    209 def AArch64adc       : SDNode<"AArch64ISD::ADC",  SDTBinaryArithWithFlagsIn >;
    210 def AArch64sbc       : SDNode<"AArch64ISD::SBC",  SDTBinaryArithWithFlagsIn>;
    211 def AArch64add_flag  : SDNode<"AArch64ISD::ADDS",  SDTBinaryArithWithFlagsOut,
    212                             [SDNPCommutative]>;
    213 def AArch64sub_flag  : SDNode<"AArch64ISD::SUBS",  SDTBinaryArithWithFlagsOut>;
    214 def AArch64and_flag  : SDNode<"AArch64ISD::ANDS",  SDTBinaryArithWithFlagsOut,
    215                             [SDNPCommutative]>;
    216 def AArch64adc_flag  : SDNode<"AArch64ISD::ADCS",  SDTBinaryArithWithFlagsInOut>;
    217 def AArch64sbc_flag  : SDNode<"AArch64ISD::SBCS",  SDTBinaryArithWithFlagsInOut>;
    218 
    219 def AArch64ccmp      : SDNode<"AArch64ISD::CCMP",  SDT_AArch64CCMP>;
    220 def AArch64ccmn      : SDNode<"AArch64ISD::CCMN",  SDT_AArch64CCMP>;
    221 def AArch64fccmp     : SDNode<"AArch64ISD::FCCMP", SDT_AArch64FCCMP>;
    222 
    223 def AArch64threadpointer : SDNode<"AArch64ISD::THREAD_POINTER", SDTPtrLeaf>;
    224 
    225 def AArch64fcmp      : SDNode<"AArch64ISD::FCMP", SDT_AArch64FCmp>;
    226 
    227 def AArch64dup       : SDNode<"AArch64ISD::DUP", SDT_AArch64Dup>;
    228 def AArch64duplane8  : SDNode<"AArch64ISD::DUPLANE8", SDT_AArch64DupLane>;
    229 def AArch64duplane16 : SDNode<"AArch64ISD::DUPLANE16", SDT_AArch64DupLane>;
    230 def AArch64duplane32 : SDNode<"AArch64ISD::DUPLANE32", SDT_AArch64DupLane>;
    231 def AArch64duplane64 : SDNode<"AArch64ISD::DUPLANE64", SDT_AArch64DupLane>;
    232 
    233 def AArch64zip1      : SDNode<"AArch64ISD::ZIP1", SDT_AArch64Zip>;
    234 def AArch64zip2      : SDNode<"AArch64ISD::ZIP2", SDT_AArch64Zip>;
    235 def AArch64uzp1      : SDNode<"AArch64ISD::UZP1", SDT_AArch64Zip>;
    236 def AArch64uzp2      : SDNode<"AArch64ISD::UZP2", SDT_AArch64Zip>;
    237 def AArch64trn1      : SDNode<"AArch64ISD::TRN1", SDT_AArch64Zip>;
    238 def AArch64trn2      : SDNode<"AArch64ISD::TRN2", SDT_AArch64Zip>;
    239 
    240 def AArch64movi_edit : SDNode<"AArch64ISD::MOVIedit", SDT_AArch64MOVIedit>;
    241 def AArch64movi_shift : SDNode<"AArch64ISD::MOVIshift", SDT_AArch64MOVIshift>;
    242 def AArch64movi_msl : SDNode<"AArch64ISD::MOVImsl", SDT_AArch64MOVIshift>;
    243 def AArch64mvni_shift : SDNode<"AArch64ISD::MVNIshift", SDT_AArch64MOVIshift>;
    244 def AArch64mvni_msl : SDNode<"AArch64ISD::MVNImsl", SDT_AArch64MOVIshift>;
    245 def AArch64movi : SDNode<"AArch64ISD::MOVI", SDT_AArch64MOVIedit>;
    246 def AArch64fmov : SDNode<"AArch64ISD::FMOV", SDT_AArch64MOVIedit>;
    247 
    248 def AArch64rev16 : SDNode<"AArch64ISD::REV16", SDT_AArch64UnaryVec>;
    249 def AArch64rev32 : SDNode<"AArch64ISD::REV32", SDT_AArch64UnaryVec>;
    250 def AArch64rev64 : SDNode<"AArch64ISD::REV64", SDT_AArch64UnaryVec>;
    251 def AArch64ext : SDNode<"AArch64ISD::EXT", SDT_AArch64ExtVec>;
    252 
    253 def AArch64vashr : SDNode<"AArch64ISD::VASHR", SDT_AArch64vshift>;
    254 def AArch64vlshr : SDNode<"AArch64ISD::VLSHR", SDT_AArch64vshift>;
    255 def AArch64vshl : SDNode<"AArch64ISD::VSHL", SDT_AArch64vshift>;
    256 def AArch64sqshli : SDNode<"AArch64ISD::SQSHL_I", SDT_AArch64vshift>;
    257 def AArch64uqshli : SDNode<"AArch64ISD::UQSHL_I", SDT_AArch64vshift>;
    258 def AArch64sqshlui : SDNode<"AArch64ISD::SQSHLU_I", SDT_AArch64vshift>;
    259 def AArch64srshri : SDNode<"AArch64ISD::SRSHR_I", SDT_AArch64vshift>;
    260 def AArch64urshri : SDNode<"AArch64ISD::URSHR_I", SDT_AArch64vshift>;
    261 
    262 def AArch64not: SDNode<"AArch64ISD::NOT", SDT_AArch64unvec>;
    263 def AArch64bit: SDNode<"AArch64ISD::BIT", SDT_AArch64trivec>;
    264 def AArch64bsl: SDNode<"AArch64ISD::BSL", SDT_AArch64trivec>;
    265 
    266 def AArch64cmeq: SDNode<"AArch64ISD::CMEQ", SDT_AArch64binvec>;
    267 def AArch64cmge: SDNode<"AArch64ISD::CMGE", SDT_AArch64binvec>;
    268 def AArch64cmgt: SDNode<"AArch64ISD::CMGT", SDT_AArch64binvec>;
    269 def AArch64cmhi: SDNode<"AArch64ISD::CMHI", SDT_AArch64binvec>;
    270 def AArch64cmhs: SDNode<"AArch64ISD::CMHS", SDT_AArch64binvec>;
    271 
    272 def AArch64fcmeq: SDNode<"AArch64ISD::FCMEQ", SDT_AArch64fcmp>;
    273 def AArch64fcmge: SDNode<"AArch64ISD::FCMGE", SDT_AArch64fcmp>;
    274 def AArch64fcmgt: SDNode<"AArch64ISD::FCMGT", SDT_AArch64fcmp>;
    275 
    276 def AArch64cmeqz: SDNode<"AArch64ISD::CMEQz", SDT_AArch64unvec>;
    277 def AArch64cmgez: SDNode<"AArch64ISD::CMGEz", SDT_AArch64unvec>;
    278 def AArch64cmgtz: SDNode<"AArch64ISD::CMGTz", SDT_AArch64unvec>;
    279 def AArch64cmlez: SDNode<"AArch64ISD::CMLEz", SDT_AArch64unvec>;
    280 def AArch64cmltz: SDNode<"AArch64ISD::CMLTz", SDT_AArch64unvec>;
    281 def AArch64cmtst : PatFrag<(ops node:$LHS, node:$RHS),
    282                         (AArch64not (AArch64cmeqz (and node:$LHS, node:$RHS)))>;
    283 
    284 def AArch64fcmeqz: SDNode<"AArch64ISD::FCMEQz", SDT_AArch64fcmpz>;
    285 def AArch64fcmgez: SDNode<"AArch64ISD::FCMGEz", SDT_AArch64fcmpz>;
    286 def AArch64fcmgtz: SDNode<"AArch64ISD::FCMGTz", SDT_AArch64fcmpz>;
    287 def AArch64fcmlez: SDNode<"AArch64ISD::FCMLEz", SDT_AArch64fcmpz>;
    288 def AArch64fcmltz: SDNode<"AArch64ISD::FCMLTz", SDT_AArch64fcmpz>;
    289 
    290 def AArch64bici: SDNode<"AArch64ISD::BICi", SDT_AArch64vecimm>;
    291 def AArch64orri: SDNode<"AArch64ISD::ORRi", SDT_AArch64vecimm>;
    292 
    293 def AArch64neg : SDNode<"AArch64ISD::NEG", SDT_AArch64unvec>;
    294 
    295 def AArch64tcret: SDNode<"AArch64ISD::TC_RETURN", SDT_AArch64TCRET,
    296                   [SDNPHasChain,  SDNPOptInGlue, SDNPVariadic]>;
    297 
    298 def AArch64Prefetch        : SDNode<"AArch64ISD::PREFETCH", SDT_AArch64PREFETCH,
    299                                [SDNPHasChain, SDNPSideEffect]>;
    300 
    301 def AArch64sitof: SDNode<"AArch64ISD::SITOF", SDT_AArch64ITOF>;
    302 def AArch64uitof: SDNode<"AArch64ISD::UITOF", SDT_AArch64ITOF>;
    303 
    304 def AArch64tlsdesc_callseq : SDNode<"AArch64ISD::TLSDESC_CALLSEQ",
    305                                     SDT_AArch64TLSDescCallSeq,
    306                                     [SDNPInGlue, SDNPOutGlue, SDNPHasChain,
    307                                      SDNPVariadic]>;
    308 
    309 
    310 def AArch64WrapperLarge : SDNode<"AArch64ISD::WrapperLarge",
    311                                  SDT_AArch64WrapperLarge>;
    312 
    313 def AArch64NvCast : SDNode<"AArch64ISD::NVCAST", SDTUnaryOp>;
    314 
    315 def SDT_AArch64mull : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisInt<1>,
    316                                     SDTCisSameAs<1, 2>]>;
    317 def AArch64smull    : SDNode<"AArch64ISD::SMULL", SDT_AArch64mull>;
    318 def AArch64umull    : SDNode<"AArch64ISD::UMULL", SDT_AArch64mull>;
    319 
    320 def AArch64frecpe   : SDNode<"AArch64ISD::FRECPE", SDTFPUnaryOp>;
    321 def AArch64frecps   : SDNode<"AArch64ISD::FRECPS", SDTFPBinOp>;
    322 def AArch64frsqrte  : SDNode<"AArch64ISD::FRSQRTE", SDTFPUnaryOp>;
    323 def AArch64frsqrts  : SDNode<"AArch64ISD::FRSQRTS", SDTFPBinOp>;
    324 
    325 def AArch64saddv    : SDNode<"AArch64ISD::SADDV", SDT_AArch64UnaryVec>;
    326 def AArch64uaddv    : SDNode<"AArch64ISD::UADDV", SDT_AArch64UnaryVec>;
    327 def AArch64sminv    : SDNode<"AArch64ISD::SMINV", SDT_AArch64UnaryVec>;
    328 def AArch64uminv    : SDNode<"AArch64ISD::UMINV", SDT_AArch64UnaryVec>;
    329 def AArch64smaxv    : SDNode<"AArch64ISD::SMAXV", SDT_AArch64UnaryVec>;
    330 def AArch64umaxv    : SDNode<"AArch64ISD::UMAXV", SDT_AArch64UnaryVec>;
    331 
    332 //===----------------------------------------------------------------------===//
    333 
    334 //===----------------------------------------------------------------------===//
    335 
    336 // AArch64 Instruction Predicate Definitions.
    337 // We could compute these on a per-module basis but doing so requires accessing
    338 // the Function object through the <Target>Subtarget and objections were raised
    339 // to that (see post-commit review comments for r301750).
    340 let RecomputePerFunction = 1 in {
    341   def ForCodeSize   : Predicate<"MF->getFunction().optForSize()">;
    342   def NotForCodeSize   : Predicate<"!MF->getFunction().optForSize()">;
    343   // Avoid generating STRQro if it is slow, unless we're optimizing for code size.
    344   def UseSTRQro : Predicate<"!Subtarget->isSTRQroSlow() || MF->getFunction().optForSize()">;
    345 }
    346 
    347 include "AArch64InstrFormats.td"
    348 include "SVEInstrFormats.td"
    349 
    350 //===----------------------------------------------------------------------===//
    351 
    352 //===----------------------------------------------------------------------===//
    353 // Miscellaneous instructions.
    354 //===----------------------------------------------------------------------===//
    355 
    356 let Defs = [SP], Uses = [SP], hasSideEffects = 1, isCodeGenOnly = 1 in {
    357 // We set Sched to empty list because we expect these instructions to simply get
    358 // removed in most cases.
    359 def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
    360                               [(AArch64callseq_start timm:$amt1, timm:$amt2)]>,
    361                               Sched<[]>;
    362 def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
    363                             [(AArch64callseq_end timm:$amt1, timm:$amt2)]>,
    364                             Sched<[]>;
    365 } // Defs = [SP], Uses = [SP], hasSideEffects = 1, isCodeGenOnly = 1
    366 
    367 let isReMaterializable = 1, isCodeGenOnly = 1 in {
    368 // FIXME: The following pseudo instructions are only needed because remat
    369 // cannot handle multiple instructions.  When that changes, they can be
    370 // removed, along with the AArch64Wrapper node.
    371 
    372 let AddedComplexity = 10 in
    373 def LOADgot : Pseudo<(outs GPR64:$dst), (ins i64imm:$addr),
    374                      [(set GPR64:$dst, (AArch64LOADgot tglobaladdr:$addr))]>,
    375               Sched<[WriteLDAdr]>;
    376 
    377 // The MOVaddr instruction should match only when the add is not folded
    378 // into a load or store address.
    379 def MOVaddr
    380     : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
    381              [(set GPR64:$dst, (AArch64addlow (AArch64adrp tglobaladdr:$hi),
    382                                             tglobaladdr:$low))]>,
    383       Sched<[WriteAdrAdr]>;
    384 def MOVaddrJT
    385     : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
    386              [(set GPR64:$dst, (AArch64addlow (AArch64adrp tjumptable:$hi),
    387                                              tjumptable:$low))]>,
    388       Sched<[WriteAdrAdr]>;
    389 def MOVaddrCP
    390     : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
    391              [(set GPR64:$dst, (AArch64addlow (AArch64adrp tconstpool:$hi),
    392                                              tconstpool:$low))]>,
    393       Sched<[WriteAdrAdr]>;
    394 def MOVaddrBA
    395     : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
    396              [(set GPR64:$dst, (AArch64addlow (AArch64adrp tblockaddress:$hi),
    397                                              tblockaddress:$low))]>,
    398       Sched<[WriteAdrAdr]>;
    399 def MOVaddrTLS
    400     : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
    401              [(set GPR64:$dst, (AArch64addlow (AArch64adrp tglobaltlsaddr:$hi),
    402                                             tglobaltlsaddr:$low))]>,
    403       Sched<[WriteAdrAdr]>;
    404 def MOVaddrEXT
    405     : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
    406              [(set GPR64:$dst, (AArch64addlow (AArch64adrp texternalsym:$hi),
    407                                             texternalsym:$low))]>,
    408       Sched<[WriteAdrAdr]>;
    409 // Normally AArch64addlow either gets folded into a following ldr/str,
    410 // or together with an adrp into MOVaddr above. For cases with TLS, it
    411 // might appear without either of them, so allow lowering it into a plain
    412 // add.
    413 def ADDlowTLS
    414     : Pseudo<(outs GPR64:$dst), (ins GPR64:$src, i64imm:$low),
    415              [(set GPR64:$dst, (AArch64addlow GPR64:$src,
    416                                             tglobaltlsaddr:$low))]>,
    417       Sched<[WriteAdr]>;
    418 
    419 } // isReMaterializable, isCodeGenOnly
    420 
    421 def : Pat<(AArch64LOADgot tglobaltlsaddr:$addr),
    422           (LOADgot tglobaltlsaddr:$addr)>;
    423 
    424 def : Pat<(AArch64LOADgot texternalsym:$addr),
    425           (LOADgot texternalsym:$addr)>;
    426 
    427 def : Pat<(AArch64LOADgot tconstpool:$addr),
    428           (LOADgot tconstpool:$addr)>;
    429 
    430 //===----------------------------------------------------------------------===//
    431 // System instructions.
    432 //===----------------------------------------------------------------------===//
    433 
    434 def HINT : HintI<"hint">;
    435 def : InstAlias<"nop",  (HINT 0b000)>;
    436 def : InstAlias<"yield",(HINT 0b001)>;
    437 def : InstAlias<"wfe",  (HINT 0b010)>;
    438 def : InstAlias<"wfi",  (HINT 0b011)>;
    439 def : InstAlias<"sev",  (HINT 0b100)>;
    440 def : InstAlias<"sevl", (HINT 0b101)>;
    441 def : InstAlias<"esb",  (HINT 0b10000)>, Requires<[HasRAS]>;
    442 def : InstAlias<"csdb", (HINT 20)>;
    443 
    444 // v8.2a Statistical Profiling extension
    445 def : InstAlias<"psb $op",  (HINT psbhint_op:$op)>, Requires<[HasSPE]>;
    446 
    447 // As far as LLVM is concerned this writes to the system's exclusive monitors.
    448 let mayLoad = 1, mayStore = 1 in
    449 def CLREX : CRmSystemI<imm0_15, 0b010, "clrex">;
    450 
    451 // NOTE: ideally, this would have mayStore = 0, mayLoad = 0, but we cannot
    452 // model patterns with sufficiently fine granularity.
    453 let mayLoad = ?, mayStore = ? in {
    454 def DMB   : CRmSystemI<barrier_op, 0b101, "dmb",
    455                        [(int_aarch64_dmb (i32 imm32_0_15:$CRm))]>;
    456 
    457 def DSB   : CRmSystemI<barrier_op, 0b100, "dsb",
    458                        [(int_aarch64_dsb (i32 imm32_0_15:$CRm))]>;
    459 
    460 def ISB   : CRmSystemI<barrier_op, 0b110, "isb",
    461                        [(int_aarch64_isb (i32 imm32_0_15:$CRm))]>;
    462 
    463 def TSB   : CRmSystemI<barrier_op, 0b010, "tsb", []> {
    464   let CRm        = 0b0010;
    465   let Inst{12}   = 0;
    466   let Predicates = [HasV8_4a];
    467 }
    468 }
    469 
    470 // ARMv8.2 Dot Product
    471 let Predicates = [HasDotProd] in {
    472 defm SDOT : SIMDThreeSameVectorDot<0, "sdot", int_aarch64_neon_sdot>;
    473 defm UDOT : SIMDThreeSameVectorDot<1, "udot", int_aarch64_neon_udot>;
    474 defm SDOTlane : SIMDThreeSameVectorDotIndex<0, "sdot", int_aarch64_neon_sdot>;
    475 defm UDOTlane : SIMDThreeSameVectorDotIndex<1, "udot", int_aarch64_neon_udot>;
    476 }
    477 
    478 // Armv8.2-A Crypto extensions
    479 let Predicates = [HasSHA3] in {
    480 def SHA512H   : CryptoRRRTied<0b0, 0b00, "sha512h">;
    481 def SHA512H2  : CryptoRRRTied<0b0, 0b01, "sha512h2">;
    482 def SHA512SU0 : CryptoRRTied_2D<0b0, 0b00, "sha512su0">;
    483 def SHA512SU1 : CryptoRRRTied_2D<0b0, 0b10, "sha512su1">;
    484 def RAX1      : CryptoRRR_2D<0b0,0b11, "rax1">;
    485 def EOR3      : CryptoRRRR_16B<0b00, "eor3">;
    486 def BCAX      : CryptoRRRR_16B<0b01, "bcax">;
    487 def XAR       : CryptoRRRi6<"xar">;
    488 } // HasSHA3
    489 
    490 let Predicates = [HasSM4] in {
    491 def SM3TT1A   : CryptoRRRi2Tied<0b0, 0b00, "sm3tt1a">;
    492 def SM3TT1B   : CryptoRRRi2Tied<0b0, 0b01, "sm3tt1b">;
    493 def SM3TT2A   : CryptoRRRi2Tied<0b0, 0b10, "sm3tt2a">;
    494 def SM3TT2B   : CryptoRRRi2Tied<0b0, 0b11, "sm3tt2b">;
    495 def SM3SS1    : CryptoRRRR_4S<0b10, "sm3ss1">;
    496 def SM3PARTW1 : CryptoRRRTied_4S<0b1, 0b00, "sm3partw1">;
    497 def SM3PARTW2 : CryptoRRRTied_4S<0b1, 0b01, "sm3partw2">;
    498 def SM4ENCKEY : CryptoRRR_4S<0b1, 0b10, "sm4ekey">;
    499 def SM4E      : CryptoRRTied_4S<0b0, 0b01, "sm4e">;
    500 } // HasSM4
    501 
    502 let Predicates = [HasRCPC] in {
    503   // v8.3 Release Consistent Processor Consistent support, optional in v8.2.
    504   def LDAPRB  : RCPCLoad<0b00, "ldaprb", GPR32>;
    505   def LDAPRH  : RCPCLoad<0b01, "ldaprh", GPR32>;
    506   def LDAPRW  : RCPCLoad<0b10, "ldapr", GPR32>;
    507   def LDAPRX  : RCPCLoad<0b11, "ldapr", GPR64>;
    508 }
    509 
    510 // v8.3a complex add and multiply-accumulate. No predicate here, that is done
    511 // inside the multiclass as the FP16 versions need different predicates.
    512 defm FCMLA : SIMDThreeSameVectorTiedComplexHSD<1, 0b110, complexrotateop,
    513                                                "fcmla", null_frag>;
    514 defm FCADD : SIMDThreeSameVectorComplexHSD<1, 0b111, complexrotateopodd,
    515                                            "fcadd", null_frag>;
    516 defm FCMLA : SIMDIndexedTiedComplexHSD<1, 0, 1, complexrotateop, "fcmla",
    517                                        null_frag>;
    518 
    519 // v8.3a Pointer Authentication
    520 // These instructions inhabit part of the hint space and so can be used for
    521 // armv8 targets
    522 let Uses = [LR], Defs = [LR] in {
    523   def PACIAZ   : SystemNoOperands<0b000, "paciaz">;
    524   def PACIBZ   : SystemNoOperands<0b010, "pacibz">;
    525   def AUTIAZ   : SystemNoOperands<0b100, "autiaz">;
    526   def AUTIBZ   : SystemNoOperands<0b110, "autibz">;
    527 }
    528 let Uses = [LR, SP], Defs = [LR] in {
    529   def PACIASP  : SystemNoOperands<0b001, "paciasp">;
    530   def PACIBSP  : SystemNoOperands<0b011, "pacibsp">;
    531   def AUTIASP  : SystemNoOperands<0b101, "autiasp">;
    532   def AUTIBSP  : SystemNoOperands<0b111, "autibsp">;
    533 }
    534 let Uses = [X16, X17], Defs = [X17], CRm = 0b0001 in {
    535   def PACIA1716  : SystemNoOperands<0b000, "pacia1716">;
    536   def PACIB1716  : SystemNoOperands<0b010, "pacib1716">;
    537   def AUTIA1716  : SystemNoOperands<0b100, "autia1716">;
    538   def AUTIB1716  : SystemNoOperands<0b110, "autib1716">;
    539 }
    540 
    541 let Uses = [LR], Defs = [LR], CRm = 0b0000 in {
    542   def XPACLRI   : SystemNoOperands<0b111, "xpaclri">;
    543 }
    544 
    545 // These pointer authentication isntructions require armv8.3a
    546 let Predicates = [HasV8_3a] in {
    547   multiclass SignAuth<bits<3> prefix, bits<3> prefix_z, string asm> {
    548     def IA   : SignAuthOneData<prefix, 0b00, !strconcat(asm, "ia")>;
    549     def IB   : SignAuthOneData<prefix, 0b01, !strconcat(asm, "ib")>;
    550     def DA   : SignAuthOneData<prefix, 0b10, !strconcat(asm, "da")>;
    551     def DB   : SignAuthOneData<prefix, 0b11, !strconcat(asm, "db")>;
    552     def IZA  : SignAuthZero<prefix_z, 0b00, !strconcat(asm, "iza")>;
    553     def DZA  : SignAuthZero<prefix_z, 0b10, !strconcat(asm, "dza")>;
    554     def IZB  : SignAuthZero<prefix_z, 0b01, !strconcat(asm, "izb")>;
    555     def DZB  : SignAuthZero<prefix_z, 0b11, !strconcat(asm, "dzb")>;
    556   }
    557 
    558   defm PAC : SignAuth<0b000, 0b010, "pac">;
    559   defm AUT : SignAuth<0b001, 0b011, "aut">;
    560 
    561   def XPACI : SignAuthZero<0b100, 0b00, "xpaci">;
    562   def XPACD : SignAuthZero<0b100, 0b01, "xpacd">;
    563   def PACGA : SignAuthTwoOperand<0b1100, "pacga", null_frag>;
    564 
    565   // Combined Instructions
    566   def BRAA    : AuthBranchTwoOperands<0, 0, "braa">;
    567   def BRAB    : AuthBranchTwoOperands<0, 1, "brab">;
    568   def BLRAA   : AuthBranchTwoOperands<1, 0, "blraa">;
    569   def BLRAB   : AuthBranchTwoOperands<1, 1, "blrab">;
    570 
    571   def BRAAZ   : AuthOneOperand<0b000, 0, "braaz">;
    572   def BRABZ   : AuthOneOperand<0b000, 1, "brabz">;
    573   def BLRAAZ  : AuthOneOperand<0b001, 0, "blraaz">;
    574   def BLRABZ  : AuthOneOperand<0b001, 1, "blrabz">;
    575 
    576   let isReturn = 1, isTerminator = 1, isBarrier = 1 in {
    577     def RETAA   : AuthReturn<0b010, 0, "retaa">;
    578     def RETAB   : AuthReturn<0b010, 1, "retab">;
    579     def ERETAA  : AuthReturn<0b100, 0, "eretaa">;
    580     def ERETAB  : AuthReturn<0b100, 1, "eretab">;
    581   }
    582 
    583   defm LDRAA  : AuthLoad<0, "ldraa", simm10Scaled>;
    584   defm LDRAB  : AuthLoad<1, "ldrab", simm10Scaled>;
    585 
    586   // v8.3a floating point conversion for javascript
    587   let Predicates = [HasV8_3a, HasFPARMv8] in
    588   def FJCVTZS  : BaseFPToIntegerUnscaled<0b01, 0b11, 0b110, FPR64, GPR32,
    589                                         "fjcvtzs", []> {
    590     let Inst{31} = 0;
    591   }
    592 
    593 } // HasV8_3a
    594 
    595 // v8.4 Flag manipulation instructions
    596 let Predicates = [HasV8_4a] in {
    597 def CFINV : SimpleSystemI<0, (ins), "cfinv", "">, Sched<[WriteSys]> {
    598   let Inst{20-5} = 0b0000001000000000;
    599 }
    600 def SETF8  : BaseFlagManipulation<0, 0, (ins GPR32:$Rn), "setf8", "{\t$Rn}">;
    601 def SETF16 : BaseFlagManipulation<0, 1, (ins GPR32:$Rn), "setf16", "{\t$Rn}">;
    602 def RMIF   : FlagRotate<(ins GPR64:$Rn, uimm6:$imm, imm0_15:$mask), "rmif",
    603                         "{\t$Rn, $imm, $mask}">;
    604 } // HasV8_4a
    605 
    606 def : InstAlias<"clrex", (CLREX 0xf)>;
    607 def : InstAlias<"isb", (ISB 0xf)>;
    608 
    609 def MRS    : MRSI;
    610 def MSR    : MSRI;
    611 def MSRpstateImm1 : MSRpstateImm0_1;
    612 def MSRpstateImm4 : MSRpstateImm0_15;
    613 
    614 // The thread pointer (on Linux, at least, where this has been implemented) is
    615 // TPIDR_EL0.
    616 def MOVbaseTLS : Pseudo<(outs GPR64:$dst), (ins),
    617                        [(set GPR64:$dst, AArch64threadpointer)]>, Sched<[WriteSys]>;
    618 
    619 // The cycle counter PMC register is PMCCNTR_EL0.
    620 let Predicates = [HasPerfMon] in
    621 def : Pat<(readcyclecounter), (MRS 0xdce8)>;
    622 
    623 // FPCR register
    624 def : Pat<(i64 (int_aarch64_get_fpcr)), (MRS 0xda20)>;
    625 
    626 // Generic system instructions
    627 def SYSxt  : SystemXtI<0, "sys">;
    628 def SYSLxt : SystemLXtI<1, "sysl">;
    629 
    630 def : InstAlias<"sys $op1, $Cn, $Cm, $op2",
    631                 (SYSxt imm0_7:$op1, sys_cr_op:$Cn,
    632                  sys_cr_op:$Cm, imm0_7:$op2, XZR)>;
    633 
    634 //===----------------------------------------------------------------------===//
    635 // Move immediate instructions.
    636 //===----------------------------------------------------------------------===//
    637 
    638 defm MOVK : InsertImmediate<0b11, "movk">;
    639 defm MOVN : MoveImmediate<0b00, "movn">;
    640 
    641 let PostEncoderMethod = "fixMOVZ" in
    642 defm MOVZ : MoveImmediate<0b10, "movz">;
    643 
    644 // First group of aliases covers an implicit "lsl #0".
    645 def : InstAlias<"movk $dst, $imm", (MOVKWi GPR32:$dst, imm0_65535:$imm, 0), 0>;
    646 def : InstAlias<"movk $dst, $imm", (MOVKXi GPR64:$dst, imm0_65535:$imm, 0), 0>;
    647 def : InstAlias<"movn $dst, $imm", (MOVNWi GPR32:$dst, imm0_65535:$imm, 0)>;
    648 def : InstAlias<"movn $dst, $imm", (MOVNXi GPR64:$dst, imm0_65535:$imm, 0)>;
    649 def : InstAlias<"movz $dst, $imm", (MOVZWi GPR32:$dst, imm0_65535:$imm, 0)>;
    650 def : InstAlias<"movz $dst, $imm", (MOVZXi GPR64:$dst, imm0_65535:$imm, 0)>;
    651 
    652 // Next, we have various ELF relocations with the ":XYZ_g0:sym" syntax.
    653 def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movz_symbol_g3:$sym, 48)>;
    654 def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movz_symbol_g2:$sym, 32)>;
    655 def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movz_symbol_g1:$sym, 16)>;
    656 def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movz_symbol_g0:$sym, 0)>;
    657 
    658 def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movz_symbol_g3:$sym, 48)>;
    659 def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movz_symbol_g2:$sym, 32)>;
    660 def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movz_symbol_g1:$sym, 16)>;
    661 def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movz_symbol_g0:$sym, 0)>;
    662 
    663 def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movk_symbol_g3:$sym, 48), 0>;
    664 def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movk_symbol_g2:$sym, 32), 0>;
    665 def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movk_symbol_g1:$sym, 16), 0>;
    666 def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movk_symbol_g0:$sym, 0), 0>;
    667 
    668 def : InstAlias<"movz $Rd, $sym", (MOVZWi GPR32:$Rd, movz_symbol_g1:$sym, 16)>;
    669 def : InstAlias<"movz $Rd, $sym", (MOVZWi GPR32:$Rd, movz_symbol_g0:$sym, 0)>;
    670 
    671 def : InstAlias<"movn $Rd, $sym", (MOVNWi GPR32:$Rd, movz_symbol_g1:$sym, 16)>;
    672 def : InstAlias<"movn $Rd, $sym", (MOVNWi GPR32:$Rd, movz_symbol_g0:$sym, 0)>;
    673 
    674 def : InstAlias<"movk $Rd, $sym", (MOVKWi GPR32:$Rd, movk_symbol_g1:$sym, 16), 0>;
    675 def : InstAlias<"movk $Rd, $sym", (MOVKWi GPR32:$Rd, movk_symbol_g0:$sym, 0), 0>;
    676 
    677 // Final group of aliases covers true "mov $Rd, $imm" cases.
    678 multiclass movw_mov_alias<string basename,Instruction INST, RegisterClass GPR,
    679                           int width, int shift> {
    680   def _asmoperand : AsmOperandClass {
    681     let Name = basename # width # "_lsl" # shift # "MovAlias";
    682     let PredicateMethod = "is" # basename # "MovAlias<" # width # ", "
    683                                # shift # ">";
    684     let RenderMethod = "add" # basename # "MovAliasOperands<" # shift # ">";
    685   }
    686 
    687   def _movimm : Operand<i32> {
    688     let ParserMatchClass = !cast<AsmOperandClass>(NAME # "_asmoperand");
    689   }
    690 
    691   def : InstAlias<"mov $Rd, $imm",
    692                   (INST GPR:$Rd, !cast<Operand>(NAME # "_movimm"):$imm, shift)>;
    693 }
    694 
    695 defm : movw_mov_alias<"MOVZ", MOVZWi, GPR32, 32, 0>;
    696 defm : movw_mov_alias<"MOVZ", MOVZWi, GPR32, 32, 16>;
    697 
    698 defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 0>;
    699 defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 16>;
    700 defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 32>;
    701 defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 48>;
    702 
    703 defm : movw_mov_alias<"MOVN", MOVNWi, GPR32, 32, 0>;
    704 defm : movw_mov_alias<"MOVN", MOVNWi, GPR32, 32, 16>;
    705 
    706 defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 0>;
    707 defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 16>;
    708 defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 32>;
    709 defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 48>;
    710 
    711 let isReMaterializable = 1, isCodeGenOnly = 1, isMoveImm = 1,
    712     isAsCheapAsAMove = 1 in {
    713 // FIXME: The following pseudo instructions are only needed because remat
    714 // cannot handle multiple instructions.  When that changes, we can select
    715 // directly to the real instructions and get rid of these pseudos.
    716 
    717 def MOVi32imm
    718     : Pseudo<(outs GPR32:$dst), (ins i32imm:$src),
    719              [(set GPR32:$dst, imm:$src)]>,
    720       Sched<[WriteImm]>;
    721 def MOVi64imm
    722     : Pseudo<(outs GPR64:$dst), (ins i64imm:$src),
    723              [(set GPR64:$dst, imm:$src)]>,
    724       Sched<[WriteImm]>;
    725 } // isReMaterializable, isCodeGenOnly
    726 
    727 // If possible, we want to use MOVi32imm even for 64-bit moves. This gives the
    728 // eventual expansion code fewer bits to worry about getting right. Marshalling
    729 // the types is a little tricky though:
    730 def i64imm_32bit : ImmLeaf<i64, [{
    731   return (Imm & 0xffffffffULL) == static_cast<uint64_t>(Imm);
    732 }]>;
    733 
    734 def s64imm_32bit : ImmLeaf<i64, [{
    735   int64_t Imm64 = static_cast<int64_t>(Imm);
    736   return Imm64 >= std::numeric_limits<int32_t>::min() &&
    737          Imm64 <= std::numeric_limits<int32_t>::max();
    738 }]>;
    739 
    740 def trunc_imm : SDNodeXForm<imm, [{
    741   return CurDAG->getTargetConstant(N->getZExtValue(), SDLoc(N), MVT::i32);
    742 }]>;
    743 
    744 def gi_trunc_imm : GICustomOperandRenderer<"renderTruncImm">,
    745   GISDNodeXFormEquiv<trunc_imm>;
    746 
    747 def : Pat<(i64 i64imm_32bit:$src),
    748           (SUBREG_TO_REG (i64 0), (MOVi32imm (trunc_imm imm:$src)), sub_32)>;
    749 
    750 // Materialize FP constants via MOVi32imm/MOVi64imm (MachO large code model).
    751 def bitcast_fpimm_to_i32 : SDNodeXForm<fpimm, [{
    752 return CurDAG->getTargetConstant(
    753   N->getValueAPF().bitcastToAPInt().getZExtValue(), SDLoc(N), MVT::i32);
    754 }]>;
    755 
    756 def bitcast_fpimm_to_i64 : SDNodeXForm<fpimm, [{
    757 return CurDAG->getTargetConstant(
    758   N->getValueAPF().bitcastToAPInt().getZExtValue(), SDLoc(N), MVT::i64);
    759 }]>;
    760 
    761 
    762 def : Pat<(f32 fpimm:$in),
    763   (COPY_TO_REGCLASS (MOVi32imm (bitcast_fpimm_to_i32 f32:$in)), FPR32)>;
    764 def : Pat<(f64 fpimm:$in),
    765   (COPY_TO_REGCLASS (MOVi64imm (bitcast_fpimm_to_i64 f64:$in)), FPR64)>;
    766 
    767 
    768 // Deal with the various forms of (ELF) large addressing with MOVZ/MOVK
    769 // sequences.
    770 def : Pat<(AArch64WrapperLarge tglobaladdr:$g3, tglobaladdr:$g2,
    771                              tglobaladdr:$g1, tglobaladdr:$g0),
    772           (MOVKXi (MOVKXi (MOVKXi (MOVZXi tglobaladdr:$g0, 0),
    773                                   tglobaladdr:$g1, 16),
    774                           tglobaladdr:$g2, 32),
    775                   tglobaladdr:$g3, 48)>;
    776 
    777 def : Pat<(AArch64WrapperLarge tblockaddress:$g3, tblockaddress:$g2,
    778                              tblockaddress:$g1, tblockaddress:$g0),
    779           (MOVKXi (MOVKXi (MOVKXi (MOVZXi tblockaddress:$g0, 0),
    780                                   tblockaddress:$g1, 16),
    781                           tblockaddress:$g2, 32),
    782                   tblockaddress:$g3, 48)>;
    783 
    784 def : Pat<(AArch64WrapperLarge tconstpool:$g3, tconstpool:$g2,
    785                              tconstpool:$g1, tconstpool:$g0),
    786           (MOVKXi (MOVKXi (MOVKXi (MOVZXi tconstpool:$g0, 0),
    787                                   tconstpool:$g1, 16),
    788                           tconstpool:$g2, 32),
    789                   tconstpool:$g3, 48)>;
    790 
    791 def : Pat<(AArch64WrapperLarge tjumptable:$g3, tjumptable:$g2,
    792                              tjumptable:$g1, tjumptable:$g0),
    793           (MOVKXi (MOVKXi (MOVKXi (MOVZXi tjumptable:$g0, 0),
    794                                   tjumptable:$g1, 16),
    795                           tjumptable:$g2, 32),
    796                   tjumptable:$g3, 48)>;
    797 
    798 
    799 //===----------------------------------------------------------------------===//
    800 // Arithmetic instructions.
    801 //===----------------------------------------------------------------------===//
    802 
    803 // Add/subtract with carry.
    804 defm ADC : AddSubCarry<0, "adc", "adcs", AArch64adc, AArch64adc_flag>;
    805 defm SBC : AddSubCarry<1, "sbc", "sbcs", AArch64sbc, AArch64sbc_flag>;
    806 
    807 def : InstAlias<"ngc $dst, $src",  (SBCWr  GPR32:$dst, WZR, GPR32:$src)>;
    808 def : InstAlias<"ngc $dst, $src",  (SBCXr  GPR64:$dst, XZR, GPR64:$src)>;
    809 def : InstAlias<"ngcs $dst, $src", (SBCSWr GPR32:$dst, WZR, GPR32:$src)>;
    810 def : InstAlias<"ngcs $dst, $src", (SBCSXr GPR64:$dst, XZR, GPR64:$src)>;
    811 
    812 // Add/subtract
    813 defm ADD : AddSub<0, "add", "sub", add>;
    814 defm SUB : AddSub<1, "sub", "add">;
    815 
    816 def : InstAlias<"mov $dst, $src",
    817                 (ADDWri GPR32sponly:$dst, GPR32sp:$src, 0, 0)>;
    818 def : InstAlias<"mov $dst, $src",
    819                 (ADDWri GPR32sp:$dst, GPR32sponly:$src, 0, 0)>;
    820 def : InstAlias<"mov $dst, $src",
    821                 (ADDXri GPR64sponly:$dst, GPR64sp:$src, 0, 0)>;
    822 def : InstAlias<"mov $dst, $src",
    823                 (ADDXri GPR64sp:$dst, GPR64sponly:$src, 0, 0)>;
    824 
    825 defm ADDS : AddSubS<0, "adds", AArch64add_flag, "cmn", "subs", "cmp">;
    826 defm SUBS : AddSubS<1, "subs", AArch64sub_flag, "cmp", "adds", "cmn">;
    827 
    828 // Use SUBS instead of SUB to enable CSE between SUBS and SUB.
    829 def : Pat<(sub GPR32sp:$Rn, addsub_shifted_imm32:$imm),
    830           (SUBSWri GPR32sp:$Rn, addsub_shifted_imm32:$imm)>;
    831 def : Pat<(sub GPR64sp:$Rn, addsub_shifted_imm64:$imm),
    832           (SUBSXri GPR64sp:$Rn, addsub_shifted_imm64:$imm)>;
    833 def : Pat<(sub GPR32:$Rn, GPR32:$Rm),
    834           (SUBSWrr GPR32:$Rn, GPR32:$Rm)>;
    835 def : Pat<(sub GPR64:$Rn, GPR64:$Rm),
    836           (SUBSXrr GPR64:$Rn, GPR64:$Rm)>;
    837 def : Pat<(sub GPR32:$Rn, arith_shifted_reg32:$Rm),
    838           (SUBSWrs GPR32:$Rn, arith_shifted_reg32:$Rm)>;
    839 def : Pat<(sub GPR64:$Rn, arith_shifted_reg64:$Rm),
    840           (SUBSXrs GPR64:$Rn, arith_shifted_reg64:$Rm)>;
    841 let AddedComplexity = 1 in {
    842 def : Pat<(sub GPR32sp:$R2, arith_extended_reg32<i32>:$R3),
    843           (SUBSWrx GPR32sp:$R2, arith_extended_reg32<i32>:$R3)>;
    844 def : Pat<(sub GPR64sp:$R2, arith_extended_reg32to64<i64>:$R3),
    845           (SUBSXrx GPR64sp:$R2, arith_extended_reg32to64<i64>:$R3)>;
    846 }
    847 
    848 // Because of the immediate format for add/sub-imm instructions, the
    849 // expression (add x, -1) must be transformed to (SUB{W,X}ri x, 1).
    850 //  These patterns capture that transformation.
    851 let AddedComplexity = 1 in {
    852 def : Pat<(add GPR32:$Rn, neg_addsub_shifted_imm32:$imm),
    853           (SUBSWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>;
    854 def : Pat<(add GPR64:$Rn, neg_addsub_shifted_imm64:$imm),
    855           (SUBSXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>;
    856 def : Pat<(sub GPR32:$Rn, neg_addsub_shifted_imm32:$imm),
    857           (ADDWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>;
    858 def : Pat<(sub GPR64:$Rn, neg_addsub_shifted_imm64:$imm),
    859           (ADDXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>;
    860 }
    861 
    862 // Because of the immediate format for add/sub-imm instructions, the
    863 // expression (add x, -1) must be transformed to (SUB{W,X}ri x, 1).
    864 //  These patterns capture that transformation.
    865 let AddedComplexity = 1 in {
    866 def : Pat<(AArch64add_flag GPR32:$Rn, neg_addsub_shifted_imm32:$imm),
    867           (SUBSWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>;
    868 def : Pat<(AArch64add_flag GPR64:$Rn, neg_addsub_shifted_imm64:$imm),
    869           (SUBSXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>;
    870 def : Pat<(AArch64sub_flag GPR32:$Rn, neg_addsub_shifted_imm32:$imm),
    871           (ADDSWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>;
    872 def : Pat<(AArch64sub_flag GPR64:$Rn, neg_addsub_shifted_imm64:$imm),
    873           (ADDSXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>;
    874 }
    875 
    876 def : InstAlias<"neg $dst, $src", (SUBWrs GPR32:$dst, WZR, GPR32:$src, 0), 3>;
    877 def : InstAlias<"neg $dst, $src", (SUBXrs GPR64:$dst, XZR, GPR64:$src, 0), 3>;
    878 def : InstAlias<"neg $dst, $src$shift",
    879                 (SUBWrs GPR32:$dst, WZR, GPR32:$src, arith_shift32:$shift), 2>;
    880 def : InstAlias<"neg $dst, $src$shift",
    881                 (SUBXrs GPR64:$dst, XZR, GPR64:$src, arith_shift64:$shift), 2>;
    882 
    883 def : InstAlias<"negs $dst, $src", (SUBSWrs GPR32:$dst, WZR, GPR32:$src, 0), 3>;
    884 def : InstAlias<"negs $dst, $src", (SUBSXrs GPR64:$dst, XZR, GPR64:$src, 0), 3>;
    885 def : InstAlias<"negs $dst, $src$shift",
    886                 (SUBSWrs GPR32:$dst, WZR, GPR32:$src, arith_shift32:$shift), 2>;
    887 def : InstAlias<"negs $dst, $src$shift",
    888                 (SUBSXrs GPR64:$dst, XZR, GPR64:$src, arith_shift64:$shift), 2>;
    889 
    890 
    891 // Unsigned/Signed divide
    892 defm UDIV : Div<0, "udiv", udiv>;
    893 defm SDIV : Div<1, "sdiv", sdiv>;
    894 
    895 def : Pat<(int_aarch64_udiv GPR32:$Rn, GPR32:$Rm), (UDIVWr GPR32:$Rn, GPR32:$Rm)>;
    896 def : Pat<(int_aarch64_udiv GPR64:$Rn, GPR64:$Rm), (UDIVXr GPR64:$Rn, GPR64:$Rm)>;
    897 def : Pat<(int_aarch64_sdiv GPR32:$Rn, GPR32:$Rm), (SDIVWr GPR32:$Rn, GPR32:$Rm)>;
    898 def : Pat<(int_aarch64_sdiv GPR64:$Rn, GPR64:$Rm), (SDIVXr GPR64:$Rn, GPR64:$Rm)>;
    899 
    900 // Variable shift
    901 defm ASRV : Shift<0b10, "asr", sra>;
    902 defm LSLV : Shift<0b00, "lsl", shl>;
    903 defm LSRV : Shift<0b01, "lsr", srl>;
    904 defm RORV : Shift<0b11, "ror", rotr>;
    905 
    906 def : ShiftAlias<"asrv", ASRVWr, GPR32>;
    907 def : ShiftAlias<"asrv", ASRVXr, GPR64>;
    908 def : ShiftAlias<"lslv", LSLVWr, GPR32>;
    909 def : ShiftAlias<"lslv", LSLVXr, GPR64>;
    910 def : ShiftAlias<"lsrv", LSRVWr, GPR32>;
    911 def : ShiftAlias<"lsrv", LSRVXr, GPR64>;
    912 def : ShiftAlias<"rorv", RORVWr, GPR32>;
    913 def : ShiftAlias<"rorv", RORVXr, GPR64>;
    914 
    915 // Multiply-add
    916 let AddedComplexity = 5 in {
    917 defm MADD : MulAccum<0, "madd", add>;
    918 defm MSUB : MulAccum<1, "msub", sub>;
    919 
    920 def : Pat<(i32 (mul GPR32:$Rn, GPR32:$Rm)),
    921           (MADDWrrr GPR32:$Rn, GPR32:$Rm, WZR)>;
    922 def : Pat<(i64 (mul GPR64:$Rn, GPR64:$Rm)),
    923           (MADDXrrr GPR64:$Rn, GPR64:$Rm, XZR)>;
    924 
    925 def : Pat<(i32 (ineg (mul GPR32:$Rn, GPR32:$Rm))),
    926           (MSUBWrrr GPR32:$Rn, GPR32:$Rm, WZR)>;
    927 def : Pat<(i64 (ineg (mul GPR64:$Rn, GPR64:$Rm))),
    928           (MSUBXrrr GPR64:$Rn, GPR64:$Rm, XZR)>;
    929 def : Pat<(i32 (mul (ineg GPR32:$Rn), GPR32:$Rm)),
    930           (MSUBWrrr GPR32:$Rn, GPR32:$Rm, WZR)>;
    931 def : Pat<(i64 (mul (ineg GPR64:$Rn), GPR64:$Rm)),
    932           (MSUBXrrr GPR64:$Rn, GPR64:$Rm, XZR)>;
    933 } // AddedComplexity = 5
    934 
    935 let AddedComplexity = 5 in {
    936 def SMADDLrrr : WideMulAccum<0, 0b001, "smaddl", add, sext>;
    937 def SMSUBLrrr : WideMulAccum<1, 0b001, "smsubl", sub, sext>;
    938 def UMADDLrrr : WideMulAccum<0, 0b101, "umaddl", add, zext>;
    939 def UMSUBLrrr : WideMulAccum<1, 0b101, "umsubl", sub, zext>;
    940 
    941 def : Pat<(i64 (mul (sext GPR32:$Rn), (sext GPR32:$Rm))),
    942           (SMADDLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;
    943 def : Pat<(i64 (mul (zext GPR32:$Rn), (zext GPR32:$Rm))),
    944           (UMADDLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;
    945 
    946 def : Pat<(i64 (ineg (mul (sext GPR32:$Rn), (sext GPR32:$Rm)))),
    947           (SMSUBLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;
    948 def : Pat<(i64 (ineg (mul (zext GPR32:$Rn), (zext GPR32:$Rm)))),
    949           (UMSUBLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;
    950 
    951 def : Pat<(i64 (mul (sext GPR32:$Rn), (s64imm_32bit:$C))),
    952           (SMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>;
    953 def : Pat<(i64 (mul (zext GPR32:$Rn), (i64imm_32bit:$C))),
    954           (UMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>;
    955 def : Pat<(i64 (mul (sext_inreg GPR64:$Rn, i32), (s64imm_32bit:$C))),
    956           (SMADDLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)),
    957                      (MOVi32imm (trunc_imm imm:$C)), XZR)>;
    958 
    959 def : Pat<(i64 (ineg (mul (sext GPR32:$Rn), (s64imm_32bit:$C)))),
    960           (SMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>;
    961 def : Pat<(i64 (ineg (mul (zext GPR32:$Rn), (i64imm_32bit:$C)))),
    962           (UMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>;
    963 def : Pat<(i64 (ineg (mul (sext_inreg GPR64:$Rn, i32), (s64imm_32bit:$C)))),
    964           (SMSUBLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)),
    965                      (MOVi32imm (trunc_imm imm:$C)), XZR)>;
    966 
    967 def : Pat<(i64 (add (mul (sext GPR32:$Rn), (s64imm_32bit:$C)), GPR64:$Ra)),
    968           (SMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
    969 def : Pat<(i64 (add (mul (zext GPR32:$Rn), (i64imm_32bit:$C)), GPR64:$Ra)),
    970           (UMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
    971 def : Pat<(i64 (add (mul (sext_inreg GPR64:$Rn, i32), (s64imm_32bit:$C)),
    972                     GPR64:$Ra)),
    973           (SMADDLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)),
    974                      (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
    975 
    976 def : Pat<(i64 (sub GPR64:$Ra, (mul (sext GPR32:$Rn), (s64imm_32bit:$C)))),
    977           (SMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
    978 def : Pat<(i64 (sub GPR64:$Ra, (mul (zext GPR32:$Rn), (i64imm_32bit:$C)))),
    979           (UMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
    980 def : Pat<(i64 (sub GPR64:$Ra, (mul (sext_inreg GPR64:$Rn, i32),
    981                                     (s64imm_32bit:$C)))),
    982           (SMSUBLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)),
    983                      (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
    984 } // AddedComplexity = 5
    985 
    986 def : MulAccumWAlias<"mul", MADDWrrr>;
    987 def : MulAccumXAlias<"mul", MADDXrrr>;
    988 def : MulAccumWAlias<"mneg", MSUBWrrr>;
    989 def : MulAccumXAlias<"mneg", MSUBXrrr>;
    990 def : WideMulAccumAlias<"smull", SMADDLrrr>;
    991 def : WideMulAccumAlias<"smnegl", SMSUBLrrr>;
    992 def : WideMulAccumAlias<"umull", UMADDLrrr>;
    993 def : WideMulAccumAlias<"umnegl", UMSUBLrrr>;
    994 
    995 // Multiply-high
    996 def SMULHrr : MulHi<0b010, "smulh", mulhs>;
    997 def UMULHrr : MulHi<0b110, "umulh", mulhu>;
    998 
    999 // CRC32
   1000 def CRC32Brr : BaseCRC32<0, 0b00, 0, GPR32, int_aarch64_crc32b, "crc32b">;
   1001 def CRC32Hrr : BaseCRC32<0, 0b01, 0, GPR32, int_aarch64_crc32h, "crc32h">;
   1002 def CRC32Wrr : BaseCRC32<0, 0b10, 0, GPR32, int_aarch64_crc32w, "crc32w">;
   1003 def CRC32Xrr : BaseCRC32<1, 0b11, 0, GPR64, int_aarch64_crc32x, "crc32x">;
   1004 
   1005 def CRC32CBrr : BaseCRC32<0, 0b00, 1, GPR32, int_aarch64_crc32cb, "crc32cb">;
   1006 def CRC32CHrr : BaseCRC32<0, 0b01, 1, GPR32, int_aarch64_crc32ch, "crc32ch">;
   1007 def CRC32CWrr : BaseCRC32<0, 0b10, 1, GPR32, int_aarch64_crc32cw, "crc32cw">;
   1008 def CRC32CXrr : BaseCRC32<1, 0b11, 1, GPR64, int_aarch64_crc32cx, "crc32cx">;
   1009 
   1010 // v8.1 atomic CAS
   1011 defm CAS   : CompareAndSwap<0, 0, "">;
   1012 defm CASA  : CompareAndSwap<1, 0, "a">;
   1013 defm CASL  : CompareAndSwap<0, 1, "l">;
   1014 defm CASAL : CompareAndSwap<1, 1, "al">;
   1015 
   1016 // v8.1 atomic CASP
   1017 defm CASP   : CompareAndSwapPair<0, 0, "">;
   1018 defm CASPA  : CompareAndSwapPair<1, 0, "a">;
   1019 defm CASPL  : CompareAndSwapPair<0, 1, "l">;
   1020 defm CASPAL : CompareAndSwapPair<1, 1, "al">;
   1021 
   1022 // v8.1 atomic SWP
   1023 defm SWP   : Swap<0, 0, "">;
   1024 defm SWPA  : Swap<1, 0, "a">;
   1025 defm SWPL  : Swap<0, 1, "l">;
   1026 defm SWPAL : Swap<1, 1, "al">;
   1027 
   1028 // v8.1 atomic LD<OP>(register). Performs load and then ST<OP>(register)
   1029 defm LDADD   : LDOPregister<0b000, "add", 0, 0, "">;
   1030 defm LDADDA  : LDOPregister<0b000, "add", 1, 0, "a">;
   1031 defm LDADDL  : LDOPregister<0b000, "add", 0, 1, "l">;
   1032 defm LDADDAL : LDOPregister<0b000, "add", 1, 1, "al">;
   1033 
   1034 defm LDCLR   : LDOPregister<0b001, "clr", 0, 0, "">;
   1035 defm LDCLRA  : LDOPregister<0b001, "clr", 1, 0, "a">;
   1036 defm LDCLRL  : LDOPregister<0b001, "clr", 0, 1, "l">;
   1037 defm LDCLRAL : LDOPregister<0b001, "clr", 1, 1, "al">;
   1038 
   1039 defm LDEOR   : LDOPregister<0b010, "eor", 0, 0, "">;
   1040 defm LDEORA  : LDOPregister<0b010, "eor", 1, 0, "a">;
   1041 defm LDEORL  : LDOPregister<0b010, "eor", 0, 1, "l">;
   1042 defm LDEORAL : LDOPregister<0b010, "eor", 1, 1, "al">;
   1043 
   1044 defm LDSET   : LDOPregister<0b011, "set", 0, 0, "">;
   1045 defm LDSETA  : LDOPregister<0b011, "set", 1, 0, "a">;
   1046 defm LDSETL  : LDOPregister<0b011, "set", 0, 1, "l">;
   1047 defm LDSETAL : LDOPregister<0b011, "set", 1, 1, "al">;
   1048 
   1049 defm LDSMAX   : LDOPregister<0b100, "smax", 0, 0, "">;
   1050 defm LDSMAXA  : LDOPregister<0b100, "smax", 1, 0, "a">;
   1051 defm LDSMAXL  : LDOPregister<0b100, "smax", 0, 1, "l">;
   1052 defm LDSMAXAL : LDOPregister<0b100, "smax", 1, 1, "al">;
   1053 
   1054 defm LDSMIN   : LDOPregister<0b101, "smin", 0, 0, "">;
   1055 defm LDSMINA  : LDOPregister<0b101, "smin", 1, 0, "a">;
   1056 defm LDSMINL  : LDOPregister<0b101, "smin", 0, 1, "l">;
   1057 defm LDSMINAL : LDOPregister<0b101, "smin", 1, 1, "al">;
   1058 
   1059 defm LDUMAX   : LDOPregister<0b110, "umax", 0, 0, "">;
   1060 defm LDUMAXA  : LDOPregister<0b110, "umax", 1, 0, "a">;
   1061 defm LDUMAXL  : LDOPregister<0b110, "umax", 0, 1, "l">;
   1062 defm LDUMAXAL : LDOPregister<0b110, "umax", 1, 1, "al">;
   1063 
   1064 defm LDUMIN   : LDOPregister<0b111, "umin", 0, 0, "">;
   1065 defm LDUMINA  : LDOPregister<0b111, "umin", 1, 0, "a">;
   1066 defm LDUMINL  : LDOPregister<0b111, "umin", 0, 1, "l">;
   1067 defm LDUMINAL : LDOPregister<0b111, "umin", 1, 1, "al">;
   1068 
   1069 // v8.1 atomic ST<OP>(register) as aliases to "LD<OP>(register) when Rt=xZR"
   1070 defm : STOPregister<"stadd","LDADD">; // STADDx
   1071 defm : STOPregister<"stclr","LDCLR">; // STCLRx
   1072 defm : STOPregister<"steor","LDEOR">; // STEORx
   1073 defm : STOPregister<"stset","LDSET">; // STSETx
   1074 defm : STOPregister<"stsmax","LDSMAX">;// STSMAXx
   1075 defm : STOPregister<"stsmin","LDSMIN">;// STSMINx
   1076 defm : STOPregister<"stumax","LDUMAX">;// STUMAXx
   1077 defm : STOPregister<"stumin","LDUMIN">;// STUMINx
   1078 
   1079 //===----------------------------------------------------------------------===//
   1080 // Logical instructions.
   1081 //===----------------------------------------------------------------------===//
   1082 
   1083 // (immediate)
   1084 defm ANDS : LogicalImmS<0b11, "ands", AArch64and_flag, "bics">;
   1085 defm AND  : LogicalImm<0b00, "and", and, "bic">;
   1086 defm EOR  : LogicalImm<0b10, "eor", xor, "eon">;
   1087 defm ORR  : LogicalImm<0b01, "orr", or, "orn">;
   1088 
   1089 // FIXME: these aliases *are* canonical sometimes (when movz can't be
   1090 // used). Actually, it seems to be working right now, but putting logical_immXX
   1091 // here is a bit dodgy on the AsmParser side too.
   1092 def : InstAlias<"mov $dst, $imm", (ORRWri GPR32sp:$dst, WZR,
   1093                                           logical_imm32:$imm), 0>;
   1094 def : InstAlias<"mov $dst, $imm", (ORRXri GPR64sp:$dst, XZR,
   1095                                           logical_imm64:$imm), 0>;
   1096 
   1097 
   1098 // (register)
   1099 defm ANDS : LogicalRegS<0b11, 0, "ands", AArch64and_flag>;
   1100 defm BICS : LogicalRegS<0b11, 1, "bics",
   1101                         BinOpFrag<(AArch64and_flag node:$LHS, (not node:$RHS))>>;
   1102 defm AND  : LogicalReg<0b00, 0, "and", and>;
   1103 defm BIC  : LogicalReg<0b00, 1, "bic",
   1104                        BinOpFrag<(and node:$LHS, (not node:$RHS))>>;
   1105 defm EON  : LogicalReg<0b10, 1, "eon",
   1106                        BinOpFrag<(not (xor node:$LHS, node:$RHS))>>;
   1107 defm EOR  : LogicalReg<0b10, 0, "eor", xor>;
   1108 defm ORN  : LogicalReg<0b01, 1, "orn",
   1109                        BinOpFrag<(or node:$LHS, (not node:$RHS))>>;
   1110 defm ORR  : LogicalReg<0b01, 0, "orr", or>;
   1111 
   1112 def : InstAlias<"mov $dst, $src", (ORRWrs GPR32:$dst, WZR, GPR32:$src, 0), 2>;
   1113 def : InstAlias<"mov $dst, $src", (ORRXrs GPR64:$dst, XZR, GPR64:$src, 0), 2>;
   1114 
   1115 def : InstAlias<"mvn $Wd, $Wm", (ORNWrs GPR32:$Wd, WZR, GPR32:$Wm, 0), 3>;
   1116 def : InstAlias<"mvn $Xd, $Xm", (ORNXrs GPR64:$Xd, XZR, GPR64:$Xm, 0), 3>;
   1117 
   1118 def : InstAlias<"mvn $Wd, $Wm$sh",
   1119                 (ORNWrs GPR32:$Wd, WZR, GPR32:$Wm, logical_shift32:$sh), 2>;
   1120 def : InstAlias<"mvn $Xd, $Xm$sh",
   1121                 (ORNXrs GPR64:$Xd, XZR, GPR64:$Xm, logical_shift64:$sh), 2>;
   1122 
   1123 def : InstAlias<"tst $src1, $src2",
   1124                 (ANDSWri WZR, GPR32:$src1, logical_imm32:$src2), 2>;
   1125 def : InstAlias<"tst $src1, $src2",
   1126                 (ANDSXri XZR, GPR64:$src1, logical_imm64:$src2), 2>;
   1127 
   1128 def : InstAlias<"tst $src1, $src2",
   1129                         (ANDSWrs WZR, GPR32:$src1, GPR32:$src2, 0), 3>;
   1130 def : InstAlias<"tst $src1, $src2",
   1131                         (ANDSXrs XZR, GPR64:$src1, GPR64:$src2, 0), 3>;
   1132 
   1133 def : InstAlias<"tst $src1, $src2$sh",
   1134                (ANDSWrs WZR, GPR32:$src1, GPR32:$src2, logical_shift32:$sh), 2>;
   1135 def : InstAlias<"tst $src1, $src2$sh",
   1136                (ANDSXrs XZR, GPR64:$src1, GPR64:$src2, logical_shift64:$sh), 2>;
   1137 
   1138 
   1139 def : Pat<(not GPR32:$Wm), (ORNWrr WZR, GPR32:$Wm)>;
   1140 def : Pat<(not GPR64:$Xm), (ORNXrr XZR, GPR64:$Xm)>;
   1141 
   1142 
   1143 //===----------------------------------------------------------------------===//
   1144 // One operand data processing instructions.
   1145 //===----------------------------------------------------------------------===//
   1146 
   1147 defm CLS    : OneOperandData<0b101, "cls">;
   1148 defm CLZ    : OneOperandData<0b100, "clz", ctlz>;
   1149 defm RBIT   : OneOperandData<0b000, "rbit", bitreverse>;
   1150 
   1151 def  REV16Wr : OneWRegData<0b001, "rev16",
   1152                                   UnOpFrag<(rotr (bswap node:$LHS), (i64 16))>>;
   1153 def  REV16Xr : OneXRegData<0b001, "rev16", null_frag>;
   1154 
   1155 def : Pat<(cttz GPR32:$Rn),
   1156           (CLZWr (RBITWr GPR32:$Rn))>;
   1157 def : Pat<(cttz GPR64:$Rn),
   1158           (CLZXr (RBITXr GPR64:$Rn))>;
   1159 def : Pat<(ctlz (or (shl (xor (sra GPR32:$Rn, (i64 31)), GPR32:$Rn), (i64 1)),
   1160                 (i32 1))),
   1161           (CLSWr GPR32:$Rn)>;
   1162 def : Pat<(ctlz (or (shl (xor (sra GPR64:$Rn, (i64 63)), GPR64:$Rn), (i64 1)),
   1163                 (i64 1))),
   1164           (CLSXr GPR64:$Rn)>;
   1165 
   1166 // Unlike the other one operand instructions, the instructions with the "rev"
   1167 // mnemonic do *not* just different in the size bit, but actually use different
   1168 // opcode bits for the different sizes.
   1169 def REVWr   : OneWRegData<0b010, "rev", bswap>;
   1170 def REVXr   : OneXRegData<0b011, "rev", bswap>;
   1171 def REV32Xr : OneXRegData<0b010, "rev32",
   1172                                  UnOpFrag<(rotr (bswap node:$LHS), (i64 32))>>;
   1173 
   1174 def : InstAlias<"rev64 $Rd, $Rn", (REVXr GPR64:$Rd, GPR64:$Rn), 0>;
   1175 
   1176 // The bswap commutes with the rotr so we want a pattern for both possible
   1177 // orders.
   1178 def : Pat<(bswap (rotr GPR32:$Rn, (i64 16))), (REV16Wr GPR32:$Rn)>;
   1179 def : Pat<(bswap (rotr GPR64:$Rn, (i64 32))), (REV32Xr GPR64:$Rn)>;
   1180 
   1181 //===----------------------------------------------------------------------===//
   1182 // Bitfield immediate extraction instruction.
   1183 //===----------------------------------------------------------------------===//
   1184 let hasSideEffects = 0 in
   1185 defm EXTR : ExtractImm<"extr">;
   1186 def : InstAlias<"ror $dst, $src, $shift",
   1187             (EXTRWrri GPR32:$dst, GPR32:$src, GPR32:$src, imm0_31:$shift)>;
   1188 def : InstAlias<"ror $dst, $src, $shift",
   1189             (EXTRXrri GPR64:$dst, GPR64:$src, GPR64:$src, imm0_63:$shift)>;
   1190 
   1191 def : Pat<(rotr GPR32:$Rn, (i64 imm0_31:$imm)),
   1192           (EXTRWrri GPR32:$Rn, GPR32:$Rn, imm0_31:$imm)>;
   1193 def : Pat<(rotr GPR64:$Rn, (i64 imm0_63:$imm)),
   1194           (EXTRXrri GPR64:$Rn, GPR64:$Rn, imm0_63:$imm)>;
   1195 
   1196 //===----------------------------------------------------------------------===//
   1197 // Other bitfield immediate instructions.
   1198 //===----------------------------------------------------------------------===//
   1199 let hasSideEffects = 0 in {
   1200 defm BFM  : BitfieldImmWith2RegArgs<0b01, "bfm">;
   1201 defm SBFM : BitfieldImm<0b00, "sbfm">;
   1202 defm UBFM : BitfieldImm<0b10, "ubfm">;
   1203 }
   1204 
   1205 def i32shift_a : Operand<i64>, SDNodeXForm<imm, [{
   1206   uint64_t enc = (32 - N->getZExtValue()) & 0x1f;
   1207   return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
   1208 }]>;
   1209 
   1210 def i32shift_b : Operand<i64>, SDNodeXForm<imm, [{
   1211   uint64_t enc = 31 - N->getZExtValue();
   1212   return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
   1213 }]>;
   1214 
   1215 // min(7, 31 - shift_amt)
   1216 def i32shift_sext_i8 : Operand<i64>, SDNodeXForm<imm, [{
   1217   uint64_t enc = 31 - N->getZExtValue();
   1218   enc = enc > 7 ? 7 : enc;
   1219   return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
   1220 }]>;
   1221 
   1222 // min(15, 31 - shift_amt)
   1223 def i32shift_sext_i16 : Operand<i64>, SDNodeXForm<imm, [{
   1224   uint64_t enc = 31 - N->getZExtValue();
   1225   enc = enc > 15 ? 15 : enc;
   1226   return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
   1227 }]>;
   1228 
   1229 def i64shift_a : Operand<i64>, SDNodeXForm<imm, [{
   1230   uint64_t enc = (64 - N->getZExtValue()) & 0x3f;
   1231   return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
   1232 }]>;
   1233 
   1234 def i64shift_b : Operand<i64>, SDNodeXForm<imm, [{
   1235   uint64_t enc = 63 - N->getZExtValue();
   1236   return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
   1237 }]>;
   1238 
   1239 // min(7, 63 - shift_amt)
   1240 def i64shift_sext_i8 : Operand<i64>, SDNodeXForm<imm, [{
   1241   uint64_t enc = 63 - N->getZExtValue();
   1242   enc = enc > 7 ? 7 : enc;
   1243   return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
   1244 }]>;
   1245 
   1246 // min(15, 63 - shift_amt)
   1247 def i64shift_sext_i16 : Operand<i64>, SDNodeXForm<imm, [{
   1248   uint64_t enc = 63 - N->getZExtValue();
   1249   enc = enc > 15 ? 15 : enc;
   1250   return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
   1251 }]>;
   1252 
   1253 // min(31, 63 - shift_amt)
   1254 def i64shift_sext_i32 : Operand<i64>, SDNodeXForm<imm, [{
   1255   uint64_t enc = 63 - N->getZExtValue();
   1256   enc = enc > 31 ? 31 : enc;
   1257   return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
   1258 }]>;
   1259 
   1260 def : Pat<(shl GPR32:$Rn, (i64 imm0_31:$imm)),
   1261           (UBFMWri GPR32:$Rn, (i64 (i32shift_a imm0_31:$imm)),
   1262                               (i64 (i32shift_b imm0_31:$imm)))>;
   1263 def : Pat<(shl GPR64:$Rn, (i64 imm0_63:$imm)),
   1264           (UBFMXri GPR64:$Rn, (i64 (i64shift_a imm0_63:$imm)),
   1265                               (i64 (i64shift_b imm0_63:$imm)))>;
   1266 
   1267 let AddedComplexity = 10 in {
   1268 def : Pat<(sra GPR32:$Rn, (i64 imm0_31:$imm)),
   1269           (SBFMWri GPR32:$Rn, imm0_31:$imm, 31)>;
   1270 def : Pat<(sra GPR64:$Rn, (i64 imm0_63:$imm)),
   1271           (SBFMXri GPR64:$Rn, imm0_63:$imm, 63)>;
   1272 }
   1273 
   1274 def : InstAlias<"asr $dst, $src, $shift",
   1275                 (SBFMWri GPR32:$dst, GPR32:$src, imm0_31:$shift, 31)>;
   1276 def : InstAlias<"asr $dst, $src, $shift",
   1277                 (SBFMXri GPR64:$dst, GPR64:$src, imm0_63:$shift, 63)>;
   1278 def : InstAlias<"sxtb $dst, $src", (SBFMWri GPR32:$dst, GPR32:$src, 0, 7)>;
   1279 def : InstAlias<"sxtb $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 7)>;
   1280 def : InstAlias<"sxth $dst, $src", (SBFMWri GPR32:$dst, GPR32:$src, 0, 15)>;
   1281 def : InstAlias<"sxth $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 15)>;
   1282 def : InstAlias<"sxtw $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 31)>;
   1283 
   1284 def : Pat<(srl GPR32:$Rn, (i64 imm0_31:$imm)),
   1285           (UBFMWri GPR32:$Rn, imm0_31:$imm, 31)>;
   1286 def : Pat<(srl GPR64:$Rn, (i64 imm0_63:$imm)),
   1287           (UBFMXri GPR64:$Rn, imm0_63:$imm, 63)>;
   1288 
   1289 def : InstAlias<"lsr $dst, $src, $shift",
   1290                 (UBFMWri GPR32:$dst, GPR32:$src, imm0_31:$shift, 31)>;
   1291 def : InstAlias<"lsr $dst, $src, $shift",
   1292                 (UBFMXri GPR64:$dst, GPR64:$src, imm0_63:$shift, 63)>;
   1293 def : InstAlias<"uxtb $dst, $src", (UBFMWri GPR32:$dst, GPR32:$src, 0, 7)>;
   1294 def : InstAlias<"uxtb $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 7)>;
   1295 def : InstAlias<"uxth $dst, $src", (UBFMWri GPR32:$dst, GPR32:$src, 0, 15)>;
   1296 def : InstAlias<"uxth $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 15)>;
   1297 def : InstAlias<"uxtw $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 31)>;
   1298 
   1299 //===----------------------------------------------------------------------===//
   1300 // Conditional comparison instructions.
   1301 //===----------------------------------------------------------------------===//
   1302 defm CCMN : CondComparison<0, "ccmn", AArch64ccmn>;
   1303 defm CCMP : CondComparison<1, "ccmp", AArch64ccmp>;
   1304 
   1305 //===----------------------------------------------------------------------===//
   1306 // Conditional select instructions.
   1307 //===----------------------------------------------------------------------===//
   1308 defm CSEL  : CondSelect<0, 0b00, "csel">;
   1309 
   1310 def inc : PatFrag<(ops node:$in), (add node:$in, 1)>;
   1311 defm CSINC : CondSelectOp<0, 0b01, "csinc", inc>;
   1312 defm CSINV : CondSelectOp<1, 0b00, "csinv", not>;
   1313 defm CSNEG : CondSelectOp<1, 0b01, "csneg", ineg>;
   1314 
   1315 def : Pat<(AArch64csinv GPR32:$tval, GPR32:$fval, (i32 imm:$cc), NZCV),
   1316           (CSINVWr GPR32:$tval, GPR32:$fval, (i32 imm:$cc))>;
   1317 def : Pat<(AArch64csinv GPR64:$tval, GPR64:$fval, (i32 imm:$cc), NZCV),
   1318           (CSINVXr GPR64:$tval, GPR64:$fval, (i32 imm:$cc))>;
   1319 def : Pat<(AArch64csneg GPR32:$tval, GPR32:$fval, (i32 imm:$cc), NZCV),
   1320           (CSNEGWr GPR32:$tval, GPR32:$fval, (i32 imm:$cc))>;
   1321 def : Pat<(AArch64csneg GPR64:$tval, GPR64:$fval, (i32 imm:$cc), NZCV),
   1322           (CSNEGXr GPR64:$tval, GPR64:$fval, (i32 imm:$cc))>;
   1323 def : Pat<(AArch64csinc GPR32:$tval, GPR32:$fval, (i32 imm:$cc), NZCV),
   1324           (CSINCWr GPR32:$tval, GPR32:$fval, (i32 imm:$cc))>;
   1325 def : Pat<(AArch64csinc GPR64:$tval, GPR64:$fval, (i32 imm:$cc), NZCV),
   1326           (CSINCXr GPR64:$tval, GPR64:$fval, (i32 imm:$cc))>;
   1327 
   1328 def : Pat<(AArch64csel (i32 0), (i32 1), (i32 imm:$cc), NZCV),
   1329           (CSINCWr WZR, WZR, (i32 imm:$cc))>;
   1330 def : Pat<(AArch64csel (i64 0), (i64 1), (i32 imm:$cc), NZCV),
   1331           (CSINCXr XZR, XZR, (i32 imm:$cc))>;
   1332 def : Pat<(AArch64csel GPR32:$tval, (i32 1), (i32 imm:$cc), NZCV),
   1333           (CSINCWr GPR32:$tval, WZR, (i32 imm:$cc))>;
   1334 def : Pat<(AArch64csel GPR64:$tval, (i64 1), (i32 imm:$cc), NZCV),
   1335           (CSINCXr GPR64:$tval, XZR, (i32 imm:$cc))>;
   1336 def : Pat<(AArch64csel (i32 1), GPR32:$fval, (i32 imm:$cc), NZCV),
   1337           (CSINCWr GPR32:$fval, WZR, (i32 (inv_cond_XFORM imm:$cc)))>;
   1338 def : Pat<(AArch64csel (i64 1), GPR64:$fval, (i32 imm:$cc), NZCV),
   1339           (CSINCXr GPR64:$fval, XZR, (i32 (inv_cond_XFORM imm:$cc)))>;
   1340 def : Pat<(AArch64csel (i32 0), (i32 -1), (i32 imm:$cc), NZCV),
   1341           (CSINVWr WZR, WZR, (i32 imm:$cc))>;
   1342 def : Pat<(AArch64csel (i64 0), (i64 -1), (i32 imm:$cc), NZCV),
   1343           (CSINVXr XZR, XZR, (i32 imm:$cc))>;
   1344 def : Pat<(AArch64csel GPR32:$tval, (i32 -1), (i32 imm:$cc), NZCV),
   1345           (CSINVWr GPR32:$tval, WZR, (i32 imm:$cc))>;
   1346 def : Pat<(AArch64csel GPR64:$tval, (i64 -1), (i32 imm:$cc), NZCV),
   1347           (CSINVXr GPR64:$tval, XZR, (i32 imm:$cc))>;
   1348 def : Pat<(AArch64csel (i32 -1), GPR32:$fval, (i32 imm:$cc), NZCV),
   1349           (CSINVWr GPR32:$fval, WZR, (i32 (inv_cond_XFORM imm:$cc)))>;
   1350 def : Pat<(AArch64csel (i64 -1), GPR64:$fval, (i32 imm:$cc), NZCV),
   1351           (CSINVXr GPR64:$fval, XZR, (i32 (inv_cond_XFORM imm:$cc)))>;
   1352 
   1353 // The inverse of the condition code from the alias instruction is what is used
   1354 // in the aliased instruction. The parser all ready inverts the condition code
   1355 // for these aliases.
   1356 def : InstAlias<"cset $dst, $cc",
   1357                 (CSINCWr GPR32:$dst, WZR, WZR, inv_ccode:$cc)>;
   1358 def : InstAlias<"cset $dst, $cc",
   1359                 (CSINCXr GPR64:$dst, XZR, XZR, inv_ccode:$cc)>;
   1360 
   1361 def : InstAlias<"csetm $dst, $cc",
   1362                 (CSINVWr GPR32:$dst, WZR, WZR, inv_ccode:$cc)>;
   1363 def : InstAlias<"csetm $dst, $cc",
   1364                 (CSINVXr GPR64:$dst, XZR, XZR, inv_ccode:$cc)>;
   1365 
   1366 def : InstAlias<"cinc $dst, $src, $cc",
   1367                 (CSINCWr GPR32:$dst, GPR32:$src, GPR32:$src, inv_ccode:$cc)>;
   1368 def : InstAlias<"cinc $dst, $src, $cc",
   1369                 (CSINCXr GPR64:$dst, GPR64:$src, GPR64:$src, inv_ccode:$cc)>;
   1370 
   1371 def : InstAlias<"cinv $dst, $src, $cc",
   1372                 (CSINVWr GPR32:$dst, GPR32:$src, GPR32:$src, inv_ccode:$cc)>;
   1373 def : InstAlias<"cinv $dst, $src, $cc",
   1374                 (CSINVXr GPR64:$dst, GPR64:$src, GPR64:$src, inv_ccode:$cc)>;
   1375 
   1376 def : InstAlias<"cneg $dst, $src, $cc",
   1377                 (CSNEGWr GPR32:$dst, GPR32:$src, GPR32:$src, inv_ccode:$cc)>;
   1378 def : InstAlias<"cneg $dst, $src, $cc",
   1379                 (CSNEGXr GPR64:$dst, GPR64:$src, GPR64:$src, inv_ccode:$cc)>;
   1380 
   1381 //===----------------------------------------------------------------------===//
   1382 // PC-relative instructions.
   1383 //===----------------------------------------------------------------------===//
   1384 let isReMaterializable = 1 in {
   1385 let hasSideEffects = 0, mayStore = 0, mayLoad = 0 in {
   1386 def ADR  : ADRI<0, "adr", adrlabel, []>;
   1387 } // hasSideEffects = 0
   1388 
   1389 def ADRP : ADRI<1, "adrp", adrplabel,
   1390                 [(set GPR64:$Xd, (AArch64adrp tglobaladdr:$label))]>;
   1391 } // isReMaterializable = 1
   1392 
   1393 // page address of a constant pool entry, block address
   1394 def : Pat<(AArch64adrp tconstpool:$cp), (ADRP tconstpool:$cp)>;
   1395 def : Pat<(AArch64adrp tblockaddress:$cp), (ADRP tblockaddress:$cp)>;
   1396 def : Pat<(AArch64adrp texternalsym:$sym), (ADRP texternalsym:$sym)>;
   1397 
   1398 //===----------------------------------------------------------------------===//
   1399 // Unconditional branch (register) instructions.
   1400 //===----------------------------------------------------------------------===//
   1401 
   1402 let isReturn = 1, isTerminator = 1, isBarrier = 1 in {
   1403 def RET  : BranchReg<0b0010, "ret", []>;
   1404 def DRPS : SpecialReturn<0b0101, "drps">;
   1405 def ERET : SpecialReturn<0b0100, "eret">;
   1406 } // isReturn = 1, isTerminator = 1, isBarrier = 1
   1407 
   1408 // Default to the LR register.
   1409 def : InstAlias<"ret", (RET LR)>;
   1410 
   1411 let isCall = 1, Defs = [LR], Uses = [SP] in {
   1412 def BLR : BranchReg<0b0001, "blr", [(AArch64call GPR64:$Rn)]>;
   1413 } // isCall
   1414 
   1415 let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
   1416 def BR  : BranchReg<0b0000, "br", [(brind GPR64:$Rn)]>;
   1417 } // isBranch, isTerminator, isBarrier, isIndirectBranch
   1418 
   1419 // Create a separate pseudo-instruction for codegen to use so that we don't
   1420 // flag lr as used in every function. It'll be restored before the RET by the
   1421 // epilogue if it's legitimately used.
   1422 def RET_ReallyLR : Pseudo<(outs), (ins), [(AArch64retflag)]>,
   1423                    Sched<[WriteBrReg]> {
   1424   let isTerminator = 1;
   1425   let isBarrier = 1;
   1426   let isReturn = 1;
   1427 }
   1428 
   1429 // This is a directive-like pseudo-instruction. The purpose is to insert an
   1430 // R_AARCH64_TLSDESC_CALL relocation at the offset of the following instruction
   1431 // (which in the usual case is a BLR).
   1432 let hasSideEffects = 1 in
   1433 def TLSDESCCALL : Pseudo<(outs), (ins i64imm:$sym), []>, Sched<[]> {
   1434   let AsmString = ".tlsdesccall $sym";
   1435 }
   1436 
   1437 // FIXME: maybe the scratch register used shouldn't be fixed to X1?
   1438 // FIXME: can "hasSideEffects be dropped?
   1439 let isCall = 1, Defs = [LR, X0, X1], hasSideEffects = 1,
   1440     isCodeGenOnly = 1 in
   1441 def TLSDESC_CALLSEQ
   1442     : Pseudo<(outs), (ins i64imm:$sym),
   1443              [(AArch64tlsdesc_callseq tglobaltlsaddr:$sym)]>,
   1444       Sched<[WriteI, WriteLD, WriteI, WriteBrReg]>;
   1445 def : Pat<(AArch64tlsdesc_callseq texternalsym:$sym),
   1446           (TLSDESC_CALLSEQ texternalsym:$sym)>;
   1447 
   1448 //===----------------------------------------------------------------------===//
   1449 // Conditional branch (immediate) instruction.
   1450 //===----------------------------------------------------------------------===//
   1451 def Bcc : BranchCond;
   1452 
   1453 //===----------------------------------------------------------------------===//
   1454 // Compare-and-branch instructions.
   1455 //===----------------------------------------------------------------------===//
   1456 defm CBZ  : CmpBranch<0, "cbz", AArch64cbz>;
   1457 defm CBNZ : CmpBranch<1, "cbnz", AArch64cbnz>;
   1458 
   1459 //===----------------------------------------------------------------------===//
   1460 // Test-bit-and-branch instructions.
   1461 //===----------------------------------------------------------------------===//
   1462 defm TBZ  : TestBranch<0, "tbz", AArch64tbz>;
   1463 defm TBNZ : TestBranch<1, "tbnz", AArch64tbnz>;
   1464 
   1465 //===----------------------------------------------------------------------===//
   1466 // Unconditional branch (immediate) instructions.
   1467 //===----------------------------------------------------------------------===//
   1468 let isBranch = 1, isTerminator = 1, isBarrier = 1 in {
   1469 def B  : BranchImm<0, "b", [(br bb:$addr)]>;
   1470 } // isBranch, isTerminator, isBarrier
   1471 
   1472 let isCall = 1, Defs = [LR], Uses = [SP] in {
   1473 def BL : CallImm<1, "bl", [(AArch64call tglobaladdr:$addr)]>;
   1474 } // isCall
   1475 def : Pat<(AArch64call texternalsym:$func), (BL texternalsym:$func)>;
   1476 
   1477 //===----------------------------------------------------------------------===//
   1478 // Exception generation instructions.
   1479 //===----------------------------------------------------------------------===//
   1480 let isTrap = 1 in {
   1481 def BRK   : ExceptionGeneration<0b001, 0b00, "brk">;
   1482 }
   1483 def DCPS1 : ExceptionGeneration<0b101, 0b01, "dcps1">;
   1484 def DCPS2 : ExceptionGeneration<0b101, 0b10, "dcps2">;
   1485 def DCPS3 : ExceptionGeneration<0b101, 0b11, "dcps3">;
   1486 def HLT   : ExceptionGeneration<0b010, 0b00, "hlt">;
   1487 def HVC   : ExceptionGeneration<0b000, 0b10, "hvc">;
   1488 def SMC   : ExceptionGeneration<0b000, 0b11, "smc">;
   1489 def SVC   : ExceptionGeneration<0b000, 0b01, "svc">;
   1490 
   1491 // DCPSn defaults to an immediate operand of zero if unspecified.
   1492 def : InstAlias<"dcps1", (DCPS1 0)>;
   1493 def : InstAlias<"dcps2", (DCPS2 0)>;
   1494 def : InstAlias<"dcps3", (DCPS3 0)>;
   1495 
   1496 //===----------------------------------------------------------------------===//
   1497 // Load instructions.
   1498 //===----------------------------------------------------------------------===//
   1499 
   1500 // Pair (indexed, offset)
   1501 defm LDPW : LoadPairOffset<0b00, 0, GPR32z, simm7s4, "ldp">;
   1502 defm LDPX : LoadPairOffset<0b10, 0, GPR64z, simm7s8, "ldp">;
   1503 defm LDPS : LoadPairOffset<0b00, 1, FPR32Op, simm7s4, "ldp">;
   1504 defm LDPD : LoadPairOffset<0b01, 1, FPR64Op, simm7s8, "ldp">;
   1505 defm LDPQ : LoadPairOffset<0b10, 1, FPR128Op, simm7s16, "ldp">;
   1506 
   1507 defm LDPSW : LoadPairOffset<0b01, 0, GPR64z, simm7s4, "ldpsw">;
   1508 
   1509 // Pair (pre-indexed)
   1510 def LDPWpre : LoadPairPreIdx<0b00, 0, GPR32z, simm7s4, "ldp">;
   1511 def LDPXpre : LoadPairPreIdx<0b10, 0, GPR64z, simm7s8, "ldp">;
   1512 def LDPSpre : LoadPairPreIdx<0b00, 1, FPR32Op, simm7s4, "ldp">;
   1513 def LDPDpre : LoadPairPreIdx<0b01, 1, FPR64Op, simm7s8, "ldp">;
   1514 def LDPQpre : LoadPairPreIdx<0b10, 1, FPR128Op, simm7s16, "ldp">;
   1515 
   1516 def LDPSWpre : LoadPairPreIdx<0b01, 0, GPR64z, simm7s4, "ldpsw">;
   1517 
   1518 // Pair (post-indexed)
   1519 def LDPWpost : LoadPairPostIdx<0b00, 0, GPR32z, simm7s4, "ldp">;
   1520 def LDPXpost : LoadPairPostIdx<0b10, 0, GPR64z, simm7s8, "ldp">;
   1521 def LDPSpost : LoadPairPostIdx<0b00, 1, FPR32Op, simm7s4, "ldp">;
   1522 def LDPDpost : LoadPairPostIdx<0b01, 1, FPR64Op, simm7s8, "ldp">;
   1523 def LDPQpost : LoadPairPostIdx<0b10, 1, FPR128Op, simm7s16, "ldp">;
   1524 
   1525 def LDPSWpost : LoadPairPostIdx<0b01, 0, GPR64z, simm7s4, "ldpsw">;
   1526 
   1527 
   1528 // Pair (no allocate)
   1529 defm LDNPW : LoadPairNoAlloc<0b00, 0, GPR32z, simm7s4, "ldnp">;
   1530 defm LDNPX : LoadPairNoAlloc<0b10, 0, GPR64z, simm7s8, "ldnp">;
   1531 defm LDNPS : LoadPairNoAlloc<0b00, 1, FPR32Op, simm7s4, "ldnp">;
   1532 defm LDNPD : LoadPairNoAlloc<0b01, 1, FPR64Op, simm7s8, "ldnp">;
   1533 defm LDNPQ : LoadPairNoAlloc<0b10, 1, FPR128Op, simm7s16, "ldnp">;
   1534 
   1535 //---
   1536 // (register offset)
   1537 //---
   1538 
   1539 // Integer
   1540 defm LDRBB : Load8RO<0b00,  0, 0b01, GPR32, "ldrb", i32, zextloadi8>;
   1541 defm LDRHH : Load16RO<0b01, 0, 0b01, GPR32, "ldrh", i32, zextloadi16>;
   1542 defm LDRW  : Load32RO<0b10, 0, 0b01, GPR32, "ldr", i32, load>;
   1543 defm LDRX  : Load64RO<0b11, 0, 0b01, GPR64, "ldr", i64, load>;
   1544 
   1545 // Floating-point
   1546 defm LDRB : Load8RO<0b00,   1, 0b01, FPR8Op,   "ldr", untyped, load>;
   1547 defm LDRH : Load16RO<0b01,  1, 0b01, FPR16Op,  "ldr", f16, load>;
   1548 defm LDRS : Load32RO<0b10,  1, 0b01, FPR32Op,  "ldr", f32, load>;
   1549 defm LDRD : Load64RO<0b11,  1, 0b01, FPR64Op,  "ldr", f64, load>;
   1550 defm LDRQ : Load128RO<0b00, 1, 0b11, FPR128Op, "ldr", f128, load>;
   1551 
   1552 // Load sign-extended half-word
   1553 defm LDRSHW : Load16RO<0b01, 0, 0b11, GPR32, "ldrsh", i32, sextloadi16>;
   1554 defm LDRSHX : Load16RO<0b01, 0, 0b10, GPR64, "ldrsh", i64, sextloadi16>;
   1555 
   1556 // Load sign-extended byte
   1557 defm LDRSBW : Load8RO<0b00, 0, 0b11, GPR32, "ldrsb", i32, sextloadi8>;
   1558 defm LDRSBX : Load8RO<0b00, 0, 0b10, GPR64, "ldrsb", i64, sextloadi8>;
   1559 
   1560 // Load sign-extended word
   1561 defm LDRSW  : Load32RO<0b10, 0, 0b10, GPR64, "ldrsw", i64, sextloadi32>;
   1562 
   1563 // Pre-fetch.
   1564 defm PRFM : PrefetchRO<0b11, 0, 0b10, "prfm">;
   1565 
   1566 // For regular load, we do not have any alignment requirement.
   1567 // Thus, it is safe to directly map the vector loads with interesting
   1568 // addressing modes.
   1569 // FIXME: We could do the same for bitconvert to floating point vectors.
   1570 multiclass ScalToVecROLoadPat<ROAddrMode ro, SDPatternOperator loadop,
   1571                               ValueType ScalTy, ValueType VecTy,
   1572                               Instruction LOADW, Instruction LOADX,
   1573                               SubRegIndex sub> {
   1574   def : Pat<(VecTy (scalar_to_vector (ScalTy
   1575               (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$offset))))),
   1576             (INSERT_SUBREG (VecTy (IMPLICIT_DEF)),
   1577                            (LOADW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$offset),
   1578                            sub)>;
   1579 
   1580   def : Pat<(VecTy (scalar_to_vector (ScalTy
   1581               (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$offset))))),
   1582             (INSERT_SUBREG (VecTy (IMPLICIT_DEF)),
   1583                            (LOADX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$offset),
   1584                            sub)>;
   1585 }
   1586 
   1587 let AddedComplexity = 10 in {
   1588 defm : ScalToVecROLoadPat<ro8,  extloadi8,  i32, v8i8,  LDRBroW, LDRBroX, bsub>;
   1589 defm : ScalToVecROLoadPat<ro8,  extloadi8,  i32, v16i8, LDRBroW, LDRBroX, bsub>;
   1590 
   1591 defm : ScalToVecROLoadPat<ro16, extloadi16, i32, v4i16, LDRHroW, LDRHroX, hsub>;
   1592 defm : ScalToVecROLoadPat<ro16, extloadi16, i32, v8i16, LDRHroW, LDRHroX, hsub>;
   1593 
   1594 defm : ScalToVecROLoadPat<ro16, load,       i32, v4f16, LDRHroW, LDRHroX, hsub>;
   1595 defm : ScalToVecROLoadPat<ro16, load,       i32, v8f16, LDRHroW, LDRHroX, hsub>;
   1596 
   1597 defm : ScalToVecROLoadPat<ro32, load,       i32, v2i32, LDRSroW, LDRSroX, ssub>;
   1598 defm : ScalToVecROLoadPat<ro32, load,       i32, v4i32, LDRSroW, LDRSroX, ssub>;
   1599 
   1600 defm : ScalToVecROLoadPat<ro32, load,       f32, v2f32, LDRSroW, LDRSroX, ssub>;
   1601 defm : ScalToVecROLoadPat<ro32, load,       f32, v4f32, LDRSroW, LDRSroX, ssub>;
   1602 
   1603 defm : ScalToVecROLoadPat<ro64, load,       i64, v2i64, LDRDroW, LDRDroX, dsub>;
   1604 
   1605 defm : ScalToVecROLoadPat<ro64, load,       f64, v2f64, LDRDroW, LDRDroX, dsub>;
   1606 
   1607 
   1608 def : Pat <(v1i64 (scalar_to_vector (i64
   1609                       (load (ro_Windexed64 GPR64sp:$Rn, GPR32:$Rm,
   1610                                            ro_Wextend64:$extend))))),
   1611            (LDRDroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend64:$extend)>;
   1612 
   1613 def : Pat <(v1i64 (scalar_to_vector (i64
   1614                       (load (ro_Xindexed64 GPR64sp:$Rn, GPR64:$Rm,
   1615                                            ro_Xextend64:$extend))))),
   1616            (LDRDroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend64:$extend)>;
   1617 }
   1618 
   1619 // Match all load 64 bits width whose type is compatible with FPR64
   1620 multiclass VecROLoadPat<ROAddrMode ro, ValueType VecTy,
   1621                         Instruction LOADW, Instruction LOADX> {
   1622 
   1623   def : Pat<(VecTy (load (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend))),
   1624             (LOADW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
   1625 
   1626   def : Pat<(VecTy (load (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend))),
   1627             (LOADX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
   1628 }
   1629 
   1630 let AddedComplexity = 10 in {
   1631 let Predicates = [IsLE] in {
   1632   // We must do vector loads with LD1 in big-endian.
   1633   defm : VecROLoadPat<ro64, v2i32, LDRDroW, LDRDroX>;
   1634   defm : VecROLoadPat<ro64, v2f32, LDRDroW, LDRDroX>;
   1635   defm : VecROLoadPat<ro64, v8i8,  LDRDroW, LDRDroX>;
   1636   defm : VecROLoadPat<ro64, v4i16, LDRDroW, LDRDroX>;
   1637   defm : VecROLoadPat<ro64, v4f16, LDRDroW, LDRDroX>;
   1638 }
   1639 
   1640 defm : VecROLoadPat<ro64, v1i64,  LDRDroW, LDRDroX>;
   1641 defm : VecROLoadPat<ro64, v1f64,  LDRDroW, LDRDroX>;
   1642 
   1643 // Match all load 128 bits width whose type is compatible with FPR128
   1644 let Predicates = [IsLE] in {
   1645   // We must do vector loads with LD1 in big-endian.
   1646   defm : VecROLoadPat<ro128, v2i64,  LDRQroW, LDRQroX>;
   1647   defm : VecROLoadPat<ro128, v2f64,  LDRQroW, LDRQroX>;
   1648   defm : VecROLoadPat<ro128, v4i32,  LDRQroW, LDRQroX>;
   1649   defm : VecROLoadPat<ro128, v4f32,  LDRQroW, LDRQroX>;
   1650   defm : VecROLoadPat<ro128, v8i16,  LDRQroW, LDRQroX>;
   1651   defm : VecROLoadPat<ro128, v8f16,  LDRQroW, LDRQroX>;
   1652   defm : VecROLoadPat<ro128, v16i8,  LDRQroW, LDRQroX>;
   1653 }
   1654 } // AddedComplexity = 10
   1655 
   1656 // zextload -> i64
   1657 multiclass ExtLoadTo64ROPat<ROAddrMode ro, SDPatternOperator loadop,
   1658                             Instruction INSTW, Instruction INSTX> {
   1659   def : Pat<(i64 (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend))),
   1660             (SUBREG_TO_REG (i64 0),
   1661                            (INSTW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend),
   1662                            sub_32)>;
   1663 
   1664   def : Pat<(i64 (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend))),
   1665             (SUBREG_TO_REG (i64 0),
   1666                            (INSTX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend),
   1667                            sub_32)>;
   1668 }
   1669 
   1670 let AddedComplexity = 10 in {
   1671   defm : ExtLoadTo64ROPat<ro8,  zextloadi8,  LDRBBroW, LDRBBroX>;
   1672   defm : ExtLoadTo64ROPat<ro16, zextloadi16, LDRHHroW, LDRHHroX>;
   1673   defm : ExtLoadTo64ROPat<ro32, zextloadi32, LDRWroW,  LDRWroX>;
   1674 
   1675   // zextloadi1 -> zextloadi8
   1676   defm : ExtLoadTo64ROPat<ro8,  zextloadi1,  LDRBBroW, LDRBBroX>;
   1677 
   1678   // extload -> zextload
   1679   defm : ExtLoadTo64ROPat<ro8,  extloadi8,   LDRBBroW, LDRBBroX>;
   1680   defm : ExtLoadTo64ROPat<ro16, extloadi16,  LDRHHroW, LDRHHroX>;
   1681   defm : ExtLoadTo64ROPat<ro32, extloadi32,  LDRWroW,  LDRWroX>;
   1682 
   1683   // extloadi1 -> zextloadi8
   1684   defm : ExtLoadTo64ROPat<ro8,  extloadi1,   LDRBBroW, LDRBBroX>;
   1685 }
   1686 
   1687 
   1688 // zextload -> i64
   1689 multiclass ExtLoadTo32ROPat<ROAddrMode ro, SDPatternOperator loadop,
   1690                             Instruction INSTW, Instruction INSTX> {
   1691   def : Pat<(i32 (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend))),
   1692             (INSTW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
   1693 
   1694   def : Pat<(i32 (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend))),
   1695             (INSTX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
   1696 
   1697 }
   1698 
   1699 let AddedComplexity = 10 in {
   1700   // extload -> zextload
   1701   defm : ExtLoadTo32ROPat<ro8,  extloadi8,   LDRBBroW, LDRBBroX>;
   1702   defm : ExtLoadTo32ROPat<ro16, extloadi16,  LDRHHroW, LDRHHroX>;
   1703   defm : ExtLoadTo32ROPat<ro32, extloadi32,  LDRWroW,  LDRWroX>;
   1704 
   1705   // zextloadi1 -> zextloadi8
   1706   defm : ExtLoadTo32ROPat<ro8, zextloadi1, LDRBBroW, LDRBBroX>;
   1707 }
   1708 
   1709 //---
   1710 // (unsigned immediate)
   1711 //---
   1712 defm LDRX : LoadUI<0b11, 0, 0b01, GPR64z, uimm12s8, "ldr",
   1713                    [(set GPR64z:$Rt,
   1714                          (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)))]>;
   1715 defm LDRW : LoadUI<0b10, 0, 0b01, GPR32z, uimm12s4, "ldr",
   1716                    [(set GPR32z:$Rt,
   1717                          (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset)))]>;
   1718 defm LDRB : LoadUI<0b00, 1, 0b01, FPR8Op, uimm12s1, "ldr",
   1719                    [(set FPR8Op:$Rt,
   1720                          (load (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset)))]>;
   1721 defm LDRH : LoadUI<0b01, 1, 0b01, FPR16Op, uimm12s2, "ldr",
   1722                    [(set (f16 FPR16Op:$Rt),
   1723                          (load (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset)))]>;
   1724 defm LDRS : LoadUI<0b10, 1, 0b01, FPR32Op, uimm12s4, "ldr",
   1725                    [(set (f32 FPR32Op:$Rt),
   1726                          (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset)))]>;
   1727 defm LDRD : LoadUI<0b11, 1, 0b01, FPR64Op, uimm12s8, "ldr",
   1728                    [(set (f64 FPR64Op:$Rt),
   1729                          (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)))]>;
   1730 defm LDRQ : LoadUI<0b00, 1, 0b11, FPR128Op, uimm12s16, "ldr",
   1731                  [(set (f128 FPR128Op:$Rt),
   1732                        (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)))]>;
   1733 
   1734 // For regular load, we do not have any alignment requirement.
   1735 // Thus, it is safe to directly map the vector loads with interesting
   1736 // addressing modes.
   1737 // FIXME: We could do the same for bitconvert to floating point vectors.
   1738 def : Pat <(v8i8 (scalar_to_vector (i32
   1739                (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))),
   1740            (INSERT_SUBREG (v8i8 (IMPLICIT_DEF)),
   1741                           (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub)>;
   1742 def : Pat <(v16i8 (scalar_to_vector (i32
   1743                (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))),
   1744            (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
   1745                           (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub)>;
   1746 def : Pat <(v4i16 (scalar_to_vector (i32
   1747                (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))),
   1748            (INSERT_SUBREG (v4i16 (IMPLICIT_DEF)),
   1749                           (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub)>;
   1750 def : Pat <(v8i16 (scalar_to_vector (i32
   1751                (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))),
   1752            (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)),
   1753                           (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub)>;
   1754 def : Pat <(v2i32 (scalar_to_vector (i32
   1755                (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))))),
   1756            (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)),
   1757                           (LDRSui GPR64sp:$Rn, uimm12s4:$offset), ssub)>;
   1758 def : Pat <(v4i32 (scalar_to_vector (i32
   1759                (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))))),
   1760            (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
   1761                           (LDRSui GPR64sp:$Rn, uimm12s4:$offset), ssub)>;
   1762 def : Pat <(v1i64 (scalar_to_vector (i64
   1763                (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))))),
   1764            (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
   1765 def : Pat <(v2i64 (scalar_to_vector (i64
   1766                (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))))),
   1767            (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)),
   1768                           (LDRDui GPR64sp:$Rn, uimm12s8:$offset), dsub)>;
   1769 
   1770 // Match all load 64 bits width whose type is compatible with FPR64
   1771 let Predicates = [IsLE] in {
   1772   // We must use LD1 to perform vector loads in big-endian.
   1773   def : Pat<(v2f32 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
   1774             (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
   1775   def : Pat<(v8i8 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
   1776             (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
   1777   def : Pat<(v4i16 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
   1778             (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
   1779   def : Pat<(v2i32 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
   1780             (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
   1781   def : Pat<(v4f16 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
   1782             (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
   1783 }
   1784 def : Pat<(v1f64 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
   1785           (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
   1786 def : Pat<(v1i64 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
   1787           (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
   1788 
   1789 // Match all load 128 bits width whose type is compatible with FPR128
   1790 let Predicates = [IsLE] in {
   1791   // We must use LD1 to perform vector loads in big-endian.
   1792   def : Pat<(v4f32 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
   1793             (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
   1794   def : Pat<(v2f64 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
   1795             (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
   1796   def : Pat<(v16i8 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
   1797             (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
   1798   def : Pat<(v8i16 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
   1799             (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
   1800   def : Pat<(v4i32 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
   1801             (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
   1802   def : Pat<(v2i64 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
   1803             (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
   1804   def : Pat<(v8f16 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
   1805             (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
   1806 }
   1807 def : Pat<(f128  (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
   1808           (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
   1809 
   1810 defm LDRHH : LoadUI<0b01, 0, 0b01, GPR32, uimm12s2, "ldrh",
   1811                     [(set GPR32:$Rt,
   1812                           (zextloadi16 (am_indexed16 GPR64sp:$Rn,
   1813                                                      uimm12s2:$offset)))]>;
   1814 defm LDRBB : LoadUI<0b00, 0, 0b01, GPR32, uimm12s1, "ldrb",
   1815                     [(set GPR32:$Rt,
   1816                           (zextloadi8 (am_indexed8 GPR64sp:$Rn,
   1817                                                    uimm12s1:$offset)))]>;
   1818 // zextload -> i64
   1819 def : Pat<(i64 (zextloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
   1820     (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>;
   1821 def : Pat<(i64 (zextloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))),
   1822     (SUBREG_TO_REG (i64 0), (LDRHHui GPR64sp:$Rn, uimm12s2:$offset), sub_32)>;
   1823 
   1824 // zextloadi1 -> zextloadi8
   1825 def : Pat<(i32 (zextloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
   1826           (LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>;
   1827 def : Pat<(i64 (zextloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
   1828     (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>;
   1829 
   1830 // extload -> zextload
   1831 def : Pat<(i32 (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))),
   1832           (LDRHHui GPR64sp:$Rn, uimm12s2:$offset)>;
   1833 def : Pat<(i32 (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
   1834           (LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>;
   1835 def : Pat<(i32 (extloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
   1836           (LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>;
   1837 def : Pat<(i64 (extloadi32 (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))),
   1838     (SUBREG_TO_REG (i64 0), (LDRWui GPR64sp:$Rn, uimm12s4:$offset), sub_32)>;
   1839 def : Pat<(i64 (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))),
   1840     (SUBREG_TO_REG (i64 0), (LDRHHui GPR64sp:$Rn, uimm12s2:$offset), sub_32)>;
   1841 def : Pat<(i64 (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
   1842     (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>;
   1843 def : Pat<(i64 (extloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
   1844     (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>;
   1845 
   1846 // load sign-extended half-word
   1847 defm LDRSHW : LoadUI<0b01, 0, 0b11, GPR32, uimm12s2, "ldrsh",
   1848                      [(set GPR32:$Rt,
   1849                            (sextloadi16 (am_indexed16 GPR64sp:$Rn,
   1850                                                       uimm12s2:$offset)))]>;
   1851 defm LDRSHX : LoadUI<0b01, 0, 0b10, GPR64, uimm12s2, "ldrsh",
   1852                      [(set GPR64:$Rt,
   1853                            (sextloadi16 (am_indexed16 GPR64sp:$Rn,
   1854                                                       uimm12s2:$offset)))]>;
   1855 
   1856 // load sign-extended byte
   1857 defm LDRSBW : LoadUI<0b00, 0, 0b11, GPR32, uimm12s1, "ldrsb",
   1858                      [(set GPR32:$Rt,
   1859                            (sextloadi8 (am_indexed8 GPR64sp:$Rn,
   1860                                                     uimm12s1:$offset)))]>;
   1861 defm LDRSBX : LoadUI<0b00, 0, 0b10, GPR64, uimm12s1, "ldrsb",
   1862                      [(set GPR64:$Rt,
   1863                            (sextloadi8 (am_indexed8 GPR64sp:$Rn,
   1864                                                     uimm12s1:$offset)))]>;
   1865 
   1866 // load sign-extended word
   1867 defm LDRSW  : LoadUI<0b10, 0, 0b10, GPR64, uimm12s4, "ldrsw",
   1868                      [(set GPR64:$Rt,
   1869                            (sextloadi32 (am_indexed32 GPR64sp:$Rn,
   1870                                                       uimm12s4:$offset)))]>;
   1871 
   1872 // load zero-extended word
   1873 def : Pat<(i64 (zextloadi32 (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))),
   1874       (SUBREG_TO_REG (i64 0), (LDRWui GPR64sp:$Rn, uimm12s4:$offset), sub_32)>;
   1875 
   1876 // Pre-fetch.
   1877 def PRFMui : PrefetchUI<0b11, 0, 0b10, "prfm",
   1878                         [(AArch64Prefetch imm:$Rt,
   1879                                         (am_indexed64 GPR64sp:$Rn,
   1880                                                       uimm12s8:$offset))]>;
   1881 
   1882 def : InstAlias<"prfm $Rt, [$Rn]", (PRFMui prfop:$Rt, GPR64sp:$Rn, 0)>;
   1883 
   1884 //---
   1885 // (literal)
   1886 def LDRWl : LoadLiteral<0b00, 0, GPR32z, "ldr">;
   1887 def LDRXl : LoadLiteral<0b01, 0, GPR64z, "ldr">;
   1888 def LDRSl : LoadLiteral<0b00, 1, FPR32Op, "ldr">;
   1889 def LDRDl : LoadLiteral<0b01, 1, FPR64Op, "ldr">;
   1890 def LDRQl : LoadLiteral<0b10, 1, FPR128Op, "ldr">;
   1891 
   1892 // load sign-extended word
   1893 def LDRSWl : LoadLiteral<0b10, 0, GPR64z, "ldrsw">;
   1894 
   1895 // prefetch
   1896 def PRFMl : PrefetchLiteral<0b11, 0, "prfm", []>;
   1897 //                   [(AArch64Prefetch imm:$Rt, tglobaladdr:$label)]>;
   1898 
   1899 //---
   1900 // (unscaled immediate)
   1901 defm LDURX : LoadUnscaled<0b11, 0, 0b01, GPR64z, "ldur",
   1902                     [(set GPR64z:$Rt,
   1903                           (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset)))]>;
   1904 defm LDURW : LoadUnscaled<0b10, 0, 0b01, GPR32z, "ldur",
   1905                     [(set GPR32z:$Rt,
   1906                           (load (am_unscaled32 GPR64sp:$Rn, simm9:$offset)))]>;
   1907 defm LDURB : LoadUnscaled<0b00, 1, 0b01, FPR8Op, "ldur",
   1908                     [(set FPR8Op:$Rt,
   1909                           (load (am_unscaled8 GPR64sp:$Rn, simm9:$offset)))]>;
   1910 defm LDURH : LoadUnscaled<0b01, 1, 0b01, FPR16Op, "ldur",
   1911                     [(set FPR16Op:$Rt,
   1912                           (load (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
   1913 defm LDURS : LoadUnscaled<0b10, 1, 0b01, FPR32Op, "ldur",
   1914                     [(set (f32 FPR32Op:$Rt),
   1915                           (load (am_unscaled32 GPR64sp:$Rn, simm9:$offset)))]>;
   1916 defm LDURD : LoadUnscaled<0b11, 1, 0b01, FPR64Op, "ldur",
   1917                     [(set (f64 FPR64Op:$Rt),
   1918                           (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset)))]>;
   1919 defm LDURQ : LoadUnscaled<0b00, 1, 0b11, FPR128Op, "ldur",
   1920                     [(set (f128 FPR128Op:$Rt),
   1921                           (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset)))]>;
   1922 
   1923 defm LDURHH
   1924     : LoadUnscaled<0b01, 0, 0b01, GPR32, "ldurh",
   1925              [(set GPR32:$Rt,
   1926                     (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
   1927 defm LDURBB
   1928     : LoadUnscaled<0b00, 0, 0b01, GPR32, "ldurb",
   1929              [(set GPR32:$Rt,
   1930                     (zextloadi8 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
   1931 
   1932 // Match all load 64 bits width whose type is compatible with FPR64
   1933 let Predicates = [IsLE] in {
   1934   def : Pat<(v2f32 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
   1935             (LDURDi GPR64sp:$Rn, simm9:$offset)>;
   1936   def : Pat<(v2i32 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
   1937             (LDURDi GPR64sp:$Rn, simm9:$offset)>;
   1938   def : Pat<(v4i16 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
   1939             (LDURDi GPR64sp:$Rn, simm9:$offset)>;
   1940   def : Pat<(v8i8 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
   1941             (LDURDi GPR64sp:$Rn, simm9:$offset)>;
   1942   def : Pat<(v4f16 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
   1943             (LDURDi GPR64sp:$Rn, simm9:$offset)>;
   1944 }
   1945 def : Pat<(v1f64 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
   1946           (LDURDi GPR64sp:$Rn, simm9:$offset)>;
   1947 def : Pat<(v1i64 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
   1948           (LDURDi GPR64sp:$Rn, simm9:$offset)>;
   1949 
   1950 // Match all load 128 bits width whose type is compatible with FPR128
   1951 let Predicates = [IsLE] in {
   1952   def : Pat<(v2f64 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
   1953             (LDURQi GPR64sp:$Rn, simm9:$offset)>;
   1954   def : Pat<(v2i64 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
   1955             (LDURQi GPR64sp:$Rn, simm9:$offset)>;
   1956   def : Pat<(v4f32 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
   1957             (LDURQi GPR64sp:$Rn, simm9:$offset)>;
   1958   def : Pat<(v4i32 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
   1959             (LDURQi GPR64sp:$Rn, simm9:$offset)>;
   1960   def : Pat<(v8i16 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
   1961             (LDURQi GPR64sp:$Rn, simm9:$offset)>;
   1962   def : Pat<(v16i8 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
   1963             (LDURQi GPR64sp:$Rn, simm9:$offset)>;
   1964   def : Pat<(v8f16 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
   1965             (LDURQi GPR64sp:$Rn, simm9:$offset)>;
   1966 }
   1967 
   1968 //  anyext -> zext
   1969 def : Pat<(i32 (extloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
   1970           (LDURHHi GPR64sp:$Rn, simm9:$offset)>;
   1971 def : Pat<(i32 (extloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
   1972           (LDURBBi GPR64sp:$Rn, simm9:$offset)>;
   1973 def : Pat<(i32 (extloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
   1974           (LDURBBi GPR64sp:$Rn, simm9:$offset)>;
   1975 def : Pat<(i64 (extloadi32 (am_unscaled32 GPR64sp:$Rn, simm9:$offset))),
   1976     (SUBREG_TO_REG (i64 0), (LDURWi GPR64sp:$Rn, simm9:$offset), sub_32)>;
   1977 def : Pat<(i64 (extloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
   1978     (SUBREG_TO_REG (i64 0), (LDURHHi GPR64sp:$Rn, simm9:$offset), sub_32)>;
   1979 def : Pat<(i64 (extloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
   1980     (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
   1981 def : Pat<(i64 (extloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
   1982     (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
   1983 // unscaled zext
   1984 def : Pat<(i32 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
   1985           (LDURHHi GPR64sp:$Rn, simm9:$offset)>;
   1986 def : Pat<(i32 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
   1987           (LDURBBi GPR64sp:$Rn, simm9:$offset)>;
   1988 def : Pat<(i32 (zextloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
   1989           (LDURBBi GPR64sp:$Rn, simm9:$offset)>;
   1990 def : Pat<(i64 (zextloadi32 (am_unscaled32 GPR64sp:$Rn, simm9:$offset))),
   1991     (SUBREG_TO_REG (i64 0), (LDURWi GPR64sp:$Rn, simm9:$offset), sub_32)>;
   1992 def : Pat<(i64 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
   1993     (SUBREG_TO_REG (i64 0), (LDURHHi GPR64sp:$Rn, simm9:$offset), sub_32)>;
   1994 def : Pat<(i64 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
   1995     (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
   1996 def : Pat<(i64 (zextloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
   1997     (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
   1998 
   1999 
   2000 //---
   2001 // LDR mnemonics fall back to LDUR for negative or unaligned offsets.
   2002 
   2003 // Define new assembler match classes as we want to only match these when
   2004 // the don't otherwise match the scaled addressing mode for LDR/STR. Don't
   2005 // associate a DiagnosticType either, as we want the diagnostic for the
   2006 // canonical form (the scaled operand) to take precedence.
   2007 class SImm9OffsetOperand<int Width> : AsmOperandClass {
   2008   let Name = "SImm9OffsetFB" # Width;
   2009   let PredicateMethod = "isSImm9OffsetFB<" # Width # ">";
   2010   let RenderMethod = "addImmOperands";
   2011 }
   2012 
   2013 def SImm9OffsetFB8Operand : SImm9OffsetOperand<8>;
   2014 def SImm9OffsetFB16Operand : SImm9OffsetOperand<16>;
   2015 def SImm9OffsetFB32Operand : SImm9OffsetOperand<32>;
   2016 def SImm9OffsetFB64Operand : SImm9OffsetOperand<64>;
   2017 def SImm9OffsetFB128Operand : SImm9OffsetOperand<128>;
   2018 
   2019 def simm9_offset_fb8 : Operand<i64> {
   2020   let ParserMatchClass = SImm9OffsetFB8Operand;
   2021 }
   2022 def simm9_offset_fb16 : Operand<i64> {
   2023   let ParserMatchClass = SImm9OffsetFB16Operand;
   2024 }
   2025 def simm9_offset_fb32 : Operand<i64> {
   2026   let ParserMatchClass = SImm9OffsetFB32Operand;
   2027 }
   2028 def simm9_offset_fb64 : Operand<i64> {
   2029   let ParserMatchClass = SImm9OffsetFB64Operand;
   2030 }
   2031 def simm9_offset_fb128 : Operand<i64> {
   2032   let ParserMatchClass = SImm9OffsetFB128Operand;
   2033 }
   2034 
   2035 def : InstAlias<"ldr $Rt, [$Rn, $offset]",
   2036                 (LDURXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>;
   2037 def : InstAlias<"ldr $Rt, [$Rn, $offset]",
   2038                 (LDURWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
   2039 def : InstAlias<"ldr $Rt, [$Rn, $offset]",
   2040                 (LDURBi FPR8Op:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
   2041 def : InstAlias<"ldr $Rt, [$Rn, $offset]",
   2042                 (LDURHi FPR16Op:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
   2043 def : InstAlias<"ldr $Rt, [$Rn, $offset]",
   2044                 (LDURSi FPR32Op:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
   2045 def : InstAlias<"ldr $Rt, [$Rn, $offset]",
   2046                 (LDURDi FPR64Op:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>;
   2047 def : InstAlias<"ldr $Rt, [$Rn, $offset]",
   2048                (LDURQi FPR128Op:$Rt, GPR64sp:$Rn, simm9_offset_fb128:$offset), 0>;
   2049 
   2050 // zextload -> i64
   2051 def : Pat<(i64 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
   2052   (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
   2053 def : Pat<(i64 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
   2054   (SUBREG_TO_REG (i64 0), (LDURHHi GPR64sp:$Rn, simm9:$offset), sub_32)>;
   2055 
   2056 // load sign-extended half-word
   2057 defm LDURSHW
   2058     : LoadUnscaled<0b01, 0, 0b11, GPR32, "ldursh",
   2059                [(set GPR32:$Rt,
   2060                     (sextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
   2061 defm LDURSHX
   2062     : LoadUnscaled<0b01, 0, 0b10, GPR64, "ldursh",
   2063               [(set GPR64:$Rt,
   2064                     (sextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
   2065 
   2066 // load sign-extended byte
   2067 defm LDURSBW
   2068     : LoadUnscaled<0b00, 0, 0b11, GPR32, "ldursb",
   2069                 [(set GPR32:$Rt,
   2070                       (sextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset)))]>;
   2071 defm LDURSBX
   2072     : LoadUnscaled<0b00, 0, 0b10, GPR64, "ldursb",
   2073                 [(set GPR64:$Rt,
   2074                       (sextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset)))]>;
   2075 
   2076 // load sign-extended word
   2077 defm LDURSW
   2078     : LoadUnscaled<0b10, 0, 0b10, GPR64, "ldursw",
   2079               [(set GPR64:$Rt,
   2080                     (sextloadi32 (am_unscaled32 GPR64sp:$Rn, simm9:$offset)))]>;
   2081 
   2082 // zero and sign extending aliases from generic LDR* mnemonics to LDUR*.
   2083 def : InstAlias<"ldrb $Rt, [$Rn, $offset]",
   2084                 (LDURBBi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
   2085 def : InstAlias<"ldrh $Rt, [$Rn, $offset]",
   2086                 (LDURHHi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
   2087 def : InstAlias<"ldrsb $Rt, [$Rn, $offset]",
   2088                 (LDURSBWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
   2089 def : InstAlias<"ldrsb $Rt, [$Rn, $offset]",
   2090                 (LDURSBXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
   2091 def : InstAlias<"ldrsh $Rt, [$Rn, $offset]",
   2092                 (LDURSHWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
   2093 def : InstAlias<"ldrsh $Rt, [$Rn, $offset]",
   2094                 (LDURSHXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
   2095 def : InstAlias<"ldrsw $Rt, [$Rn, $offset]",
   2096                 (LDURSWi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
   2097 
   2098 // Pre-fetch.
   2099 defm PRFUM : PrefetchUnscaled<0b11, 0, 0b10, "prfum",
   2100                   [(AArch64Prefetch imm:$Rt,
   2101                                   (am_unscaled64 GPR64sp:$Rn, simm9:$offset))]>;
   2102 
   2103 //---
   2104 // (unscaled immediate, unprivileged)
   2105 defm LDTRX : LoadUnprivileged<0b11, 0, 0b01, GPR64, "ldtr">;
   2106 defm LDTRW : LoadUnprivileged<0b10, 0, 0b01, GPR32, "ldtr">;
   2107 
   2108 defm LDTRH : LoadUnprivileged<0b01, 0, 0b01, GPR32, "ldtrh">;
   2109 defm LDTRB : LoadUnprivileged<0b00, 0, 0b01, GPR32, "ldtrb">;
   2110 
   2111 // load sign-extended half-word
   2112 defm LDTRSHW : LoadUnprivileged<0b01, 0, 0b11, GPR32, "ldtrsh">;
   2113 defm LDTRSHX : LoadUnprivileged<0b01, 0, 0b10, GPR64, "ldtrsh">;
   2114 
   2115 // load sign-extended byte
   2116 defm LDTRSBW : LoadUnprivileged<0b00, 0, 0b11, GPR32, "ldtrsb">;
   2117 defm LDTRSBX : LoadUnprivileged<0b00, 0, 0b10, GPR64, "ldtrsb">;
   2118 
   2119 // load sign-extended word
   2120 defm LDTRSW  : LoadUnprivileged<0b10, 0, 0b10, GPR64, "ldtrsw">;
   2121 
   2122 //---
   2123 // (immediate pre-indexed)
   2124 def LDRWpre : LoadPreIdx<0b10, 0, 0b01, GPR32z, "ldr">;
   2125 def LDRXpre : LoadPreIdx<0b11, 0, 0b01, GPR64z, "ldr">;
   2126 def LDRBpre : LoadPreIdx<0b00, 1, 0b01, FPR8Op,  "ldr">;
   2127 def LDRHpre : LoadPreIdx<0b01, 1, 0b01, FPR16Op, "ldr">;
   2128 def LDRSpre : LoadPreIdx<0b10, 1, 0b01, FPR32Op, "ldr">;
   2129 def LDRDpre : LoadPreIdx<0b11, 1, 0b01, FPR64Op, "ldr">;
   2130 def LDRQpre : LoadPreIdx<0b00, 1, 0b11, FPR128Op, "ldr">;
   2131 
   2132 // load sign-extended half-word
   2133 def LDRSHWpre : LoadPreIdx<0b01, 0, 0b11, GPR32z, "ldrsh">;
   2134 def LDRSHXpre : LoadPreIdx<0b01, 0, 0b10, GPR64z, "ldrsh">;
   2135 
   2136 // load sign-extended byte
   2137 def LDRSBWpre : LoadPreIdx<0b00, 0, 0b11, GPR32z, "ldrsb">;
   2138 def LDRSBXpre : LoadPreIdx<0b00, 0, 0b10, GPR64z, "ldrsb">;
   2139 
   2140 // load zero-extended byte
   2141 def LDRBBpre : LoadPreIdx<0b00, 0, 0b01, GPR32z, "ldrb">;
   2142 def LDRHHpre : LoadPreIdx<0b01, 0, 0b01, GPR32z, "ldrh">;
   2143 
   2144 // load sign-extended word
   2145 def LDRSWpre : LoadPreIdx<0b10, 0, 0b10, GPR64z, "ldrsw">;
   2146 
   2147 //---
   2148 // (immediate post-indexed)
   2149 def LDRWpost : LoadPostIdx<0b10, 0, 0b01, GPR32z, "ldr">;
   2150 def LDRXpost : LoadPostIdx<0b11, 0, 0b01, GPR64z, "ldr">;
   2151 def LDRBpost : LoadPostIdx<0b00, 1, 0b01, FPR8Op,  "ldr">;
   2152 def LDRHpost : LoadPostIdx<0b01, 1, 0b01, FPR16Op, "ldr">;
   2153 def LDRSpost : LoadPostIdx<0b10, 1, 0b01, FPR32Op, "ldr">;
   2154 def LDRDpost : LoadPostIdx<0b11, 1, 0b01, FPR64Op, "ldr">;
   2155 def LDRQpost : LoadPostIdx<0b00, 1, 0b11, FPR128Op, "ldr">;
   2156 
   2157 // load sign-extended half-word
   2158 def LDRSHWpost : LoadPostIdx<0b01, 0, 0b11, GPR32z, "ldrsh">;
   2159 def LDRSHXpost : LoadPostIdx<0b01, 0, 0b10, GPR64z, "ldrsh">;
   2160 
   2161 // load sign-extended byte
   2162 def LDRSBWpost : LoadPostIdx<0b00, 0, 0b11, GPR32z, "ldrsb">;
   2163 def LDRSBXpost : LoadPostIdx<0b00, 0, 0b10, GPR64z, "ldrsb">;
   2164 
   2165 // load zero-extended byte
   2166 def LDRBBpost : LoadPostIdx<0b00, 0, 0b01, GPR32z, "ldrb">;
   2167 def LDRHHpost : LoadPostIdx<0b01, 0, 0b01, GPR32z, "ldrh">;
   2168 
   2169 // load sign-extended word
   2170 def LDRSWpost : LoadPostIdx<0b10, 0, 0b10, GPR64z, "ldrsw">;
   2171 
   2172 //===----------------------------------------------------------------------===//
   2173 // Store instructions.
   2174 //===----------------------------------------------------------------------===//
   2175 
   2176 // Pair (indexed, offset)
   2177 // FIXME: Use dedicated range-checked addressing mode operand here.
   2178 defm STPW : StorePairOffset<0b00, 0, GPR32z, simm7s4, "stp">;
   2179 defm STPX : StorePairOffset<0b10, 0, GPR64z, simm7s8, "stp">;
   2180 defm STPS : StorePairOffset<0b00, 1, FPR32Op, simm7s4, "stp">;
   2181 defm STPD : StorePairOffset<0b01, 1, FPR64Op, simm7s8, "stp">;
   2182 defm STPQ : StorePairOffset<0b10, 1, FPR128Op, simm7s16, "stp">;
   2183 
   2184 // Pair (pre-indexed)
   2185 def STPWpre : StorePairPreIdx<0b00, 0, GPR32z, simm7s4, "stp">;
   2186 def STPXpre : StorePairPreIdx<0b10, 0, GPR64z, simm7s8, "stp">;
   2187 def STPSpre : StorePairPreIdx<0b00, 1, FPR32Op, simm7s4, "stp">;
   2188 def STPDpre : StorePairPreIdx<0b01, 1, FPR64Op, simm7s8, "stp">;
   2189 def STPQpre : StorePairPreIdx<0b10, 1, FPR128Op, simm7s16, "stp">;
   2190 
   2191 // Pair (pre-indexed)
   2192 def STPWpost : StorePairPostIdx<0b00, 0, GPR32z, simm7s4, "stp">;
   2193 def STPXpost : StorePairPostIdx<0b10, 0, GPR64z, simm7s8, "stp">;
   2194 def STPSpost : StorePairPostIdx<0b00, 1, FPR32Op, simm7s4, "stp">;
   2195 def STPDpost : StorePairPostIdx<0b01, 1, FPR64Op, simm7s8, "stp">;
   2196 def STPQpost : StorePairPostIdx<0b10, 1, FPR128Op, simm7s16, "stp">;
   2197 
   2198 // Pair (no allocate)
   2199 defm STNPW : StorePairNoAlloc<0b00, 0, GPR32z, simm7s4, "stnp">;
   2200 defm STNPX : StorePairNoAlloc<0b10, 0, GPR64z, simm7s8, "stnp">;
   2201 defm STNPS : StorePairNoAlloc<0b00, 1, FPR32Op, simm7s4, "stnp">;
   2202 defm STNPD : StorePairNoAlloc<0b01, 1, FPR64Op, simm7s8, "stnp">;
   2203 defm STNPQ : StorePairNoAlloc<0b10, 1, FPR128Op, simm7s16, "stnp">;
   2204 
   2205 //---
   2206 // (Register offset)
   2207 
   2208 // Integer
   2209 defm STRBB : Store8RO< 0b00, 0, 0b00, GPR32, "strb", i32, truncstorei8>;
   2210 defm STRHH : Store16RO<0b01, 0, 0b00, GPR32, "strh", i32, truncstorei16>;
   2211 defm STRW  : Store32RO<0b10, 0, 0b00, GPR32, "str",  i32, store>;
   2212 defm STRX  : Store64RO<0b11, 0, 0b00, GPR64, "str",  i64, store>;
   2213 
   2214 
   2215 // Floating-point
   2216 defm STRB : Store8RO< 0b00,  1, 0b00, FPR8Op,   "str", untyped, store>;
   2217 defm STRH : Store16RO<0b01,  1, 0b00, FPR16Op,  "str", f16,     store>;
   2218 defm STRS : Store32RO<0b10,  1, 0b00, FPR32Op,  "str", f32,     store>;
   2219 defm STRD : Store64RO<0b11,  1, 0b00, FPR64Op,  "str", f64,     store>;
   2220 defm STRQ : Store128RO<0b00, 1, 0b10, FPR128Op, "str", f128,    store>;
   2221 
   2222 let Predicates = [UseSTRQro], AddedComplexity = 10 in {
   2223   def : Pat<(store (f128 FPR128:$Rt),
   2224                         (ro_Windexed128 GPR64sp:$Rn, GPR32:$Rm,
   2225                                         ro_Wextend128:$extend)),
   2226             (STRQroW FPR128:$Rt, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend128:$extend)>;
   2227   def : Pat<(store (f128 FPR128:$Rt),
   2228                         (ro_Xindexed128 GPR64sp:$Rn, GPR64:$Rm,
   2229                                         ro_Xextend128:$extend)),
   2230             (STRQroX FPR128:$Rt, GPR64sp:$Rn, GPR64:$Rm, ro_Wextend128:$extend)>;
   2231 }
   2232 
   2233 multiclass TruncStoreFrom64ROPat<ROAddrMode ro, SDPatternOperator storeop,
   2234                                  Instruction STRW, Instruction STRX> {
   2235 
   2236   def : Pat<(storeop GPR64:$Rt,
   2237                      (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)),
   2238             (STRW (EXTRACT_SUBREG GPR64:$Rt, sub_32),
   2239                   GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
   2240 
   2241   def : Pat<(storeop GPR64:$Rt,
   2242                      (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)),
   2243             (STRX (EXTRACT_SUBREG GPR64:$Rt, sub_32),
   2244                   GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
   2245 }
   2246 
   2247 let AddedComplexity = 10 in {
   2248   // truncstore i64
   2249   defm : TruncStoreFrom64ROPat<ro8,  truncstorei8,  STRBBroW, STRBBroX>;
   2250   defm : TruncStoreFrom64ROPat<ro16, truncstorei16, STRHHroW, STRHHroX>;
   2251   defm : TruncStoreFrom64ROPat<ro32, truncstorei32, STRWroW,  STRWroX>;
   2252 }
   2253 
   2254 multiclass VecROStorePat<ROAddrMode ro, ValueType VecTy, RegisterClass FPR,
   2255                          Instruction STRW, Instruction STRX> {
   2256   def : Pat<(store (VecTy FPR:$Rt),
   2257                    (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)),
   2258             (STRW FPR:$Rt, GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
   2259 
   2260   def : Pat<(store (VecTy FPR:$Rt),
   2261                    (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)),
   2262             (STRX FPR:$Rt, GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
   2263 }
   2264 
   2265 let AddedComplexity = 10 in {
   2266 // Match all store 64 bits width whose type is compatible with FPR64
   2267 let Predicates = [IsLE] in {
   2268   // We must use ST1 to store vectors in big-endian.
   2269   defm : VecROStorePat<ro64, v2i32, FPR64, STRDroW, STRDroX>;
   2270   defm : VecROStorePat<ro64, v2f32, FPR64, STRDroW, STRDroX>;
   2271   defm : VecROStorePat<ro64, v4i16, FPR64, STRDroW, STRDroX>;
   2272   defm : VecROStorePat<ro64, v8i8, FPR64, STRDroW, STRDroX>;
   2273   defm : VecROStorePat<ro64, v4f16, FPR64, STRDroW, STRDroX>;
   2274 }
   2275 
   2276 defm : VecROStorePat<ro64, v1i64, FPR64, STRDroW, STRDroX>;
   2277 defm : VecROStorePat<ro64, v1f64, FPR64, STRDroW, STRDroX>;
   2278 
   2279 // Match all store 128 bits width whose type is compatible with FPR128
   2280 let Predicates = [IsLE, UseSTRQro] in {
   2281   // We must use ST1 to store vectors in big-endian.
   2282   defm : VecROStorePat<ro128, v2i64, FPR128, STRQroW, STRQroX>;
   2283   defm : VecROStorePat<ro128, v2f64, FPR128, STRQroW, STRQroX>;
   2284   defm : VecROStorePat<ro128, v4i32, FPR128, STRQroW, STRQroX>;
   2285   defm : VecROStorePat<ro128, v4f32, FPR128, STRQroW, STRQroX>;
   2286   defm : VecROStorePat<ro128, v8i16, FPR128, STRQroW, STRQroX>;
   2287   defm : VecROStorePat<ro128, v16i8, FPR128, STRQroW, STRQroX>;
   2288   defm : VecROStorePat<ro128, v8f16, FPR128, STRQroW, STRQroX>;
   2289 }
   2290 } // AddedComplexity = 10
   2291 
   2292 // Match stores from lane 0 to the appropriate subreg's store.
   2293 multiclass VecROStoreLane0Pat<ROAddrMode ro, SDPatternOperator storeop,
   2294                               ValueType VecTy, ValueType STy,
   2295                               SubRegIndex SubRegIdx,
   2296                               Instruction STRW, Instruction STRX> {
   2297 
   2298   def : Pat<(storeop (STy (vector_extract (VecTy VecListOne128:$Vt), 0)),
   2299                      (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)),
   2300             (STRW (EXTRACT_SUBREG VecListOne128:$Vt, SubRegIdx),
   2301                   GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
   2302 
   2303   def : Pat<(storeop (STy (vector_extract (VecTy VecListOne128:$Vt), 0)),
   2304                      (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)),
   2305             (STRX (EXTRACT_SUBREG VecListOne128:$Vt, SubRegIdx),
   2306                   GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
   2307 }
   2308 
   2309 let AddedComplexity = 19 in {
   2310   defm : VecROStoreLane0Pat<ro16, truncstorei16, v8i16, i32, hsub, STRHroW, STRHroX>;
   2311   defm : VecROStoreLane0Pat<ro16,         store, v8f16, f16, hsub, STRHroW, STRHroX>;
   2312   defm : VecROStoreLane0Pat<ro32,         store, v4i32, i32, ssub, STRSroW, STRSroX>;
   2313   defm : VecROStoreLane0Pat<ro32,         store, v4f32, f32, ssub, STRSroW, STRSroX>;
   2314   defm : VecROStoreLane0Pat<ro64,         store, v2i64, i64, dsub, STRDroW, STRDroX>;
   2315   defm : VecROStoreLane0Pat<ro64,         store, v2f64, f64, dsub, STRDroW, STRDroX>;
   2316 }
   2317 
   2318 //---
   2319 // (unsigned immediate)
   2320 defm STRX : StoreUIz<0b11, 0, 0b00, GPR64z, uimm12s8, "str",
   2321                    [(store GPR64z:$Rt,
   2322                             (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))]>;
   2323 defm STRW : StoreUIz<0b10, 0, 0b00, GPR32z, uimm12s4, "str",
   2324                     [(store GPR32z:$Rt,
   2325                             (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))]>;
   2326 defm STRB : StoreUI<0b00, 1, 0b00, FPR8Op, uimm12s1, "str",
   2327                     [(store FPR8Op:$Rt,
   2328                             (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))]>;
   2329 defm STRH : StoreUI<0b01, 1, 0b00, FPR16Op, uimm12s2, "str",
   2330                     [(store (f16 FPR16Op:$Rt),
   2331                             (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))]>;
   2332 defm STRS : StoreUI<0b10, 1, 0b00, FPR32Op, uimm12s4, "str",
   2333                     [(store (f32 FPR32Op:$Rt),
   2334                             (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))]>;
   2335 defm STRD : StoreUI<0b11, 1, 0b00, FPR64Op, uimm12s8, "str",
   2336                     [(store (f64 FPR64Op:$Rt),
   2337                             (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))]>;
   2338 defm STRQ : StoreUI<0b00, 1, 0b10, FPR128Op, uimm12s16, "str", []>;
   2339 
   2340 defm STRHH : StoreUIz<0b01, 0, 0b00, GPR32z, uimm12s2, "strh",
   2341                      [(truncstorei16 GPR32z:$Rt,
   2342                                      (am_indexed16 GPR64sp:$Rn,
   2343                                                    uimm12s2:$offset))]>;
   2344 defm STRBB : StoreUIz<0b00, 0, 0b00, GPR32z, uimm12s1,  "strb",
   2345                      [(truncstorei8 GPR32z:$Rt,
   2346                                     (am_indexed8 GPR64sp:$Rn,
   2347                                                  uimm12s1:$offset))]>;
   2348 
   2349 let AddedComplexity = 10 in {
   2350 
   2351 // Match all store 64 bits width whose type is compatible with FPR64
   2352 def : Pat<(store (v1i64 FPR64:$Rt),
   2353                  (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
   2354           (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
   2355 def : Pat<(store (v1f64 FPR64:$Rt),
   2356                  (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
   2357           (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
   2358 
   2359 let Predicates = [IsLE] in {
   2360   // We must use ST1 to store vectors in big-endian.
   2361   def : Pat<(store (v2f32 FPR64:$Rt),
   2362                    (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
   2363             (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
   2364   def : Pat<(store (v8i8 FPR64:$Rt),
   2365                    (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
   2366             (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
   2367   def : Pat<(store (v4i16 FPR64:$Rt),
   2368                    (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
   2369             (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
   2370   def : Pat<(store (v2i32 FPR64:$Rt),
   2371                    (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
   2372             (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
   2373   def : Pat<(store (v4f16 FPR64:$Rt),
   2374                    (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
   2375             (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
   2376 }
   2377 
   2378 // Match all store 128 bits width whose type is compatible with FPR128
   2379 def : Pat<(store (f128  FPR128:$Rt),
   2380                  (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
   2381           (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
   2382 
   2383 let Predicates = [IsLE] in {
   2384   // We must use ST1 to store vectors in big-endian.
   2385   def : Pat<(store (v4f32 FPR128:$Rt),
   2386                    (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
   2387             (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
   2388   def : Pat<(store (v2f64 FPR128:$Rt),
   2389                    (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
   2390             (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
   2391   def : Pat<(store (v16i8 FPR128:$Rt),
   2392                    (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
   2393             (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
   2394   def : Pat<(store (v8i16 FPR128:$Rt),
   2395                    (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
   2396             (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
   2397   def : Pat<(store (v4i32 FPR128:$Rt),
   2398                    (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
   2399             (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
   2400   def : Pat<(store (v2i64 FPR128:$Rt),
   2401                    (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
   2402             (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
   2403   def : Pat<(store (v8f16 FPR128:$Rt),
   2404                    (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
   2405             (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
   2406 }
   2407 
   2408 // truncstore i64
   2409 def : Pat<(truncstorei32 GPR64:$Rt,
   2410                          (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset)),
   2411   (STRWui (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, uimm12s4:$offset)>;
   2412 def : Pat<(truncstorei16 GPR64:$Rt,
   2413                          (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset)),
   2414   (STRHHui (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, uimm12s2:$offset)>;
   2415 def : Pat<(truncstorei8 GPR64:$Rt, (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset)),
   2416   (STRBBui (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, uimm12s1:$offset)>;
   2417 
   2418 } // AddedComplexity = 10
   2419 
   2420 // Match stores from lane 0 to the appropriate subreg's store.
   2421 multiclass VecStoreLane0Pat<Operand UIAddrMode, SDPatternOperator storeop,
   2422                             ValueType VTy, ValueType STy,
   2423                             SubRegIndex SubRegIdx, Operand IndexType,
   2424                             Instruction STR> {
   2425   def : Pat<(storeop (STy (vector_extract (VTy VecListOne128:$Vt), 0)),
   2426                      (UIAddrMode GPR64sp:$Rn, IndexType:$offset)),
   2427             (STR (EXTRACT_SUBREG VecListOne128:$Vt, SubRegIdx),
   2428                  GPR64sp:$Rn, IndexType:$offset)>;
   2429 }
   2430 
   2431 let AddedComplexity = 19 in {
   2432   defm : VecStoreLane0Pat<am_indexed16, truncstorei16, v8i16, i32, hsub, uimm12s2, STRHui>;
   2433   defm : VecStoreLane0Pat<am_indexed16,         store, v8f16, f16, hsub, uimm12s2, STRHui>;
   2434   defm : VecStoreLane0Pat<am_indexed32,         store, v4i32, i32, ssub, uimm12s4, STRSui>;
   2435   defm : VecStoreLane0Pat<am_indexed32,         store, v4f32, f32, ssub, uimm12s4, STRSui>;
   2436   defm : VecStoreLane0Pat<am_indexed64,         store, v2i64, i64, dsub, uimm12s8, STRDui>;
   2437   defm : VecStoreLane0Pat<am_indexed64,         store, v2f64, f64, dsub, uimm12s8, STRDui>;
   2438 }
   2439 
   2440 //---
   2441 // (unscaled immediate)
   2442 defm STURX : StoreUnscaled<0b11, 0, 0b00, GPR64z, "stur",
   2443                          [(store GPR64z:$Rt,
   2444                                  (am_unscaled64 GPR64sp:$Rn, simm9:$offset))]>;
   2445 defm STURW : StoreUnscaled<0b10, 0, 0b00, GPR32z, "stur",
   2446                          [(store GPR32z:$Rt,
   2447                                  (am_unscaled32 GPR64sp:$Rn, simm9:$offset))]>;
   2448 defm STURB : StoreUnscaled<0b00, 1, 0b00, FPR8Op, "stur",
   2449                          [(store FPR8Op:$Rt,
   2450                                  (am_unscaled8 GPR64sp:$Rn, simm9:$offset))]>;
   2451 defm STURH : StoreUnscaled<0b01, 1, 0b00, FPR16Op, "stur",
   2452                          [(store (f16 FPR16Op:$Rt),
   2453                                  (am_unscaled16 GPR64sp:$Rn, simm9:$offset))]>;
   2454 defm STURS : StoreUnscaled<0b10, 1, 0b00, FPR32Op, "stur",
   2455                          [(store (f32 FPR32Op:$Rt),
   2456                                  (am_unscaled32 GPR64sp:$Rn, simm9:$offset))]>;
   2457 defm STURD : StoreUnscaled<0b11, 1, 0b00, FPR64Op, "stur",
   2458                          [(store (f64 FPR64Op:$Rt),
   2459                                  (am_unscaled64 GPR64sp:$Rn, simm9:$offset))]>;
   2460 defm STURQ : StoreUnscaled<0b00, 1, 0b10, FPR128Op, "stur",
   2461                          [(store (f128 FPR128Op:$Rt),
   2462                                  (am_unscaled128 GPR64sp:$Rn, simm9:$offset))]>;
   2463 defm STURHH : StoreUnscaled<0b01, 0, 0b00, GPR32z, "sturh",
   2464                          [(truncstorei16 GPR32z:$Rt,
   2465                                  (am_unscaled16 GPR64sp:$Rn, simm9:$offset))]>;
   2466 defm STURBB : StoreUnscaled<0b00, 0, 0b00, GPR32z, "sturb",
   2467                          [(truncstorei8 GPR32z:$Rt,
   2468                                   (am_unscaled8 GPR64sp:$Rn, simm9:$offset))]>;
   2469 
   2470 // Armv8.4 LDAPR & STLR with Immediate Offset instruction
   2471 let Predicates = [HasV8_4a] in {
   2472 defm STLURB     : BaseStoreUnscaleV84<"stlurb",  0b00, 0b00, GPR32>;
   2473 defm STLURH     : BaseStoreUnscaleV84<"stlurh",  0b01, 0b00, GPR32>;
   2474 defm STLURW     : BaseStoreUnscaleV84<"stlur",   0b10, 0b00, GPR32>;
   2475 defm STLURX     : BaseStoreUnscaleV84<"stlur",   0b11, 0b00, GPR64>;
   2476 defm LDAPURB    : BaseLoadUnscaleV84<"ldapurb",  0b00, 0b01, GPR32>;
   2477 defm LDAPURSBW  : BaseLoadUnscaleV84<"ldapursb", 0b00, 0b11, GPR32>;
   2478 defm LDAPURSBX  : BaseLoadUnscaleV84<"ldapursb", 0b00, 0b10, GPR64>;
   2479 defm LDAPURH    : BaseLoadUnscaleV84<"ldapurh",  0b01, 0b01, GPR32>;
   2480 defm LDAPURSHW  : BaseLoadUnscaleV84<"ldapursh", 0b01, 0b11, GPR32>;
   2481 defm LDAPURSHX  : BaseLoadUnscaleV84<"ldapursh", 0b01, 0b10, GPR64>;
   2482 defm LDAPUR     : BaseLoadUnscaleV84<"ldapur",   0b10, 0b01, GPR32>;
   2483 defm LDAPURSW   : BaseLoadUnscaleV84<"ldapursw", 0b10, 0b10, GPR64>;
   2484 defm LDAPURX    : BaseLoadUnscaleV84<"ldapur",   0b11, 0b01, GPR64>;
   2485 }
   2486 
   2487 // Match all store 64 bits width whose type is compatible with FPR64
   2488 def : Pat<(store (v1f64 FPR64:$Rt), (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
   2489           (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
   2490 def : Pat<(store (v1i64 FPR64:$Rt), (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
   2491           (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
   2492 
   2493 let AddedComplexity = 10 in {
   2494 
   2495 let Predicates = [IsLE] in {
   2496   // We must use ST1 to store vectors in big-endian.
   2497   def : Pat<(store (v2f32 FPR64:$Rt),
   2498                    (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
   2499             (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
   2500   def : Pat<(store (v8i8 FPR64:$Rt),
   2501                    (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
   2502             (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
   2503   def : Pat<(store (v4i16 FPR64:$Rt),
   2504                    (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
   2505             (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
   2506   def : Pat<(store (v2i32 FPR64:$Rt),
   2507                    (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
   2508             (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
   2509   def : Pat<(store (v4f16 FPR64:$Rt),
   2510                    (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
   2511             (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
   2512 }
   2513 
   2514 // Match all store 128 bits width whose type is compatible with FPR128
   2515 def : Pat<(store (f128 FPR128:$Rt), (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
   2516           (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
   2517 
   2518 let Predicates = [IsLE] in {
   2519   // We must use ST1 to store vectors in big-endian.
   2520   def : Pat<(store (v4f32 FPR128:$Rt),
   2521                    (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
   2522             (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
   2523   def : Pat<(store (v2f64 FPR128:$Rt),
   2524                    (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
   2525             (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
   2526   def : Pat<(store (v16i8 FPR128:$Rt),
   2527                    (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
   2528             (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
   2529   def : Pat<(store (v8i16 FPR128:$Rt),
   2530                    (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
   2531             (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
   2532   def : Pat<(store (v4i32 FPR128:$Rt),
   2533                    (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
   2534             (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
   2535   def : Pat<(store (v2i64 FPR128:$Rt),
   2536                    (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
   2537             (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
   2538   def : Pat<(store (v2f64 FPR128:$Rt),
   2539                    (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
   2540             (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
   2541   def : Pat<(store (v8f16 FPR128:$Rt),
   2542                    (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
   2543             (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
   2544 }
   2545 
   2546 } // AddedComplexity = 10
   2547 
   2548 // unscaled i64 truncating stores
   2549 def : Pat<(truncstorei32 GPR64:$Rt, (am_unscaled32 GPR64sp:$Rn, simm9:$offset)),
   2550   (STURWi (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, simm9:$offset)>;
   2551 def : Pat<(truncstorei16 GPR64:$Rt, (am_unscaled16 GPR64sp:$Rn, simm9:$offset)),
   2552   (STURHHi (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, simm9:$offset)>;
   2553 def : Pat<(truncstorei8 GPR64:$Rt, (am_unscaled8 GPR64sp:$Rn, simm9:$offset)),
   2554   (STURBBi (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, simm9:$offset)>;
   2555 
   2556 // Match stores from lane 0 to the appropriate subreg's store.
   2557 multiclass VecStoreULane0Pat<SDPatternOperator StoreOp,
   2558                              ValueType VTy, ValueType STy,
   2559                              SubRegIndex SubRegIdx, Instruction STR> {
   2560   defm : VecStoreLane0Pat<am_unscaled128, StoreOp, VTy, STy, SubRegIdx, simm9, STR>;
   2561 }
   2562 
   2563 let AddedComplexity = 19 in {
   2564   defm : VecStoreULane0Pat<truncstorei16, v8i16, i32, hsub, STURHi>;
   2565   defm : VecStoreULane0Pat<store,         v8f16, f16, hsub, STURHi>;
   2566   defm : VecStoreULane0Pat<store,         v4i32, i32, ssub, STURSi>;
   2567   defm : VecStoreULane0Pat<store,         v4f32, f32, ssub, STURSi>;
   2568   defm : VecStoreULane0Pat<store,         v2i64, i64, dsub, STURDi>;
   2569   defm : VecStoreULane0Pat<store,         v2f64, f64, dsub, STURDi>;
   2570 }
   2571 
   2572 //---
   2573 // STR mnemonics fall back to STUR for negative or unaligned offsets.
   2574 def : InstAlias<"str $Rt, [$Rn, $offset]",
   2575                 (STURXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>;
   2576 def : InstAlias<"str $Rt, [$Rn, $offset]",
   2577                 (STURWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
   2578 def : InstAlias<"str $Rt, [$Rn, $offset]",
   2579                 (STURBi FPR8Op:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
   2580 def : InstAlias<"str $Rt, [$Rn, $offset]",
   2581                 (STURHi FPR16Op:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
   2582 def : InstAlias<"str $Rt, [$Rn, $offset]",
   2583                 (STURSi FPR32Op:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
   2584 def : InstAlias<"str $Rt, [$Rn, $offset]",
   2585                 (STURDi FPR64Op:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>;
   2586 def : InstAlias<"str $Rt, [$Rn, $offset]",
   2587                 (STURQi FPR128Op:$Rt, GPR64sp:$Rn, simm9_offset_fb128:$offset), 0>;
   2588 
   2589 def : InstAlias<"strb $Rt, [$Rn, $offset]",
   2590                 (STURBBi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
   2591 def : InstAlias<"strh $Rt, [$Rn, $offset]",
   2592                 (STURHHi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
   2593 
   2594 //---
   2595 // (unscaled immediate, unprivileged)
   2596 defm STTRW : StoreUnprivileged<0b10, 0, 0b00, GPR32, "sttr">;
   2597 defm STTRX : StoreUnprivileged<0b11, 0, 0b00, GPR64, "sttr">;
   2598 
   2599 defm STTRH : StoreUnprivileged<0b01, 0, 0b00, GPR32, "sttrh">;
   2600 defm STTRB : StoreUnprivileged<0b00, 0, 0b00, GPR32, "sttrb">;
   2601 
   2602 //---
   2603 // (immediate pre-indexed)
   2604 def STRWpre : StorePreIdx<0b10, 0, 0b00, GPR32z, "str",  pre_store, i32>;
   2605 def STRXpre : StorePreIdx<0b11, 0, 0b00, GPR64z, "str",  pre_store, i64>;
   2606 def STRBpre : StorePreIdx<0b00, 1, 0b00, FPR8Op,  "str",  pre_store, untyped>;
   2607 def STRHpre : StorePreIdx<0b01, 1, 0b00, FPR16Op, "str",  pre_store, f16>;
   2608 def STRSpre : StorePreIdx<0b10, 1, 0b00, FPR32Op, "str",  pre_store, f32>;
   2609 def STRDpre : StorePreIdx<0b11, 1, 0b00, FPR64Op, "str",  pre_store, f64>;
   2610 def STRQpre : StorePreIdx<0b00, 1, 0b10, FPR128Op, "str", pre_store, f128>;
   2611 
   2612 def STRBBpre : StorePreIdx<0b00, 0, 0b00, GPR32z, "strb", pre_truncsti8,  i32>;
   2613 def STRHHpre : StorePreIdx<0b01, 0, 0b00, GPR32z, "strh", pre_truncsti16, i32>;
   2614 
   2615 // truncstore i64
   2616 def : Pat<(pre_truncsti32 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
   2617   (STRWpre (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
   2618            simm9:$off)>;
   2619 def : Pat<(pre_truncsti16 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
   2620   (STRHHpre (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
   2621             simm9:$off)>;
   2622 def : Pat<(pre_truncsti8 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
   2623   (STRBBpre (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
   2624             simm9:$off)>;
   2625 
   2626 def : Pat<(pre_store (v8i8 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
   2627           (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
   2628 def : Pat<(pre_store (v4i16 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
   2629           (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
   2630 def : Pat<(pre_store (v2i32 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
   2631           (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
   2632 def : Pat<(pre_store (v2f32 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
   2633           (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
   2634 def : Pat<(pre_store (v1i64 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
   2635           (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
   2636 def : Pat<(pre_store (v1f64 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
   2637           (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
   2638 def : Pat<(pre_store (v4f16 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
   2639           (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
   2640 
   2641 def : Pat<(pre_store (v16i8 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
   2642           (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
   2643 def : Pat<(pre_store (v8i16 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
   2644           (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
   2645 def : Pat<(pre_store (v4i32 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
   2646           (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
   2647 def : Pat<(pre_store (v4f32 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
   2648           (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
   2649 def : Pat<(pre_store (v2i64 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
   2650           (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
   2651 def : Pat<(pre_store (v2f64 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
   2652           (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
   2653 def : Pat<(pre_store (v8f16 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
   2654           (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
   2655 
   2656 //---
   2657 // (immediate post-indexed)
   2658 def STRWpost : StorePostIdx<0b10, 0, 0b00, GPR32z,  "str", post_store, i32>;
   2659 def STRXpost : StorePostIdx<0b11, 0, 0b00, GPR64z,  "str", post_store, i64>;
   2660 def STRBpost : StorePostIdx<0b00, 1, 0b00, FPR8Op,   "str", post_store, untyped>;
   2661 def STRHpost : StorePostIdx<0b01, 1, 0b00, FPR16Op,  "str", post_store, f16>;
   2662 def STRSpost : StorePostIdx<0b10, 1, 0b00, FPR32Op,  "str", post_store, f32>;
   2663 def STRDpost : StorePostIdx<0b11, 1, 0b00, FPR64Op,  "str", post_store, f64>;
   2664 def STRQpost : StorePostIdx<0b00, 1, 0b10, FPR128Op, "str", post_store, f128>;
   2665 
   2666 def STRBBpost : StorePostIdx<0b00, 0, 0b00, GPR32z, "strb", post_truncsti8, i32>;
   2667 def STRHHpost : StorePostIdx<0b01, 0, 0b00, GPR32z, "strh", post_truncsti16, i32>;
   2668 
   2669 // truncstore i64
   2670 def : Pat<(post_truncsti32 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
   2671   (STRWpost (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
   2672             simm9:$off)>;
   2673 def : Pat<(post_truncsti16 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
   2674   (STRHHpost (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
   2675              simm9:$off)>;
   2676 def : Pat<(post_truncsti8 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
   2677   (STRBBpost (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
   2678              simm9:$off)>;
   2679 
   2680 def : Pat<(post_store (v8i8 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
   2681           (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
   2682 def : Pat<(post_store (v4i16 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
   2683           (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
   2684 def : Pat<(post_store (v2i32 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
   2685           (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
   2686 def : Pat<(post_store (v2f32 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
   2687           (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
   2688 def : Pat<(post_store (v1i64 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
   2689           (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
   2690 def : Pat<(post_store (v1f64 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
   2691           (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
   2692 def : Pat<(post_store (v4f16 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
   2693           (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
   2694 
   2695 def : Pat<(post_store (v16i8 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
   2696           (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
   2697 def : Pat<(post_store (v8i16 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
   2698           (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
   2699 def : Pat<(post_store (v4i32 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
   2700           (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
   2701 def : Pat<(post_store (v4f32 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
   2702           (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
   2703 def : Pat<(post_store (v2i64 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
   2704           (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
   2705 def : Pat<(post_store (v2f64 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
   2706           (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
   2707 def : Pat<(post_store (v8f16 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
   2708           (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
   2709 
   2710 //===----------------------------------------------------------------------===//
   2711 // Load/store exclusive instructions.
   2712 //===----------------------------------------------------------------------===//
   2713 
   2714 def LDARW  : LoadAcquire   <0b10, 1, 1, 0, 1, GPR32, "ldar">;
   2715 def LDARX  : LoadAcquire   <0b11, 1, 1, 0, 1, GPR64, "ldar">;
   2716 def LDARB  : LoadAcquire   <0b00, 1, 1, 0, 1, GPR32, "ldarb">;
   2717 def LDARH  : LoadAcquire   <0b01, 1, 1, 0, 1, GPR32, "ldarh">;
   2718 
   2719 def LDAXRW : LoadExclusive <0b10, 0, 1, 0, 1, GPR32, "ldaxr">;
   2720 def LDAXRX : LoadExclusive <0b11, 0, 1, 0, 1, GPR64, "ldaxr">;
   2721 def LDAXRB : LoadExclusive <0b00, 0, 1, 0, 1, GPR32, "ldaxrb">;
   2722 def LDAXRH : LoadExclusive <0b01, 0, 1, 0, 1, GPR32, "ldaxrh">;
   2723 
   2724 def LDXRW  : LoadExclusive <0b10, 0, 1, 0, 0, GPR32, "ldxr">;
   2725 def LDXRX  : LoadExclusive <0b11, 0, 1, 0, 0, GPR64, "ldxr">;
   2726 def LDXRB  : LoadExclusive <0b00, 0, 1, 0, 0, GPR32, "ldxrb">;
   2727 def LDXRH  : LoadExclusive <0b01, 0, 1, 0, 0, GPR32, "ldxrh">;
   2728 
   2729 def STLRW  : StoreRelease  <0b10, 1, 0, 0, 1, GPR32, "stlr">;
   2730 def STLRX  : StoreRelease  <0b11, 1, 0, 0, 1, GPR64, "stlr">;
   2731 def STLRB  : StoreRelease  <0b00, 1, 0, 0, 1, GPR32, "stlrb">;
   2732 def STLRH  : StoreRelease  <0b01, 1, 0, 0, 1, GPR32, "stlrh">;
   2733 
   2734 def STLXRW : StoreExclusive<0b10, 0, 0, 0, 1, GPR32, "stlxr">;
   2735 def STLXRX : StoreExclusive<0b11, 0, 0, 0, 1, GPR64, "stlxr">;
   2736 def STLXRB : StoreExclusive<0b00, 0, 0, 0, 1, GPR32, "stlxrb">;
   2737 def STLXRH : StoreExclusive<0b01, 0, 0, 0, 1, GPR32, "stlxrh">;
   2738 
   2739 def STXRW  : StoreExclusive<0b10, 0, 0, 0, 0, GPR32, "stxr">;
   2740 def STXRX  : StoreExclusive<0b11, 0, 0, 0, 0, GPR64, "stxr">;
   2741 def STXRB  : StoreExclusive<0b00, 0, 0, 0, 0, GPR32, "stxrb">;
   2742 def STXRH  : StoreExclusive<0b01, 0, 0, 0, 0, GPR32, "stxrh">;
   2743 
   2744 def LDAXPW : LoadExclusivePair<0b10, 0, 1, 1, 1, GPR32, "ldaxp">;
   2745 def LDAXPX : LoadExclusivePair<0b11, 0, 1, 1, 1, GPR64, "ldaxp">;
   2746 
   2747 def LDXPW  : LoadExclusivePair<0b10, 0, 1, 1, 0, GPR32, "ldxp">;
   2748 def LDXPX  : LoadExclusivePair<0b11, 0, 1, 1, 0, GPR64, "ldxp">;
   2749 
   2750 def STLXPW : StoreExclusivePair<0b10, 0, 0, 1, 1, GPR32, "stlxp">;
   2751 def STLXPX : StoreExclusivePair<0b11, 0, 0, 1, 1, GPR64, "stlxp">;
   2752 
   2753 def STXPW  : StoreExclusivePair<0b10, 0, 0, 1, 0, GPR32, "stxp">;
   2754 def STXPX  : StoreExclusivePair<0b11, 0, 0, 1, 0, GPR64, "stxp">;
   2755 
   2756 let Predicates = [HasV8_1a] in {
   2757   // v8.1a "Limited Order Region" extension load-acquire instructions
   2758   def LDLARW  : LoadAcquire   <0b10, 1, 1, 0, 0, GPR32, "ldlar">;
   2759   def LDLARX  : LoadAcquire   <0b11, 1, 1, 0, 0, GPR64, "ldlar">;
   2760   def LDLARB  : LoadAcquire   <0b00, 1, 1, 0, 0, GPR32, "ldlarb">;
   2761   def LDLARH  : LoadAcquire   <0b01, 1, 1, 0, 0, GPR32, "ldlarh">;
   2762 
   2763   // v8.1a "Limited Order Region" extension store-release instructions
   2764   def STLLRW  : StoreRelease   <0b10, 1, 0, 0, 0, GPR32, "stllr">;
   2765   def STLLRX  : StoreRelease   <0b11, 1, 0, 0, 0, GPR64, "stllr">;
   2766   def STLLRB  : StoreRelease   <0b00, 1, 0, 0, 0, GPR32, "stllrb">;
   2767   def STLLRH  : StoreRelease   <0b01, 1, 0, 0, 0, GPR32, "stllrh">;
   2768 }
   2769 
   2770 //===----------------------------------------------------------------------===//
   2771 // Scaled floating point to integer conversion instructions.
   2772 //===----------------------------------------------------------------------===//
   2773 
   2774 defm FCVTAS : FPToIntegerUnscaled<0b00, 0b100, "fcvtas", int_aarch64_neon_fcvtas>;
   2775 defm FCVTAU : FPToIntegerUnscaled<0b00, 0b101, "fcvtau", int_aarch64_neon_fcvtau>;
   2776 defm FCVTMS : FPToIntegerUnscaled<0b10, 0b000, "fcvtms", int_aarch64_neon_fcvtms>;
   2777 defm FCVTMU : FPToIntegerUnscaled<0b10, 0b001, "fcvtmu", int_aarch64_neon_fcvtmu>;
   2778 defm FCVTNS : FPToIntegerUnscaled<0b00, 0b000, "fcvtns", int_aarch64_neon_fcvtns>;
   2779 defm FCVTNU : FPToIntegerUnscaled<0b00, 0b001, "fcvtnu", int_aarch64_neon_fcvtnu>;
   2780 defm FCVTPS : FPToIntegerUnscaled<0b01, 0b000, "fcvtps", int_aarch64_neon_fcvtps>;
   2781 defm FCVTPU : FPToIntegerUnscaled<0b01, 0b001, "fcvtpu", int_aarch64_neon_fcvtpu>;
   2782 defm FCVTZS : FPToIntegerUnscaled<0b11, 0b000, "fcvtzs", fp_to_sint>;
   2783 defm FCVTZU : FPToIntegerUnscaled<0b11, 0b001, "fcvtzu", fp_to_uint>;
   2784 defm FCVTZS : FPToIntegerScaled<0b11, 0b000, "fcvtzs", fp_to_sint>;
   2785 defm FCVTZU : FPToIntegerScaled<0b11, 0b001, "fcvtzu", fp_to_uint>;
   2786 
   2787 multiclass FPToIntegerIntPats<Intrinsic round, string INST> {
   2788   def : Pat<(i32 (round f16:$Rn)), (!cast<Instruction>(INST # UWHr) $Rn)>;
   2789   def : Pat<(i64 (round f16:$Rn)), (!cast<Instruction>(INST # UXHr) $Rn)>;
   2790   def : Pat<(i32 (round f32:$Rn)), (!cast<Instruction>(INST # UWSr) $Rn)>;
   2791   def : Pat<(i64 (round f32:$Rn)), (!cast<Instruction>(INST # UXSr) $Rn)>;
   2792   def : Pat<(i32 (round f64:$Rn)), (!cast<Instruction>(INST # UWDr) $Rn)>;
   2793   def : Pat<(i64 (round f64:$Rn)), (!cast<Instruction>(INST # UXDr) $Rn)>;
   2794 
   2795   def : Pat<(i32 (round (fmul f16:$Rn, fixedpoint_f16_i32:$scale))),
   2796             (!cast<Instruction>(INST # SWHri) $Rn, $scale)>;
   2797   def : Pat<(i64 (round (fmul f16:$Rn, fixedpoint_f16_i64:$scale))),
   2798             (!cast<Instruction>(INST # SXHri) $Rn, $scale)>;
   2799   def : Pat<(i32 (round (fmul f32:$Rn, fixedpoint_f32_i32:$scale))),
   2800             (!cast<Instruction>(INST # SWSri) $Rn, $scale)>;
   2801   def : Pat<(i64 (round (fmul f32:$Rn, fixedpoint_f32_i64:$scale))),
   2802             (!cast<Instruction>(INST # SXSri) $Rn, $scale)>;
   2803   def : Pat<(i32 (round (fmul f64:$Rn, fixedpoint_f64_i32:$scale))),
   2804             (!cast<Instruction>(INST # SWDri) $Rn, $scale)>;
   2805   def : Pat<(i64 (round (fmul f64:$Rn, fixedpoint_f64_i64:$scale))),
   2806             (!cast<Instruction>(INST # SXDri) $Rn, $scale)>;
   2807 }
   2808 
   2809 defm : FPToIntegerIntPats<int_aarch64_neon_fcvtzs, "FCVTZS">;
   2810 defm : FPToIntegerIntPats<int_aarch64_neon_fcvtzu, "FCVTZU">;
   2811 
   2812 multiclass FPToIntegerPats<SDNode to_int, SDNode round, string INST> {
   2813   def : Pat<(i32 (to_int (round f32:$Rn))),
   2814             (!cast<Instruction>(INST # UWSr) f32:$Rn)>;
   2815   def : Pat<(i64 (to_int (round f32:$Rn))),
   2816             (!cast<Instruction>(INST # UXSr) f32:$Rn)>;
   2817   def : Pat<(i32 (to_int (round f64:$Rn))),
   2818             (!cast<Instruction>(INST # UWDr) f64:$Rn)>;
   2819   def : Pat<(i64 (to_int (round f64:$Rn))),
   2820             (!cast<Instruction>(INST # UXDr) f64:$Rn)>;
   2821 }
   2822 
   2823 defm : FPToIntegerPats<fp_to_sint, fceil,  "FCVTPS">;
   2824 defm : FPToIntegerPats<fp_to_uint, fceil,  "FCVTPU">;
   2825 defm : FPToIntegerPats<fp_to_sint, ffloor, "FCVTMS">;
   2826 defm : FPToIntegerPats<fp_to_uint, ffloor, "FCVTMU">;
   2827 defm : FPToIntegerPats<fp_to_sint, ftrunc, "FCVTZS">;
   2828 defm : FPToIntegerPats<fp_to_uint, ftrunc, "FCVTZU">;
   2829 defm : FPToIntegerPats<fp_to_sint, fround, "FCVTAS">;
   2830 defm : FPToIntegerPats<fp_to_uint, fround, "FCVTAU">;
   2831 
   2832 //===----------------------------------------------------------------------===//
   2833 // Scaled integer to floating point conversion instructions.
   2834 //===----------------------------------------------------------------------===//
   2835 
   2836 defm SCVTF : IntegerToFP<0, "scvtf", sint_to_fp>;
   2837 defm UCVTF : IntegerToFP<1, "ucvtf", uint_to_fp>;
   2838 
   2839 //===----------------------------------------------------------------------===//
   2840 // Unscaled integer to floating point conversion instruction.
   2841 //===----------------------------------------------------------------------===//
   2842 
   2843 defm FMOV : UnscaledConversion<"fmov">;
   2844 
   2845 // Add pseudo ops for FMOV 0 so we can mark them as isReMaterializable
   2846 let isReMaterializable = 1, isCodeGenOnly = 1, isAsCheapAsAMove = 1 in {
   2847 def FMOVH0 : Pseudo<(outs FPR16:$Rd), (ins), [(set f16:$Rd, (fpimm0))]>,
   2848     Sched<[WriteF]>, Requires<[HasFullFP16]>;
   2849 def FMOVS0 : Pseudo<(outs FPR32:$Rd), (ins), [(set f32:$Rd, (fpimm0))]>,
   2850     Sched<[WriteF]>;
   2851 def FMOVD0 : Pseudo<(outs FPR64:$Rd), (ins), [(set f64:$Rd, (fpimm0))]>,
   2852     Sched<[WriteF]>;
   2853 }
   2854 // Similarly add aliases
   2855 def : InstAlias<"fmov $Rd, #0.0", (FMOVWHr FPR16:$Rd, WZR), 0>,
   2856     Requires<[HasFullFP16]>;
   2857 def : InstAlias<"fmov $Rd, #0.0", (FMOVWSr FPR32:$Rd, WZR), 0>;
   2858 def : InstAlias<"fmov $Rd, #0.0", (FMOVXDr FPR64:$Rd, XZR), 0>;
   2859 
   2860 //===----------------------------------------------------------------------===//
   2861 // Floating point conversion instruction.
   2862 //===----------------------------------------------------------------------===//
   2863 
   2864 defm FCVT : FPConversion<"fcvt">;
   2865 
   2866 //===----------------------------------------------------------------------===//
   2867 // Floating point single operand instructions.
   2868 //===----------------------------------------------------------------------===//
   2869 
   2870 defm FABS   : SingleOperandFPData<0b0001, "fabs", fabs>;
   2871 defm FMOV   : SingleOperandFPData<0b0000, "fmov">;
   2872 defm FNEG   : SingleOperandFPData<0b0010, "fneg", fneg>;
   2873 defm FRINTA : SingleOperandFPData<0b1100, "frinta", fround>;
   2874 defm FRINTI : SingleOperandFPData<0b1111, "frinti", fnearbyint>;
   2875 defm FRINTM : SingleOperandFPData<0b1010, "frintm", ffloor>;
   2876 defm FRINTN : SingleOperandFPData<0b1000, "frintn", int_aarch64_neon_frintn>;
   2877 defm FRINTP : SingleOperandFPData<0b1001, "frintp", fceil>;
   2878 
   2879 def : Pat<(v1f64 (int_aarch64_neon_frintn (v1f64 FPR64:$Rn))),
   2880           (FRINTNDr FPR64:$Rn)>;
   2881 
   2882 defm FRINTX : SingleOperandFPData<0b1110, "frintx", frint>;
   2883 defm FRINTZ : SingleOperandFPData<0b1011, "frintz", ftrunc>;
   2884 
   2885 let SchedRW = [WriteFDiv] in {
   2886 defm FSQRT  : SingleOperandFPData<0b0011, "fsqrt", fsqrt>;
   2887 }
   2888 
   2889 //===----------------------------------------------------------------------===//
   2890 // Floating point two operand instructions.
   2891 //===----------------------------------------------------------------------===//
   2892 
   2893 defm FADD   : TwoOperandFPData<0b0010, "fadd", fadd>;
   2894 let SchedRW = [WriteFDiv] in {
   2895 defm FDIV   : TwoOperandFPData<0b0001, "fdiv", fdiv>;
   2896 }
   2897 defm FMAXNM : TwoOperandFPData<0b0110, "fmaxnm", fmaxnum>;
   2898 defm FMAX   : TwoOperandFPData<0b0100, "fmax", fmaxnan>;
   2899 defm FMINNM : TwoOperandFPData<0b0111, "fminnm", fminnum>;
   2900 defm FMIN   : TwoOperandFPData<0b0101, "fmin", fminnan>;
   2901 let SchedRW = [WriteFMul] in {
   2902 defm FMUL   : TwoOperandFPData<0b0000, "fmul", fmul>;
   2903 defm FNMUL  : TwoOperandFPDataNeg<0b1000, "fnmul", fmul>;
   2904 }
   2905 defm FSUB   : TwoOperandFPData<0b0011, "fsub", fsub>;
   2906 
   2907 def : Pat<(v1f64 (fmaxnan (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
   2908           (FMAXDrr FPR64:$Rn, FPR64:$Rm)>;
   2909 def : Pat<(v1f64 (fminnan (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
   2910           (FMINDrr FPR64:$Rn, FPR64:$Rm)>;
   2911 def : Pat<(v1f64 (fmaxnum (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
   2912           (FMAXNMDrr FPR64:$Rn, FPR64:$Rm)>;
   2913 def : Pat<(v1f64 (fminnum (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
   2914           (FMINNMDrr FPR64:$Rn, FPR64:$Rm)>;
   2915 
   2916 //===----------------------------------------------------------------------===//
   2917 // Floating point three operand instructions.
   2918 //===----------------------------------------------------------------------===//
   2919 
   2920 defm FMADD  : ThreeOperandFPData<0, 0, "fmadd", fma>;
   2921 defm FMSUB  : ThreeOperandFPData<0, 1, "fmsub",
   2922      TriOpFrag<(fma node:$LHS, (fneg node:$MHS), node:$RHS)> >;
   2923 defm FNMADD : ThreeOperandFPData<1, 0, "fnmadd",
   2924      TriOpFrag<(fneg (fma node:$LHS, node:$MHS, node:$RHS))> >;
   2925 defm FNMSUB : ThreeOperandFPData<1, 1, "fnmsub",
   2926      TriOpFrag<(fma node:$LHS, node:$MHS, (fneg node:$RHS))> >;
   2927 
   2928 // The following def pats catch the case where the LHS of an FMA is negated.
   2929 // The TriOpFrag above catches the case where the middle operand is negated.
   2930 
   2931 // N.b. FMSUB etc have the accumulator at the *end* of (outs), unlike
   2932 // the NEON variant.
   2933 def : Pat<(f32 (fma (fneg FPR32:$Rn), FPR32:$Rm, FPR32:$Ra)),
   2934           (FMSUBSrrr FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;
   2935 
   2936 def : Pat<(f64 (fma (fneg FPR64:$Rn), FPR64:$Rm, FPR64:$Ra)),
   2937           (FMSUBDrrr FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;
   2938 
   2939 // We handled -(a + b*c) for FNMADD above, now it's time for "(-a) + (-b)*c" and
   2940 // "(-a) + b*(-c)".
   2941 def : Pat<(f32 (fma (fneg FPR32:$Rn), FPR32:$Rm, (fneg FPR32:$Ra))),
   2942           (FNMADDSrrr FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;
   2943 
   2944 def : Pat<(f64 (fma (fneg FPR64:$Rn), FPR64:$Rm, (fneg FPR64:$Ra))),
   2945           (FNMADDDrrr FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;
   2946 
   2947 def : Pat<(f32 (fma FPR32:$Rn, (fneg FPR32:$Rm), (fneg FPR32:$Ra))),
   2948           (FNMADDSrrr FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;
   2949 
   2950 def : Pat<(f64 (fma FPR64:$Rn, (fneg FPR64:$Rm), (fneg FPR64:$Ra))),
   2951           (FNMADDDrrr FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;
   2952 
   2953 //===----------------------------------------------------------------------===//
   2954 // Floating point comparison instructions.
   2955 //===----------------------------------------------------------------------===//
   2956 
   2957 defm FCMPE : FPComparison<1, "fcmpe">;
   2958 defm FCMP  : FPComparison<0, "fcmp", AArch64fcmp>;
   2959 
   2960 //===----------------------------------------------------------------------===//
   2961 // Floating point conditional comparison instructions.
   2962 //===----------------------------------------------------------------------===//
   2963 
   2964 defm FCCMPE : FPCondComparison<1, "fccmpe">;
   2965 defm FCCMP  : FPCondComparison<0, "fccmp", AArch64fccmp>;
   2966 
   2967 //===----------------------------------------------------------------------===//
   2968 // Floating point conditional select instruction.
   2969 //===----------------------------------------------------------------------===//
   2970 
   2971 defm FCSEL : FPCondSelect<"fcsel">;
   2972 
   2973 // CSEL instructions providing f128 types need to be handled by a
   2974 // pseudo-instruction since the eventual code will need to introduce basic
   2975 // blocks and control flow.
   2976 def F128CSEL : Pseudo<(outs FPR128:$Rd),
   2977                       (ins FPR128:$Rn, FPR128:$Rm, ccode:$cond),
   2978                       [(set (f128 FPR128:$Rd),
   2979                             (AArch64csel FPR128:$Rn, FPR128:$Rm,
   2980                                        (i32 imm:$cond), NZCV))]> {
   2981   let Uses = [NZCV];
   2982   let usesCustomInserter = 1;
   2983   let hasNoSchedulingInfo = 1;
   2984 }
   2985 
   2986 
   2987 //===----------------------------------------------------------------------===//
   2988 // Floating point immediate move.
   2989 //===----------------------------------------------------------------------===//
   2990 
   2991 let isReMaterializable = 1 in {
   2992 defm FMOV : FPMoveImmediate<"fmov">;
   2993 }
   2994 
   2995 //===----------------------------------------------------------------------===//
   2996 // Advanced SIMD two vector instructions.
   2997 //===----------------------------------------------------------------------===//
   2998 
   2999 defm UABDL   : SIMDLongThreeVectorBHSabdl<1, 0b0111, "uabdl",
   3000                                           int_aarch64_neon_uabd>;
   3001 // Match UABDL in log2-shuffle patterns.
   3002 def : Pat<(abs (v8i16 (sub (zext (v8i8 V64:$opA)),
   3003                            (zext (v8i8 V64:$opB))))),
   3004           (UABDLv8i8_v8i16 V64:$opA, V64:$opB)>;
   3005 def : Pat<(xor (v8i16 (AArch64vashr v8i16:$src, (i32 15))),
   3006                (v8i16 (add (sub (zext (v8i8 V64:$opA)),
   3007                                 (zext (v8i8 V64:$opB))),
   3008                            (AArch64vashr v8i16:$src, (i32 15))))),
   3009           (UABDLv8i8_v8i16 V64:$opA, V64:$opB)>;
   3010 def : Pat<(abs (v8i16 (sub (zext (extract_high_v16i8 V128:$opA)),
   3011                            (zext (extract_high_v16i8 V128:$opB))))),
   3012           (UABDLv16i8_v8i16 V128:$opA, V128:$opB)>;
   3013 def : Pat<(xor (v8i16 (AArch64vashr v8i16:$src, (i32 15))),
   3014                (v8i16 (add (sub (zext (extract_high_v16i8 V128:$opA)),
   3015                                 (zext (extract_high_v16i8 V128:$opB))),
   3016                            (AArch64vashr v8i16:$src, (i32 15))))),
   3017           (UABDLv16i8_v8i16 V128:$opA, V128:$opB)>;
   3018 def : Pat<(abs (v4i32 (sub (zext (v4i16 V64:$opA)),
   3019                            (zext (v4i16 V64:$opB))))),
   3020           (UABDLv4i16_v4i32 V64:$opA, V64:$opB)>;
   3021 def : Pat<(abs (v4i32 (sub (zext (extract_high_v8i16 V128:$opA)),
   3022                            (zext (extract_high_v8i16 V128:$opB))))),
   3023           (UABDLv8i16_v4i32 V128:$opA, V128:$opB)>;
   3024 def : Pat<(abs (v2i64 (sub (zext (v2i32 V64:$opA)),
   3025                            (zext (v2i32 V64:$opB))))),
   3026           (UABDLv2i32_v2i64 V64:$opA, V64:$opB)>;
   3027 def : Pat<(abs (v2i64 (sub (zext (extract_high_v4i32 V128:$opA)),
   3028                            (zext (extract_high_v4i32 V128:$opB))))),
   3029           (UABDLv4i32_v2i64 V128:$opA, V128:$opB)>;
   3030 
   3031 defm ABS    : SIMDTwoVectorBHSD<0, 0b01011, "abs", abs>;
   3032 defm CLS    : SIMDTwoVectorBHS<0, 0b00100, "cls", int_aarch64_neon_cls>;
   3033 defm CLZ    : SIMDTwoVectorBHS<1, 0b00100, "clz", ctlz>;
   3034 defm CMEQ   : SIMDCmpTwoVector<0, 0b01001, "cmeq", AArch64cmeqz>;
   3035 defm CMGE   : SIMDCmpTwoVector<1, 0b01000, "cmge", AArch64cmgez>;
   3036 defm CMGT   : SIMDCmpTwoVector<0, 0b01000, "cmgt", AArch64cmgtz>;
   3037 defm CMLE   : SIMDCmpTwoVector<1, 0b01001, "cmle", AArch64cmlez>;
   3038 defm CMLT   : SIMDCmpTwoVector<0, 0b01010, "cmlt", AArch64cmltz>;
   3039 defm CNT    : SIMDTwoVectorB<0, 0b00, 0b00101, "cnt", ctpop>;
   3040 defm FABS   : SIMDTwoVectorFP<0, 1, 0b01111, "fabs", fabs>;
   3041 
   3042 defm FCMEQ  : SIMDFPCmpTwoVector<0, 1, 0b01101, "fcmeq", AArch64fcmeqz>;
   3043 defm FCMGE  : SIMDFPCmpTwoVector<1, 1, 0b01100, "fcmge", AArch64fcmgez>;
   3044 defm FCMGT  : SIMDFPCmpTwoVector<0, 1, 0b01100, "fcmgt", AArch64fcmgtz>;
   3045 defm FCMLE  : SIMDFPCmpTwoVector<1, 1, 0b01101, "fcmle", AArch64fcmlez>;
   3046 defm FCMLT  : SIMDFPCmpTwoVector<0, 1, 0b01110, "fcmlt", AArch64fcmltz>;
   3047 defm FCVTAS : SIMDTwoVectorFPToInt<0,0,0b11100, "fcvtas",int_aarch64_neon_fcvtas>;
   3048 defm FCVTAU : SIMDTwoVectorFPToInt<1,0,0b11100, "fcvtau",int_aarch64_neon_fcvtau>;
   3049 defm FCVTL  : SIMDFPWidenTwoVector<0, 0, 0b10111, "fcvtl">;
   3050 def : Pat<(v4f32 (int_aarch64_neon_vcvthf2fp (v4i16 V64:$Rn))),
   3051           (FCVTLv4i16 V64:$Rn)>;
   3052 def : Pat<(v4f32 (int_aarch64_neon_vcvthf2fp (extract_subvector (v8i16 V128:$Rn),
   3053                                                               (i64 4)))),
   3054           (FCVTLv8i16 V128:$Rn)>;
   3055 def : Pat<(v2f64 (fpextend (v2f32 V64:$Rn))), (FCVTLv2i32 V64:$Rn)>;
   3056 def : Pat<(v2f64 (fpextend (v2f32 (extract_subvector (v4f32 V128:$Rn),
   3057                                                     (i64 2))))),
   3058           (FCVTLv4i32 V128:$Rn)>;
   3059 
   3060 def : Pat<(v4f32 (fpextend (v4f16 V64:$Rn))), (FCVTLv4i16 V64:$Rn)>;
   3061 def : Pat<(v4f32 (fpextend (v4f16 (extract_subvector (v8f16 V128:$Rn),
   3062                                                     (i64 4))))),
   3063           (FCVTLv8i16 V128:$Rn)>;
   3064 
   3065 defm FCVTMS : SIMDTwoVectorFPToInt<0,0,0b11011, "fcvtms",int_aarch64_neon_fcvtms>;
   3066 defm FCVTMU : SIMDTwoVectorFPToInt<1,0,0b11011, "fcvtmu",int_aarch64_neon_fcvtmu>;
   3067 defm FCVTNS : SIMDTwoVectorFPToInt<0,0,0b11010, "fcvtns",int_aarch64_neon_fcvtns>;
   3068 defm FCVTNU : SIMDTwoVectorFPToInt<1,0,0b11010, "fcvtnu",int_aarch64_neon_fcvtnu>;
   3069 defm FCVTN  : SIMDFPNarrowTwoVector<0, 0, 0b10110, "fcvtn">;
   3070 def : Pat<(v4i16 (int_aarch64_neon_vcvtfp2hf (v4f32 V128:$Rn))),
   3071           (FCVTNv4i16 V128:$Rn)>;
   3072 def : Pat<(concat_vectors V64:$Rd,
   3073                           (v4i16 (int_aarch64_neon_vcvtfp2hf (v4f32 V128:$Rn)))),
   3074           (FCVTNv8i16 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>;
   3075 def : Pat<(v2f32 (fpround (v2f64 V128:$Rn))), (FCVTNv2i32 V128:$Rn)>;
   3076 def : Pat<(v4f16 (fpround (v4f32 V128:$Rn))), (FCVTNv4i16 V128:$Rn)>;
   3077 def : Pat<(concat_vectors V64:$Rd, (v2f32 (fpround (v2f64 V128:$Rn)))),
   3078           (FCVTNv4i32 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>;
   3079 defm FCVTPS : SIMDTwoVectorFPToInt<0,1,0b11010, "fcvtps",int_aarch64_neon_fcvtps>;
   3080 defm FCVTPU : SIMDTwoVectorFPToInt<1,1,0b11010, "fcvtpu",int_aarch64_neon_fcvtpu>;
   3081 defm FCVTXN : SIMDFPInexactCvtTwoVector<1, 0, 0b10110, "fcvtxn",
   3082                                         int_aarch64_neon_fcvtxn>;
   3083 defm FCVTZS : SIMDTwoVectorFPToInt<0, 1, 0b11011, "fcvtzs", fp_to_sint>;
   3084 defm FCVTZU : SIMDTwoVectorFPToInt<1, 1, 0b11011, "fcvtzu", fp_to_uint>;
   3085 
   3086 def : Pat<(v4i16 (int_aarch64_neon_fcvtzs v4f16:$Rn)), (FCVTZSv4f16 $Rn)>;
   3087 def : Pat<(v8i16 (int_aarch64_neon_fcvtzs v8f16:$Rn)), (FCVTZSv8f16 $Rn)>;
   3088 def : Pat<(v2i32 (int_aarch64_neon_fcvtzs v2f32:$Rn)), (FCVTZSv2f32 $Rn)>;
   3089 def : Pat<(v4i32 (int_aarch64_neon_fcvtzs v4f32:$Rn)), (FCVTZSv4f32 $Rn)>;
   3090 def : Pat<(v2i64 (int_aarch64_neon_fcvtzs v2f64:$Rn)), (FCVTZSv2f64 $Rn)>;
   3091 
   3092 def : Pat<(v4i16 (int_aarch64_neon_fcvtzu v4f16:$Rn)), (FCVTZUv4f16 $Rn)>;
   3093 def : Pat<(v8i16 (int_aarch64_neon_fcvtzu v8f16:$Rn)), (FCVTZUv8f16 $Rn)>;
   3094 def : Pat<(v2i32 (int_aarch64_neon_fcvtzu v2f32:$Rn)), (FCVTZUv2f32 $Rn)>;
   3095 def : Pat<(v4i32 (int_aarch64_neon_fcvtzu v4f32:$Rn)), (FCVTZUv4f32 $Rn)>;
   3096 def : Pat<(v2i64 (int_aarch64_neon_fcvtzu v2f64:$Rn)), (FCVTZUv2f64 $Rn)>;
   3097 
   3098 defm FNEG   : SIMDTwoVectorFP<1, 1, 0b01111, "fneg", fneg>;
   3099 defm FRECPE : SIMDTwoVectorFP<0, 1, 0b11101, "frecpe", int_aarch64_neon_frecpe>;
   3100 defm FRINTA : SIMDTwoVectorFP<1, 0, 0b11000, "frinta", fround>;
   3101 defm FRINTI : SIMDTwoVectorFP<1, 1, 0b11001, "frinti", fnearbyint>;
   3102 defm FRINTM : SIMDTwoVectorFP<0, 0, 0b11001, "frintm", ffloor>;
   3103 defm FRINTN : SIMDTwoVectorFP<0, 0, 0b11000, "frintn", int_aarch64_neon_frintn>;
   3104 defm FRINTP : SIMDTwoVectorFP<0, 1, 0b11000, "frintp", fceil>;
   3105 defm FRINTX : SIMDTwoVectorFP<1, 0, 0b11001, "frintx", frint>;
   3106 defm FRINTZ : SIMDTwoVectorFP<0, 1, 0b11001, "frintz", ftrunc>;
   3107 defm FRSQRTE: SIMDTwoVectorFP<1, 1, 0b11101, "frsqrte", int_aarch64_neon_frsqrte>;
   3108 defm FSQRT  : SIMDTwoVectorFP<1, 1, 0b11111, "fsqrt", fsqrt>;
   3109 defm NEG    : SIMDTwoVectorBHSD<1, 0b01011, "neg",
   3110                                UnOpFrag<(sub immAllZerosV, node:$LHS)> >;
   3111 defm NOT    : SIMDTwoVectorB<1, 0b00, 0b00101, "not", vnot>;
   3112 // Aliases for MVN -> NOT.
   3113 def : InstAlias<"mvn{ $Vd.8b, $Vn.8b|.8b $Vd, $Vn}",
   3114                 (NOTv8i8 V64:$Vd, V64:$Vn)>;
   3115 def : InstAlias<"mvn{ $Vd.16b, $Vn.16b|.16b $Vd, $Vn}",
   3116                 (NOTv16i8 V128:$Vd, V128:$Vn)>;
   3117 
   3118 def : Pat<(AArch64neg (v8i8  V64:$Rn)),  (NEGv8i8  V64:$Rn)>;
   3119 def : Pat<(AArch64neg (v16i8 V128:$Rn)), (NEGv16i8 V128:$Rn)>;
   3120 def : Pat<(AArch64neg (v4i16 V64:$Rn)),  (NEGv4i16 V64:$Rn)>;
   3121 def : Pat<(AArch64neg (v8i16 V128:$Rn)), (NEGv8i16 V128:$Rn)>;
   3122 def : Pat<(AArch64neg (v2i32 V64:$Rn)),  (NEGv2i32 V64:$Rn)>;
   3123 def : Pat<(AArch64neg (v4i32 V128:$Rn)), (NEGv4i32 V128:$Rn)>;
   3124 def : Pat<(AArch64neg (v2i64 V128:$Rn)), (NEGv2i64 V128:$Rn)>;
   3125 
   3126 def : Pat<(AArch64not (v8i8 V64:$Rn)),   (NOTv8i8  V64:$Rn)>;
   3127 def : Pat<(AArch64not (v16i8 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
   3128 def : Pat<(AArch64not (v4i16 V64:$Rn)),  (NOTv8i8  V64:$Rn)>;
   3129 def : Pat<(AArch64not (v8i16 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
   3130 def : Pat<(AArch64not (v2i32 V64:$Rn)),  (NOTv8i8  V64:$Rn)>;
   3131 def : Pat<(AArch64not (v1i64 V64:$Rn)),  (NOTv8i8  V64:$Rn)>;
   3132 def : Pat<(AArch64not (v4i32 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
   3133 def : Pat<(AArch64not (v2i64 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
   3134 
   3135 def : Pat<(vnot (v4i16 V64:$Rn)),  (NOTv8i8  V64:$Rn)>;
   3136 def : Pat<(vnot (v8i16 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
   3137 def : Pat<(vnot (v2i32 V64:$Rn)),  (NOTv8i8  V64:$Rn)>;
   3138 def : Pat<(vnot (v4i32 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
   3139 def : Pat<(vnot (v2i64 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
   3140 
   3141 defm RBIT   : SIMDTwoVectorB<1, 0b01, 0b00101, "rbit", int_aarch64_neon_rbit>;
   3142 defm REV16  : SIMDTwoVectorB<0, 0b00, 0b00001, "rev16", AArch64rev16>;
   3143 defm REV32  : SIMDTwoVectorBH<1, 0b00000, "rev32", AArch64rev32>;
   3144 defm REV64  : SIMDTwoVectorBHS<0, 0b00000, "rev64", AArch64rev64>;
   3145 defm SADALP : SIMDLongTwoVectorTied<0, 0b00110, "sadalp",
   3146        BinOpFrag<(add node:$LHS, (int_aarch64_neon_saddlp node:$RHS))> >;
   3147 defm SADDLP : SIMDLongTwoVector<0, 0b00010, "saddlp", int_aarch64_neon_saddlp>;
   3148 defm SCVTF  : SIMDTwoVectorIntToFP<0, 0, 0b11101, "scvtf", sint_to_fp>;
   3149 defm SHLL   : SIMDVectorLShiftLongBySizeBHS;
   3150 defm SQABS  : SIMDTwoVectorBHSD<0, 0b00111, "sqabs", int_aarch64_neon_sqabs>;
   3151 defm SQNEG  : SIMDTwoVectorBHSD<1, 0b00111, "sqneg", int_aarch64_neon_sqneg>;
   3152 defm SQXTN  : SIMDMixedTwoVector<0, 0b10100, "sqxtn", int_aarch64_neon_sqxtn>;
   3153 defm SQXTUN : SIMDMixedTwoVector<1, 0b10010, "sqxtun", int_aarch64_neon_sqxtun>;
   3154 defm SUQADD : SIMDTwoVectorBHSDTied<0, 0b00011, "suqadd",int_aarch64_neon_suqadd>;
   3155 defm UADALP : SIMDLongTwoVectorTied<1, 0b00110, "uadalp",
   3156        BinOpFrag<(add node:$LHS, (int_aarch64_neon_uaddlp node:$RHS))> >;
   3157 defm UADDLP : SIMDLongTwoVector<1, 0b00010, "uaddlp",
   3158                     int_aarch64_neon_uaddlp>;
   3159 defm UCVTF  : SIMDTwoVectorIntToFP<1, 0, 0b11101, "ucvtf", uint_to_fp>;
   3160 defm UQXTN  : SIMDMixedTwoVector<1, 0b10100, "uqxtn", int_aarch64_neon_uqxtn>;
   3161 defm URECPE : SIMDTwoVectorS<0, 1, 0b11100, "urecpe", int_aarch64_neon_urecpe>;
   3162 defm URSQRTE: SIMDTwoVectorS<1, 1, 0b11100, "ursqrte", int_aarch64_neon_ursqrte>;
   3163 defm USQADD : SIMDTwoVectorBHSDTied<1, 0b00011, "usqadd",int_aarch64_neon_usqadd>;
   3164 defm XTN    : SIMDMixedTwoVector<0, 0b10010, "xtn", trunc>;
   3165 
   3166 def : Pat<(v4f16 (AArch64rev32 V64:$Rn)), (REV32v4i16 V64:$Rn)>;
   3167 def : Pat<(v4f16 (AArch64rev64 V64:$Rn)), (REV64v4i16 V64:$Rn)>;
   3168 def : Pat<(v8f16 (AArch64rev32 V128:$Rn)), (REV32v8i16 V128:$Rn)>;
   3169 def : Pat<(v8f16 (AArch64rev64 V128:$Rn)), (REV64v8i16 V128:$Rn)>;
   3170 def : Pat<(v2f32 (AArch64rev64 V64:$Rn)), (REV64v2i32 V64:$Rn)>;
   3171 def : Pat<(v4f32 (AArch64rev64 V128:$Rn)), (REV64v4i32 V128:$Rn)>;
   3172 
   3173 // Patterns for vector long shift (by element width). These need to match all
   3174 // three of zext, sext and anyext so it's easier to pull the patterns out of the
   3175 // definition.
   3176 multiclass SIMDVectorLShiftLongBySizeBHSPats<SDPatternOperator ext> {
   3177   def : Pat<(AArch64vshl (v8i16 (ext (v8i8 V64:$Rn))), (i32 8)),
   3178             (SHLLv8i8 V64:$Rn)>;
   3179   def : Pat<(AArch64vshl (v8i16 (ext (extract_high_v16i8 V128:$Rn))), (i32 8)),
   3180             (SHLLv16i8 V128:$Rn)>;
   3181   def : Pat<(AArch64vshl (v4i32 (ext (v4i16 V64:$Rn))), (i32 16)),
   3182             (SHLLv4i16 V64:$Rn)>;
   3183   def : Pat<(AArch64vshl (v4i32 (ext (extract_high_v8i16 V128:$Rn))), (i32 16)),
   3184             (SHLLv8i16 V128:$Rn)>;
   3185   def : Pat<(AArch64vshl (v2i64 (ext (v2i32 V64:$Rn))), (i32 32)),
   3186             (SHLLv2i32 V64:$Rn)>;
   3187   def : Pat<(AArch64vshl (v2i64 (ext (extract_high_v4i32 V128:$Rn))), (i32 32)),
   3188             (SHLLv4i32 V128:$Rn)>;
   3189 }
   3190 
   3191 defm : SIMDVectorLShiftLongBySizeBHSPats<anyext>;
   3192 defm : SIMDVectorLShiftLongBySizeBHSPats<zext>;
   3193 defm : SIMDVectorLShiftLongBySizeBHSPats<sext>;
   3194 
   3195 //===----------------------------------------------------------------------===//
   3196 // Advanced SIMD three vector instructions.
   3197 //===----------------------------------------------------------------------===//
   3198 
   3199 defm ADD     : SIMDThreeSameVector<0, 0b10000, "add", add>;
   3200 defm ADDP    : SIMDThreeSameVector<0, 0b10111, "addp", int_aarch64_neon_addp>;
   3201 defm CMEQ    : SIMDThreeSameVector<1, 0b10001, "cmeq", AArch64cmeq>;
   3202 defm CMGE    : SIMDThreeSameVector<0, 0b00111, "cmge", AArch64cmge>;
   3203 defm CMGT    : SIMDThreeSameVector<0, 0b00110, "cmgt", AArch64cmgt>;
   3204 defm CMHI    : SIMDThreeSameVector<1, 0b00110, "cmhi", AArch64cmhi>;
   3205 defm CMHS    : SIMDThreeSameVector<1, 0b00111, "cmhs", AArch64cmhs>;
   3206 defm CMTST   : SIMDThreeSameVector<0, 0b10001, "cmtst", AArch64cmtst>;
   3207 defm FABD    : SIMDThreeSameVectorFP<1,1,0b010,"fabd", int_aarch64_neon_fabd>;
   3208 let Predicates = [HasNEON] in {
   3209 foreach VT = [ v2f32, v4f32, v2f64 ] in
   3210 def : Pat<(fabs (fsub VT:$Rn, VT:$Rm)), (!cast<Instruction>("FABD"#VT) VT:$Rn, VT:$Rm)>;
   3211 }
   3212 let Predicates = [HasNEON, HasFullFP16] in {
   3213 foreach VT = [ v4f16, v8f16 ] in
   3214 def : Pat<(fabs (fsub VT:$Rn, VT:$Rm)), (!cast<Instruction>("FABD"#VT) VT:$Rn, VT:$Rm)>;
   3215 }
   3216 defm FACGE   : SIMDThreeSameVectorFPCmp<1,0,0b101,"facge",int_aarch64_neon_facge>;
   3217 defm FACGT   : SIMDThreeSameVectorFPCmp<1,1,0b101,"facgt",int_aarch64_neon_facgt>;
   3218 defm FADDP   : SIMDThreeSameVectorFP<1,0,0b010,"faddp",int_aarch64_neon_addp>;
   3219 defm FADD    : SIMDThreeSameVectorFP<0,0,0b010,"fadd", fadd>;
   3220 defm FCMEQ   : SIMDThreeSameVectorFPCmp<0, 0, 0b100, "fcmeq", AArch64fcmeq>;
   3221 defm FCMGE   : SIMDThreeSameVectorFPCmp<1, 0, 0b100, "fcmge", AArch64fcmge>;
   3222 defm FCMGT   : SIMDThreeSameVectorFPCmp<1, 1, 0b100, "fcmgt", AArch64fcmgt>;
   3223 defm FDIV    : SIMDThreeSameVectorFP<1,0,0b111,"fdiv", fdiv>;
   3224 defm FMAXNMP : SIMDThreeSameVectorFP<1,0,0b000,"fmaxnmp", int_aarch64_neon_fmaxnmp>;
   3225 defm FMAXNM  : SIMDThreeSameVectorFP<0,0,0b000,"fmaxnm", fmaxnum>;
   3226 defm FMAXP   : SIMDThreeSameVectorFP<1,0,0b110,"fmaxp", int_aarch64_neon_fmaxp>;
   3227 defm FMAX    : SIMDThreeSameVectorFP<0,0,0b110,"fmax", fmaxnan>;
   3228 defm FMINNMP : SIMDThreeSameVectorFP<1,1,0b000,"fminnmp", int_aarch64_neon_fminnmp>;
   3229 defm FMINNM  : SIMDThreeSameVectorFP<0,1,0b000,"fminnm", fminnum>;
   3230 defm FMINP   : SIMDThreeSameVectorFP<1,1,0b110,"fminp", int_aarch64_neon_fminp>;
   3231 defm FMIN    : SIMDThreeSameVectorFP<0,1,0b110,"fmin", fminnan>;
   3232 
   3233 // NOTE: The operands of the PatFrag are reordered on FMLA/FMLS because the
   3234 // instruction expects the addend first, while the fma intrinsic puts it last.
   3235 defm FMLA     : SIMDThreeSameVectorFPTied<0, 0, 0b001, "fmla",
   3236             TriOpFrag<(fma node:$RHS, node:$MHS, node:$LHS)> >;
   3237 defm FMLS     : SIMDThreeSameVectorFPTied<0, 1, 0b001, "fmls",
   3238             TriOpFrag<(fma node:$MHS, (fneg node:$RHS), node:$LHS)> >;
   3239 
   3240 // The following def pats catch the case where the LHS of an FMA is negated.
   3241 // The TriOpFrag above catches the case where the middle operand is negated.
   3242 def : Pat<(v2f32 (fma (fneg V64:$Rn), V64:$Rm, V64:$Rd)),
   3243           (FMLSv2f32 V64:$Rd, V64:$Rn, V64:$Rm)>;
   3244 
   3245 def : Pat<(v4f32 (fma (fneg V128:$Rn), V128:$Rm, V128:$Rd)),
   3246           (FMLSv4f32 V128:$Rd, V128:$Rn, V128:$Rm)>;
   3247 
   3248 def : Pat<(v2f64 (fma (fneg V128:$Rn), V128:$Rm, V128:$Rd)),
   3249           (FMLSv2f64 V128:$Rd, V128:$Rn, V128:$Rm)>;
   3250 
   3251 defm FMULX    : SIMDThreeSameVectorFP<0,0,0b011,"fmulx", int_aarch64_neon_fmulx>;
   3252 defm FMUL     : SIMDThreeSameVectorFP<1,0,0b011,"fmul", fmul>;
   3253 defm FRECPS   : SIMDThreeSameVectorFP<0,0,0b111,"frecps", int_aarch64_neon_frecps>;
   3254 defm FRSQRTS  : SIMDThreeSameVectorFP<0,1,0b111,"frsqrts", int_aarch64_neon_frsqrts>;
   3255 defm FSUB     : SIMDThreeSameVectorFP<0,1,0b010,"fsub", fsub>;
   3256 defm MLA      : SIMDThreeSameVectorBHSTied<0, 0b10010, "mla",
   3257                       TriOpFrag<(add node:$LHS, (mul node:$MHS, node:$RHS))> >;
   3258 defm MLS      : SIMDThreeSameVectorBHSTied<1, 0b10010, "mls",
   3259                       TriOpFrag<(sub node:$LHS, (mul node:$MHS, node:$RHS))> >;
   3260 defm MUL      : SIMDThreeSameVectorBHS<0, 0b10011, "mul", mul>;
   3261 defm PMUL     : SIMDThreeSameVectorB<1, 0b10011, "pmul", int_aarch64_neon_pmul>;
   3262 defm SABA     : SIMDThreeSameVectorBHSTied<0, 0b01111, "saba",
   3263       TriOpFrag<(add node:$LHS, (int_aarch64_neon_sabd node:$MHS, node:$RHS))> >;
   3264 defm SABD     : SIMDThreeSameVectorBHS<0,0b01110,"sabd", int_aarch64_neon_sabd>;
   3265 defm SHADD    : SIMDThreeSameVectorBHS<0,0b00000,"shadd", int_aarch64_neon_shadd>;
   3266 defm SHSUB    : SIMDThreeSameVectorBHS<0,0b00100,"shsub", int_aarch64_neon_shsub>;
   3267 defm SMAXP    : SIMDThreeSameVectorBHS<0,0b10100,"smaxp", int_aarch64_neon_smaxp>;
   3268 defm SMAX     : SIMDThreeSameVectorBHS<0,0b01100,"smax", smax>;
   3269 defm SMINP    : SIMDThreeSameVectorBHS<0,0b10101,"sminp", int_aarch64_neon_sminp>;
   3270 defm SMIN     : SIMDThreeSameVectorBHS<0,0b01101,"smin", smin>;
   3271 defm SQADD    : SIMDThreeSameVector<0,0b00001,"sqadd", int_aarch64_neon_sqadd>;
   3272 defm SQDMULH  : SIMDThreeSameVectorHS<0,0b10110,"sqdmulh",int_aarch64_neon_sqdmulh>;
   3273 defm SQRDMULH : SIMDThreeSameVectorHS<1,0b10110,"sqrdmulh",int_aarch64_neon_sqrdmulh>;
   3274 defm SQRSHL   : SIMDThreeSameVector<0,0b01011,"sqrshl", int_aarch64_neon_sqrshl>;
   3275 defm SQSHL    : SIMDThreeSameVector<0,0b01001,"sqshl", int_aarch64_neon_sqshl>;
   3276 defm SQSUB    : SIMDThreeSameVector<0,0b00101,"sqsub", int_aarch64_neon_sqsub>;
   3277 defm SRHADD   : SIMDThreeSameVectorBHS<0,0b00010,"srhadd",int_aarch64_neon_srhadd>;
   3278 defm SRSHL    : SIMDThreeSameVector<0,0b01010,"srshl", int_aarch64_neon_srshl>;
   3279 defm SSHL     : SIMDThreeSameVector<0,0b01000,"sshl", int_aarch64_neon_sshl>;
   3280 defm SUB      : SIMDThreeSameVector<1,0b10000,"sub", sub>;
   3281 defm UABA     : SIMDThreeSameVectorBHSTied<1, 0b01111, "uaba",
   3282       TriOpFrag<(add node:$LHS, (int_aarch64_neon_uabd node:$MHS, node:$RHS))> >;
   3283 defm UABD     : SIMDThreeSameVectorBHS<1,0b01110,"uabd", int_aarch64_neon_uabd>;
   3284 defm UHADD    : SIMDThreeSameVectorBHS<1,0b00000,"uhadd", int_aarch64_neon_uhadd>;
   3285 defm UHSUB    : SIMDThreeSameVectorBHS<1,0b00100,"uhsub", int_aarch64_neon_uhsub>;
   3286 defm UMAXP    : SIMDThreeSameVectorBHS<1,0b10100,"umaxp", int_aarch64_neon_umaxp>;
   3287 defm UMAX     : SIMDThreeSameVectorBHS<1,0b01100,"umax", umax>;
   3288 defm UMINP    : SIMDThreeSameVectorBHS<1,0b10101,"uminp", int_aarch64_neon_uminp>;
   3289 defm UMIN     : SIMDThreeSameVectorBHS<1,0b01101,"umin", umin>;
   3290 defm UQADD    : SIMDThreeSameVector<1,0b00001,"uqadd", int_aarch64_neon_uqadd>;
   3291 defm UQRSHL   : SIMDThreeSameVector<1,0b01011,"uqrshl", int_aarch64_neon_uqrshl>;
   3292 defm UQSHL    : SIMDThreeSameVector<1,0b01001,"uqshl", int_aarch64_neon_uqshl>;
   3293 defm UQSUB    : SIMDThreeSameVector<1,0b00101,"uqsub", int_aarch64_neon_uqsub>;
   3294 defm URHADD   : SIMDThreeSameVectorBHS<1,0b00010,"urhadd", int_aarch64_neon_urhadd>;
   3295 defm URSHL    : SIMDThreeSameVector<1,0b01010,"urshl", int_aarch64_neon_urshl>;
   3296 defm USHL     : SIMDThreeSameVector<1,0b01000,"ushl", int_aarch64_neon_ushl>;
   3297 defm SQRDMLAH : SIMDThreeSameVectorSQRDMLxHTiedHS<1,0b10000,"sqrdmlah",
   3298                                                   int_aarch64_neon_sqadd>;
   3299 defm SQRDMLSH : SIMDThreeSameVectorSQRDMLxHTiedHS<1,0b10001,"sqrdmlsh",
   3300                                                     int_aarch64_neon_sqsub>;
   3301 
   3302 defm AND : SIMDLogicalThreeVector<0, 0b00, "and", and>;
   3303 defm BIC : SIMDLogicalThreeVector<0, 0b01, "bic",
   3304                                   BinOpFrag<(and node:$LHS, (vnot node:$RHS))> >;
   3305 defm BIF : SIMDLogicalThreeVector<1, 0b11, "bif">;
   3306 defm BIT : SIMDLogicalThreeVectorTied<1, 0b10, "bit", AArch64bit>;
   3307 defm BSL : SIMDLogicalThreeVectorTied<1, 0b01, "bsl",
   3308     TriOpFrag<(or (and node:$LHS, node:$MHS), (and (vnot node:$LHS), node:$RHS))>>;
   3309 defm EOR : SIMDLogicalThreeVector<1, 0b00, "eor", xor>;
   3310 defm ORN : SIMDLogicalThreeVector<0, 0b11, "orn",
   3311                                   BinOpFrag<(or node:$LHS, (vnot node:$RHS))> >;
   3312 defm ORR : SIMDLogicalThreeVector<0, 0b10, "orr", or>;
   3313 
   3314 
   3315 def : Pat<(AArch64bsl (v8i8 V64:$Rd), V64:$Rn, V64:$Rm),
   3316           (BSLv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>;
   3317 def : Pat<(AArch64bsl (v4i16 V64:$Rd), V64:$Rn, V64:$Rm),
   3318           (BSLv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>;
   3319 def : Pat<(AArch64bsl (v2i32 V64:$Rd), V64:$Rn, V64:$Rm),
   3320           (BSLv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>;
   3321 def : Pat<(AArch64bsl (v1i64 V64:$Rd), V64:$Rn, V64:$Rm),
   3322           (BSLv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>;
   3323 
   3324 def : Pat<(AArch64bsl (v16i8 V128:$Rd), V128:$Rn, V128:$Rm),
   3325           (BSLv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>;
   3326 def : Pat<(AArch64bsl (v8i16 V128:$Rd), V128:$Rn, V128:$Rm),
   3327           (BSLv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>;
   3328 def : Pat<(AArch64bsl (v4i32 V128:$Rd), V128:$Rn, V128:$Rm),
   3329           (BSLv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>;
   3330 def : Pat<(AArch64bsl (v2i64 V128:$Rd), V128:$Rn, V128:$Rm),
   3331           (BSLv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>;
   3332 
   3333 def : InstAlias<"mov{\t$dst.16b, $src.16b|.16b\t$dst, $src}",
   3334                 (ORRv16i8 V128:$dst, V128:$src, V128:$src), 1>;
   3335 def : InstAlias<"mov{\t$dst.8h, $src.8h|.8h\t$dst, $src}",
   3336                 (ORRv16i8 V128:$dst, V128:$src, V128:$src), 0>;
   3337 def : InstAlias<"mov{\t$dst.4s, $src.4s|.4s\t$dst, $src}",
   3338                 (ORRv16i8 V128:$dst, V128:$src, V128:$src), 0>;
   3339 def : InstAlias<"mov{\t$dst.2d, $src.2d|.2d\t$dst, $src}",
   3340                 (ORRv16i8 V128:$dst, V128:$src, V128:$src), 0>;
   3341 
   3342 def : InstAlias<"mov{\t$dst.8b, $src.8b|.8b\t$dst, $src}",
   3343                 (ORRv8i8 V64:$dst, V64:$src, V64:$src), 1>;
   3344 def : InstAlias<"mov{\t$dst.4h, $src.4h|.4h\t$dst, $src}",
   3345                 (ORRv8i8 V64:$dst, V64:$src, V64:$src), 0>;
   3346 def : InstAlias<"mov{\t$dst.2s, $src.2s|.2s\t$dst, $src}",
   3347                 (ORRv8i8 V64:$dst, V64:$src, V64:$src), 0>;
   3348 def : InstAlias<"mov{\t$dst.1d, $src.1d|.1d\t$dst, $src}",
   3349                 (ORRv8i8 V64:$dst, V64:$src, V64:$src), 0>;
   3350 
   3351 def : InstAlias<"{cmls\t$dst.8b, $src1.8b, $src2.8b" #
   3352                 "|cmls.8b\t$dst, $src1, $src2}",
   3353                 (CMHSv8i8 V64:$dst, V64:$src2, V64:$src1), 0>;
   3354 def : InstAlias<"{cmls\t$dst.16b, $src1.16b, $src2.16b" #
   3355                 "|cmls.16b\t$dst, $src1, $src2}",
   3356                 (CMHSv16i8 V128:$dst, V128:$src2, V128:$src1), 0>;
   3357 def : InstAlias<"{cmls\t$dst.4h, $src1.4h, $src2.4h" #
   3358                 "|cmls.4h\t$dst, $src1, $src2}",
   3359                 (CMHSv4i16 V64:$dst, V64:$src2, V64:$src1), 0>;
   3360 def : InstAlias<"{cmls\t$dst.8h, $src1.8h, $src2.8h" #
   3361                 "|cmls.8h\t$dst, $src1, $src2}",
   3362                 (CMHSv8i16 V128:$dst, V128:$src2, V128:$src1), 0>;
   3363 def : InstAlias<"{cmls\t$dst.2s, $src1.2s, $src2.2s" #
   3364                 "|cmls.2s\t$dst, $src1, $src2}",
   3365                 (CMHSv2i32 V64:$dst, V64:$src2, V64:$src1), 0>;
   3366 def : InstAlias<"{cmls\t$dst.4s, $src1.4s, $src2.4s" #
   3367                 "|cmls.4s\t$dst, $src1, $src2}",
   3368                 (CMHSv4i32 V128:$dst, V128:$src2, V128:$src1), 0>;
   3369 def : InstAlias<"{cmls\t$dst.2d, $src1.2d, $src2.2d" #
   3370                 "|cmls.2d\t$dst, $src1, $src2}",
   3371                 (CMHSv2i64 V128:$dst, V128:$src2, V128:$src1), 0>;
   3372 
   3373 def : InstAlias<"{cmlo\t$dst.8b, $src1.8b, $src2.8b" #
   3374                 "|cmlo.8b\t$dst, $src1, $src2}",
   3375                 (CMHIv8i8 V64:$dst, V64:$src2, V64:$src1), 0>;
   3376 def : InstAlias<"{cmlo\t$dst.16b, $src1.16b, $src2.16b" #
   3377                 "|cmlo.16b\t$dst, $src1, $src2}",
   3378                 (CMHIv16i8 V128:$dst, V128:$src2, V128:$src1), 0>;
   3379 def : InstAlias<"{cmlo\t$dst.4h, $src1.4h, $src2.4h" #
   3380                 "|cmlo.4h\t$dst, $src1, $src2}",
   3381                 (CMHIv4i16 V64:$dst, V64:$src2, V64:$src1), 0>;
   3382 def : InstAlias<"{cmlo\t$dst.8h, $src1.8h, $src2.8h" #
   3383                 "|cmlo.8h\t$dst, $src1, $src2}",
   3384                 (CMHIv8i16 V128:$dst, V128:$src2, V128:$src1), 0>;
   3385 def : InstAlias<"{cmlo\t$dst.2s, $src1.2s, $src2.2s" #
   3386                 "|cmlo.2s\t$dst, $src1, $src2}",
   3387                 (CMHIv2i32 V64:$dst, V64:$src2, V64:$src1), 0>;
   3388 def : InstAlias<"{cmlo\t$dst.4s, $src1.4s, $src2.4s" #
   3389                 "|cmlo.4s\t$dst, $src1, $src2}",
   3390                 (CMHIv4i32 V128:$dst, V128:$src2, V128:$src1), 0>;
   3391 def : InstAlias<"{cmlo\t$dst.2d, $src1.2d, $src2.2d" #
   3392                 "|cmlo.2d\t$dst, $src1, $src2}",
   3393                 (CMHIv2i64 V128:$dst, V128:$src2, V128:$src1), 0>;
   3394 
   3395 def : InstAlias<"{cmle\t$dst.8b, $src1.8b, $src2.8b" #
   3396                 "|cmle.8b\t$dst, $src1, $src2}",
   3397                 (CMGEv8i8 V64:$dst, V64:$src2, V64:$src1), 0>;
   3398 def : InstAlias<"{cmle\t$dst.16b, $src1.16b, $src2.16b" #
   3399                 "|cmle.16b\t$dst, $src1, $src2}",
   3400                 (CMGEv16i8 V128:$dst, V128:$src2, V128:$src1), 0>;
   3401 def : InstAlias<"{cmle\t$dst.4h, $src1.4h, $src2.4h" #
   3402                 "|cmle.4h\t$dst, $src1, $src2}",
   3403                 (CMGEv4i16 V64:$dst, V64:$src2, V64:$src1), 0>;
   3404 def : InstAlias<"{cmle\t$dst.8h, $src1.8h, $src2.8h" #
   3405                 "|cmle.8h\t$dst, $src1, $src2}",
   3406                 (CMGEv8i16 V128:$dst, V128:$src2, V128:$src1), 0>;
   3407 def : InstAlias<"{cmle\t$dst.2s, $src1.2s, $src2.2s" #
   3408                 "|cmle.2s\t$dst, $src1, $src2}",
   3409                 (CMGEv2i32 V64:$dst, V64:$src2, V64:$src1), 0>;
   3410 def : InstAlias<"{cmle\t$dst.4s, $src1.4s, $src2.4s" #
   3411                 "|cmle.4s\t$dst, $src1, $src2}",
   3412                 (CMGEv4i32 V128:$dst, V128:$src2, V128:$src1), 0>;
   3413 def : InstAlias<"{cmle\t$dst.2d, $src1.2d, $src2.2d" #
   3414                 "|cmle.2d\t$dst, $src1, $src2}",
   3415                 (CMGEv2i64 V128:$dst, V128:$src2, V128:$src1), 0>;
   3416 
   3417 def : InstAlias<"{cmlt\t$dst.8b, $src1.8b, $src2.8b" #
   3418                 "|cmlt.8b\t$dst, $src1, $src2}",
   3419                 (CMGTv8i8 V64:$dst, V64:$src2, V64:$src1), 0>;
   3420 def : InstAlias<"{cmlt\t$dst.16b, $src1.16b, $src2.16b" #
   3421                 "|cmlt.16b\t$dst, $src1, $src2}",
   3422                 (CMGTv16i8 V128:$dst, V128:$src2, V128:$src1), 0>;
   3423 def : InstAlias<"{cmlt\t$dst.4h, $src1.4h, $src2.4h" #
   3424                 "|cmlt.4h\t$dst, $src1, $src2}",
   3425                 (CMGTv4i16 V64:$dst, V64:$src2, V64:$src1), 0>;
   3426 def : InstAlias<"{cmlt\t$dst.8h, $src1.8h, $src2.8h" #
   3427                 "|cmlt.8h\t$dst, $src1, $src2}",
   3428                 (CMGTv8i16 V128:$dst, V128:$src2, V128:$src1), 0>;
   3429 def : InstAlias<"{cmlt\t$dst.2s, $src1.2s, $src2.2s" #
   3430                 "|cmlt.2s\t$dst, $src1, $src2}",
   3431                 (CMGTv2i32 V64:$dst, V64:$src2, V64:$src1), 0>;
   3432 def : InstAlias<"{cmlt\t$dst.4s, $src1.4s, $src2.4s" #
   3433                 "|cmlt.4s\t$dst, $src1, $src2}",
   3434                 (CMGTv4i32 V128:$dst, V128:$src2, V128:$src1), 0>;
   3435 def : InstAlias<"{cmlt\t$dst.2d, $src1.2d, $src2.2d" #
   3436                 "|cmlt.2d\t$dst, $src1, $src2}",
   3437                 (CMGTv2i64 V128:$dst, V128:$src2, V128:$src1), 0>;
   3438 
   3439 let Predicates = [HasNEON, HasFullFP16] in {
   3440 def : InstAlias<"{fcmle\t$dst.4h, $src1.4h, $src2.4h" #
   3441                 "|fcmle.4h\t$dst, $src1, $src2}",
   3442                 (FCMGEv4f16 V64:$dst, V64:$src2, V64:$src1), 0>;
   3443 def : InstAlias<"{fcmle\t$dst.8h, $src1.8h, $src2.8h" #
   3444                 "|fcmle.8h\t$dst, $src1, $src2}",
   3445                 (FCMGEv8f16 V128:$dst, V128:$src2, V128:$src1), 0>;
   3446 }
   3447 def : InstAlias<"{fcmle\t$dst.2s, $src1.2s, $src2.2s" #
   3448                 "|fcmle.2s\t$dst, $src1, $src2}",
   3449                 (FCMGEv2f32 V64:$dst, V64:$src2, V64:$src1), 0>;
   3450 def : InstAlias<"{fcmle\t$dst.4s, $src1.4s, $src2.4s" #
   3451                 "|fcmle.4s\t$dst, $src1, $src2}",
   3452                 (FCMGEv4f32 V128:$dst, V128:$src2, V128:$src1), 0>;
   3453 def : InstAlias<"{fcmle\t$dst.2d, $src1.2d, $src2.2d" #
   3454                 "|fcmle.2d\t$dst, $src1, $src2}",
   3455                 (FCMGEv2f64 V128:$dst, V128:$src2, V128:$src1), 0>;
   3456 
   3457 let Predicates = [HasNEON, HasFullFP16] in {
   3458 def : InstAlias<"{fcmlt\t$dst.4h, $src1.4h, $src2.4h" #
   3459                 "|fcmlt.4h\t$dst, $src1, $src2}",
   3460                 (FCMGTv4f16 V64:$dst, V64:$src2, V64:$src1), 0>;
   3461 def : InstAlias<"{fcmlt\t$dst.8h, $src1.8h, $src2.8h" #
   3462                 "|fcmlt.8h\t$dst, $src1, $src2}",
   3463                 (FCMGTv8f16 V128:$dst, V128:$src2, V128:$src1), 0>;
   3464 }
   3465 def : InstAlias<"{fcmlt\t$dst.2s, $src1.2s, $src2.2s" #
   3466                 "|fcmlt.2s\t$dst, $src1, $src2}",
   3467                 (FCMGTv2f32 V64:$dst, V64:$src2, V64:$src1), 0>;
   3468 def : InstAlias<"{fcmlt\t$dst.4s, $src1.4s, $src2.4s" #
   3469                 "|fcmlt.4s\t$dst, $src1, $src2}",
   3470                 (FCMGTv4f32 V128:$dst, V128:$src2, V128:$src1), 0>;
   3471 def : InstAlias<"{fcmlt\t$dst.2d, $src1.2d, $src2.2d" #
   3472                 "|fcmlt.2d\t$dst, $src1, $src2}",
   3473                 (FCMGTv2f64 V128:$dst, V128:$src2, V128:$src1), 0>;
   3474 
   3475 let Predicates = [HasNEON, HasFullFP16] in {
   3476 def : InstAlias<"{facle\t$dst.4h, $src1.4h, $src2.4h" #
   3477                 "|facle.4h\t$dst, $src1, $src2}",
   3478                 (FACGEv4f16 V64:$dst, V64:$src2, V64:$src1), 0>;
   3479 def : InstAlias<"{facle\t$dst.8h, $src1.8h, $src2.8h" #
   3480                 "|facle.8h\t$dst, $src1, $src2}",
   3481                 (FACGEv8f16 V128:$dst, V128:$src2, V128:$src1), 0>;
   3482 }
   3483 def : InstAlias<"{facle\t$dst.2s, $src1.2s, $src2.2s" #
   3484                 "|facle.2s\t$dst, $src1, $src2}",
   3485                 (FACGEv2f32 V64:$dst, V64:$src2, V64:$src1), 0>;
   3486 def : InstAlias<"{facle\t$dst.4s, $src1.4s, $src2.4s" #
   3487                 "|facle.4s\t$dst, $src1, $src2}",
   3488                 (FACGEv4f32 V128:$dst, V128:$src2, V128:$src1), 0>;
   3489 def : InstAlias<"{facle\t$dst.2d, $src1.2d, $src2.2d" #
   3490                 "|facle.2d\t$dst, $src1, $src2}",
   3491                 (FACGEv2f64 V128:$dst, V128:$src2, V128:$src1), 0>;
   3492 
   3493 let Predicates = [HasNEON, HasFullFP16] in {
   3494 def : InstAlias<"{faclt\t$dst.4h, $src1.4h, $src2.4h" #
   3495                 "|faclt.4h\t$dst, $src1, $src2}",
   3496                 (FACGTv4f16 V64:$dst, V64:$src2, V64:$src1), 0>;
   3497 def : InstAlias<"{faclt\t$dst.8h, $src1.8h, $src2.8h" #
   3498                 "|faclt.8h\t$dst, $src1, $src2}",
   3499                 (FACGTv8f16 V128:$dst, V128:$src2, V128:$src1), 0>;
   3500 }
   3501 def : InstAlias<"{faclt\t$dst.2s, $src1.2s, $src2.2s" #
   3502                 "|faclt.2s\t$dst, $src1, $src2}",
   3503                 (FACGTv2f32 V64:$dst, V64:$src2, V64:$src1), 0>;
   3504 def : InstAlias<"{faclt\t$dst.4s, $src1.4s, $src2.4s" #
   3505                 "|faclt.4s\t$dst, $src1, $src2}",
   3506                 (FACGTv4f32 V128:$dst, V128:$src2, V128:$src1), 0>;
   3507 def : InstAlias<"{faclt\t$dst.2d, $src1.2d, $src2.2d" #
   3508                 "|faclt.2d\t$dst, $src1, $src2}",
   3509                 (FACGTv2f64 V128:$dst, V128:$src2, V128:$src1), 0>;
   3510 
   3511 //===----------------------------------------------------------------------===//
   3512 // Advanced SIMD three scalar instructions.
   3513 //===----------------------------------------------------------------------===//
   3514 
   3515 defm ADD      : SIMDThreeScalarD<0, 0b10000, "add", add>;
   3516 defm CMEQ     : SIMDThreeScalarD<1, 0b10001, "cmeq", AArch64cmeq>;
   3517 defm CMGE     : SIMDThreeScalarD<0, 0b00111, "cmge", AArch64cmge>;
   3518 defm CMGT     : SIMDThreeScalarD<0, 0b00110, "cmgt", AArch64cmgt>;
   3519 defm CMHI     : SIMDThreeScalarD<1, 0b00110, "cmhi", AArch64cmhi>;
   3520 defm CMHS     : SIMDThreeScalarD<1, 0b00111, "cmhs", AArch64cmhs>;
   3521 defm CMTST    : SIMDThreeScalarD<0, 0b10001, "cmtst", AArch64cmtst>;
   3522 defm FABD     : SIMDFPThreeScalar<1, 1, 0b010, "fabd", int_aarch64_sisd_fabd>;
   3523 def : Pat<(v1f64 (int_aarch64_neon_fabd (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
   3524           (FABD64 FPR64:$Rn, FPR64:$Rm)>;
   3525 let Predicates = [HasFullFP16] in {
   3526 def : Pat<(fabs (fsub f16:$Rn, f16:$Rm)), (FABD16 f16:$Rn, f16:$Rm)>;
   3527 }
   3528 def : Pat<(fabs (fsub f32:$Rn, f32:$Rm)), (FABD32 f32:$Rn, f32:$Rm)>;
   3529 def : Pat<(fabs (fsub f64:$Rn, f64:$Rm)), (FABD64 f64:$Rn, f64:$Rm)>;
   3530 defm FACGE    : SIMDThreeScalarFPCmp<1, 0, 0b101, "facge",
   3531                                      int_aarch64_neon_facge>;
   3532 defm FACGT    : SIMDThreeScalarFPCmp<1, 1, 0b101, "facgt",
   3533                                      int_aarch64_neon_facgt>;
   3534 defm FCMEQ    : SIMDThreeScalarFPCmp<0, 0, 0b100, "fcmeq", AArch64fcmeq>;
   3535 defm FCMGE    : SIMDThreeScalarFPCmp<1, 0, 0b100, "fcmge", AArch64fcmge>;
   3536 defm FCMGT    : SIMDThreeScalarFPCmp<1, 1, 0b100, "fcmgt", AArch64fcmgt>;
   3537 defm FMULX    : SIMDFPThreeScalar<0, 0, 0b011, "fmulx", int_aarch64_neon_fmulx>;
   3538 defm FRECPS   : SIMDFPThreeScalar<0, 0, 0b111, "frecps", int_aarch64_neon_frecps>;
   3539 defm FRSQRTS  : SIMDFPThreeScalar<0, 1, 0b111, "frsqrts", int_aarch64_neon_frsqrts>;
   3540 defm SQADD    : SIMDThreeScalarBHSD<0, 0b00001, "sqadd", int_aarch64_neon_sqadd>;
   3541 defm SQDMULH  : SIMDThreeScalarHS<  0, 0b10110, "sqdmulh", int_aarch64_neon_sqdmulh>;
   3542 defm SQRDMULH : SIMDThreeScalarHS<  1, 0b10110, "sqrdmulh", int_aarch64_neon_sqrdmulh>;
   3543 defm SQRSHL   : SIMDThreeScalarBHSD<0, 0b01011, "sqrshl",int_aarch64_neon_sqrshl>;
   3544 defm SQSHL    : SIMDThreeScalarBHSD<0, 0b01001, "sqshl", int_aarch64_neon_sqshl>;
   3545 defm SQSUB    : SIMDThreeScalarBHSD<0, 0b00101, "sqsub", int_aarch64_neon_sqsub>;
   3546 defm SRSHL    : SIMDThreeScalarD<   0, 0b01010, "srshl", int_aarch64_neon_srshl>;
   3547 defm SSHL     : SIMDThreeScalarD<   0, 0b01000, "sshl", int_aarch64_neon_sshl>;
   3548 defm SUB      : SIMDThreeScalarD<   1, 0b10000, "sub", sub>;
   3549 defm UQADD    : SIMDThreeScalarBHSD<1, 0b00001, "uqadd", int_aarch64_neon_uqadd>;
   3550 defm UQRSHL   : SIMDThreeScalarBHSD<1, 0b01011, "uqrshl",int_aarch64_neon_uqrshl>;
   3551 defm UQSHL    : SIMDThreeScalarBHSD<1, 0b01001, "uqshl", int_aarch64_neon_uqshl>;
   3552 defm UQSUB    : SIMDThreeScalarBHSD<1, 0b00101, "uqsub", int_aarch64_neon_uqsub>;
   3553 defm URSHL    : SIMDThreeScalarD<   1, 0b01010, "urshl", int_aarch64_neon_urshl>;
   3554 defm USHL     : SIMDThreeScalarD<   1, 0b01000, "ushl", int_aarch64_neon_ushl>;
   3555 let Predicates = [HasRDM] in {
   3556   defm SQRDMLAH : SIMDThreeScalarHSTied<1, 0, 0b10000, "sqrdmlah">;
   3557   defm SQRDMLSH : SIMDThreeScalarHSTied<1, 0, 0b10001, "sqrdmlsh">;
   3558   def : Pat<(i32 (int_aarch64_neon_sqadd
   3559                    (i32 FPR32:$Rd),
   3560                    (i32 (int_aarch64_neon_sqrdmulh (i32 FPR32:$Rn),
   3561                                                    (i32 FPR32:$Rm))))),
   3562             (SQRDMLAHv1i32 FPR32:$Rd, FPR32:$Rn, FPR32:$Rm)>;
   3563   def : Pat<(i32 (int_aarch64_neon_sqsub
   3564                    (i32 FPR32:$Rd),
   3565                    (i32 (int_aarch64_neon_sqrdmulh (i32 FPR32:$Rn),
   3566                                                    (i32 FPR32:$Rm))))),
   3567             (SQRDMLSHv1i32 FPR32:$Rd, FPR32:$Rn, FPR32:$Rm)>;
   3568 }
   3569 
   3570 def : InstAlias<"cmls $dst, $src1, $src2",
   3571                 (CMHSv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
   3572 def : InstAlias<"cmle $dst, $src1, $src2",
   3573                 (CMGEv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
   3574 def : InstAlias<"cmlo $dst, $src1, $src2",
   3575                 (CMHIv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
   3576 def : InstAlias<"cmlt $dst, $src1, $src2",
   3577                 (CMGTv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
   3578 def : InstAlias<"fcmle $dst, $src1, $src2",
   3579                 (FCMGE32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>;
   3580 def : InstAlias<"fcmle $dst, $src1, $src2",
   3581                 (FCMGE64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
   3582 def : InstAlias<"fcmlt $dst, $src1, $src2",
   3583                 (FCMGT32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>;
   3584 def : InstAlias<"fcmlt $dst, $src1, $src2",
   3585                 (FCMGT64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
   3586 def : InstAlias<"facle $dst, $src1, $src2",
   3587                 (FACGE32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>;
   3588 def : InstAlias<"facle $dst, $src1, $src2",
   3589                 (FACGE64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
   3590 def : InstAlias<"faclt $dst, $src1, $src2",
   3591                 (FACGT32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>;
   3592 def : InstAlias<"faclt $dst, $src1, $src2",
   3593                 (FACGT64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
   3594 
   3595 //===----------------------------------------------------------------------===//
   3596 // Advanced SIMD three scalar instructions (mixed operands).
   3597 //===----------------------------------------------------------------------===//
   3598 defm SQDMULL  : SIMDThreeScalarMixedHS<0, 0b11010, "sqdmull",
   3599                                        int_aarch64_neon_sqdmulls_scalar>;
   3600 defm SQDMLAL  : SIMDThreeScalarMixedTiedHS<0, 0b10010, "sqdmlal">;
   3601 defm SQDMLSL  : SIMDThreeScalarMixedTiedHS<0, 0b10110, "sqdmlsl">;
   3602 
   3603 def : Pat<(i64 (int_aarch64_neon_sqadd (i64 FPR64:$Rd),
   3604                    (i64 (int_aarch64_neon_sqdmulls_scalar (i32 FPR32:$Rn),
   3605                                                         (i32 FPR32:$Rm))))),
   3606           (SQDMLALi32 FPR64:$Rd, FPR32:$Rn, FPR32:$Rm)>;
   3607 def : Pat<(i64 (int_aarch64_neon_sqsub (i64 FPR64:$Rd),
   3608                    (i64 (int_aarch64_neon_sqdmulls_scalar (i32 FPR32:$Rn),
   3609                                                         (i32 FPR32:$Rm))))),
   3610           (SQDMLSLi32 FPR64:$Rd, FPR32:$Rn, FPR32:$Rm)>;
   3611 
   3612 //===----------------------------------------------------------------------===//
   3613 // Advanced SIMD two scalar instructions.
   3614 //===----------------------------------------------------------------------===//
   3615 
   3616 defm ABS    : SIMDTwoScalarD<    0, 0b01011, "abs", abs>;
   3617 defm CMEQ   : SIMDCmpTwoScalarD< 0, 0b01001, "cmeq", AArch64cmeqz>;
   3618 defm CMGE   : SIMDCmpTwoScalarD< 1, 0b01000, "cmge", AArch64cmgez>;
   3619 defm CMGT   : SIMDCmpTwoScalarD< 0, 0b01000, "cmgt", AArch64cmgtz>;
   3620 defm CMLE   : SIMDCmpTwoScalarD< 1, 0b01001, "cmle", AArch64cmlez>;
   3621 defm CMLT   : SIMDCmpTwoScalarD< 0, 0b01010, "cmlt", AArch64cmltz>;
   3622 defm FCMEQ  : SIMDFPCmpTwoScalar<0, 1, 0b01101, "fcmeq", AArch64fcmeqz>;
   3623 defm FCMGE  : SIMDFPCmpTwoScalar<1, 1, 0b01100, "fcmge", AArch64fcmgez>;
   3624 defm FCMGT  : SIMDFPCmpTwoScalar<0, 1, 0b01100, "fcmgt", AArch64fcmgtz>;
   3625 defm FCMLE  : SIMDFPCmpTwoScalar<1, 1, 0b01101, "fcmle", AArch64fcmlez>;
   3626 defm FCMLT  : SIMDFPCmpTwoScalar<0, 1, 0b01110, "fcmlt", AArch64fcmltz>;
   3627 defm FCVTAS : SIMDFPTwoScalar<   0, 0, 0b11100, "fcvtas">;
   3628 defm FCVTAU : SIMDFPTwoScalar<   1, 0, 0b11100, "fcvtau">;
   3629 defm FCVTMS : SIMDFPTwoScalar<   0, 0, 0b11011, "fcvtms">;
   3630 defm FCVTMU : SIMDFPTwoScalar<   1, 0, 0b11011, "fcvtmu">;
   3631 defm FCVTNS : SIMDFPTwoScalar<   0, 0, 0b11010, "fcvtns">;
   3632 defm FCVTNU : SIMDFPTwoScalar<   1, 0, 0b11010, "fcvtnu">;
   3633 defm FCVTPS : SIMDFPTwoScalar<   0, 1, 0b11010, "fcvtps">;
   3634 defm FCVTPU : SIMDFPTwoScalar<   1, 1, 0b11010, "fcvtpu">;
   3635 def  FCVTXNv1i64 : SIMDInexactCvtTwoScalar<0b10110, "fcvtxn">;
   3636 defm FCVTZS : SIMDFPTwoScalar<   0, 1, 0b11011, "fcvtzs">;
   3637 defm FCVTZU : SIMDFPTwoScalar<   1, 1, 0b11011, "fcvtzu">;
   3638 defm FRECPE : SIMDFPTwoScalar<   0, 1, 0b11101, "frecpe">;
   3639 defm FRECPX : SIMDFPTwoScalar<   0, 1, 0b11111, "frecpx">;
   3640 defm FRSQRTE : SIMDFPTwoScalar<  1, 1, 0b11101, "frsqrte">;
   3641 defm NEG    : SIMDTwoScalarD<    1, 0b01011, "neg",
   3642                                  UnOpFrag<(sub immAllZerosV, node:$LHS)> >;
   3643 defm SCVTF  : SIMDFPTwoScalarCVT<   0, 0, 0b11101, "scvtf", AArch64sitof>;
   3644 defm SQABS  : SIMDTwoScalarBHSD< 0, 0b00111, "sqabs", int_aarch64_neon_sqabs>;
   3645 defm SQNEG  : SIMDTwoScalarBHSD< 1, 0b00111, "sqneg", int_aarch64_neon_sqneg>;
   3646 defm SQXTN  : SIMDTwoScalarMixedBHS< 0, 0b10100, "sqxtn", int_aarch64_neon_scalar_sqxtn>;
   3647 defm SQXTUN : SIMDTwoScalarMixedBHS< 1, 0b10010, "sqxtun", int_aarch64_neon_scalar_sqxtun>;
   3648 defm SUQADD : SIMDTwoScalarBHSDTied< 0, 0b00011, "suqadd",
   3649                                      int_aarch64_neon_suqadd>;
   3650 defm UCVTF  : SIMDFPTwoScalarCVT<   1, 0, 0b11101, "ucvtf", AArch64uitof>;
   3651 defm UQXTN  : SIMDTwoScalarMixedBHS<1, 0b10100, "uqxtn", int_aarch64_neon_scalar_uqxtn>;
   3652 defm USQADD : SIMDTwoScalarBHSDTied< 1, 0b00011, "usqadd",
   3653                                     int_aarch64_neon_usqadd>;
   3654 
   3655 def : Pat<(AArch64neg (v1i64 V64:$Rn)), (NEGv1i64 V64:$Rn)>;
   3656 
   3657 def : Pat<(v1i64 (int_aarch64_neon_fcvtas (v1f64 FPR64:$Rn))),
   3658           (FCVTASv1i64 FPR64:$Rn)>;
   3659 def : Pat<(v1i64 (int_aarch64_neon_fcvtau (v1f64 FPR64:$Rn))),
   3660           (FCVTAUv1i64 FPR64:$Rn)>;
   3661 def : Pat<(v1i64 (int_aarch64_neon_fcvtms (v1f64 FPR64:$Rn))),
   3662           (FCVTMSv1i64 FPR64:$Rn)>;
   3663 def : Pat<(v1i64 (int_aarch64_neon_fcvtmu (v1f64 FPR64:$Rn))),
   3664           (FCVTMUv1i64 FPR64:$Rn)>;
   3665 def : Pat<(v1i64 (int_aarch64_neon_fcvtns (v1f64 FPR64:$Rn))),
   3666           (FCVTNSv1i64 FPR64:$Rn)>;
   3667 def : Pat<(v1i64 (int_aarch64_neon_fcvtnu (v1f64 FPR64:$Rn))),
   3668           (FCVTNUv1i64 FPR64:$Rn)>;
   3669 def : Pat<(v1i64 (int_aarch64_neon_fcvtps (v1f64 FPR64:$Rn))),
   3670           (FCVTPSv1i64 FPR64:$Rn)>;
   3671 def : Pat<(v1i64 (int_aarch64_neon_fcvtpu (v1f64 FPR64:$Rn))),
   3672           (FCVTPUv1i64 FPR64:$Rn)>;
   3673 
   3674 def : Pat<(f16 (int_aarch64_neon_frecpe (f16 FPR16:$Rn))),
   3675           (FRECPEv1f16 FPR16:$Rn)>;
   3676 def : Pat<(f32 (int_aarch64_neon_frecpe (f32 FPR32:$Rn))),
   3677           (FRECPEv1i32 FPR32:$Rn)>;
   3678 def : Pat<(f64 (int_aarch64_neon_frecpe (f64 FPR64:$Rn))),
   3679           (FRECPEv1i64 FPR64:$Rn)>;
   3680 def : Pat<(v1f64 (int_aarch64_neon_frecpe (v1f64 FPR64:$Rn))),
   3681           (FRECPEv1i64 FPR64:$Rn)>;
   3682 
   3683 def : Pat<(f32 (AArch64frecpe (f32 FPR32:$Rn))),
   3684           (FRECPEv1i32 FPR32:$Rn)>;
   3685 def : Pat<(v2f32 (AArch64frecpe (v2f32 V64:$Rn))),
   3686           (FRECPEv2f32 V64:$Rn)>;
   3687 def : Pat<(v4f32 (AArch64frecpe (v4f32 FPR128:$Rn))),
   3688           (FRECPEv4f32 FPR128:$Rn)>;
   3689 def : Pat<(f64 (AArch64frecpe (f64 FPR64:$Rn))),
   3690           (FRECPEv1i64 FPR64:$Rn)>;
   3691 def : Pat<(v1f64 (AArch64frecpe (v1f64 FPR64:$Rn))),
   3692           (FRECPEv1i64 FPR64:$Rn)>;
   3693 def : Pat<(v2f64 (AArch64frecpe (v2f64 FPR128:$Rn))),
   3694           (FRECPEv2f64 FPR128:$Rn)>;
   3695 
   3696 def : Pat<(f32 (AArch64frecps (f32 FPR32:$Rn), (f32 FPR32:$Rm))),
   3697           (FRECPS32 FPR32:$Rn, FPR32:$Rm)>;
   3698 def : Pat<(v2f32 (AArch64frecps (v2f32 V64:$Rn), (v2f32 V64:$Rm))),
   3699           (FRECPSv2f32 V64:$Rn, V64:$Rm)>;
   3700 def : Pat<(v4f32 (AArch64frecps (v4f32 FPR128:$Rn), (v4f32 FPR128:$Rm))),
   3701           (FRECPSv4f32 FPR128:$Rn, FPR128:$Rm)>;
   3702 def : Pat<(f64 (AArch64frecps (f64 FPR64:$Rn), (f64 FPR64:$Rm))),
   3703           (FRECPS64 FPR64:$Rn, FPR64:$Rm)>;
   3704 def : Pat<(v2f64 (AArch64frecps (v2f64 FPR128:$Rn), (v2f64 FPR128:$Rm))),
   3705           (FRECPSv2f64 FPR128:$Rn, FPR128:$Rm)>;
   3706 
   3707 def : Pat<(f16 (int_aarch64_neon_frecpx (f16 FPR16:$Rn))),
   3708           (FRECPXv1f16 FPR16:$Rn)>;
   3709 def : Pat<(f32 (int_aarch64_neon_frecpx (f32 FPR32:$Rn))),
   3710           (FRECPXv1i32 FPR32:$Rn)>;
   3711 def : Pat<(f64 (int_aarch64_neon_frecpx (f64 FPR64:$Rn))),
   3712           (FRECPXv1i64 FPR64:$Rn)>;
   3713 
   3714 def : Pat<(f16 (int_aarch64_neon_frsqrte (f16 FPR16:$Rn))),
   3715           (FRSQRTEv1f16 FPR16:$Rn)>;
   3716 def : Pat<(f32 (int_aarch64_neon_frsqrte (f32 FPR32:$Rn))),
   3717           (FRSQRTEv1i32 FPR32:$Rn)>;
   3718 def : Pat<(f64 (int_aarch64_neon_frsqrte (f64 FPR64:$Rn))),
   3719           (FRSQRTEv1i64 FPR64:$Rn)>;
   3720 def : Pat<(v1f64 (int_aarch64_neon_frsqrte (v1f64 FPR64:$Rn))),
   3721           (FRSQRTEv1i64 FPR64:$Rn)>;
   3722 
   3723 def : Pat<(f32 (AArch64frsqrte (f32 FPR32:$Rn))),
   3724           (FRSQRTEv1i32 FPR32:$Rn)>;
   3725 def : Pat<(v2f32 (AArch64frsqrte (v2f32 V64:$Rn))),
   3726           (FRSQRTEv2f32 V64:$Rn)>;
   3727 def : Pat<(v4f32 (AArch64frsqrte (v4f32 FPR128:$Rn))),
   3728           (FRSQRTEv4f32 FPR128:$Rn)>;
   3729 def : Pat<(f64 (AArch64frsqrte (f64 FPR64:$Rn))),
   3730           (FRSQRTEv1i64 FPR64:$Rn)>;
   3731 def : Pat<(v1f64 (AArch64frsqrte (v1f64 FPR64:$Rn))),
   3732           (FRSQRTEv1i64 FPR64:$Rn)>;
   3733 def : Pat<(v2f64 (AArch64frsqrte (v2f64 FPR128:$Rn))),
   3734           (FRSQRTEv2f64 FPR128:$Rn)>;
   3735 
   3736 def : Pat<(f32 (AArch64frsqrts (f32 FPR32:$Rn), (f32 FPR32:$Rm))),
   3737           (FRSQRTS32 FPR32:$Rn, FPR32:$Rm)>;
   3738 def : Pat<(v2f32 (AArch64frsqrts (v2f32 V64:$Rn), (v2f32 V64:$Rm))),
   3739           (FRSQRTSv2f32 V64:$Rn, V64:$Rm)>;
   3740 def : Pat<(v4f32 (AArch64frsqrts (v4f32 FPR128:$Rn), (v4f32 FPR128:$Rm))),
   3741           (FRSQRTSv4f32 FPR128:$Rn, FPR128:$Rm)>;
   3742 def : Pat<(f64 (AArch64frsqrts (f64 FPR64:$Rn), (f64 FPR64:$Rm))),
   3743           (FRSQRTS64 FPR64:$Rn, FPR64:$Rm)>;
   3744 def : Pat<(v2f64 (AArch64frsqrts (v2f64 FPR128:$Rn), (v2f64 FPR128:$Rm))),
   3745           (FRSQRTSv2f64 FPR128:$Rn, FPR128:$Rm)>;
   3746 
   3747 // If an integer is about to be converted to a floating point value,
   3748 // just load it on the floating point unit.
   3749 // Here are the patterns for 8 and 16-bits to float.
   3750 // 8-bits -> float.
   3751 multiclass UIntToFPROLoadPat<ValueType DstTy, ValueType SrcTy,
   3752                              SDPatternOperator loadop, Instruction UCVTF,
   3753                              ROAddrMode ro, Instruction LDRW, Instruction LDRX,
   3754                              SubRegIndex sub> {
   3755   def : Pat<(DstTy (uint_to_fp (SrcTy
   3756                      (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm,
   3757                                       ro.Wext:$extend))))),
   3758            (UCVTF (INSERT_SUBREG (DstTy (IMPLICIT_DEF)),
   3759                                  (LDRW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend),
   3760                                  sub))>;
   3761 
   3762   def : Pat<(DstTy (uint_to_fp (SrcTy
   3763                      (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm,
   3764                                       ro.Wext:$extend))))),
   3765            (UCVTF (INSERT_SUBREG (DstTy (IMPLICIT_DEF)),
   3766                                  (LDRX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend),
   3767                                  sub))>;
   3768 }
   3769 
   3770 defm : UIntToFPROLoadPat<f32, i32, zextloadi8,
   3771                          UCVTFv1i32, ro8, LDRBroW, LDRBroX, bsub>;
   3772 def : Pat <(f32 (uint_to_fp (i32
   3773                (zextloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))),
   3774            (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
   3775                           (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub))>;
   3776 def : Pat <(f32 (uint_to_fp (i32
   3777                      (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))))),
   3778            (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
   3779                           (LDURBi GPR64sp:$Rn, simm9:$offset), bsub))>;
   3780 // 16-bits -> float.
   3781 defm : UIntToFPROLoadPat<f32, i32, zextloadi16,
   3782                          UCVTFv1i32, ro16, LDRHroW, LDRHroX, hsub>;
   3783 def : Pat <(f32 (uint_to_fp (i32
   3784                   (zextloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))),
   3785            (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
   3786                           (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub))>;
   3787 def : Pat <(f32 (uint_to_fp (i32
   3788                   (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))))),
   3789            (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
   3790                           (LDURHi GPR64sp:$Rn, simm9:$offset), hsub))>;
   3791 // 32-bits are handled in target specific dag combine:
   3792 // performIntToFpCombine.
   3793 // 64-bits integer to 32-bits floating point, not possible with
   3794 // UCVTF on floating point registers (both source and destination
   3795 // must have the same size).
   3796 
   3797 // Here are the patterns for 8, 16, 32, and 64-bits to double.
   3798 // 8-bits -> double.
   3799 defm : UIntToFPROLoadPat<f64, i32, zextloadi8,
   3800                          UCVTFv1i64, ro8, LDRBroW, LDRBroX, bsub>;
   3801 def : Pat <(f64 (uint_to_fp (i32
   3802                     (zextloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))),
   3803            (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
   3804                           (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub))>;
   3805 def : Pat <(f64 (uint_to_fp (i32
   3806                   (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))))),
   3807            (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
   3808                           (LDURBi GPR64sp:$Rn, simm9:$offset), bsub))>;
   3809 // 16-bits -> double.
   3810 defm : UIntToFPROLoadPat<f64, i32, zextloadi16,
   3811                          UCVTFv1i64, ro16, LDRHroW, LDRHroX, hsub>;
   3812 def : Pat <(f64 (uint_to_fp (i32
   3813                   (zextloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))),
   3814            (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
   3815                           (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub))>;
   3816 def : Pat <(f64 (uint_to_fp (i32
   3817                   (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))))),
   3818            (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
   3819                           (LDURHi GPR64sp:$Rn, simm9:$offset), hsub))>;
   3820 // 32-bits -> double.
   3821 defm : UIntToFPROLoadPat<f64, i32, load,
   3822                          UCVTFv1i64, ro32, LDRSroW, LDRSroX, ssub>;
   3823 def : Pat <(f64 (uint_to_fp (i32
   3824                   (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))))),
   3825            (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
   3826                           (LDRSui GPR64sp:$Rn, uimm12s4:$offset), ssub))>;
   3827 def : Pat <(f64 (uint_to_fp (i32
   3828                   (load (am_unscaled32 GPR64sp:$Rn, simm9:$offset))))),
   3829            (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
   3830                           (LDURSi GPR64sp:$Rn, simm9:$offset), ssub))>;
   3831 // 64-bits -> double are handled in target specific dag combine:
   3832 // performIntToFpCombine.
   3833 
   3834 //===----------------------------------------------------------------------===//
   3835 // Advanced SIMD three different-sized vector instructions.
   3836 //===----------------------------------------------------------------------===//
   3837 
   3838 defm ADDHN  : SIMDNarrowThreeVectorBHS<0,0b0100,"addhn", int_aarch64_neon_addhn>;
   3839 defm SUBHN  : SIMDNarrowThreeVectorBHS<0,0b0110,"subhn", int_aarch64_neon_subhn>;
   3840 defm RADDHN : SIMDNarrowThreeVectorBHS<1,0b0100,"raddhn",int_aarch64_neon_raddhn>;
   3841 defm RSUBHN : SIMDNarrowThreeVectorBHS<1,0b0110,"rsubhn",int_aarch64_neon_rsubhn>;
   3842 defm PMULL  : SIMDDifferentThreeVectorBD<0,0b1110,"pmull",int_aarch64_neon_pmull>;
   3843 defm SABAL  : SIMDLongThreeVectorTiedBHSabal<0,0b0101,"sabal",
   3844                                              int_aarch64_neon_sabd>;
   3845 defm SABDL   : SIMDLongThreeVectorBHSabdl<0, 0b0111, "sabdl",
   3846                                           int_aarch64_neon_sabd>;
   3847 defm SADDL   : SIMDLongThreeVectorBHS<   0, 0b0000, "saddl",
   3848             BinOpFrag<(add (sext node:$LHS), (sext node:$RHS))>>;
   3849 defm SADDW   : SIMDWideThreeVectorBHS<   0, 0b0001, "saddw",
   3850                  BinOpFrag<(add node:$LHS, (sext node:$RHS))>>;
   3851 defm SMLAL   : SIMDLongThreeVectorTiedBHS<0, 0b1000, "smlal",
   3852     TriOpFrag<(add node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>;
   3853 defm SMLSL   : SIMDLongThreeVectorTiedBHS<0, 0b1010, "smlsl",
   3854     TriOpFrag<(sub node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>;
   3855 defm SMULL   : SIMDLongThreeVectorBHS<0, 0b1100, "smull", int_aarch64_neon_smull>;
   3856 defm SQDMLAL : SIMDLongThreeVectorSQDMLXTiedHS<0, 0b1001, "sqdmlal",
   3857                                                int_aarch64_neon_sqadd>;
   3858 defm SQDMLSL : SIMDLongThreeVectorSQDMLXTiedHS<0, 0b1011, "sqdmlsl",
   3859                                                int_aarch64_neon_sqsub>;
   3860 defm SQDMULL : SIMDLongThreeVectorHS<0, 0b1101, "sqdmull",
   3861                                      int_aarch64_neon_sqdmull>;
   3862 defm SSUBL   : SIMDLongThreeVectorBHS<0, 0b0010, "ssubl",
   3863                  BinOpFrag<(sub (sext node:$LHS), (sext node:$RHS))>>;
   3864 defm SSUBW   : SIMDWideThreeVectorBHS<0, 0b0011, "ssubw",
   3865                  BinOpFrag<(sub node:$LHS, (sext node:$RHS))>>;
   3866 defm UABAL   : SIMDLongThreeVectorTiedBHSabal<1, 0b0101, "uabal",
   3867                                               int_aarch64_neon_uabd>;
   3868 defm UADDL   : SIMDLongThreeVectorBHS<1, 0b0000, "uaddl",
   3869                  BinOpFrag<(add (zext node:$LHS), (zext node:$RHS))>>;
   3870 defm UADDW   : SIMDWideThreeVectorBHS<1, 0b0001, "uaddw",
   3871                  BinOpFrag<(add node:$LHS, (zext node:$RHS))>>;
   3872 defm UMLAL   : SIMDLongThreeVectorTiedBHS<1, 0b1000, "umlal",
   3873     TriOpFrag<(add node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>;
   3874 defm UMLSL   : SIMDLongThreeVectorTiedBHS<1, 0b1010, "umlsl",
   3875     TriOpFrag<(sub node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>;
   3876 defm UMULL   : SIMDLongThreeVectorBHS<1, 0b1100, "umull", int_aarch64_neon_umull>;
   3877 defm USUBL   : SIMDLongThreeVectorBHS<1, 0b0010, "usubl",
   3878                  BinOpFrag<(sub (zext node:$LHS), (zext node:$RHS))>>;
   3879 defm USUBW   : SIMDWideThreeVectorBHS<   1, 0b0011, "usubw",
   3880                  BinOpFrag<(sub node:$LHS, (zext node:$RHS))>>;
   3881 
   3882 // Additional patterns for SMULL and UMULL
   3883 multiclass Neon_mul_widen_patterns<SDPatternOperator opnode,
   3884   Instruction INST8B, Instruction INST4H, Instruction INST2S> {
   3885   def : Pat<(v8i16 (opnode (v8i8 V64:$Rn), (v8i8 V64:$Rm))),
   3886             (INST8B V64:$Rn, V64:$Rm)>;
   3887   def : Pat<(v4i32 (opnode (v4i16 V64:$Rn), (v4i16 V64:$Rm))),
   3888             (INST4H V64:$Rn, V64:$Rm)>;
   3889   def : Pat<(v2i64 (opnode (v2i32 V64:$Rn), (v2i32 V64:$Rm))),
   3890             (INST2S V64:$Rn, V64:$Rm)>;
   3891 }
   3892 
   3893 defm : Neon_mul_widen_patterns<AArch64smull, SMULLv8i8_v8i16,
   3894   SMULLv4i16_v4i32, SMULLv2i32_v2i64>;
   3895 defm : Neon_mul_widen_patterns<AArch64umull, UMULLv8i8_v8i16,
   3896   UMULLv4i16_v4i32, UMULLv2i32_v2i64>;
   3897 
   3898 // Patterns for smull2/umull2.
   3899 multiclass Neon_mul_high_patterns<SDPatternOperator opnode,
   3900   Instruction INST8B, Instruction INST4H, Instruction INST2S> {
   3901   def : Pat<(v8i16 (opnode (extract_high_v16i8 V128:$Rn),
   3902                            (extract_high_v16i8 V128:$Rm))),
   3903              (INST8B V128:$Rn, V128:$Rm)>;
   3904   def : Pat<(v4i32 (opnode (extract_high_v8i16 V128:$Rn),
   3905                            (extract_high_v8i16 V128:$Rm))),
   3906              (INST4H V128:$Rn, V128:$Rm)>;
   3907   def : Pat<(v2i64 (opnode (extract_high_v4i32 V128:$Rn),
   3908                            (extract_high_v4i32 V128:$Rm))),
   3909              (INST2S V128:$Rn, V128:$Rm)>;
   3910 }
   3911 
   3912 defm : Neon_mul_high_patterns<AArch64smull, SMULLv16i8_v8i16,
   3913   SMULLv8i16_v4i32, SMULLv4i32_v2i64>;
   3914 defm : Neon_mul_high_patterns<AArch64umull, UMULLv16i8_v8i16,
   3915   UMULLv8i16_v4i32, UMULLv4i32_v2i64>;
   3916 
   3917 // Additional patterns for SMLAL/SMLSL and UMLAL/UMLSL
   3918 multiclass Neon_mulacc_widen_patterns<SDPatternOperator opnode,
   3919   Instruction INST8B, Instruction INST4H, Instruction INST2S> {
   3920   def : Pat<(v8i16 (opnode (v8i16 V128:$Rd), (v8i8 V64:$Rn), (v8i8 V64:$Rm))),
   3921             (INST8B V128:$Rd, V64:$Rn, V64:$Rm)>;
   3922   def : Pat<(v4i32 (opnode (v4i32 V128:$Rd), (v4i16 V64:$Rn), (v4i16 V64:$Rm))),
   3923             (INST4H V128:$Rd, V64:$Rn, V64:$Rm)>;
   3924   def : Pat<(v2i64 (opnode (v2i64 V128:$Rd), (v2i32 V64:$Rn), (v2i32 V64:$Rm))),
   3925             (INST2S  V128:$Rd, V64:$Rn, V64:$Rm)>;
   3926 }
   3927 
   3928 defm : Neon_mulacc_widen_patterns<
   3929   TriOpFrag<(add node:$LHS, (AArch64smull node:$MHS, node:$RHS))>,
   3930   SMLALv8i8_v8i16, SMLALv4i16_v4i32, SMLALv2i32_v2i64>;
   3931 defm : Neon_mulacc_widen_patterns<
   3932   TriOpFrag<(add node:$LHS, (AArch64umull node:$MHS, node:$RHS))>,
   3933   UMLALv8i8_v8i16, UMLALv4i16_v4i32, UMLALv2i32_v2i64>;
   3934 defm : Neon_mulacc_widen_patterns<
   3935   TriOpFrag<(sub node:$LHS, (AArch64smull node:$MHS, node:$RHS))>,
   3936   SMLSLv8i8_v8i16, SMLSLv4i16_v4i32, SMLSLv2i32_v2i64>;
   3937 defm : Neon_mulacc_widen_patterns<
   3938   TriOpFrag<(sub node:$LHS, (AArch64umull node:$MHS, node:$RHS))>,
   3939   UMLSLv8i8_v8i16, UMLSLv4i16_v4i32, UMLSLv2i32_v2i64>;
   3940 
   3941 // Patterns for 64-bit pmull
   3942 def : Pat<(int_aarch64_neon_pmull64 V64:$Rn, V64:$Rm),
   3943           (PMULLv1i64 V64:$Rn, V64:$Rm)>;
   3944 def : Pat<(int_aarch64_neon_pmull64 (extractelt (v2i64 V128:$Rn), (i64 1)),
   3945                                     (extractelt (v2i64 V128:$Rm), (i64 1))),
   3946           (PMULLv2i64 V128:$Rn, V128:$Rm)>;
   3947 
   3948 // CodeGen patterns for addhn and subhn instructions, which can actually be
   3949 // written in LLVM IR without too much difficulty.
   3950 
   3951 // ADDHN
   3952 def : Pat<(v8i8 (trunc (v8i16 (AArch64vlshr (add V128:$Rn, V128:$Rm), (i32 8))))),
   3953           (ADDHNv8i16_v8i8 V128:$Rn, V128:$Rm)>;
   3954 def : Pat<(v4i16 (trunc (v4i32 (AArch64vlshr (add V128:$Rn, V128:$Rm),
   3955                                            (i32 16))))),
   3956           (ADDHNv4i32_v4i16 V128:$Rn, V128:$Rm)>;
   3957 def : Pat<(v2i32 (trunc (v2i64 (AArch64vlshr (add V128:$Rn, V128:$Rm),
   3958                                            (i32 32))))),
   3959           (ADDHNv2i64_v2i32 V128:$Rn, V128:$Rm)>;
   3960 def : Pat<(concat_vectors (v8i8 V64:$Rd),
   3961                           (trunc (v8i16 (AArch64vlshr (add V128:$Rn, V128:$Rm),
   3962                                                     (i32 8))))),
   3963           (ADDHNv8i16_v16i8 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
   3964                             V128:$Rn, V128:$Rm)>;
   3965 def : Pat<(concat_vectors (v4i16 V64:$Rd),
   3966                           (trunc (v4i32 (AArch64vlshr (add V128:$Rn, V128:$Rm),
   3967                                                     (i32 16))))),
   3968           (ADDHNv4i32_v8i16 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
   3969                             V128:$Rn, V128:$Rm)>;
   3970 def : Pat<(concat_vectors (v2i32 V64:$Rd),
   3971                           (trunc (v2i64 (AArch64vlshr (add V128:$Rn, V128:$Rm),
   3972                                                     (i32 32))))),
   3973           (ADDHNv2i64_v4i32 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
   3974                             V128:$Rn, V128:$Rm)>;
   3975 
   3976 // SUBHN
   3977 def : Pat<(v8i8 (trunc (v8i16 (AArch64vlshr (sub V128:$Rn, V128:$Rm), (i32 8))))),
   3978           (SUBHNv8i16_v8i8 V128:$Rn, V128:$Rm)>;
   3979 def : Pat<(v4i16 (trunc (v4i32 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
   3980                                            (i32 16))))),
   3981           (SUBHNv4i32_v4i16 V128:$Rn, V128:$Rm)>;
   3982 def : Pat<(v2i32 (trunc (v2i64 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
   3983                                            (i32 32))))),
   3984           (SUBHNv2i64_v2i32 V128:$Rn, V128:$Rm)>;
   3985 def : Pat<(concat_vectors (v8i8 V64:$Rd),
   3986                           (trunc (v8i16 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
   3987                                                     (i32 8))))),
   3988           (SUBHNv8i16_v16i8 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
   3989                             V128:$Rn, V128:$Rm)>;
   3990 def : Pat<(concat_vectors (v4i16 V64:$Rd),
   3991                           (trunc (v4i32 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
   3992                                                     (i32 16))))),
   3993           (SUBHNv4i32_v8i16 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
   3994                             V128:$Rn, V128:$Rm)>;
   3995 def : Pat<(concat_vectors (v2i32 V64:$Rd),
   3996                           (trunc (v2i64 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
   3997                                                     (i32 32))))),
   3998           (SUBHNv2i64_v4i32 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
   3999                             V128:$Rn, V128:$Rm)>;
   4000 
   4001 //----------------------------------------------------------------------------
   4002 // AdvSIMD bitwise extract from vector instruction.
   4003 //----------------------------------------------------------------------------
   4004 
   4005 defm EXT : SIMDBitwiseExtract<"ext">;
   4006 
   4007 def : Pat<(v4i16 (AArch64ext V64:$Rn, V64:$Rm, (i32 imm:$imm))),
   4008           (EXTv8i8 V64:$Rn, V64:$Rm, imm:$imm)>;
   4009 def : Pat<(v8i16 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
   4010           (EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
   4011 def : Pat<(v2i32 (AArch64ext V64:$Rn, V64:$Rm, (i32 imm:$imm))),
   4012           (EXTv8i8 V64:$Rn, V64:$Rm, imm:$imm)>;
   4013 def : Pat<(v2f32 (AArch64ext V64:$Rn, V64:$Rm, (i32 imm:$imm))),
   4014           (EXTv8i8 V64:$Rn, V64:$Rm, imm:$imm)>;
   4015 def : Pat<(v4i32 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
   4016           (EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
   4017 def : Pat<(v4f32 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
   4018           (EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
   4019 def : Pat<(v2i64 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
   4020           (EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
   4021 def : Pat<(v2f64 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
   4022           (EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
   4023 def : Pat<(v4f16 (AArch64ext V64:$Rn, V64:$Rm, (i32 imm:$imm))),
   4024           (EXTv8i8 V64:$Rn, V64:$Rm, imm:$imm)>;
   4025 def : Pat<(v8f16 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
   4026           (EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
   4027 
   4028 // We use EXT to handle extract_subvector to copy the upper 64-bits of a
   4029 // 128-bit vector.
   4030 def : Pat<(v8i8  (extract_subvector V128:$Rn, (i64 8))),
   4031           (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
   4032 def : Pat<(v4i16 (extract_subvector V128:$Rn, (i64 4))),
   4033           (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
   4034 def : Pat<(v2i32 (extract_subvector V128:$Rn, (i64 2))),
   4035           (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
   4036 def : Pat<(v1i64 (extract_subvector V128:$Rn, (i64 1))),
   4037           (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
   4038 def : Pat<(v4f16 (extract_subvector V128:$Rn, (i64 4))),
   4039           (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
   4040 def : Pat<(v2f32 (extract_subvector V128:$Rn, (i64 2))),
   4041           (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
   4042 def : Pat<(v1f64 (extract_subvector V128:$Rn, (i64 1))),
   4043           (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
   4044 
   4045 
   4046 //----------------------------------------------------------------------------
   4047 // AdvSIMD zip vector
   4048 //----------------------------------------------------------------------------
   4049 
   4050 defm TRN1 : SIMDZipVector<0b010, "trn1", AArch64trn1>;
   4051 defm TRN2 : SIMDZipVector<0b110, "trn2", AArch64trn2>;
   4052 defm UZP1 : SIMDZipVector<0b001, "uzp1", AArch64uzp1>;
   4053 defm UZP2 : SIMDZipVector<0b101, "uzp2", AArch64uzp2>;
   4054 defm ZIP1 : SIMDZipVector<0b011, "zip1", AArch64zip1>;
   4055 defm ZIP2 : SIMDZipVector<0b111, "zip2", AArch64zip2>;
   4056 
   4057 //----------------------------------------------------------------------------
   4058 // AdvSIMD TBL/TBX instructions
   4059 //----------------------------------------------------------------------------
   4060 
   4061 defm TBL : SIMDTableLookup<    0, "tbl">;
   4062 defm TBX : SIMDTableLookupTied<1, "tbx">;
   4063 
   4064 def : Pat<(v8i8 (int_aarch64_neon_tbl1 (v16i8 VecListOne128:$Rn), (v8i8 V64:$Ri))),
   4065           (TBLv8i8One VecListOne128:$Rn, V64:$Ri)>;
   4066 def : Pat<(v16i8 (int_aarch64_neon_tbl1 (v16i8 V128:$Ri), (v16i8 V128:$Rn))),
   4067           (TBLv16i8One V128:$Ri, V128:$Rn)>;
   4068 
   4069 def : Pat<(v8i8 (int_aarch64_neon_tbx1 (v8i8 V64:$Rd),
   4070                   (v16i8 VecListOne128:$Rn), (v8i8 V64:$Ri))),
   4071           (TBXv8i8One V64:$Rd, VecListOne128:$Rn, V64:$Ri)>;
   4072 def : Pat<(v16i8 (int_aarch64_neon_tbx1 (v16i8 V128:$Rd),
   4073                    (v16i8 V128:$Ri), (v16i8 V128:$Rn))),
   4074           (TBXv16i8One V128:$Rd, V128:$Ri, V128:$Rn)>;
   4075 
   4076 
   4077 //----------------------------------------------------------------------------
   4078 // AdvSIMD scalar CPY instruction
   4079 //----------------------------------------------------------------------------
   4080 
   4081 defm CPY : SIMDScalarCPY<"cpy">;
   4082 
   4083 //----------------------------------------------------------------------------
   4084 // AdvSIMD scalar pairwise instructions
   4085 //----------------------------------------------------------------------------
   4086 
   4087 defm ADDP    : SIMDPairwiseScalarD<0, 0b11011, "addp">;
   4088 defm FADDP   : SIMDFPPairwiseScalar<0, 0b01101, "faddp">;
   4089 defm FMAXNMP : SIMDFPPairwiseScalar<0, 0b01100, "fmaxnmp">;
   4090 defm FMAXP   : SIMDFPPairwiseScalar<0, 0b01111, "fmaxp">;
   4091 defm FMINNMP : SIMDFPPairwiseScalar<1, 0b01100, "fminnmp">;
   4092 defm FMINP   : SIMDFPPairwiseScalar<1, 0b01111, "fminp">;
   4093 def : Pat<(v2i64 (AArch64saddv V128:$Rn)),
   4094           (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), (ADDPv2i64p V128:$Rn), dsub)>;
   4095 def : Pat<(v2i64 (AArch64uaddv V128:$Rn)),
   4096           (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), (ADDPv2i64p V128:$Rn), dsub)>;
   4097 def : Pat<(f32 (int_aarch64_neon_faddv (v2f32 V64:$Rn))),
   4098           (FADDPv2i32p V64:$Rn)>;
   4099 def : Pat<(f32 (int_aarch64_neon_faddv (v4f32 V128:$Rn))),
   4100           (FADDPv2i32p (EXTRACT_SUBREG (FADDPv4f32 V128:$Rn, V128:$Rn), dsub))>;
   4101 def : Pat<(f64 (int_aarch64_neon_faddv (v2f64 V128:$Rn))),
   4102           (FADDPv2i64p V128:$Rn)>;
   4103 def : Pat<(f32 (int_aarch64_neon_fmaxnmv (v2f32 V64:$Rn))),
   4104           (FMAXNMPv2i32p V64:$Rn)>;
   4105 def : Pat<(f64 (int_aarch64_neon_fmaxnmv (v2f64 V128:$Rn))),
   4106           (FMAXNMPv2i64p V128:$Rn)>;
   4107 def : Pat<(f32 (int_aarch64_neon_fmaxv (v2f32 V64:$Rn))),
   4108           (FMAXPv2i32p V64:$Rn)>;
   4109 def : Pat<(f64 (int_aarch64_neon_fmaxv (v2f64 V128:$Rn))),
   4110           (FMAXPv2i64p V128:$Rn)>;
   4111 def : Pat<(f32 (int_aarch64_neon_fminnmv (v2f32 V64:$Rn))),
   4112           (FMINNMPv2i32p V64:$Rn)>;
   4113 def : Pat<(f64 (int_aarch64_neon_fminnmv (v2f64 V128:$Rn))),
   4114           (FMINNMPv2i64p V128:$Rn)>;
   4115 def : Pat<(f32 (int_aarch64_neon_fminv (v2f32 V64:$Rn))),
   4116           (FMINPv2i32p V64:$Rn)>;
   4117 def : Pat<(f64 (int_aarch64_neon_fminv (v2f64 V128:$Rn))),
   4118           (FMINPv2i64p V128:$Rn)>;
   4119 
   4120 //----------------------------------------------------------------------------
   4121 // AdvSIMD INS/DUP instructions
   4122 //----------------------------------------------------------------------------
   4123 
   4124 def DUPv8i8gpr  : SIMDDupFromMain<0, {?,?,?,?,1}, ".8b", v8i8, V64, GPR32>;
   4125 def DUPv16i8gpr : SIMDDupFromMain<1, {?,?,?,?,1}, ".16b", v16i8, V128, GPR32>;
   4126 def DUPv4i16gpr : SIMDDupFromMain<0, {?,?,?,1,0}, ".4h", v4i16, V64, GPR32>;
   4127 def DUPv8i16gpr : SIMDDupFromMain<1, {?,?,?,1,0}, ".8h", v8i16, V128, GPR32>;
   4128 def DUPv2i32gpr : SIMDDupFromMain<0, {?,?,1,0,0}, ".2s", v2i32, V64, GPR32>;
   4129 def DUPv4i32gpr : SIMDDupFromMain<1, {?,?,1,0,0}, ".4s", v4i32, V128, GPR32>;
   4130 def DUPv2i64gpr : SIMDDupFromMain<1, {?,1,0,0,0}, ".2d", v2i64, V128, GPR64>;
   4131 
   4132 def DUPv2i64lane : SIMDDup64FromElement;
   4133 def DUPv2i32lane : SIMDDup32FromElement<0, ".2s", v2i32, V64>;
   4134 def DUPv4i32lane : SIMDDup32FromElement<1, ".4s", v4i32, V128>;
   4135 def DUPv4i16lane : SIMDDup16FromElement<0, ".4h", v4i16, V64>;
   4136 def DUPv8i16lane : SIMDDup16FromElement<1, ".8h", v8i16, V128>;
   4137 def DUPv8i8lane  : SIMDDup8FromElement <0, ".8b", v8i8, V64>;
   4138 def DUPv16i8lane : SIMDDup8FromElement <1, ".16b", v16i8, V128>;
   4139 
   4140 def : Pat<(v2f32 (AArch64dup (f32 FPR32:$Rn))),
   4141           (v2f32 (DUPv2i32lane
   4142             (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rn, ssub),
   4143             (i64 0)))>;
   4144 def : Pat<(v4f32 (AArch64dup (f32 FPR32:$Rn))),
   4145           (v4f32 (DUPv4i32lane
   4146             (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rn, ssub),
   4147             (i64 0)))>;
   4148 def : Pat<(v2f64 (AArch64dup (f64 FPR64:$Rn))),
   4149           (v2f64 (DUPv2i64lane
   4150             (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR64:$Rn, dsub),
   4151             (i64 0)))>;
   4152 def : Pat<(v4f16 (AArch64dup (f16 FPR16:$Rn))),
   4153           (v4f16 (DUPv4i16lane
   4154             (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR16:$Rn, hsub),
   4155             (i64 0)))>;
   4156 def : Pat<(v8f16 (AArch64dup (f16 FPR16:$Rn))),
   4157           (v8f16 (DUPv8i16lane
   4158             (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR16:$Rn, hsub),
   4159             (i64 0)))>;
   4160 
   4161 def : Pat<(v4f16 (AArch64duplane16 (v8f16 V128:$Rn), VectorIndexH:$imm)),
   4162           (DUPv4i16lane V128:$Rn, VectorIndexH:$imm)>;
   4163 def : Pat<(v8f16 (AArch64duplane16 (v8f16 V128:$Rn), VectorIndexH:$imm)),
   4164           (DUPv8i16lane V128:$Rn, VectorIndexH:$imm)>;
   4165 
   4166 def : Pat<(v2f32 (AArch64duplane32 (v4f32 V128:$Rn), VectorIndexS:$imm)),
   4167           (DUPv2i32lane V128:$Rn, VectorIndexS:$imm)>;
   4168 def : Pat<(v4f32 (AArch64duplane32 (v4f32 V128:$Rn), VectorIndexS:$imm)),
   4169          (DUPv4i32lane V128:$Rn, VectorIndexS:$imm)>;
   4170 def : Pat<(v2f64 (AArch64duplane64 (v2f64 V128:$Rn), VectorIndexD:$imm)),
   4171           (DUPv2i64lane V128:$Rn, VectorIndexD:$imm)>;
   4172 
   4173 // If there's an (AArch64dup (vector_extract ...) ...), we can use a duplane
   4174 // instruction even if the types don't match: we just have to remap the lane
   4175 // carefully. N.b. this trick only applies to truncations.
   4176 def VecIndex_x2 : SDNodeXForm<imm, [{
   4177   return CurDAG->getTargetConstant(2 * N->getZExtValue(), SDLoc(N), MVT::i64);
   4178 }]>;
   4179 def VecIndex_x4 : SDNodeXForm<imm, [{
   4180   return CurDAG->getTargetConstant(4 * N->getZExtValue(), SDLoc(N), MVT::i64);
   4181 }]>;
   4182 def VecIndex_x8 : SDNodeXForm<imm, [{
   4183   return CurDAG->getTargetConstant(8 * N->getZExtValue(), SDLoc(N), MVT::i64);
   4184 }]>;
   4185 
   4186 multiclass DUPWithTruncPats<ValueType ResVT, ValueType Src64VT,
   4187                             ValueType Src128VT, ValueType ScalVT,
   4188                             Instruction DUP, SDNodeXForm IdxXFORM> {
   4189   def : Pat<(ResVT (AArch64dup (ScalVT (vector_extract (Src128VT V128:$Rn),
   4190                                                      imm:$idx)))),
   4191             (DUP V128:$Rn, (IdxXFORM imm:$idx))>;
   4192 
   4193   def : Pat<(ResVT (AArch64dup (ScalVT (vector_extract (Src64VT V64:$Rn),
   4194                                                      imm:$idx)))),
   4195             (DUP (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), (IdxXFORM imm:$idx))>;
   4196 }
   4197 
   4198 defm : DUPWithTruncPats<v8i8,   v4i16, v8i16, i32, DUPv8i8lane,  VecIndex_x2>;
   4199 defm : DUPWithTruncPats<v8i8,   v2i32, v4i32, i32, DUPv8i8lane,  VecIndex_x4>;
   4200 defm : DUPWithTruncPats<v4i16,  v2i32, v4i32, i32, DUPv4i16lane, VecIndex_x2>;
   4201 
   4202 defm : DUPWithTruncPats<v16i8,  v4i16, v8i16, i32, DUPv16i8lane, VecIndex_x2>;
   4203 defm : DUPWithTruncPats<v16i8,  v2i32, v4i32, i32, DUPv16i8lane, VecIndex_x4>;
   4204 defm : DUPWithTruncPats<v8i16,  v2i32, v4i32, i32, DUPv8i16lane, VecIndex_x2>;
   4205 
   4206 multiclass DUPWithTrunci64Pats<ValueType ResVT, Instruction DUP,
   4207                                SDNodeXForm IdxXFORM> {
   4208   def : Pat<(ResVT (AArch64dup (i32 (trunc (extractelt (v2i64 V128:$Rn),
   4209                                                          imm:$idx))))),
   4210             (DUP V128:$Rn, (IdxXFORM imm:$idx))>;
   4211 
   4212   def : Pat<(ResVT (AArch64dup (i32 (trunc (extractelt (v1i64 V64:$Rn),
   4213                                                        imm:$idx))))),
   4214             (DUP (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), (IdxXFORM imm:$idx))>;
   4215 }
   4216 
   4217 defm : DUPWithTrunci64Pats<v8i8,  DUPv8i8lane,   VecIndex_x8>;
   4218 defm : DUPWithTrunci64Pats<v4i16, DUPv4i16lane,  VecIndex_x4>;
   4219 defm : DUPWithTrunci64Pats<v2i32, DUPv2i32lane,  VecIndex_x2>;
   4220 
   4221 defm : DUPWithTrunci64Pats<v16i8, DUPv16i8lane, VecIndex_x8>;
   4222 defm : DUPWithTrunci64Pats<v8i16, DUPv8i16lane, VecIndex_x4>;
   4223 defm : DUPWithTrunci64Pats<v4i32, DUPv4i32lane, VecIndex_x2>;
   4224 
   4225 // SMOV and UMOV definitions, with some extra patterns for convenience
   4226 defm SMOV : SMov;
   4227 defm UMOV : UMov;
   4228 
   4229 def : Pat<(sext_inreg (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx), i8),
   4230           (i32 (SMOVvi8to32 V128:$Rn, VectorIndexB:$idx))>;
   4231 def : Pat<(sext_inreg (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx), i8),
   4232           (i64 (SMOVvi8to64 V128:$Rn, VectorIndexB:$idx))>;
   4233 def : Pat<(sext_inreg (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),i16),
   4234           (i32 (SMOVvi16to32 V128:$Rn, VectorIndexH:$idx))>;
   4235 def : Pat<(sext_inreg (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),i16),
   4236           (i64 (SMOVvi16to64 V128:$Rn, VectorIndexH:$idx))>;
   4237 def : Pat<(sext_inreg (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),i16),
   4238           (i32 (SMOVvi16to32 V128:$Rn, VectorIndexH:$idx))>;
   4239 def : Pat<(sext (i32 (vector_extract (v4i32 V128:$Rn), VectorIndexS:$idx))),
   4240           (i64 (SMOVvi32to64 V128:$Rn, VectorIndexS:$idx))>;
   4241 
   4242 def : Pat<(sext_inreg (i64 (anyext (i32 (vector_extract (v16i8 V128:$Rn),
   4243             VectorIndexB:$idx)))), i8),
   4244           (i64 (SMOVvi8to64 V128:$Rn, VectorIndexB:$idx))>;
   4245 def : Pat<(sext_inreg (i64 (anyext (i32 (vector_extract (v8i16 V128:$Rn),
   4246             VectorIndexH:$idx)))), i16),
   4247           (i64 (SMOVvi16to64 V128:$Rn, VectorIndexH:$idx))>;
   4248 
   4249 // Extracting i8 or i16 elements will have the zero-extend transformed to
   4250 // an 'and' mask by type legalization since neither i8 nor i16 are legal types
   4251 // for AArch64. Match these patterns here since UMOV already zeroes out the high
   4252 // bits of the destination register.
   4253 def : Pat<(and (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx),
   4254                (i32 0xff)),
   4255           (i32 (UMOVvi8 V128:$Rn, VectorIndexB:$idx))>;
   4256 def : Pat<(and (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),
   4257                (i32 0xffff)),
   4258           (i32 (UMOVvi16 V128:$Rn, VectorIndexH:$idx))>;
   4259 
   4260 defm INS : SIMDIns;
   4261 
   4262 def : Pat<(v16i8 (scalar_to_vector GPR32:$Rn)),
   4263           (SUBREG_TO_REG (i32 0),
   4264                          (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>;
   4265 def : Pat<(v8i8 (scalar_to_vector GPR32:$Rn)),
   4266           (SUBREG_TO_REG (i32 0),
   4267                          (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>;
   4268 
   4269 def : Pat<(v8i16 (scalar_to_vector GPR32:$Rn)),
   4270           (SUBREG_TO_REG (i32 0),
   4271                          (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>;
   4272 def : Pat<(v4i16 (scalar_to_vector GPR32:$Rn)),
   4273           (SUBREG_TO_REG (i32 0),
   4274                          (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>;
   4275 
   4276 def : Pat<(v4f16 (scalar_to_vector (f16 FPR16:$Rn))),
   4277           (INSERT_SUBREG (v4f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;
   4278 def : Pat<(v8f16 (scalar_to_vector (f16 FPR16:$Rn))),
   4279           (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;
   4280 
   4281 def : Pat<(v2i32 (scalar_to_vector (i32 FPR32:$Rn))),
   4282             (v2i32 (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)),
   4283                                   (i32 FPR32:$Rn), ssub))>;
   4284 def : Pat<(v4i32 (scalar_to_vector (i32 FPR32:$Rn))),
   4285             (v4i32 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
   4286                                   (i32 FPR32:$Rn), ssub))>;
   4287 
   4288 def : Pat<(v2i64 (scalar_to_vector (i64 FPR64:$Rn))),
   4289             (v2i64 (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)),
   4290                                   (i64 FPR64:$Rn), dsub))>;
   4291 
   4292 def : Pat<(v4f16 (scalar_to_vector (f16 FPR16:$Rn))),
   4293           (INSERT_SUBREG (v4f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;
   4294 def : Pat<(v8f16 (scalar_to_vector (f16 FPR16:$Rn))),
   4295           (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;
   4296 
   4297 def : Pat<(v4f32 (scalar_to_vector (f32 FPR32:$Rn))),
   4298           (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR32:$Rn, ssub)>;
   4299 def : Pat<(v2f32 (scalar_to_vector (f32 FPR32:$Rn))),
   4300           (INSERT_SUBREG (v2f32 (IMPLICIT_DEF)), FPR32:$Rn, ssub)>;
   4301 
   4302 def : Pat<(v2f64 (scalar_to_vector (f64 FPR64:$Rn))),
   4303           (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FPR64:$Rn, dsub)>;
   4304 
   4305 def : Pat<(v4f16 (vector_insert (v4f16 V64:$Rn),
   4306             (f16 FPR16:$Rm), (i64 VectorIndexS:$imm))),
   4307           (EXTRACT_SUBREG
   4308             (INSvi16lane
   4309               (v8f16 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), V64:$Rn, dsub)),
   4310               VectorIndexS:$imm,
   4311               (v8f16 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rm, hsub)),
   4312               (i64 0)),
   4313             dsub)>;
   4314 
   4315 def : Pat<(v8f16 (vector_insert (v8f16 V128:$Rn),
   4316             (f16 FPR16:$Rm), (i64 VectorIndexH:$imm))),
   4317           (INSvi16lane
   4318             V128:$Rn, VectorIndexH:$imm,
   4319             (v8f16 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rm, hsub)),
   4320             (i64 0))>;
   4321 
   4322 def : Pat<(v2f32 (vector_insert (v2f32 V64:$Rn),
   4323             (f32 FPR32:$Rm), (i64 VectorIndexS:$imm))),
   4324           (EXTRACT_SUBREG
   4325             (INSvi32lane
   4326               (v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), V64:$Rn, dsub)),
   4327               VectorIndexS:$imm,
   4328               (v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR32:$Rm, ssub)),
   4329               (i64 0)),
   4330             dsub)>;
   4331 def : Pat<(v4f32 (vector_insert (v4f32 V128:$Rn),
   4332             (f32 FPR32:$Rm), (i64 VectorIndexS:$imm))),
   4333           (INSvi32lane
   4334             V128:$Rn, VectorIndexS:$imm,
   4335             (v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR32:$Rm, ssub)),
   4336             (i64 0))>;
   4337 def : Pat<(v2f64 (vector_insert (v2f64 V128:$Rn),
   4338             (f64 FPR64:$Rm), (i64 VectorIndexD:$imm))),
   4339           (INSvi64lane
   4340             V128:$Rn, VectorIndexD:$imm,
   4341             (v2f64 (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FPR64:$Rm, dsub)),
   4342             (i64 0))>;
   4343 
   4344 // Copy an element at a constant index in one vector into a constant indexed
   4345 // element of another.
   4346 // FIXME refactor to a shared class/dev parameterized on vector type, vector
   4347 // index type and INS extension
   4348 def : Pat<(v16i8 (int_aarch64_neon_vcopy_lane
   4349                    (v16i8 V128:$Vd), VectorIndexB:$idx, (v16i8 V128:$Vs),
   4350                    VectorIndexB:$idx2)),
   4351           (v16i8 (INSvi8lane
   4352                    V128:$Vd, VectorIndexB:$idx, V128:$Vs, VectorIndexB:$idx2)
   4353           )>;
   4354 def : Pat<(v8i16 (int_aarch64_neon_vcopy_lane
   4355                    (v8i16 V128:$Vd), VectorIndexH:$idx, (v8i16 V128:$Vs),
   4356                    VectorIndexH:$idx2)),
   4357           (v8i16 (INSvi16lane
   4358                    V128:$Vd, VectorIndexH:$idx, V128:$Vs, VectorIndexH:$idx2)
   4359           )>;
   4360 def : Pat<(v4i32 (int_aarch64_neon_vcopy_lane
   4361                    (v4i32 V128:$Vd), VectorIndexS:$idx, (v4i32 V128:$Vs),
   4362                    VectorIndexS:$idx2)),
   4363           (v4i32 (INSvi32lane
   4364                    V128:$Vd, VectorIndexS:$idx, V128:$Vs, VectorIndexS:$idx2)
   4365           )>;
   4366 def : Pat<(v2i64 (int_aarch64_neon_vcopy_lane
   4367                    (v2i64 V128:$Vd), VectorIndexD:$idx, (v2i64 V128:$Vs),
   4368                    VectorIndexD:$idx2)),
   4369           (v2i64 (INSvi64lane
   4370                    V128:$Vd, VectorIndexD:$idx, V128:$Vs, VectorIndexD:$idx2)
   4371           )>;
   4372 
   4373 multiclass Neon_INS_elt_pattern<ValueType VT128, ValueType VT64,
   4374                                 ValueType VTScal, Instruction INS> {
   4375   def : Pat<(VT128 (vector_insert V128:$src,
   4376                         (VTScal (vector_extract (VT128 V128:$Rn), imm:$Immn)),
   4377                         imm:$Immd)),
   4378             (INS V128:$src, imm:$Immd, V128:$Rn, imm:$Immn)>;
   4379 
   4380   def : Pat<(VT128 (vector_insert V128:$src,
   4381                         (VTScal (vector_extract (VT64 V64:$Rn), imm:$Immn)),
   4382                         imm:$Immd)),
   4383             (INS V128:$src, imm:$Immd,
   4384                  (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), imm:$Immn)>;
   4385 
   4386   def : Pat<(VT64 (vector_insert V64:$src,
   4387                         (VTScal (vector_extract (VT128 V128:$Rn), imm:$Immn)),
   4388                         imm:$Immd)),
   4389             (EXTRACT_SUBREG (INS (SUBREG_TO_REG (i64 0), V64:$src, dsub),
   4390                                  imm:$Immd, V128:$Rn, imm:$Immn),
   4391                             dsub)>;
   4392 
   4393   def : Pat<(VT64 (vector_insert V64:$src,
   4394                         (VTScal (vector_extract (VT64 V64:$Rn), imm:$Immn)),
   4395                         imm:$Immd)),
   4396             (EXTRACT_SUBREG
   4397                 (INS (SUBREG_TO_REG (i64 0), V64:$src, dsub), imm:$Immd,
   4398                      (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), imm:$Immn),
   4399                 dsub)>;
   4400 }
   4401 
   4402 defm : Neon_INS_elt_pattern<v8f16, v4f16, f16, INSvi16lane>;
   4403 defm : Neon_INS_elt_pattern<v4f32, v2f32, f32, INSvi32lane>;
   4404 defm : Neon_INS_elt_pattern<v2f64, v1f64, f64, INSvi64lane>;
   4405 
   4406 
   4407 // Floating point vector extractions are codegen'd as either a sequence of
   4408 // subregister extractions, or a MOV (aka CPY here, alias for DUP) if
   4409 // the lane number is anything other than zero.
   4410 def : Pat<(vector_extract (v2f64 V128:$Rn), 0),
   4411           (f64 (EXTRACT_SUBREG V128:$Rn, dsub))>;
   4412 def : Pat<(vector_extract (v4f32 V128:$Rn), 0),
   4413           (f32 (EXTRACT_SUBREG V128:$Rn, ssub))>;
   4414 def : Pat<(vector_extract (v8f16 V128:$Rn), 0),
   4415           (f16 (EXTRACT_SUBREG V128:$Rn, hsub))>;
   4416 
   4417 def : Pat<(vector_extract (v2f64 V128:$Rn), VectorIndexD:$idx),
   4418           (f64 (CPYi64 V128:$Rn, VectorIndexD:$idx))>;
   4419 def : Pat<(vector_extract (v4f32 V128:$Rn), VectorIndexS:$idx),
   4420           (f32 (CPYi32 V128:$Rn, VectorIndexS:$idx))>;
   4421 def : Pat<(vector_extract (v8f16 V128:$Rn), VectorIndexH:$idx),
   4422           (f16 (CPYi16 V128:$Rn, VectorIndexH:$idx))>;
   4423 
   4424 // All concat_vectors operations are canonicalised to act on i64 vectors for
   4425 // AArch64. In the general case we need an instruction, which had just as well be
   4426 // INS.
   4427 class ConcatPat<ValueType DstTy, ValueType SrcTy>
   4428   : Pat<(DstTy (concat_vectors (SrcTy V64:$Rd), V64:$Rn)),
   4429         (INSvi64lane (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), 1,
   4430                      (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rn, dsub), 0)>;
   4431 
   4432 def : ConcatPat<v2i64, v1i64>;
   4433 def : ConcatPat<v2f64, v1f64>;
   4434 def : ConcatPat<v4i32, v2i32>;
   4435 def : ConcatPat<v4f32, v2f32>;
   4436 def : ConcatPat<v8i16, v4i16>;
   4437 def : ConcatPat<v8f16, v4f16>;
   4438 def : ConcatPat<v16i8, v8i8>;
   4439 
   4440 // If the high lanes are undef, though, we can just ignore them:
   4441 class ConcatUndefPat<ValueType DstTy, ValueType SrcTy>
   4442   : Pat<(DstTy (concat_vectors (SrcTy V64:$Rn), undef)),
   4443         (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rn, dsub)>;
   4444 
   4445 def : ConcatUndefPat<v2i64, v1i64>;
   4446 def : ConcatUndefPat<v2f64, v1f64>;
   4447 def : ConcatUndefPat<v4i32, v2i32>;
   4448 def : ConcatUndefPat<v4f32, v2f32>;
   4449 def : ConcatUndefPat<v8i16, v4i16>;
   4450 def : ConcatUndefPat<v16i8, v8i8>;
   4451 
   4452 //----------------------------------------------------------------------------
   4453 // AdvSIMD across lanes instructions
   4454 //----------------------------------------------------------------------------
   4455 
   4456 defm ADDV    : SIMDAcrossLanesBHS<0, 0b11011, "addv">;
   4457 defm SMAXV   : SIMDAcrossLanesBHS<0, 0b01010, "smaxv">;
   4458 defm SMINV   : SIMDAcrossLanesBHS<0, 0b11010, "sminv">;
   4459 defm UMAXV   : SIMDAcrossLanesBHS<1, 0b01010, "umaxv">;
   4460 defm UMINV   : SIMDAcrossLanesBHS<1, 0b11010, "uminv">;
   4461 defm SADDLV  : SIMDAcrossLanesHSD<0, 0b00011, "saddlv">;
   4462 defm UADDLV  : SIMDAcrossLanesHSD<1, 0b00011, "uaddlv">;
   4463 defm FMAXNMV : SIMDFPAcrossLanes<0b01100, 0, "fmaxnmv", int_aarch64_neon_fmaxnmv>;
   4464 defm FMAXV   : SIMDFPAcrossLanes<0b01111, 0, "fmaxv", int_aarch64_neon_fmaxv>;
   4465 defm FMINNMV : SIMDFPAcrossLanes<0b01100, 1, "fminnmv", int_aarch64_neon_fminnmv>;
   4466 defm FMINV   : SIMDFPAcrossLanes<0b01111, 1, "fminv", int_aarch64_neon_fminv>;
   4467 
   4468 // Patterns for across-vector intrinsics, that have a node equivalent, that
   4469 // returns a vector (with only the low lane defined) instead of a scalar.
   4470 // In effect, opNode is the same as (scalar_to_vector (IntNode)).
   4471 multiclass SIMDAcrossLanesIntrinsic<string baseOpc,
   4472                                     SDPatternOperator opNode> {
   4473 // If a lane instruction caught the vector_extract around opNode, we can
   4474 // directly match the latter to the instruction.
   4475 def : Pat<(v8i8 (opNode V64:$Rn)),
   4476           (INSERT_SUBREG (v8i8 (IMPLICIT_DEF)),
   4477            (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub)>;
   4478 def : Pat<(v16i8 (opNode V128:$Rn)),
   4479           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
   4480            (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub)>;
   4481 def : Pat<(v4i16 (opNode V64:$Rn)),
   4482           (INSERT_SUBREG (v4i16 (IMPLICIT_DEF)),
   4483            (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub)>;
   4484 def : Pat<(v8i16 (opNode V128:$Rn)),
   4485           (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)),
   4486            (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub)>;
   4487 def : Pat<(v4i32 (opNode V128:$Rn)),
   4488           (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
   4489            (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), ssub)>;
   4490 
   4491 
   4492 // If none did, fallback to the explicit patterns, consuming the vector_extract.
   4493 def : Pat<(i32 (vector_extract (insert_subvector undef, (v8i8 (opNode V64:$Rn)),
   4494             (i32 0)), (i64 0))),
   4495           (EXTRACT_SUBREG (INSERT_SUBREG (v8i8 (IMPLICIT_DEF)),
   4496             (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn),
   4497             bsub), ssub)>;
   4498 def : Pat<(i32 (vector_extract (v16i8 (opNode V128:$Rn)), (i64 0))),
   4499           (EXTRACT_SUBREG (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
   4500             (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn),
   4501             bsub), ssub)>;
   4502 def : Pat<(i32 (vector_extract (insert_subvector undef,
   4503             (v4i16 (opNode V64:$Rn)), (i32 0)), (i64 0))),
   4504           (EXTRACT_SUBREG (INSERT_SUBREG (v4i16 (IMPLICIT_DEF)),
   4505             (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn),
   4506             hsub), ssub)>;
   4507 def : Pat<(i32 (vector_extract (v8i16 (opNode V128:$Rn)), (i64 0))),
   4508           (EXTRACT_SUBREG (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)),
   4509             (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn),
   4510             hsub), ssub)>;
   4511 def : Pat<(i32 (vector_extract (v4i32 (opNode V128:$Rn)), (i64 0))),
   4512           (EXTRACT_SUBREG (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
   4513             (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn),
   4514             ssub), ssub)>;
   4515 
   4516 }
   4517 
   4518 multiclass SIMDAcrossLanesSignedIntrinsic<string baseOpc,
   4519                                           SDPatternOperator opNode>
   4520     : SIMDAcrossLanesIntrinsic<baseOpc, opNode> {
   4521 // If there is a sign extension after this intrinsic, consume it as smov already
   4522 // performed it
   4523 def : Pat<(i32 (sext_inreg (i32 (vector_extract (insert_subvector undef,
   4524             (opNode (v8i8 V64:$Rn)), (i32 0)), (i64 0))), i8)),
   4525           (i32 (SMOVvi8to32
   4526             (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
   4527               (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub),
   4528             (i64 0)))>;
   4529 def : Pat<(i32 (sext_inreg (i32 (vector_extract
   4530             (opNode (v16i8 V128:$Rn)), (i64 0))), i8)),
   4531           (i32 (SMOVvi8to32
   4532             (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
   4533              (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub),
   4534             (i64 0)))>;
   4535 def : Pat<(i32 (sext_inreg (i32 (vector_extract (insert_subvector undef,
   4536             (opNode (v4i16 V64:$Rn)), (i32 0)), (i64 0))), i16)),
   4537           (i32 (SMOVvi16to32
   4538            (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
   4539             (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub),
   4540            (i64 0)))>;
   4541 def : Pat<(i32 (sext_inreg (i32 (vector_extract
   4542             (opNode (v8i16 V128:$Rn)), (i64 0))), i16)),
   4543           (i32 (SMOVvi16to32
   4544             (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
   4545              (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub),
   4546             (i64 0)))>;
   4547 }
   4548 
   4549 multiclass SIMDAcrossLanesUnsignedIntrinsic<string baseOpc,
   4550                                             SDPatternOperator opNode>
   4551     : SIMDAcrossLanesIntrinsic<baseOpc, opNode> {
   4552 // If there is a masking operation keeping only what has been actually
   4553 // generated, consume it.
   4554 def : Pat<(i32 (and (i32 (vector_extract (insert_subvector undef,
   4555             (opNode (v8i8 V64:$Rn)), (i32 0)), (i64 0))), maski8_or_more)),
   4556       (i32 (EXTRACT_SUBREG
   4557         (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
   4558           (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub),
   4559         ssub))>;
   4560 def : Pat<(i32 (and (i32 (vector_extract (opNode (v16i8 V128:$Rn)), (i64 0))),
   4561             maski8_or_more)),
   4562         (i32 (EXTRACT_SUBREG
   4563           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
   4564             (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub),
   4565           ssub))>;
   4566 def : Pat<(i32 (and (i32 (vector_extract (insert_subvector undef,
   4567             (opNode (v4i16 V64:$Rn)), (i32 0)), (i64 0))), maski16_or_more)),
   4568           (i32 (EXTRACT_SUBREG
   4569             (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
   4570               (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub),
   4571             ssub))>;
   4572 def : Pat<(i32 (and (i32 (vector_extract (opNode (v8i16 V128:$Rn)), (i64 0))),
   4573             maski16_or_more)),
   4574         (i32 (EXTRACT_SUBREG
   4575           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
   4576             (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub),
   4577           ssub))>;
   4578 }
   4579 
   4580 defm : SIMDAcrossLanesSignedIntrinsic<"ADDV",  AArch64saddv>;
   4581 // vaddv_[su]32 is special; -> ADDP Vd.2S,Vn.2S,Vm.2S; return Vd.s[0];Vn==Vm
   4582 def : Pat<(v2i32 (AArch64saddv (v2i32 V64:$Rn))),
   4583           (ADDPv2i32 V64:$Rn, V64:$Rn)>;
   4584 
   4585 defm : SIMDAcrossLanesUnsignedIntrinsic<"ADDV", AArch64uaddv>;
   4586 // vaddv_[su]32 is special; -> ADDP Vd.2S,Vn.2S,Vm.2S; return Vd.s[0];Vn==Vm
   4587 def : Pat<(v2i32 (AArch64uaddv (v2i32 V64:$Rn))),
   4588           (ADDPv2i32 V64:$Rn, V64:$Rn)>;
   4589 
   4590 defm : SIMDAcrossLanesSignedIntrinsic<"SMAXV", AArch64smaxv>;
   4591 def : Pat<(v2i32 (AArch64smaxv (v2i32 V64:$Rn))),
   4592           (SMAXPv2i32 V64:$Rn, V64:$Rn)>;
   4593 
   4594 defm : SIMDAcrossLanesSignedIntrinsic<"SMINV", AArch64sminv>;
   4595 def : Pat<(v2i32 (AArch64sminv (v2i32 V64:$Rn))),
   4596           (SMINPv2i32 V64:$Rn, V64:$Rn)>;
   4597 
   4598 defm : SIMDAcrossLanesUnsignedIntrinsic<"UMAXV", AArch64umaxv>;
   4599 def : Pat<(v2i32 (AArch64umaxv (v2i32 V64:$Rn))),
   4600           (UMAXPv2i32 V64:$Rn, V64:$Rn)>;
   4601 
   4602 defm : SIMDAcrossLanesUnsignedIntrinsic<"UMINV", AArch64uminv>;
   4603 def : Pat<(v2i32 (AArch64uminv (v2i32 V64:$Rn))),
   4604           (UMINPv2i32 V64:$Rn, V64:$Rn)>;
   4605 
   4606 multiclass SIMDAcrossLanesSignedLongIntrinsic<string baseOpc, Intrinsic intOp> {
   4607   def : Pat<(i32 (intOp (v8i8 V64:$Rn))),
   4608         (i32 (SMOVvi16to32
   4609           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
   4610             (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), hsub),
   4611           (i64 0)))>;
   4612 def : Pat<(i32 (intOp (v16i8 V128:$Rn))),
   4613         (i32 (SMOVvi16to32
   4614           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
   4615            (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), hsub),
   4616           (i64 0)))>;
   4617 
   4618 def : Pat<(i32 (intOp (v4i16 V64:$Rn))),
   4619           (i32 (EXTRACT_SUBREG
   4620            (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
   4621             (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), ssub),
   4622            ssub))>;
   4623 def : Pat<(i32 (intOp (v8i16 V128:$Rn))),
   4624         (i32 (EXTRACT_SUBREG
   4625           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
   4626            (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), ssub),
   4627           ssub))>;
   4628 
   4629 def : Pat<(i64 (intOp (v4i32 V128:$Rn))),
   4630         (i64 (EXTRACT_SUBREG
   4631           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
   4632            (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), dsub),
   4633           dsub))>;
   4634 }
   4635 
   4636 multiclass SIMDAcrossLanesUnsignedLongIntrinsic<string baseOpc,
   4637                                                 Intrinsic intOp> {
   4638   def : Pat<(i32 (intOp (v8i8 V64:$Rn))),
   4639         (i32 (EXTRACT_SUBREG
   4640           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
   4641             (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), hsub),
   4642           ssub))>;
   4643 def : Pat<(i32 (intOp (v16i8 V128:$Rn))),
   4644         (i32 (EXTRACT_SUBREG
   4645           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
   4646             (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), hsub),
   4647           ssub))>;
   4648 
   4649 def : Pat<(i32 (intOp (v4i16 V64:$Rn))),
   4650           (i32 (EXTRACT_SUBREG
   4651             (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
   4652               (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), ssub),
   4653             ssub))>;
   4654 def : Pat<(i32 (intOp (v8i16 V128:$Rn))),
   4655         (i32 (EXTRACT_SUBREG
   4656           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
   4657             (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), ssub),
   4658           ssub))>;
   4659 
   4660 def : Pat<(i64 (intOp (v4i32 V128:$Rn))),
   4661         (i64 (EXTRACT_SUBREG
   4662           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
   4663             (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), dsub),
   4664           dsub))>;
   4665 }
   4666 
   4667 defm : SIMDAcrossLanesSignedLongIntrinsic<"SADDLV", int_aarch64_neon_saddlv>;
   4668 defm : SIMDAcrossLanesUnsignedLongIntrinsic<"UADDLV", int_aarch64_neon_uaddlv>;
   4669 
   4670 // The vaddlv_s32 intrinsic gets mapped to SADDLP.
   4671 def : Pat<(i64 (int_aarch64_neon_saddlv (v2i32 V64:$Rn))),
   4672           (i64 (EXTRACT_SUBREG
   4673             (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
   4674               (SADDLPv2i32_v1i64 V64:$Rn), dsub),
   4675             dsub))>;
   4676 // The vaddlv_u32 intrinsic gets mapped to UADDLP.
   4677 def : Pat<(i64 (int_aarch64_neon_uaddlv (v2i32 V64:$Rn))),
   4678           (i64 (EXTRACT_SUBREG
   4679             (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
   4680               (UADDLPv2i32_v1i64 V64:$Rn), dsub),
   4681             dsub))>;
   4682 
   4683 //------------------------------------------------------------------------------
   4684 // AdvSIMD modified immediate instructions
   4685 //------------------------------------------------------------------------------
   4686 
   4687 // AdvSIMD BIC
   4688 defm BIC : SIMDModifiedImmVectorShiftTied<1, 0b11, 0b01, "bic", AArch64bici>;
   4689 // AdvSIMD ORR
   4690 defm ORR : SIMDModifiedImmVectorShiftTied<0, 0b11, 0b01, "orr", AArch64orri>;
   4691 
   4692 def : InstAlias<"bic $Vd.4h, $imm", (BICv4i16 V64:$Vd,  imm0_255:$imm, 0)>;
   4693 def : InstAlias<"bic $Vd.8h, $imm", (BICv8i16 V128:$Vd, imm0_255:$imm, 0)>;
   4694 def : InstAlias<"bic $Vd.2s, $imm", (BICv2i32 V64:$Vd,  imm0_255:$imm, 0)>;
   4695 def : InstAlias<"bic $Vd.4s, $imm", (BICv4i32 V128:$Vd, imm0_255:$imm, 0)>;
   4696 
   4697 def : InstAlias<"bic.4h $Vd, $imm", (BICv4i16 V64:$Vd,  imm0_255:$imm, 0)>;
   4698 def : InstAlias<"bic.8h $Vd, $imm", (BICv8i16 V128:$Vd, imm0_255:$imm, 0)>;
   4699 def : InstAlias<"bic.2s $Vd, $imm", (BICv2i32 V64:$Vd,  imm0_255:$imm, 0)>;
   4700 def : InstAlias<"bic.4s $Vd, $imm", (BICv4i32 V128:$Vd, imm0_255:$imm, 0)>;
   4701 
   4702 def : InstAlias<"orr $Vd.4h, $imm", (ORRv4i16 V64:$Vd,  imm0_255:$imm, 0)>;
   4703 def : InstAlias<"orr $Vd.8h, $imm", (ORRv8i16 V128:$Vd, imm0_255:$imm, 0)>;
   4704 def : InstAlias<"orr $Vd.2s, $imm", (ORRv2i32 V64:$Vd,  imm0_255:$imm, 0)>;
   4705 def : InstAlias<"orr $Vd.4s, $imm", (ORRv4i32 V128:$Vd, imm0_255:$imm, 0)>;
   4706 
   4707 def : InstAlias<"orr.4h $Vd, $imm", (ORRv4i16 V64:$Vd,  imm0_255:$imm, 0)>;
   4708 def : InstAlias<"orr.8h $Vd, $imm", (ORRv8i16 V128:$Vd, imm0_255:$imm, 0)>;
   4709 def : InstAlias<"orr.2s $Vd, $imm", (ORRv2i32 V64:$Vd,  imm0_255:$imm, 0)>;
   4710 def : InstAlias<"orr.4s $Vd, $imm", (ORRv4i32 V128:$Vd, imm0_255:$imm, 0)>;
   4711 
   4712 // AdvSIMD FMOV
   4713 def FMOVv2f64_ns : SIMDModifiedImmVectorNoShift<1, 1, 0, 0b1111, V128, fpimm8,
   4714                                               "fmov", ".2d",
   4715                        [(set (v2f64 V128:$Rd), (AArch64fmov imm0_255:$imm8))]>;
   4716 def FMOVv2f32_ns : SIMDModifiedImmVectorNoShift<0, 0, 0, 0b1111, V64,  fpimm8,
   4717                                               "fmov", ".2s",
   4718                        [(set (v2f32 V64:$Rd), (AArch64fmov imm0_255:$imm8))]>;
   4719 def FMOVv4f32_ns : SIMDModifiedImmVectorNoShift<1, 0, 0, 0b1111, V128, fpimm8,
   4720                                               "fmov", ".4s",
   4721                        [(set (v4f32 V128:$Rd), (AArch64fmov imm0_255:$imm8))]>;
   4722 let Predicates = [HasNEON, HasFullFP16] in {
   4723 def FMOVv4f16_ns : SIMDModifiedImmVectorNoShift<0, 0, 1, 0b1111, V64,  fpimm8,
   4724                                               "fmov", ".4h",
   4725                        [(set (v4f16 V64:$Rd), (AArch64fmov imm0_255:$imm8))]>;
   4726 def FMOVv8f16_ns : SIMDModifiedImmVectorNoShift<1, 0, 1, 0b1111, V128, fpimm8,
   4727                                               "fmov", ".8h",
   4728                        [(set (v8f16 V128:$Rd), (AArch64fmov imm0_255:$imm8))]>;
   4729 } // Predicates = [HasNEON, HasFullFP16]
   4730 
   4731 // AdvSIMD MOVI
   4732 
   4733 // EDIT byte mask: scalar
   4734 let isReMaterializable = 1, isAsCheapAsAMove = 1 in
   4735 def MOVID      : SIMDModifiedImmScalarNoShift<0, 1, 0b1110, "movi",
   4736                     [(set FPR64:$Rd, simdimmtype10:$imm8)]>;
   4737 // The movi_edit node has the immediate value already encoded, so we use
   4738 // a plain imm0_255 here.
   4739 def : Pat<(f64 (AArch64movi_edit imm0_255:$shift)),
   4740           (MOVID imm0_255:$shift)>;
   4741 
   4742 def : Pat<(v1i64 immAllZerosV), (MOVID (i32 0))>;
   4743 def : Pat<(v2i32 immAllZerosV), (MOVID (i32 0))>;
   4744 def : Pat<(v4i16 immAllZerosV), (MOVID (i32 0))>;
   4745 def : Pat<(v8i8  immAllZerosV), (MOVID (i32 0))>;
   4746 
   4747 def : Pat<(v1i64 immAllOnesV), (MOVID (i32 255))>;
   4748 def : Pat<(v2i32 immAllOnesV), (MOVID (i32 255))>;
   4749 def : Pat<(v4i16 immAllOnesV), (MOVID (i32 255))>;
   4750 def : Pat<(v8i8  immAllOnesV), (MOVID (i32 255))>;
   4751 
   4752 // EDIT byte mask: 2d
   4753 
   4754 // The movi_edit node has the immediate value already encoded, so we use
   4755 // a plain imm0_255 in the pattern
   4756 let isReMaterializable = 1, isAsCheapAsAMove = 1 in
   4757 def MOVIv2d_ns   : SIMDModifiedImmVectorNoShift<1, 1, 0, 0b1110, V128,
   4758                                                 simdimmtype10,
   4759                                                 "movi", ".2d",
   4760                    [(set (v2i64 V128:$Rd), (AArch64movi_edit imm0_255:$imm8))]>;
   4761 
   4762 def : Pat<(v2i64 immAllZerosV), (MOVIv2d_ns (i32 0))>;
   4763 def : Pat<(v4i32 immAllZerosV), (MOVIv2d_ns (i32 0))>;
   4764 def : Pat<(v8i16 immAllZerosV), (MOVIv2d_ns (i32 0))>;
   4765 def : Pat<(v16i8 immAllZerosV), (MOVIv2d_ns (i32 0))>;
   4766 
   4767 def : Pat<(v2i64 immAllOnesV), (MOVIv2d_ns (i32 255))>;
   4768 def : Pat<(v4i32 immAllOnesV), (MOVIv2d_ns (i32 255))>;
   4769 def : Pat<(v8i16 immAllOnesV), (MOVIv2d_ns (i32 255))>;
   4770 def : Pat<(v16i8 immAllOnesV), (MOVIv2d_ns (i32 255))>;
   4771 
   4772 // EDIT per word & halfword: 2s, 4h, 4s, & 8h
   4773 let isReMaterializable = 1, isAsCheapAsAMove = 1 in
   4774 defm MOVI      : SIMDModifiedImmVectorShift<0, 0b10, 0b00, "movi">;
   4775 
   4776 def : InstAlias<"movi $Vd.4h, $imm", (MOVIv4i16 V64:$Vd,  imm0_255:$imm, 0), 0>;
   4777 def : InstAlias<"movi $Vd.8h, $imm", (MOVIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
   4778 def : InstAlias<"movi $Vd.2s, $imm", (MOVIv2i32 V64:$Vd,  imm0_255:$imm, 0), 0>;
   4779 def : InstAlias<"movi $Vd.4s, $imm", (MOVIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;
   4780 
   4781 def : InstAlias<"movi.4h $Vd, $imm", (MOVIv4i16 V64:$Vd,  imm0_255:$imm, 0), 0>;
   4782 def : InstAlias<"movi.8h $Vd, $imm", (MOVIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
   4783 def : InstAlias<"movi.2s $Vd, $imm", (MOVIv2i32 V64:$Vd,  imm0_255:$imm, 0), 0>;
   4784 def : InstAlias<"movi.4s $Vd, $imm", (MOVIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;
   4785 
   4786 def : Pat<(v2i32 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))),
   4787           (MOVIv2i32 imm0_255:$imm8, imm:$shift)>;
   4788 def : Pat<(v4i32 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))),
   4789           (MOVIv4i32 imm0_255:$imm8, imm:$shift)>;
   4790 def : Pat<(v4i16 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))),
   4791           (MOVIv4i16 imm0_255:$imm8, imm:$shift)>;
   4792 def : Pat<(v8i16 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))),
   4793           (MOVIv8i16 imm0_255:$imm8, imm:$shift)>;
   4794 
   4795 let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
   4796 // EDIT per word: 2s & 4s with MSL shifter
   4797 def MOVIv2s_msl  : SIMDModifiedImmMoveMSL<0, 0, {1,1,0,?}, V64, "movi", ".2s",
   4798                       [(set (v2i32 V64:$Rd),
   4799                             (AArch64movi_msl imm0_255:$imm8, (i32 imm:$shift)))]>;
   4800 def MOVIv4s_msl  : SIMDModifiedImmMoveMSL<1, 0, {1,1,0,?}, V128, "movi", ".4s",
   4801                       [(set (v4i32 V128:$Rd),
   4802                             (AArch64movi_msl imm0_255:$imm8, (i32 imm:$shift)))]>;
   4803 
   4804 // Per byte: 8b & 16b
   4805 def MOVIv8b_ns   : SIMDModifiedImmVectorNoShift<0, 0, 0, 0b1110, V64,  imm0_255,
   4806                                                  "movi", ".8b",
   4807                        [(set (v8i8 V64:$Rd), (AArch64movi imm0_255:$imm8))]>;
   4808 
   4809 def MOVIv16b_ns  : SIMDModifiedImmVectorNoShift<1, 0, 0, 0b1110, V128, imm0_255,
   4810                                                  "movi", ".16b",
   4811                        [(set (v16i8 V128:$Rd), (AArch64movi imm0_255:$imm8))]>;
   4812 }
   4813 
   4814 // AdvSIMD MVNI
   4815 
   4816 // EDIT per word & halfword: 2s, 4h, 4s, & 8h
   4817 let isReMaterializable = 1, isAsCheapAsAMove = 1 in
   4818 defm MVNI      : SIMDModifiedImmVectorShift<1, 0b10, 0b00, "mvni">;
   4819 
   4820 def : InstAlias<"mvni $Vd.4h, $imm", (MVNIv4i16 V64:$Vd,  imm0_255:$imm, 0), 0>;
   4821 def : InstAlias<"mvni $Vd.8h, $imm", (MVNIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
   4822 def : InstAlias<"mvni $Vd.2s, $imm", (MVNIv2i32 V64:$Vd,  imm0_255:$imm, 0), 0>;
   4823 def : InstAlias<"mvni $Vd.4s, $imm", (MVNIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;
   4824 
   4825 def : InstAlias<"mvni.4h $Vd, $imm", (MVNIv4i16 V64:$Vd,  imm0_255:$imm, 0), 0>;
   4826 def : InstAlias<"mvni.8h $Vd, $imm", (MVNIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
   4827 def : InstAlias<"mvni.2s $Vd, $imm", (MVNIv2i32 V64:$Vd,  imm0_255:$imm, 0), 0>;
   4828 def : InstAlias<"mvni.4s $Vd, $imm", (MVNIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;
   4829 
   4830 def : Pat<(v2i32 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))),
   4831           (MVNIv2i32 imm0_255:$imm8, imm:$shift)>;
   4832 def : Pat<(v4i32 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))),
   4833           (MVNIv4i32 imm0_255:$imm8, imm:$shift)>;
   4834 def : Pat<(v4i16 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))),
   4835           (MVNIv4i16 imm0_255:$imm8, imm:$shift)>;
   4836 def : Pat<(v8i16 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))),
   4837           (MVNIv8i16 imm0_255:$imm8, imm:$shift)>;
   4838 
   4839 // EDIT per word: 2s & 4s with MSL shifter
   4840 let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
   4841 def MVNIv2s_msl   : SIMDModifiedImmMoveMSL<0, 1, {1,1,0,?}, V64, "mvni", ".2s",
   4842                       [(set (v2i32 V64:$Rd),
   4843                             (AArch64mvni_msl imm0_255:$imm8, (i32 imm:$shift)))]>;
   4844 def MVNIv4s_msl   : SIMDModifiedImmMoveMSL<1, 1, {1,1,0,?}, V128, "mvni", ".4s",
   4845                       [(set (v4i32 V128:$Rd),
   4846                             (AArch64mvni_msl imm0_255:$imm8, (i32 imm:$shift)))]>;
   4847 }
   4848 
   4849 //----------------------------------------------------------------------------
   4850 // AdvSIMD indexed element
   4851 //----------------------------------------------------------------------------
   4852 
   4853 let hasSideEffects = 0 in {
   4854   defm FMLA  : SIMDFPIndexedTied<0, 0b0001, "fmla">;
   4855   defm FMLS  : SIMDFPIndexedTied<0, 0b0101, "fmls">;
   4856 }
   4857 
   4858 // NOTE: Operands are reordered in the FMLA/FMLS PatFrags because the
   4859 // instruction expects the addend first, while the intrinsic expects it last.
   4860 
   4861 // On the other hand, there are quite a few valid combinatorial options due to
   4862 // the commutativity of multiplication and the fact that (-x) * y = x * (-y).
   4863 defm : SIMDFPIndexedTiedPatterns<"FMLA",
   4864            TriOpFrag<(fma node:$RHS, node:$MHS, node:$LHS)>>;
   4865 defm : SIMDFPIndexedTiedPatterns<"FMLA",
   4866            TriOpFrag<(fma node:$MHS, node:$RHS, node:$LHS)>>;
   4867 
   4868 defm : SIMDFPIndexedTiedPatterns<"FMLS",
   4869            TriOpFrag<(fma node:$MHS, (fneg node:$RHS), node:$LHS)> >;
   4870 defm : SIMDFPIndexedTiedPatterns<"FMLS",
   4871            TriOpFrag<(fma node:$RHS, (fneg node:$MHS), node:$LHS)> >;
   4872 defm : SIMDFPIndexedTiedPatterns<"FMLS",
   4873            TriOpFrag<(fma (fneg node:$RHS), node:$MHS, node:$LHS)> >;
   4874 defm : SIMDFPIndexedTiedPatterns<"FMLS",
   4875            TriOpFrag<(fma (fneg node:$MHS), node:$RHS, node:$LHS)> >;
   4876 
   4877 multiclass FMLSIndexedAfterNegPatterns<SDPatternOperator OpNode> {
   4878   // 3 variants for the .2s version: DUPLANE from 128-bit, DUPLANE from 64-bit
   4879   // and DUP scalar.
   4880   def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn),
   4881                            (AArch64duplane32 (v4f32 (fneg V128:$Rm)),
   4882                                            VectorIndexS:$idx))),
   4883             (FMLSv2i32_indexed V64:$Rd, V64:$Rn, V128:$Rm, VectorIndexS:$idx)>;
   4884   def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn),
   4885                            (v2f32 (AArch64duplane32
   4886                                       (v4f32 (insert_subvector undef,
   4887                                                  (v2f32 (fneg V64:$Rm)),
   4888                                                  (i32 0))),
   4889                                       VectorIndexS:$idx)))),
   4890             (FMLSv2i32_indexed V64:$Rd, V64:$Rn,
   4891                                (SUBREG_TO_REG (i32 0), V64:$Rm, dsub),
   4892                                VectorIndexS:$idx)>;
   4893   def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn),
   4894                            (AArch64dup (f32 (fneg FPR32Op:$Rm))))),
   4895             (FMLSv2i32_indexed V64:$Rd, V64:$Rn,
   4896                 (SUBREG_TO_REG (i32 0), FPR32Op:$Rm, ssub), (i64 0))>;
   4897 
   4898   // 3 variants for the .4s version: DUPLANE from 128-bit, DUPLANE from 64-bit
   4899   // and DUP scalar.
   4900   def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn),
   4901                            (AArch64duplane32 (v4f32 (fneg V128:$Rm)),
   4902                                            VectorIndexS:$idx))),
   4903             (FMLSv4i32_indexed V128:$Rd, V128:$Rn, V128:$Rm,
   4904                                VectorIndexS:$idx)>;
   4905   def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn),
   4906                            (v4f32 (AArch64duplane32
   4907                                       (v4f32 (insert_subvector undef,
   4908                                                  (v2f32 (fneg V64:$Rm)),
   4909                                                  (i32 0))),
   4910                                       VectorIndexS:$idx)))),
   4911             (FMLSv4i32_indexed V128:$Rd, V128:$Rn,
   4912                                (SUBREG_TO_REG (i32 0), V64:$Rm, dsub),
   4913                                VectorIndexS:$idx)>;
   4914   def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn),
   4915                            (AArch64dup (f32 (fneg FPR32Op:$Rm))))),
   4916             (FMLSv4i32_indexed V128:$Rd, V128:$Rn,
   4917                 (SUBREG_TO_REG (i32 0), FPR32Op:$Rm, ssub), (i64 0))>;
   4918 
   4919   // 2 variants for the .2d version: DUPLANE from 128-bit, and DUP scalar
   4920   // (DUPLANE from 64-bit would be trivial).
   4921   def : Pat<(v2f64 (OpNode (v2f64 V128:$Rd), (v2f64 V128:$Rn),
   4922                            (AArch64duplane64 (v2f64 (fneg V128:$Rm)),
   4923                                            VectorIndexD:$idx))),
   4924             (FMLSv2i64_indexed
   4925                 V128:$Rd, V128:$Rn, V128:$Rm, VectorIndexS:$idx)>;
   4926   def : Pat<(v2f64 (OpNode (v2f64 V128:$Rd), (v2f64 V128:$Rn),
   4927                            (AArch64dup (f64 (fneg FPR64Op:$Rm))))),
   4928             (FMLSv2i64_indexed V128:$Rd, V128:$Rn,
   4929                 (SUBREG_TO_REG (i32 0), FPR64Op:$Rm, dsub), (i64 0))>;
   4930 
   4931   // 2 variants for 32-bit scalar version: extract from .2s or from .4s
   4932   def : Pat<(f32 (OpNode (f32 FPR32:$Rd), (f32 FPR32:$Rn),
   4933                          (vector_extract (v4f32 (fneg V128:$Rm)),
   4934                                          VectorIndexS:$idx))),
   4935             (FMLSv1i32_indexed FPR32:$Rd, FPR32:$Rn,
   4936                 V128:$Rm, VectorIndexS:$idx)>;
   4937   def : Pat<(f32 (OpNode (f32 FPR32:$Rd), (f32 FPR32:$Rn),
   4938                          (vector_extract (v4f32 (insert_subvector undef,
   4939                                                     (v2f32 (fneg V64:$Rm)),
   4940                                                     (i32 0))),
   4941                                          VectorIndexS:$idx))),
   4942             (FMLSv1i32_indexed FPR32:$Rd, FPR32:$Rn,
   4943                 (SUBREG_TO_REG (i32 0), V64:$Rm, dsub), VectorIndexS:$idx)>;
   4944 
   4945   // 1 variant for 64-bit scalar version: extract from .1d or from .2d
   4946   def : Pat<(f64 (OpNode (f64 FPR64:$Rd), (f64 FPR64:$Rn),
   4947                          (vector_extract (v2f64 (fneg V128:$Rm)),
   4948                                          VectorIndexS:$idx))),
   4949             (FMLSv1i64_indexed FPR64:$Rd, FPR64:$Rn,
   4950                 V128:$Rm, VectorIndexS:$idx)>;
   4951 }
   4952 
   4953 defm : FMLSIndexedAfterNegPatterns<
   4954            TriOpFrag<(fma node:$RHS, node:$MHS, node:$LHS)> >;
   4955 defm : FMLSIndexedAfterNegPatterns<
   4956            TriOpFrag<(fma node:$MHS, node:$RHS, node:$LHS)> >;
   4957 
   4958 defm FMULX : SIMDFPIndexed<1, 0b1001, "fmulx", int_aarch64_neon_fmulx>;
   4959 defm FMUL  : SIMDFPIndexed<0, 0b1001, "fmul", fmul>;
   4960 
   4961 def : Pat<(v2f32 (fmul V64:$Rn, (AArch64dup (f32 FPR32:$Rm)))),
   4962           (FMULv2i32_indexed V64:$Rn,
   4963             (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rm, ssub),
   4964             (i64 0))>;
   4965 def : Pat<(v4f32 (fmul V128:$Rn, (AArch64dup (f32 FPR32:$Rm)))),
   4966           (FMULv4i32_indexed V128:$Rn,
   4967             (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rm, ssub),
   4968             (i64 0))>;
   4969 def : Pat<(v2f64 (fmul V128:$Rn, (AArch64dup (f64 FPR64:$Rm)))),
   4970           (FMULv2i64_indexed V128:$Rn,
   4971             (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR64:$Rm, dsub),
   4972             (i64 0))>;
   4973 
   4974 defm SQDMULH : SIMDIndexedHS<0, 0b1100, "sqdmulh", int_aarch64_neon_sqdmulh>;
   4975 defm SQRDMULH : SIMDIndexedHS<0, 0b1101, "sqrdmulh", int_aarch64_neon_sqrdmulh>;
   4976 defm MLA   : SIMDVectorIndexedHSTied<1, 0b0000, "mla",
   4977               TriOpFrag<(add node:$LHS, (mul node:$MHS, node:$RHS))>>;
   4978 defm MLS   : SIMDVectorIndexedHSTied<1, 0b0100, "mls",
   4979               TriOpFrag<(sub node:$LHS, (mul node:$MHS, node:$RHS))>>;
   4980 defm MUL   : SIMDVectorIndexedHS<0, 0b1000, "mul", mul>;
   4981 defm SMLAL : SIMDVectorIndexedLongSDTied<0, 0b0010, "smlal",
   4982     TriOpFrag<(add node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>;
   4983 defm SMLSL : SIMDVectorIndexedLongSDTied<0, 0b0110, "smlsl",
   4984     TriOpFrag<(sub node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>;
   4985 defm SMULL : SIMDVectorIndexedLongSD<0, 0b1010, "smull",
   4986                 int_aarch64_neon_smull>;
   4987 defm SQDMLAL : SIMDIndexedLongSQDMLXSDTied<0, 0b0011, "sqdmlal",
   4988                                            int_aarch64_neon_sqadd>;
   4989 defm SQDMLSL : SIMDIndexedLongSQDMLXSDTied<0, 0b0111, "sqdmlsl",
   4990                                            int_aarch64_neon_sqsub>;
   4991 defm SQRDMLAH : SIMDIndexedSQRDMLxHSDTied<1, 0b1101, "sqrdmlah",
   4992                                           int_aarch64_neon_sqadd>;
   4993 defm SQRDMLSH : SIMDIndexedSQRDMLxHSDTied<1, 0b1111, "sqrdmlsh",
   4994                                           int_aarch64_neon_sqsub>;
   4995 defm SQDMULL : SIMDIndexedLongSD<0, 0b1011, "sqdmull", int_aarch64_neon_sqdmull>;
   4996 defm UMLAL   : SIMDVectorIndexedLongSDTied<1, 0b0010, "umlal",
   4997     TriOpFrag<(add node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>;
   4998 defm UMLSL   : SIMDVectorIndexedLongSDTied<1, 0b0110, "umlsl",
   4999     TriOpFrag<(sub node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>;
   5000 defm UMULL   : SIMDVectorIndexedLongSD<1, 0b1010, "umull",
   5001                 int_aarch64_neon_umull>;
   5002 
   5003 // A scalar sqdmull with the second operand being a vector lane can be
   5004 // handled directly with the indexed instruction encoding.
   5005 def : Pat<(int_aarch64_neon_sqdmulls_scalar (i32 FPR32:$Rn),
   5006                                           (vector_extract (v4i32 V128:$Vm),
   5007                                                            VectorIndexS:$idx)),
   5008           (SQDMULLv1i64_indexed FPR32:$Rn, V128:$Vm, VectorIndexS:$idx)>;
   5009 
   5010 //----------------------------------------------------------------------------
   5011 // AdvSIMD scalar shift instructions
   5012 //----------------------------------------------------------------------------
   5013 defm FCVTZS : SIMDFPScalarRShift<0, 0b11111, "fcvtzs">;
   5014 defm FCVTZU : SIMDFPScalarRShift<1, 0b11111, "fcvtzu">;
   5015 defm SCVTF  : SIMDFPScalarRShift<0, 0b11100, "scvtf">;
   5016 defm UCVTF  : SIMDFPScalarRShift<1, 0b11100, "ucvtf">;
   5017 // Codegen patterns for the above. We don't put these directly on the
   5018 // instructions because TableGen's type inference can't handle the truth.
   5019 // Having the same base pattern for fp <--> int totally freaks it out.
   5020 def : Pat<(int_aarch64_neon_vcvtfp2fxs FPR32:$Rn, vecshiftR32:$imm),
   5021           (FCVTZSs FPR32:$Rn, vecshiftR32:$imm)>;
   5022 def : Pat<(int_aarch64_neon_vcvtfp2fxu FPR32:$Rn, vecshiftR32:$imm),
   5023           (FCVTZUs FPR32:$Rn, vecshiftR32:$imm)>;
   5024 def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxs (f64 FPR64:$Rn), vecshiftR64:$imm)),
   5025           (FCVTZSd FPR64:$Rn, vecshiftR64:$imm)>;
   5026 def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxu (f64 FPR64:$Rn), vecshiftR64:$imm)),
   5027           (FCVTZUd FPR64:$Rn, vecshiftR64:$imm)>;
   5028 def : Pat<(v1i64 (int_aarch64_neon_vcvtfp2fxs (v1f64 FPR64:$Rn),
   5029                                             vecshiftR64:$imm)),
   5030           (FCVTZSd FPR64:$Rn, vecshiftR64:$imm)>;
   5031 def : Pat<(v1i64 (int_aarch64_neon_vcvtfp2fxu (v1f64 FPR64:$Rn),
   5032                                             vecshiftR64:$imm)),
   5033           (FCVTZUd FPR64:$Rn, vecshiftR64:$imm)>;
   5034 def : Pat<(int_aarch64_neon_vcvtfxu2fp FPR32:$Rn, vecshiftR32:$imm),
   5035           (UCVTFs FPR32:$Rn, vecshiftR32:$imm)>;
   5036 def : Pat<(f64 (int_aarch64_neon_vcvtfxu2fp (i64 FPR64:$Rn), vecshiftR64:$imm)),
   5037           (UCVTFd FPR64:$Rn, vecshiftR64:$imm)>;
   5038 def : Pat<(v1f64 (int_aarch64_neon_vcvtfxs2fp (v1i64 FPR64:$Rn),
   5039                                             vecshiftR64:$imm)),
   5040           (SCVTFd FPR64:$Rn, vecshiftR64:$imm)>;
   5041 def : Pat<(f64 (int_aarch64_neon_vcvtfxs2fp (i64 FPR64:$Rn), vecshiftR64:$imm)),
   5042           (SCVTFd FPR64:$Rn, vecshiftR64:$imm)>;
   5043 def : Pat<(v1f64 (int_aarch64_neon_vcvtfxu2fp (v1i64 FPR64:$Rn),
   5044                                             vecshiftR64:$imm)),
   5045           (UCVTFd FPR64:$Rn, vecshiftR64:$imm)>;
   5046 def : Pat<(int_aarch64_neon_vcvtfxs2fp FPR32:$Rn, vecshiftR32:$imm),
   5047           (SCVTFs FPR32:$Rn, vecshiftR32:$imm)>;
   5048 
   5049 // Patterns for FP16 Instrinsics - requires reg copy to/from as i16s not supported.
   5050 
   5051 def : Pat<(f16 (int_aarch64_neon_vcvtfxs2fp (i32 (sext_inreg FPR32:$Rn, i16)), vecshiftR16:$imm)),
   5052           (SCVTFh (EXTRACT_SUBREG FPR32:$Rn, hsub), vecshiftR16:$imm)>;
   5053 def : Pat<(f16 (int_aarch64_neon_vcvtfxs2fp (i32 FPR32:$Rn), vecshiftR16:$imm)),
   5054           (SCVTFh (EXTRACT_SUBREG FPR32:$Rn, hsub), vecshiftR16:$imm)>;
   5055 def : Pat<(f16 (int_aarch64_neon_vcvtfxu2fp
   5056             (and FPR32:$Rn, (i32 65535)),
   5057             vecshiftR16:$imm)),
   5058           (UCVTFh (EXTRACT_SUBREG FPR32:$Rn, hsub), vecshiftR16:$imm)>;
   5059 def : Pat<(f16 (int_aarch64_neon_vcvtfxu2fp FPR32:$Rn, vecshiftR16:$imm)),
   5060           (UCVTFh (EXTRACT_SUBREG FPR32:$Rn, hsub), vecshiftR16:$imm)>;
   5061 def : Pat<(f16 (int_aarch64_neon_vcvtfxu2fp (i64 FPR64:$Rn), vecshiftR16:$imm)),
   5062           (UCVTFh (EXTRACT_SUBREG FPR64:$Rn, hsub), vecshiftR16:$imm)>;
   5063 def : Pat<(i32 (int_aarch64_neon_vcvtfp2fxs (f16 FPR16:$Rn), vecshiftR32:$imm)),
   5064           (i32 (INSERT_SUBREG
   5065             (i32 (IMPLICIT_DEF)),
   5066             (FCVTZSh FPR16:$Rn, vecshiftR32:$imm),
   5067             hsub))>;
   5068 def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxs (f16 FPR16:$Rn), vecshiftR64:$imm)),
   5069           (i64 (INSERT_SUBREG
   5070             (i64 (IMPLICIT_DEF)),
   5071             (FCVTZSh FPR16:$Rn, vecshiftR64:$imm),
   5072             hsub))>;
   5073 def : Pat<(i32 (int_aarch64_neon_vcvtfp2fxu (f16 FPR16:$Rn), vecshiftR32:$imm)),
   5074           (i32 (INSERT_SUBREG
   5075             (i32 (IMPLICIT_DEF)),
   5076             (FCVTZUh FPR16:$Rn, vecshiftR32:$imm),
   5077             hsub))>;
   5078 def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxu (f16 FPR16:$Rn), vecshiftR64:$imm)),
   5079           (i64 (INSERT_SUBREG
   5080             (i64 (IMPLICIT_DEF)),
   5081             (FCVTZUh FPR16:$Rn, vecshiftR64:$imm),
   5082             hsub))>;
   5083 
   5084 defm SHL      : SIMDScalarLShiftD<   0, 0b01010, "shl", AArch64vshl>;
   5085 defm SLI      : SIMDScalarLShiftDTied<1, 0b01010, "sli">;
   5086 defm SQRSHRN  : SIMDScalarRShiftBHS< 0, 0b10011, "sqrshrn",
   5087                                      int_aarch64_neon_sqrshrn>;
   5088 defm SQRSHRUN : SIMDScalarRShiftBHS< 1, 0b10001, "sqrshrun",
   5089                                      int_aarch64_neon_sqrshrun>;
   5090 defm SQSHLU   : SIMDScalarLShiftBHSD<1, 0b01100, "sqshlu", AArch64sqshlui>;
   5091 defm SQSHL    : SIMDScalarLShiftBHSD<0, 0b01110, "sqshl", AArch64sqshli>;
   5092 defm SQSHRN   : SIMDScalarRShiftBHS< 0, 0b10010, "sqshrn",
   5093                                      int_aarch64_neon_sqshrn>;
   5094 defm SQSHRUN  : SIMDScalarRShiftBHS< 1, 0b10000, "sqshrun",
   5095                                      int_aarch64_neon_sqshrun>;
   5096 defm SRI      : SIMDScalarRShiftDTied<   1, 0b01000, "sri">;
   5097 defm SRSHR    : SIMDScalarRShiftD<   0, 0b00100, "srshr", AArch64srshri>;
   5098 defm SRSRA    : SIMDScalarRShiftDTied<   0, 0b00110, "srsra",
   5099     TriOpFrag<(add node:$LHS,
   5100                    (AArch64srshri node:$MHS, node:$RHS))>>;
   5101 defm SSHR     : SIMDScalarRShiftD<   0, 0b00000, "sshr", AArch64vashr>;
   5102 defm SSRA     : SIMDScalarRShiftDTied<   0, 0b00010, "ssra",
   5103     TriOpFrag<(add node:$LHS,
   5104                    (AArch64vashr node:$MHS, node:$RHS))>>;
   5105 defm UQRSHRN  : SIMDScalarRShiftBHS< 1, 0b10011, "uqrshrn",
   5106                                      int_aarch64_neon_uqrshrn>;
   5107 defm UQSHL    : SIMDScalarLShiftBHSD<1, 0b01110, "uqshl", AArch64uqshli>;
   5108 defm UQSHRN   : SIMDScalarRShiftBHS< 1, 0b10010, "uqshrn",
   5109                                      int_aarch64_neon_uqshrn>;
   5110 defm URSHR    : SIMDScalarRShiftD<   1, 0b00100, "urshr", AArch64urshri>;
   5111 defm URSRA    : SIMDScalarRShiftDTied<   1, 0b00110, "ursra",
   5112     TriOpFrag<(add node:$LHS,
   5113                    (AArch64urshri node:$MHS, node:$RHS))>>;
   5114 defm USHR     : SIMDScalarRShiftD<   1, 0b00000, "ushr", AArch64vlshr>;
   5115 defm USRA     : SIMDScalarRShiftDTied<   1, 0b00010, "usra",
   5116     TriOpFrag<(add node:$LHS,
   5117                    (AArch64vlshr node:$MHS, node:$RHS))>>;
   5118 
   5119 //----------------------------------------------------------------------------
   5120 // AdvSIMD vector shift instructions
   5121 //----------------------------------------------------------------------------
   5122 defm FCVTZS:SIMDVectorRShiftSD<0, 0b11111, "fcvtzs", int_aarch64_neon_vcvtfp2fxs>;
   5123 defm FCVTZU:SIMDVectorRShiftSD<1, 0b11111, "fcvtzu", int_aarch64_neon_vcvtfp2fxu>;
   5124 defm SCVTF: SIMDVectorRShiftToFP<0, 0b11100, "scvtf",
   5125                                    int_aarch64_neon_vcvtfxs2fp>;
   5126 defm RSHRN   : SIMDVectorRShiftNarrowBHS<0, 0b10001, "rshrn",
   5127                                          int_aarch64_neon_rshrn>;
   5128 defm SHL     : SIMDVectorLShiftBHSD<0, 0b01010, "shl", AArch64vshl>;
   5129 defm SHRN    : SIMDVectorRShiftNarrowBHS<0, 0b10000, "shrn",
   5130                           BinOpFrag<(trunc (AArch64vashr node:$LHS, node:$RHS))>>;
   5131 defm SLI     : SIMDVectorLShiftBHSDTied<1, 0b01010, "sli", int_aarch64_neon_vsli>;
   5132 def : Pat<(v1i64 (int_aarch64_neon_vsli (v1i64 FPR64:$Rd), (v1i64 FPR64:$Rn),
   5133                                       (i32 vecshiftL64:$imm))),
   5134           (SLId FPR64:$Rd, FPR64:$Rn, vecshiftL64:$imm)>;
   5135 defm SQRSHRN : SIMDVectorRShiftNarrowBHS<0, 0b10011, "sqrshrn",
   5136                                          int_aarch64_neon_sqrshrn>;
   5137 defm SQRSHRUN: SIMDVectorRShiftNarrowBHS<1, 0b10001, "sqrshrun",
   5138                                          int_aarch64_neon_sqrshrun>;
   5139 defm SQSHLU : SIMDVectorLShiftBHSD<1, 0b01100, "sqshlu", AArch64sqshlui>;
   5140 defm SQSHL  : SIMDVectorLShiftBHSD<0, 0b01110, "sqshl", AArch64sqshli>;
   5141 defm SQSHRN  : SIMDVectorRShiftNarrowBHS<0, 0b10010, "sqshrn",
   5142                                          int_aarch64_neon_sqshrn>;
   5143 defm SQSHRUN : SIMDVectorRShiftNarrowBHS<1, 0b10000, "sqshrun",
   5144                                          int_aarch64_neon_sqshrun>;
   5145 defm SRI     : SIMDVectorRShiftBHSDTied<1, 0b01000, "sri", int_aarch64_neon_vsri>;
   5146 def : Pat<(v1i64 (int_aarch64_neon_vsri (v1i64 FPR64:$Rd), (v1i64 FPR64:$Rn),
   5147                                       (i32 vecshiftR64:$imm))),
   5148           (SRId FPR64:$Rd, FPR64:$Rn, vecshiftR64:$imm)>;
   5149 defm SRSHR   : SIMDVectorRShiftBHSD<0, 0b00100, "srshr", AArch64srshri>;
   5150 defm SRSRA   : SIMDVectorRShiftBHSDTied<0, 0b00110, "srsra",
   5151                  TriOpFrag<(add node:$LHS,
   5152                                 (AArch64srshri node:$MHS, node:$RHS))> >;
   5153 defm SSHLL   : SIMDVectorLShiftLongBHSD<0, 0b10100, "sshll",
   5154                 BinOpFrag<(AArch64vshl (sext node:$LHS), node:$RHS)>>;
   5155 
   5156 defm SSHR    : SIMDVectorRShiftBHSD<0, 0b00000, "sshr", AArch64vashr>;
   5157 defm SSRA    : SIMDVectorRShiftBHSDTied<0, 0b00010, "ssra",
   5158                 TriOpFrag<(add node:$LHS, (AArch64vashr node:$MHS, node:$RHS))>>;
   5159 defm UCVTF   : SIMDVectorRShiftToFP<1, 0b11100, "ucvtf",
   5160                         int_aarch64_neon_vcvtfxu2fp>;
   5161 defm UQRSHRN : SIMDVectorRShiftNarrowBHS<1, 0b10011, "uqrshrn",
   5162                                          int_aarch64_neon_uqrshrn>;
   5163 defm UQSHL   : SIMDVectorLShiftBHSD<1, 0b01110, "uqshl", AArch64uqshli>;
   5164 defm UQSHRN  : SIMDVectorRShiftNarrowBHS<1, 0b10010, "uqshrn",
   5165                                          int_aarch64_neon_uqshrn>;
   5166 defm URSHR   : SIMDVectorRShiftBHSD<1, 0b00100, "urshr", AArch64urshri>;
   5167 defm URSRA   : SIMDVectorRShiftBHSDTied<1, 0b00110, "ursra",
   5168                 TriOpFrag<(add node:$LHS,
   5169                                (AArch64urshri node:$MHS, node:$RHS))> >;
   5170 defm USHLL   : SIMDVectorLShiftLongBHSD<1, 0b10100, "ushll",
   5171                 BinOpFrag<(AArch64vshl (zext node:$LHS), node:$RHS)>>;
   5172 defm USHR    : SIMDVectorRShiftBHSD<1, 0b00000, "ushr", AArch64vlshr>;
   5173 defm USRA    : SIMDVectorRShiftBHSDTied<1, 0b00010, "usra",
   5174                 TriOpFrag<(add node:$LHS, (AArch64vlshr node:$MHS, node:$RHS))> >;
   5175 
   5176 // SHRN patterns for when a logical right shift was used instead of arithmetic
   5177 // (the immediate guarantees no sign bits actually end up in the result so it
   5178 // doesn't matter).
   5179 def : Pat<(v8i8 (trunc (AArch64vlshr (v8i16 V128:$Rn), vecshiftR16Narrow:$imm))),
   5180           (SHRNv8i8_shift V128:$Rn, vecshiftR16Narrow:$imm)>;
   5181 def : Pat<(v4i16 (trunc (AArch64vlshr (v4i32 V128:$Rn), vecshiftR32Narrow:$imm))),
   5182           (SHRNv4i16_shift V128:$Rn, vecshiftR32Narrow:$imm)>;
   5183 def : Pat<(v2i32 (trunc (AArch64vlshr (v2i64 V128:$Rn), vecshiftR64Narrow:$imm))),
   5184           (SHRNv2i32_shift V128:$Rn, vecshiftR64Narrow:$imm)>;
   5185 
   5186 def : Pat<(v16i8 (concat_vectors (v8i8 V64:$Rd),
   5187                                  (trunc (AArch64vlshr (v8i16 V128:$Rn),
   5188                                                     vecshiftR16Narrow:$imm)))),
   5189           (SHRNv16i8_shift (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub),
   5190                            V128:$Rn, vecshiftR16Narrow:$imm)>;
   5191 def : Pat<(v8i16 (concat_vectors (v4i16 V64:$Rd),
   5192                                  (trunc (AArch64vlshr (v4i32 V128:$Rn),
   5193                                                     vecshiftR32Narrow:$imm)))),
   5194           (SHRNv8i16_shift (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub),
   5195                            V128:$Rn, vecshiftR32Narrow:$imm)>;
   5196 def : Pat<(v4i32 (concat_vectors (v2i32 V64:$Rd),
   5197                                  (trunc (AArch64vlshr (v2i64 V128:$Rn),
   5198                                                     vecshiftR64Narrow:$imm)))),
   5199           (SHRNv4i32_shift (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub),
   5200                            V128:$Rn, vecshiftR32Narrow:$imm)>;
   5201 
   5202 // Vector sign and zero extensions are implemented with SSHLL and USSHLL.
   5203 // Anyexts are implemented as zexts.
   5204 def : Pat<(v8i16 (sext   (v8i8 V64:$Rn))),  (SSHLLv8i8_shift  V64:$Rn, (i32 0))>;
   5205 def : Pat<(v8i16 (zext   (v8i8 V64:$Rn))),  (USHLLv8i8_shift  V64:$Rn, (i32 0))>;
   5206 def : Pat<(v8i16 (anyext (v8i8 V64:$Rn))),  (USHLLv8i8_shift  V64:$Rn, (i32 0))>;
   5207 def : Pat<(v4i32 (sext   (v4i16 V64:$Rn))), (SSHLLv4i16_shift V64:$Rn, (i32 0))>;
   5208 def : Pat<(v4i32 (zext   (v4i16 V64:$Rn))), (USHLLv4i16_shift V64:$Rn, (i32 0))>;
   5209 def : Pat<(v4i32 (anyext (v4i16 V64:$Rn))), (USHLLv4i16_shift V64:$Rn, (i32 0))>;
   5210 def : Pat<(v2i64 (sext   (v2i32 V64:$Rn))), (SSHLLv2i32_shift V64:$Rn, (i32 0))>;
   5211 def : Pat<(v2i64 (zext   (v2i32 V64:$Rn))), (USHLLv2i32_shift V64:$Rn, (i32 0))>;
   5212 def : Pat<(v2i64 (anyext (v2i32 V64:$Rn))), (USHLLv2i32_shift V64:$Rn, (i32 0))>;
   5213 // Also match an extend from the upper half of a 128 bit source register.
   5214 def : Pat<(v8i16 (anyext (v8i8 (extract_subvector V128:$Rn, (i64 8)) ))),
   5215           (USHLLv16i8_shift V128:$Rn, (i32 0))>;
   5216 def : Pat<(v8i16 (zext   (v8i8 (extract_subvector V128:$Rn, (i64 8)) ))),
   5217           (USHLLv16i8_shift V128:$Rn, (i32 0))>;
   5218 def : Pat<(v8i16 (sext   (v8i8 (extract_subvector V128:$Rn, (i64 8)) ))),
   5219           (SSHLLv16i8_shift V128:$Rn, (i32 0))>;
   5220 def : Pat<(v4i32 (anyext (v4i16 (extract_subvector V128:$Rn, (i64 4)) ))),
   5221           (USHLLv8i16_shift V128:$Rn, (i32 0))>;
   5222 def : Pat<(v4i32 (zext   (v4i16 (extract_subvector V128:$Rn, (i64 4)) ))),
   5223           (USHLLv8i16_shift V128:$Rn, (i32 0))>;
   5224 def : Pat<(v4i32 (sext   (v4i16 (extract_subvector V128:$Rn, (i64 4)) ))),
   5225           (SSHLLv8i16_shift V128:$Rn, (i32 0))>;
   5226 def : Pat<(v2i64 (anyext (v2i32 (extract_subvector V128:$Rn, (i64 2)) ))),
   5227           (USHLLv4i32_shift V128:$Rn, (i32 0))>;
   5228 def : Pat<(v2i64 (zext   (v2i32 (extract_subvector V128:$Rn, (i64 2)) ))),
   5229           (USHLLv4i32_shift V128:$Rn, (i32 0))>;
   5230 def : Pat<(v2i64 (sext   (v2i32 (extract_subvector V128:$Rn, (i64 2)) ))),
   5231           (SSHLLv4i32_shift V128:$Rn, (i32 0))>;
   5232 
   5233 // Vector shift sxtl aliases
   5234 def : InstAlias<"sxtl.8h $dst, $src1",
   5235                 (SSHLLv8i8_shift V128:$dst, V64:$src1, 0)>;
   5236 def : InstAlias<"sxtl $dst.8h, $src1.8b",
   5237                 (SSHLLv8i8_shift V128:$dst, V64:$src1, 0)>;
   5238 def : InstAlias<"sxtl.4s $dst, $src1",
   5239                 (SSHLLv4i16_shift V128:$dst, V64:$src1, 0)>;
   5240 def : InstAlias<"sxtl $dst.4s, $src1.4h",
   5241                 (SSHLLv4i16_shift V128:$dst, V64:$src1, 0)>;
   5242 def : InstAlias<"sxtl.2d $dst, $src1",
   5243                 (SSHLLv2i32_shift V128:$dst, V64:$src1, 0)>;
   5244 def : InstAlias<"sxtl $dst.2d, $src1.2s",
   5245                 (SSHLLv2i32_shift V128:$dst, V64:$src1, 0)>;
   5246 
   5247 // Vector shift sxtl2 aliases
   5248 def : InstAlias<"sxtl2.8h $dst, $src1",
   5249                 (SSHLLv16i8_shift V128:$dst, V128:$src1, 0)>;
   5250 def : InstAlias<"sxtl2 $dst.8h, $src1.16b",
   5251                 (SSHLLv16i8_shift V128:$dst, V128:$src1, 0)>;
   5252 def : InstAlias<"sxtl2.4s $dst, $src1",
   5253                 (SSHLLv8i16_shift V128:$dst, V128:$src1, 0)>;
   5254 def : InstAlias<"sxtl2 $dst.4s, $src1.8h",
   5255                 (SSHLLv8i16_shift V128:$dst, V128:$src1, 0)>;
   5256 def : InstAlias<"sxtl2.2d $dst, $src1",
   5257                 (SSHLLv4i32_shift V128:$dst, V128:$src1, 0)>;
   5258 def : InstAlias<"sxtl2 $dst.2d, $src1.4s",
   5259                 (SSHLLv4i32_shift V128:$dst, V128:$src1, 0)>;
   5260 
   5261 // Vector shift uxtl aliases
   5262 def : InstAlias<"uxtl.8h $dst, $src1",
   5263                 (USHLLv8i8_shift V128:$dst, V64:$src1, 0)>;
   5264 def : InstAlias<"uxtl $dst.8h, $src1.8b",
   5265                 (USHLLv8i8_shift V128:$dst, V64:$src1, 0)>;
   5266 def : InstAlias<"uxtl.4s $dst, $src1",
   5267                 (USHLLv4i16_shift V128:$dst, V64:$src1, 0)>;
   5268 def : InstAlias<"uxtl $dst.4s, $src1.4h",
   5269                 (USHLLv4i16_shift V128:$dst, V64:$src1, 0)>;
   5270 def : InstAlias<"uxtl.2d $dst, $src1",
   5271                 (USHLLv2i32_shift V128:$dst, V64:$src1, 0)>;
   5272 def : InstAlias<"uxtl $dst.2d, $src1.2s",
   5273                 (USHLLv2i32_shift V128:$dst, V64:$src1, 0)>;
   5274 
   5275 // Vector shift uxtl2 aliases
   5276 def : InstAlias<"uxtl2.8h $dst, $src1",
   5277                 (USHLLv16i8_shift V128:$dst, V128:$src1, 0)>;
   5278 def : InstAlias<"uxtl2 $dst.8h, $src1.16b",
   5279                 (USHLLv16i8_shift V128:$dst, V128:$src1, 0)>;
   5280 def : InstAlias<"uxtl2.4s $dst, $src1",
   5281                 (USHLLv8i16_shift V128:$dst, V128:$src1, 0)>;
   5282 def : InstAlias<"uxtl2 $dst.4s, $src1.8h",
   5283                 (USHLLv8i16_shift V128:$dst, V128:$src1, 0)>;
   5284 def : InstAlias<"uxtl2.2d $dst, $src1",
   5285                 (USHLLv4i32_shift V128:$dst, V128:$src1, 0)>;
   5286 def : InstAlias<"uxtl2 $dst.2d, $src1.4s",
   5287                 (USHLLv4i32_shift V128:$dst, V128:$src1, 0)>;
   5288 
   5289 // If an integer is about to be converted to a floating point value,
   5290 // just load it on the floating point unit.
   5291 // These patterns are more complex because floating point loads do not
   5292 // support sign extension.
   5293 // The sign extension has to be explicitly added and is only supported for
   5294 // one step: byte-to-half, half-to-word, word-to-doubleword.
   5295 // SCVTF GPR -> FPR is 9 cycles.
   5296 // SCVTF FPR -> FPR is 4 cyclces.
   5297 // (sign extension with lengthen) SXTL FPR -> FPR is 2 cycles.
   5298 // Therefore, we can do 2 sign extensions and one SCVTF FPR -> FPR
   5299 // and still being faster.
   5300 // However, this is not good for code size.
   5301 // 8-bits -> float. 2 sizes step-up.
   5302 class SExtLoadi8CVTf32Pat<dag addrmode, dag INST>
   5303   : Pat<(f32 (sint_to_fp (i32 (sextloadi8 addrmode)))),
   5304         (SCVTFv1i32 (f32 (EXTRACT_SUBREG
   5305                             (SSHLLv4i16_shift
   5306                               (f64
   5307                                 (EXTRACT_SUBREG
   5308                                   (SSHLLv8i8_shift
   5309                                     (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
   5310                                         INST,
   5311                                         bsub),
   5312                                     0),
   5313                                   dsub)),
   5314                                0),
   5315                              ssub)))>,
   5316     Requires<[NotForCodeSize, UseAlternateSExtLoadCVTF32]>;
   5317 
   5318 def : SExtLoadi8CVTf32Pat<(ro8.Wpat GPR64sp:$Rn, GPR32:$Rm, ro8.Wext:$ext),
   5319                           (LDRBroW  GPR64sp:$Rn, GPR32:$Rm, ro8.Wext:$ext)>;
   5320 def : SExtLoadi8CVTf32Pat<(ro8.Xpat GPR64sp:$Rn, GPR64:$Rm, ro8.Xext:$ext),
   5321                           (LDRBroX  GPR64sp:$Rn, GPR64:$Rm, ro8.Xext:$ext)>;
   5322 def : SExtLoadi8CVTf32Pat<(am_indexed8 GPR64sp:$Rn, uimm12s1:$offset),
   5323                           (LDRBui GPR64sp:$Rn, uimm12s1:$offset)>;
   5324 def : SExtLoadi8CVTf32Pat<(am_unscaled8 GPR64sp:$Rn, simm9:$offset),
   5325                           (LDURBi GPR64sp:$Rn, simm9:$offset)>;
   5326 
   5327 // 16-bits -> float. 1 size step-up.
   5328 class SExtLoadi16CVTf32Pat<dag addrmode, dag INST>
   5329   : Pat<(f32 (sint_to_fp (i32 (sextloadi16 addrmode)))),
   5330         (SCVTFv1i32 (f32 (EXTRACT_SUBREG
   5331                             (SSHLLv4i16_shift
   5332                                 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
   5333                                   INST,
   5334                                   hsub),
   5335                                 0),
   5336                             ssub)))>, Requires<[NotForCodeSize]>;
   5337 
   5338 def : SExtLoadi16CVTf32Pat<(ro16.Wpat GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext),
   5339                            (LDRHroW   GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext)>;
   5340 def : SExtLoadi16CVTf32Pat<(ro16.Xpat GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext),
   5341                            (LDRHroX   GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext)>;
   5342 def : SExtLoadi16CVTf32Pat<(am_indexed16 GPR64sp:$Rn, uimm12s2:$offset),
   5343                            (LDRHui GPR64sp:$Rn, uimm12s2:$offset)>;
   5344 def : SExtLoadi16CVTf32Pat<(am_unscaled16 GPR64sp:$Rn, simm9:$offset),
   5345                            (LDURHi GPR64sp:$Rn, simm9:$offset)>;
   5346 
   5347 // 32-bits to 32-bits are handled in target specific dag combine:
   5348 // performIntToFpCombine.
   5349 // 64-bits integer to 32-bits floating point, not possible with
   5350 // SCVTF on floating point registers (both source and destination
   5351 // must have the same size).
   5352 
   5353 // Here are the patterns for 8, 16, 32, and 64-bits to double.
   5354 // 8-bits -> double. 3 size step-up: give up.
   5355 // 16-bits -> double. 2 size step.
   5356 class SExtLoadi16CVTf64Pat<dag addrmode, dag INST>
   5357   : Pat <(f64 (sint_to_fp (i32 (sextloadi16 addrmode)))),
   5358            (SCVTFv1i64 (f64 (EXTRACT_SUBREG
   5359                               (SSHLLv2i32_shift
   5360                                  (f64
   5361                                   (EXTRACT_SUBREG
   5362                                     (SSHLLv4i16_shift
   5363                                       (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
   5364                                         INST,
   5365                                         hsub),
   5366                                      0),
   5367                                    dsub)),
   5368                                0),
   5369                              dsub)))>,
   5370     Requires<[NotForCodeSize, UseAlternateSExtLoadCVTF32]>;
   5371 
   5372 def : SExtLoadi16CVTf64Pat<(ro16.Wpat GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext),
   5373                            (LDRHroW GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext)>;
   5374 def : SExtLoadi16CVTf64Pat<(ro16.Xpat GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext),
   5375                            (LDRHroX GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext)>;
   5376 def : SExtLoadi16CVTf64Pat<(am_indexed16 GPR64sp:$Rn, uimm12s2:$offset),
   5377                            (LDRHui GPR64sp:$Rn, uimm12s2:$offset)>;
   5378 def : SExtLoadi16CVTf64Pat<(am_unscaled16 GPR64sp:$Rn, simm9:$offset),
   5379                            (LDURHi GPR64sp:$Rn, simm9:$offset)>;
   5380 // 32-bits -> double. 1 size step-up.
   5381 class SExtLoadi32CVTf64Pat<dag addrmode, dag INST>
   5382   : Pat <(f64 (sint_to_fp (i32 (load addrmode)))),
   5383            (SCVTFv1i64 (f64 (EXTRACT_SUBREG
   5384                               (SSHLLv2i32_shift
   5385                                 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
   5386                                   INST,
   5387                                   ssub),
   5388                                0),
   5389                              dsub)))>, Requires<[NotForCodeSize]>;
   5390 
   5391 def : SExtLoadi32CVTf64Pat<(ro32.Wpat GPR64sp:$Rn, GPR32:$Rm, ro32.Wext:$ext),
   5392                            (LDRSroW GPR64sp:$Rn, GPR32:$Rm, ro32.Wext:$ext)>;
   5393 def : SExtLoadi32CVTf64Pat<(ro32.Xpat GPR64sp:$Rn, GPR64:$Rm, ro32.Xext:$ext),
   5394                            (LDRSroX GPR64sp:$Rn, GPR64:$Rm, ro32.Xext:$ext)>;
   5395 def : SExtLoadi32CVTf64Pat<(am_indexed32 GPR64sp:$Rn, uimm12s4:$offset),
   5396                            (LDRSui GPR64sp:$Rn, uimm12s4:$offset)>;
   5397 def : SExtLoadi32CVTf64Pat<(am_unscaled32 GPR64sp:$Rn, simm9:$offset),
   5398                            (LDURSi GPR64sp:$Rn, simm9:$offset)>;
   5399 
   5400 // 64-bits -> double are handled in target specific dag combine:
   5401 // performIntToFpCombine.
   5402 
   5403 
   5404 //----------------------------------------------------------------------------
   5405 // AdvSIMD Load-Store Structure
   5406 //----------------------------------------------------------------------------
   5407 defm LD1 : SIMDLd1Multiple<"ld1">;
   5408 defm LD2 : SIMDLd2Multiple<"ld2">;
   5409 defm LD3 : SIMDLd3Multiple<"ld3">;
   5410 defm LD4 : SIMDLd4Multiple<"ld4">;
   5411 
   5412 defm ST1 : SIMDSt1Multiple<"st1">;
   5413 defm ST2 : SIMDSt2Multiple<"st2">;
   5414 defm ST3 : SIMDSt3Multiple<"st3">;
   5415 defm ST4 : SIMDSt4Multiple<"st4">;
   5416 
   5417 class Ld1Pat<ValueType ty, Instruction INST>
   5418   : Pat<(ty (load GPR64sp:$Rn)), (INST GPR64sp:$Rn)>;
   5419 
   5420 def : Ld1Pat<v16i8, LD1Onev16b>;
   5421 def : Ld1Pat<v8i16, LD1Onev8h>;
   5422 def : Ld1Pat<v4i32, LD1Onev4s>;
   5423 def : Ld1Pat<v2i64, LD1Onev2d>;
   5424 def : Ld1Pat<v8i8,  LD1Onev8b>;
   5425 def : Ld1Pat<v4i16, LD1Onev4h>;
   5426 def : Ld1Pat<v2i32, LD1Onev2s>;
   5427 def : Ld1Pat<v1i64, LD1Onev1d>;
   5428 
   5429 class St1Pat<ValueType ty, Instruction INST>
   5430   : Pat<(store ty:$Vt, GPR64sp:$Rn),
   5431         (INST ty:$Vt, GPR64sp:$Rn)>;
   5432 
   5433 def : St1Pat<v16i8, ST1Onev16b>;
   5434 def : St1Pat<v8i16, ST1Onev8h>;
   5435 def : St1Pat<v4i32, ST1Onev4s>;
   5436 def : St1Pat<v2i64, ST1Onev2d>;
   5437 def : St1Pat<v8i8,  ST1Onev8b>;
   5438 def : St1Pat<v4i16, ST1Onev4h>;
   5439 def : St1Pat<v2i32, ST1Onev2s>;
   5440 def : St1Pat<v1i64, ST1Onev1d>;
   5441 
   5442 //---
   5443 // Single-element
   5444 //---
   5445 
   5446 defm LD1R          : SIMDLdR<0, 0b110, 0, "ld1r", "One", 1, 2, 4, 8>;
   5447 defm LD2R          : SIMDLdR<1, 0b110, 0, "ld2r", "Two", 2, 4, 8, 16>;
   5448 defm LD3R          : SIMDLdR<0, 0b111, 0, "ld3r", "Three", 3, 6, 12, 24>;
   5449 defm LD4R          : SIMDLdR<1, 0b111, 0, "ld4r", "Four", 4, 8, 16, 32>;
   5450 let mayLoad = 1, hasSideEffects = 0 in {
   5451 defm LD1 : SIMDLdSingleBTied<0, 0b000,       "ld1", VecListOneb,   GPR64pi1>;
   5452 defm LD1 : SIMDLdSingleHTied<0, 0b010, 0,    "ld1", VecListOneh,   GPR64pi2>;
   5453 defm LD1 : SIMDLdSingleSTied<0, 0b100, 0b00, "ld1", VecListOnes,   GPR64pi4>;
   5454 defm LD1 : SIMDLdSingleDTied<0, 0b100, 0b01, "ld1", VecListOned,   GPR64pi8>;
   5455 defm LD2 : SIMDLdSingleBTied<1, 0b000,       "ld2", VecListTwob,   GPR64pi2>;
   5456 defm LD2 : SIMDLdSingleHTied<1, 0b010, 0,    "ld2", VecListTwoh,   GPR64pi4>;
   5457 defm LD2 : SIMDLdSingleSTied<1, 0b100, 0b00, "ld2", VecListTwos,   GPR64pi8>;
   5458 defm LD2 : SIMDLdSingleDTied<1, 0b100, 0b01, "ld2", VecListTwod,   GPR64pi16>;
   5459 defm LD3 : SIMDLdSingleBTied<0, 0b001,       "ld3", VecListThreeb, GPR64pi3>;
   5460 defm LD3 : SIMDLdSingleHTied<0, 0b011, 0,    "ld3", VecListThreeh, GPR64pi6>;
   5461 defm LD3 : SIMDLdSingleSTied<0, 0b101, 0b00, "ld3", VecListThrees, GPR64pi12>;
   5462 defm LD3 : SIMDLdSingleDTied<0, 0b101, 0b01, "ld3", VecListThreed, GPR64pi24>;
   5463 defm LD4 : SIMDLdSingleBTied<1, 0b001,       "ld4", VecListFourb,  GPR64pi4>;
   5464 defm LD4 : SIMDLdSingleHTied<1, 0b011, 0,    "ld4", VecListFourh,  GPR64pi8>;
   5465 defm LD4 : SIMDLdSingleSTied<1, 0b101, 0b00, "ld4", VecListFours,  GPR64pi16>;
   5466 defm LD4 : SIMDLdSingleDTied<1, 0b101, 0b01, "ld4", VecListFourd,  GPR64pi32>;
   5467 }
   5468 
   5469 def : Pat<(v8i8 (AArch64dup (i32 (extloadi8 GPR64sp:$Rn)))),
   5470           (LD1Rv8b GPR64sp:$Rn)>;
   5471 def : Pat<(v16i8 (AArch64dup (i32 (extloadi8 GPR64sp:$Rn)))),
   5472           (LD1Rv16b GPR64sp:$Rn)>;
   5473 def : Pat<(v4i16 (AArch64dup (i32 (extloadi16 GPR64sp:$Rn)))),
   5474           (LD1Rv4h GPR64sp:$Rn)>;
   5475 def : Pat<(v8i16 (AArch64dup (i32 (extloadi16 GPR64sp:$Rn)))),
   5476           (LD1Rv8h GPR64sp:$Rn)>;
   5477 def : Pat<(v2i32 (AArch64dup (i32 (load GPR64sp:$Rn)))),
   5478           (LD1Rv2s GPR64sp:$Rn)>;
   5479 def : Pat<(v4i32 (AArch64dup (i32 (load GPR64sp:$Rn)))),
   5480           (LD1Rv4s GPR64sp:$Rn)>;
   5481 def : Pat<(v2i64 (AArch64dup (i64 (load GPR64sp:$Rn)))),
   5482           (LD1Rv2d GPR64sp:$Rn)>;
   5483 def : Pat<(v1i64 (AArch64dup (i64 (load GPR64sp:$Rn)))),
   5484           (LD1Rv1d GPR64sp:$Rn)>;
   5485 // Grab the floating point version too
   5486 def : Pat<(v2f32 (AArch64dup (f32 (load GPR64sp:$Rn)))),
   5487           (LD1Rv2s GPR64sp:$Rn)>;
   5488 def : Pat<(v4f32 (AArch64dup (f32 (load GPR64sp:$Rn)))),
   5489           (LD1Rv4s GPR64sp:$Rn)>;
   5490 def : Pat<(v2f64 (AArch64dup (f64 (load GPR64sp:$Rn)))),
   5491           (LD1Rv2d GPR64sp:$Rn)>;
   5492 def : Pat<(v1f64 (AArch64dup (f64 (load GPR64sp:$Rn)))),
   5493           (LD1Rv1d GPR64sp:$Rn)>;
   5494 def : Pat<(v4f16 (AArch64dup (f16 (load GPR64sp:$Rn)))),
   5495           (LD1Rv4h GPR64sp:$Rn)>;
   5496 def : Pat<(v8f16 (AArch64dup (f16 (load GPR64sp:$Rn)))),
   5497           (LD1Rv8h GPR64sp:$Rn)>;
   5498 
   5499 class Ld1Lane128Pat<SDPatternOperator scalar_load, Operand VecIndex,
   5500                     ValueType VTy, ValueType STy, Instruction LD1>
   5501   : Pat<(vector_insert (VTy VecListOne128:$Rd),
   5502            (STy (scalar_load GPR64sp:$Rn)), VecIndex:$idx),
   5503         (LD1 VecListOne128:$Rd, VecIndex:$idx, GPR64sp:$Rn)>;
   5504 
   5505 def : Ld1Lane128Pat<extloadi8,  VectorIndexB, v16i8, i32, LD1i8>;
   5506 def : Ld1Lane128Pat<extloadi16, VectorIndexH, v8i16, i32, LD1i16>;
   5507 def : Ld1Lane128Pat<load,       VectorIndexS, v4i32, i32, LD1i32>;
   5508 def : Ld1Lane128Pat<load,       VectorIndexS, v4f32, f32, LD1i32>;
   5509 def : Ld1Lane128Pat<load,       VectorIndexD, v2i64, i64, LD1i64>;
   5510 def : Ld1Lane128Pat<load,       VectorIndexD, v2f64, f64, LD1i64>;
   5511 def : Ld1Lane128Pat<load,       VectorIndexH, v8f16, f16, LD1i16>;
   5512 
   5513 class Ld1Lane64Pat<SDPatternOperator scalar_load, Operand VecIndex,
   5514                    ValueType VTy, ValueType STy, Instruction LD1>
   5515   : Pat<(vector_insert (VTy VecListOne64:$Rd),
   5516            (STy (scalar_load GPR64sp:$Rn)), VecIndex:$idx),
   5517         (EXTRACT_SUBREG
   5518             (LD1 (SUBREG_TO_REG (i32 0), VecListOne64:$Rd, dsub),
   5519                           VecIndex:$idx, GPR64sp:$Rn),
   5520             dsub)>;
   5521 
   5522 def : Ld1Lane64Pat<extloadi8,  VectorIndexB, v8i8,  i32, LD1i8>;
   5523 def : Ld1Lane64Pat<extloadi16, VectorIndexH, v4i16, i32, LD1i16>;
   5524 def : Ld1Lane64Pat<load,       VectorIndexS, v2i32, i32, LD1i32>;
   5525 def : Ld1Lane64Pat<load,       VectorIndexS, v2f32, f32, LD1i32>;
   5526 def : Ld1Lane64Pat<load,       VectorIndexH, v4f16, f16, LD1i16>;
   5527 
   5528 
   5529 defm LD1 : SIMDLdSt1SingleAliases<"ld1">;
   5530 defm LD2 : SIMDLdSt2SingleAliases<"ld2">;
   5531 defm LD3 : SIMDLdSt3SingleAliases<"ld3">;
   5532 defm LD4 : SIMDLdSt4SingleAliases<"ld4">;
   5533 
   5534 // Stores
   5535 defm ST1 : SIMDStSingleB<0, 0b000,       "st1", VecListOneb, GPR64pi1>;
   5536 defm ST1 : SIMDStSingleH<0, 0b010, 0,    "st1", VecListOneh, GPR64pi2>;
   5537 defm ST1 : SIMDStSingleS<0, 0b100, 0b00, "st1", VecListOnes, GPR64pi4>;
   5538 defm ST1 : SIMDStSingleD<0, 0b100, 0b01, "st1", VecListOned, GPR64pi8>;
   5539 
   5540 let AddedComplexity = 19 in
   5541 class St1Lane128Pat<SDPatternOperator scalar_store, Operand VecIndex,
   5542                     ValueType VTy, ValueType STy, Instruction ST1>
   5543   : Pat<(scalar_store
   5544              (STy (vector_extract (VTy VecListOne128:$Vt), VecIndex:$idx)),
   5545              GPR64sp:$Rn),
   5546         (ST1 VecListOne128:$Vt, VecIndex:$idx, GPR64sp:$Rn)>;
   5547 
   5548 def : St1Lane128Pat<truncstorei8,  VectorIndexB, v16i8, i32, ST1i8>;
   5549 def : St1Lane128Pat<truncstorei16, VectorIndexH, v8i16, i32, ST1i16>;
   5550 def : St1Lane128Pat<store,         VectorIndexS, v4i32, i32, ST1i32>;
   5551 def : St1Lane128Pat<store,         VectorIndexS, v4f32, f32, ST1i32>;
   5552 def : St1Lane128Pat<store,         VectorIndexD, v2i64, i64, ST1i64>;
   5553 def : St1Lane128Pat<store,         VectorIndexD, v2f64, f64, ST1i64>;
   5554 def : St1Lane128Pat<store,         VectorIndexH, v8f16, f16, ST1i16>;
   5555 
   5556 let AddedComplexity = 19 in
   5557 class St1Lane64Pat<SDPatternOperator scalar_store, Operand VecIndex,
   5558                    ValueType VTy, ValueType STy, Instruction ST1>
   5559   : Pat<(scalar_store
   5560              (STy (vector_extract (VTy VecListOne64:$Vt), VecIndex:$idx)),
   5561              GPR64sp:$Rn),
   5562         (ST1 (SUBREG_TO_REG (i32 0), VecListOne64:$Vt, dsub),
   5563              VecIndex:$idx, GPR64sp:$Rn)>;
   5564 
   5565 def : St1Lane64Pat<truncstorei8,  VectorIndexB, v8i8, i32, ST1i8>;
   5566 def : St1Lane64Pat<truncstorei16, VectorIndexH, v4i16, i32, ST1i16>;
   5567 def : St1Lane64Pat<store,         VectorIndexS, v2i32, i32, ST1i32>;
   5568 def : St1Lane64Pat<store,         VectorIndexS, v2f32, f32, ST1i32>;
   5569 def : St1Lane64Pat<store,         VectorIndexH, v4f16, f16, ST1i16>;
   5570 
   5571 multiclass St1LanePost64Pat<SDPatternOperator scalar_store, Operand VecIndex,
   5572                              ValueType VTy, ValueType STy, Instruction ST1,
   5573                              int offset> {
   5574   def : Pat<(scalar_store
   5575               (STy (vector_extract (VTy VecListOne64:$Vt), VecIndex:$idx)),
   5576               GPR64sp:$Rn, offset),
   5577         (ST1 (SUBREG_TO_REG (i32 0), VecListOne64:$Vt, dsub),
   5578              VecIndex:$idx, GPR64sp:$Rn, XZR)>;
   5579 
   5580   def : Pat<(scalar_store
   5581               (STy (vector_extract (VTy VecListOne64:$Vt), VecIndex:$idx)),
   5582               GPR64sp:$Rn, GPR64:$Rm),
   5583         (ST1 (SUBREG_TO_REG (i32 0), VecListOne64:$Vt, dsub),
   5584              VecIndex:$idx, GPR64sp:$Rn, $Rm)>;
   5585 }
   5586 
   5587 defm : St1LanePost64Pat<post_truncsti8, VectorIndexB, v8i8, i32, ST1i8_POST, 1>;
   5588 defm : St1LanePost64Pat<post_truncsti16, VectorIndexH, v4i16, i32, ST1i16_POST,
   5589                         2>;
   5590 defm : St1LanePost64Pat<post_store, VectorIndexS, v2i32, i32, ST1i32_POST, 4>;
   5591 defm : St1LanePost64Pat<post_store, VectorIndexS, v2f32, f32, ST1i32_POST, 4>;
   5592 defm : St1LanePost64Pat<post_store, VectorIndexD, v1i64, i64, ST1i64_POST, 8>;
   5593 defm : St1LanePost64Pat<post_store, VectorIndexD, v1f64, f64, ST1i64_POST, 8>;
   5594 defm : St1LanePost64Pat<post_store, VectorIndexH, v4f16, f16, ST1i16_POST, 2>;
   5595 
   5596 multiclass St1LanePost128Pat<SDPatternOperator scalar_store, Operand VecIndex,
   5597                              ValueType VTy, ValueType STy, Instruction ST1,
   5598                              int offset> {
   5599   def : Pat<(scalar_store
   5600               (STy (vector_extract (VTy VecListOne128:$Vt), VecIndex:$idx)),
   5601               GPR64sp:$Rn, offset),
   5602         (ST1 VecListOne128:$Vt, VecIndex:$idx, GPR64sp:$Rn, XZR)>;
   5603 
   5604   def : Pat<(scalar_store
   5605               (STy (vector_extract (VTy VecListOne128:$Vt), VecIndex:$idx)),
   5606               GPR64sp:$Rn, GPR64:$Rm),
   5607         (ST1 VecListOne128:$Vt, VecIndex:$idx, GPR64sp:$Rn, $Rm)>;
   5608 }
   5609 
   5610 defm : St1LanePost128Pat<post_truncsti8, VectorIndexB, v16i8, i32, ST1i8_POST,
   5611                          1>;
   5612 defm : St1LanePost128Pat<post_truncsti16, VectorIndexH, v8i16, i32, ST1i16_POST,
   5613                          2>;
   5614 defm : St1LanePost128Pat<post_store, VectorIndexS, v4i32, i32, ST1i32_POST, 4>;
   5615 defm : St1LanePost128Pat<post_store, VectorIndexS, v4f32, f32, ST1i32_POST, 4>;
   5616 defm : St1LanePost128Pat<post_store, VectorIndexD, v2i64, i64, ST1i64_POST, 8>;
   5617 defm : St1LanePost128Pat<post_store, VectorIndexD, v2f64, f64, ST1i64_POST, 8>;
   5618 defm : St1LanePost128Pat<post_store, VectorIndexH, v8f16, f16, ST1i16_POST, 2>;
   5619 
   5620 let mayStore = 1, hasSideEffects = 0 in {
   5621 defm ST2 : SIMDStSingleB<1, 0b000,       "st2", VecListTwob,   GPR64pi2>;
   5622 defm ST2 : SIMDStSingleH<1, 0b010, 0,    "st2", VecListTwoh,   GPR64pi4>;
   5623 defm ST2 : SIMDStSingleS<1, 0b100, 0b00, "st2", VecListTwos,   GPR64pi8>;
   5624 defm ST2 : SIMDStSingleD<1, 0b100, 0b01, "st2", VecListTwod,   GPR64pi16>;
   5625 defm ST3 : SIMDStSingleB<0, 0b001,       "st3", VecListThreeb, GPR64pi3>;
   5626 defm ST3 : SIMDStSingleH<0, 0b011, 0,    "st3", VecListThreeh, GPR64pi6>;
   5627 defm ST3 : SIMDStSingleS<0, 0b101, 0b00, "st3", VecListThrees, GPR64pi12>;
   5628 defm ST3 : SIMDStSingleD<0, 0b101, 0b01, "st3", VecListThreed, GPR64pi24>;
   5629 defm ST4 : SIMDStSingleB<1, 0b001,       "st4", VecListFourb,  GPR64pi4>;
   5630 defm ST4 : SIMDStSingleH<1, 0b011, 0,    "st4", VecListFourh,  GPR64pi8>;
   5631 defm ST4 : SIMDStSingleS<1, 0b101, 0b00, "st4", VecListFours,  GPR64pi16>;
   5632 defm ST4 : SIMDStSingleD<1, 0b101, 0b01, "st4", VecListFourd,  GPR64pi32>;
   5633 }
   5634 
   5635 defm ST1 : SIMDLdSt1SingleAliases<"st1">;
   5636 defm ST2 : SIMDLdSt2SingleAliases<"st2">;
   5637 defm ST3 : SIMDLdSt3SingleAliases<"st3">;
   5638 defm ST4 : SIMDLdSt4SingleAliases<"st4">;
   5639 
   5640 //----------------------------------------------------------------------------
   5641 // Crypto extensions
   5642 //----------------------------------------------------------------------------
   5643 
   5644 let Predicates = [HasAES] in {
   5645 def AESErr   : AESTiedInst<0b0100, "aese",   int_aarch64_crypto_aese>;
   5646 def AESDrr   : AESTiedInst<0b0101, "aesd",   int_aarch64_crypto_aesd>;
   5647 def AESMCrr  : AESInst<    0b0110, "aesmc",  int_aarch64_crypto_aesmc>;
   5648 def AESIMCrr : AESInst<    0b0111, "aesimc", int_aarch64_crypto_aesimc>;
   5649 }
   5650 
   5651 // Pseudo instructions for AESMCrr/AESIMCrr with a register constraint required
   5652 // for AES fusion on some CPUs.
   5653 let hasSideEffects = 0, mayStore = 0, mayLoad = 0 in {
   5654 def AESMCrrTied: Pseudo<(outs V128:$Rd), (ins V128:$Rn), [], "$Rn = $Rd">,
   5655                         Sched<[WriteV]>;
   5656 def AESIMCrrTied: Pseudo<(outs V128:$Rd), (ins V128:$Rn), [], "$Rn = $Rd">,
   5657                          Sched<[WriteV]>;
   5658 }
   5659 
   5660 // Only use constrained versions of AES(I)MC instructions if they are paired with
   5661 // AESE/AESD.
   5662 def : Pat<(v16i8 (int_aarch64_crypto_aesmc
   5663             (v16i8 (int_aarch64_crypto_aese (v16i8 V128:$src1),
   5664                                             (v16i8 V128:$src2))))),
   5665           (v16i8 (AESMCrrTied (v16i8 (AESErr (v16i8 V128:$src1),
   5666                                              (v16i8 V128:$src2)))))>,
   5667           Requires<[HasFuseAES]>;
   5668 
   5669 def : Pat<(v16i8 (int_aarch64_crypto_aesimc
   5670             (v16i8 (int_aarch64_crypto_aesd (v16i8 V128:$src1),
   5671                                             (v16i8 V128:$src2))))),
   5672           (v16i8 (AESIMCrrTied (v16i8 (AESDrr (v16i8 V128:$src1),
   5673                                               (v16i8 V128:$src2)))))>,
   5674           Requires<[HasFuseAES]>;
   5675 
   5676 let Predicates = [HasSHA2] in {
   5677 def SHA1Crrr     : SHATiedInstQSV<0b000, "sha1c",   int_aarch64_crypto_sha1c>;
   5678 def SHA1Prrr     : SHATiedInstQSV<0b001, "sha1p",   int_aarch64_crypto_sha1p>;
   5679 def SHA1Mrrr     : SHATiedInstQSV<0b010, "sha1m",   int_aarch64_crypto_sha1m>;
   5680 def SHA1SU0rrr   : SHATiedInstVVV<0b011, "sha1su0", int_aarch64_crypto_sha1su0>;
   5681 def SHA256Hrrr   : SHATiedInstQQV<0b100, "sha256h", int_aarch64_crypto_sha256h>;
   5682 def SHA256H2rrr  : SHATiedInstQQV<0b101, "sha256h2",int_aarch64_crypto_sha256h2>;
   5683 def SHA256SU1rrr :SHATiedInstVVV<0b110, "sha256su1",int_aarch64_crypto_sha256su1>;
   5684 
   5685 def SHA1Hrr     : SHAInstSS<    0b0000, "sha1h",    int_aarch64_crypto_sha1h>;
   5686 def SHA1SU1rr   : SHATiedInstVV<0b0001, "sha1su1",  int_aarch64_crypto_sha1su1>;
   5687 def SHA256SU0rr : SHATiedInstVV<0b0010, "sha256su0",int_aarch64_crypto_sha256su0>;
   5688 }
   5689 
   5690 //----------------------------------------------------------------------------
   5691 // Compiler-pseudos
   5692 //----------------------------------------------------------------------------
   5693 // FIXME: Like for X86, these should go in their own separate .td file.
   5694 
   5695 def def32 : PatLeaf<(i32 GPR32:$src), [{
   5696   return isDef32(*N);
   5697 }]>;
   5698 
   5699 // In the case of a 32-bit def that is known to implicitly zero-extend,
   5700 // we can use a SUBREG_TO_REG.
   5701 def : Pat<(i64 (zext def32:$src)), (SUBREG_TO_REG (i64 0), GPR32:$src, sub_32)>;
   5702 
   5703 // For an anyext, we don't care what the high bits are, so we can perform an
   5704 // INSERT_SUBREF into an IMPLICIT_DEF.
   5705 def : Pat<(i64 (anyext GPR32:$src)),
   5706           (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$src, sub_32)>;
   5707 
   5708 // When we need to explicitly zero-extend, we use a 32-bit MOV instruction and
   5709 // then assert the extension has happened.
   5710 def : Pat<(i64 (zext GPR32:$src)),
   5711           (SUBREG_TO_REG (i32 0), (ORRWrs WZR, GPR32:$src, 0), sub_32)>;
   5712 
   5713 // To sign extend, we use a signed bitfield move instruction (SBFM) on the
   5714 // containing super-reg.
   5715 def : Pat<(i64 (sext GPR32:$src)),
   5716    (SBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$src, sub_32), 0, 31)>;
   5717 def : Pat<(i64 (sext_inreg GPR64:$src, i32)), (SBFMXri GPR64:$src, 0, 31)>;
   5718 def : Pat<(i64 (sext_inreg GPR64:$src, i16)), (SBFMXri GPR64:$src, 0, 15)>;
   5719 def : Pat<(i64 (sext_inreg GPR64:$src, i8)),  (SBFMXri GPR64:$src, 0, 7)>;
   5720 def : Pat<(i64 (sext_inreg GPR64:$src, i1)),  (SBFMXri GPR64:$src, 0, 0)>;
   5721 def : Pat<(i32 (sext_inreg GPR32:$src, i16)), (SBFMWri GPR32:$src, 0, 15)>;
   5722 def : Pat<(i32 (sext_inreg GPR32:$src, i8)),  (SBFMWri GPR32:$src, 0, 7)>;
   5723 def : Pat<(i32 (sext_inreg GPR32:$src, i1)),  (SBFMWri GPR32:$src, 0, 0)>;
   5724 
   5725 def : Pat<(shl (sext_inreg GPR32:$Rn, i8), (i64 imm0_31:$imm)),
   5726           (SBFMWri GPR32:$Rn, (i64 (i32shift_a       imm0_31:$imm)),
   5727                               (i64 (i32shift_sext_i8 imm0_31:$imm)))>;
   5728 def : Pat<(shl (sext_inreg GPR64:$Rn, i8), (i64 imm0_63:$imm)),
   5729           (SBFMXri GPR64:$Rn, (i64 (i64shift_a imm0_63:$imm)),
   5730                               (i64 (i64shift_sext_i8 imm0_63:$imm)))>;
   5731 
   5732 def : Pat<(shl (sext_inreg GPR32:$Rn, i16), (i64 imm0_31:$imm)),
   5733           (SBFMWri GPR32:$Rn, (i64 (i32shift_a        imm0_31:$imm)),
   5734                               (i64 (i32shift_sext_i16 imm0_31:$imm)))>;
   5735 def : Pat<(shl (sext_inreg GPR64:$Rn, i16), (i64 imm0_63:$imm)),
   5736           (SBFMXri GPR64:$Rn, (i64 (i64shift_a        imm0_63:$imm)),
   5737                               (i64 (i64shift_sext_i16 imm0_63:$imm)))>;
   5738 
   5739 def : Pat<(shl (i64 (sext GPR32:$Rn)), (i64 imm0_63:$imm)),
   5740           (SBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$Rn, sub_32),
   5741                    (i64 (i64shift_a        imm0_63:$imm)),
   5742                    (i64 (i64shift_sext_i32 imm0_63:$imm)))>;
   5743 
   5744 // sra patterns have an AddedComplexity of 10, so make sure we have a higher
   5745 // AddedComplexity for the following patterns since we want to match sext + sra
   5746 // patterns before we attempt to match a single sra node.
   5747 let AddedComplexity = 20 in {
   5748 // We support all sext + sra combinations which preserve at least one bit of the
   5749 // original value which is to be sign extended. E.g. we support shifts up to
   5750 // bitwidth-1 bits.
   5751 def : Pat<(sra (sext_inreg GPR32:$Rn, i8), (i64 imm0_7:$imm)),
   5752           (SBFMWri GPR32:$Rn, (i64 imm0_7:$imm), 7)>;
   5753 def : Pat<(sra (sext_inreg GPR64:$Rn, i8), (i64 imm0_7:$imm)),
   5754           (SBFMXri GPR64:$Rn, (i64 imm0_7:$imm), 7)>;
   5755 
   5756 def : Pat<(sra (sext_inreg GPR32:$Rn, i16), (i64 imm0_15:$imm)),
   5757           (SBFMWri GPR32:$Rn, (i64 imm0_15:$imm), 15)>;
   5758 def : Pat<(sra (sext_inreg GPR64:$Rn, i16), (i64 imm0_15:$imm)),
   5759           (SBFMXri GPR64:$Rn, (i64 imm0_15:$imm), 15)>;
   5760 
   5761 def : Pat<(sra (i64 (sext GPR32:$Rn)), (i64 imm0_31:$imm)),
   5762           (SBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$Rn, sub_32),
   5763                    (i64 imm0_31:$imm), 31)>;
   5764 } // AddedComplexity = 20
   5765 
   5766 // To truncate, we can simply extract from a subregister.
   5767 def : Pat<(i32 (trunc GPR64sp:$src)),
   5768           (i32 (EXTRACT_SUBREG GPR64sp:$src, sub_32))>;
   5769 
   5770 // __builtin_trap() uses the BRK instruction on AArch64.
   5771 def : Pat<(trap), (BRK 1)>;
   5772 
   5773 // Conversions within AdvSIMD types in the same register size are free.
   5774 // But because we need a consistent lane ordering, in big endian many
   5775 // conversions require one or more REV instructions.
   5776 //
   5777 // Consider a simple memory load followed by a bitconvert then a store.
   5778 //   v0 = load v2i32
   5779 //   v1 = BITCAST v2i32 v0 to v4i16
   5780 //        store v4i16 v2
   5781 //
   5782 // In big endian mode every memory access has an implicit byte swap. LDR and
   5783 // STR do a 64-bit byte swap, whereas LD1/ST1 do a byte swap per lane - that
   5784 // is, they treat the vector as a sequence of elements to be byte-swapped.
   5785 // The two pairs of instructions are fundamentally incompatible. We've decided
   5786 // to use LD1/ST1 only to simplify compiler implementation.
   5787 //
   5788 // LD1/ST1 perform the equivalent of a sequence of LDR/STR + REV. This makes
   5789 // the original code sequence:
   5790 //   v0 = load v2i32
   5791 //   v1 = REV v2i32                  (implicit)
   5792 //   v2 = BITCAST v2i32 v1 to v4i16
   5793 //   v3 = REV v4i16 v2               (implicit)
   5794 //        store v4i16 v3
   5795 //
   5796 // But this is now broken - the value stored is different to the value loaded
   5797 // due to lane reordering. To fix this, on every BITCAST we must perform two
   5798 // other REVs:
   5799 //   v0 = load v2i32
   5800 //   v1 = REV v2i32                  (implicit)
   5801 //   v2 = REV v2i32
   5802 //   v3 = BITCAST v2i32 v2 to v4i16
   5803 //   v4 = REV v4i16
   5804 //   v5 = REV v4i16 v4               (implicit)
   5805 //        store v4i16 v5
   5806 //
   5807 // This means an extra two instructions, but actually in most cases the two REV
   5808 // instructions can be combined into one. For example:
   5809 //   (REV64_2s (REV64_4h X)) === (REV32_4h X)
   5810 //
   5811 // There is also no 128-bit REV instruction. This must be synthesized with an
   5812 // EXT instruction.
   5813 //
   5814 // Most bitconverts require some sort of conversion. The only exceptions are:
   5815 //   a) Identity conversions -  vNfX <-> vNiX
   5816 //   b) Single-lane-to-scalar - v1fX <-> fX or v1iX <-> iX
   5817 //
   5818 
   5819 // Natural vector casts (64 bit)
   5820 def : Pat<(v8i8 (AArch64NvCast (v2i32 FPR64:$src))), (v8i8 FPR64:$src)>;
   5821 def : Pat<(v4i16 (AArch64NvCast (v2i32 FPR64:$src))), (v4i16 FPR64:$src)>;
   5822 def : Pat<(v4f16 (AArch64NvCast (v2i32 FPR64:$src))), (v4f16 FPR64:$src)>;
   5823 def : Pat<(v2i32 (AArch64NvCast (v2i32 FPR64:$src))), (v2i32 FPR64:$src)>;
   5824 def : Pat<(v2f32 (AArch64NvCast (v2i32 FPR64:$src))), (v2f32 FPR64:$src)>;
   5825 def : Pat<(v1i64 (AArch64NvCast (v2i32 FPR64:$src))), (v1i64 FPR64:$src)>;
   5826 
   5827 def : Pat<(v8i8 (AArch64NvCast (v4i16 FPR64:$src))), (v8i8 FPR64:$src)>;
   5828 def : Pat<(v4i16 (AArch64NvCast (v4i16 FPR64:$src))), (v4i16 FPR64:$src)>;
   5829 def : Pat<(v4f16 (AArch64NvCast (v4i16 FPR64:$src))), (v4f16 FPR64:$src)>;
   5830 def : Pat<(v2i32 (AArch64NvCast (v4i16 FPR64:$src))), (v2i32 FPR64:$src)>;
   5831 def : Pat<(v1i64 (AArch64NvCast (v4i16 FPR64:$src))), (v1i64 FPR64:$src)>;
   5832 
   5833 def : Pat<(v8i8 (AArch64NvCast (v8i8 FPR64:$src))), (v8i8 FPR64:$src)>;
   5834 def : Pat<(v4i16 (AArch64NvCast (v8i8 FPR64:$src))), (v4i16 FPR64:$src)>;
   5835 def : Pat<(v4f16 (AArch64NvCast (v8i8 FPR64:$src))), (v4f16 FPR64:$src)>;
   5836 def : Pat<(v2i32 (AArch64NvCast (v8i8 FPR64:$src))), (v2i32 FPR64:$src)>;
   5837 def : Pat<(v2f32 (AArch64NvCast (v8i8 FPR64:$src))), (v2f32 FPR64:$src)>;
   5838 def : Pat<(v1i64 (AArch64NvCast (v8i8 FPR64:$src))), (v1i64 FPR64:$src)>;
   5839 
   5840 def : Pat<(v8i8 (AArch64NvCast (f64 FPR64:$src))), (v8i8 FPR64:$src)>;
   5841 def : Pat<(v4i16 (AArch64NvCast (f64 FPR64:$src))), (v4i16 FPR64:$src)>;
   5842 def : Pat<(v4f16 (AArch64NvCast (f64 FPR64:$src))), (v4f16 FPR64:$src)>;
   5843 def : Pat<(v2i32 (AArch64NvCast (f64 FPR64:$src))), (v2i32 FPR64:$src)>;
   5844 def : Pat<(v2f32 (AArch64NvCast (f64 FPR64:$src))), (v2f32 FPR64:$src)>;
   5845 def : Pat<(v1i64 (AArch64NvCast (f64 FPR64:$src))), (v1i64 FPR64:$src)>;
   5846 def : Pat<(v1f64 (AArch64NvCast (f64 FPR64:$src))), (v1f64 FPR64:$src)>;
   5847 
   5848 def : Pat<(v8i8 (AArch64NvCast (v2f32 FPR64:$src))), (v8i8 FPR64:$src)>;
   5849 def : Pat<(v4i16 (AArch64NvCast (v2f32 FPR64:$src))), (v4i16 FPR64:$src)>;
   5850 def : Pat<(v2i32 (AArch64NvCast (v2f32 FPR64:$src))), (v2i32 FPR64:$src)>;
   5851 def : Pat<(v2f32 (AArch64NvCast (v2f32 FPR64:$src))), (v2f32 FPR64:$src)>;
   5852 def : Pat<(v1i64 (AArch64NvCast (v2f32 FPR64:$src))), (v1i64 FPR64:$src)>;
   5853 
   5854 // Natural vector casts (128 bit)
   5855 def : Pat<(v16i8 (AArch64NvCast (v4i32 FPR128:$src))), (v16i8 FPR128:$src)>;
   5856 def : Pat<(v8i16 (AArch64NvCast (v4i32 FPR128:$src))), (v8i16 FPR128:$src)>;
   5857 def : Pat<(v8f16 (AArch64NvCast (v4i32 FPR128:$src))), (v8f16 FPR128:$src)>;
   5858 def : Pat<(v4i32 (AArch64NvCast (v4i32 FPR128:$src))), (v4i32 FPR128:$src)>;
   5859 def : Pat<(v4f32 (AArch64NvCast (v4i32 FPR128:$src))), (v4f32 FPR128:$src)>;
   5860 def : Pat<(v2i64 (AArch64NvCast (v4i32 FPR128:$src))), (v2i64 FPR128:$src)>;
   5861 def : Pat<(v2f64 (AArch64NvCast (v4i32 FPR128:$src))), (v2f64 FPR128:$src)>;
   5862 
   5863 def : Pat<(v16i8 (AArch64NvCast (v8i16 FPR128:$src))), (v16i8 FPR128:$src)>;
   5864 def : Pat<(v8i16 (AArch64NvCast (v8i16 FPR128:$src))), (v8i16 FPR128:$src)>;
   5865 def : Pat<(v8f16 (AArch64NvCast (v8i16 FPR128:$src))), (v8f16 FPR128:$src)>;
   5866 def : Pat<(v4i32 (AArch64NvCast (v8i16 FPR128:$src))), (v4i32 FPR128:$src)>;
   5867 def : Pat<(v2i64 (AArch64NvCast (v8i16 FPR128:$src))), (v2i64 FPR128:$src)>;
   5868 def : Pat<(v4f32 (AArch64NvCast (v8i16 FPR128:$src))), (v4f32 FPR128:$src)>;
   5869 def : Pat<(v2f64 (AArch64NvCast (v8i16 FPR128:$src))), (v2f64 FPR128:$src)>;
   5870 
   5871 def : Pat<(v16i8 (AArch64NvCast (v16i8 FPR128:$src))), (v16i8 FPR128:$src)>;
   5872 def : Pat<(v8i16 (AArch64NvCast (v16i8 FPR128:$src))), (v8i16 FPR128:$src)>;
   5873 def : Pat<(v8f16 (AArch64NvCast (v16i8 FPR128:$src))), (v8f16 FPR128:$src)>;
   5874 def : Pat<(v4i32 (AArch64NvCast (v16i8 FPR128:$src))), (v4i32 FPR128:$src)>;
   5875 def : Pat<(v2i64 (AArch64NvCast (v16i8 FPR128:$src))), (v2i64 FPR128:$src)>;
   5876 def : Pat<(v4f32 (AArch64NvCast (v16i8 FPR128:$src))), (v4f32 FPR128:$src)>;
   5877 def : Pat<(v2f64 (AArch64NvCast (v16i8 FPR128:$src))), (v2f64 FPR128:$src)>;
   5878 
   5879 def : Pat<(v16i8 (AArch64NvCast (v2i64 FPR128:$src))), (v16i8 FPR128:$src)>;
   5880 def : Pat<(v8i16 (AArch64NvCast (v2i64 FPR128:$src))), (v8i16 FPR128:$src)>;
   5881 def : Pat<(v8f16 (AArch64NvCast (v2i64 FPR128:$src))), (v8f16 FPR128:$src)>;
   5882 def : Pat<(v4i32 (AArch64NvCast (v2i64 FPR128:$src))), (v4i32 FPR128:$src)>;
   5883 def : Pat<(v2i64 (AArch64NvCast (v2i64 FPR128:$src))), (v2i64 FPR128:$src)>;
   5884 def : Pat<(v4f32 (AArch64NvCast (v2i64 FPR128:$src))), (v4f32 FPR128:$src)>;
   5885 def : Pat<(v2f64 (AArch64NvCast (v2i64 FPR128:$src))), (v2f64 FPR128:$src)>;
   5886 
   5887 def : Pat<(v16i8 (AArch64NvCast (v4f32 FPR128:$src))), (v16i8 FPR128:$src)>;
   5888 def : Pat<(v8i16 (AArch64NvCast (v4f32 FPR128:$src))), (v8i16 FPR128:$src)>;
   5889 def : Pat<(v4i32 (AArch64NvCast (v4f32 FPR128:$src))), (v4i32 FPR128:$src)>;
   5890 def : Pat<(v4f32 (AArch64NvCast (v4f32 FPR128:$src))), (v4f32 FPR128:$src)>;
   5891 def : Pat<(v2i64 (AArch64NvCast (v4f32 FPR128:$src))), (v2i64 FPR128:$src)>;
   5892 def : Pat<(v8f16 (AArch64NvCast (v4f32 FPR128:$src))), (v8f16 FPR128:$src)>;
   5893 def : Pat<(v2f64 (AArch64NvCast (v4f32 FPR128:$src))), (v2f64 FPR128:$src)>;
   5894 
   5895 def : Pat<(v16i8 (AArch64NvCast (v2f64 FPR128:$src))), (v16i8 FPR128:$src)>;
   5896 def : Pat<(v8i16 (AArch64NvCast (v2f64 FPR128:$src))), (v8i16 FPR128:$src)>;
   5897 def : Pat<(v4i32 (AArch64NvCast (v2f64 FPR128:$src))), (v4i32 FPR128:$src)>;
   5898 def : Pat<(v2i64 (AArch64NvCast (v2f64 FPR128:$src))), (v2i64 FPR128:$src)>;
   5899 def : Pat<(v2f64 (AArch64NvCast (v2f64 FPR128:$src))), (v2f64 FPR128:$src)>;
   5900 def : Pat<(v8f16 (AArch64NvCast (v2f64 FPR128:$src))), (v8f16 FPR128:$src)>;
   5901 def : Pat<(v4f32 (AArch64NvCast (v2f64 FPR128:$src))), (v4f32 FPR128:$src)>;
   5902 
   5903 let Predicates = [IsLE] in {
   5904 def : Pat<(v8i8  (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
   5905 def : Pat<(v4i16 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
   5906 def : Pat<(v2i32 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
   5907 def : Pat<(v4f16 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
   5908 def : Pat<(v2f32 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
   5909 
   5910 def : Pat<(i64 (bitconvert (v8i8  V64:$Vn))),
   5911           (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
   5912 def : Pat<(i64 (bitconvert (v4i16 V64:$Vn))),
   5913           (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
   5914 def : Pat<(i64 (bitconvert (v2i32 V64:$Vn))),
   5915           (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
   5916 def : Pat<(i64 (bitconvert (v4f16 V64:$Vn))),
   5917           (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
   5918 def : Pat<(i64 (bitconvert (v2f32 V64:$Vn))),
   5919           (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
   5920 def : Pat<(i64 (bitconvert (v1f64 V64:$Vn))),
   5921           (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
   5922 }
   5923 let Predicates = [IsBE] in {
   5924 def : Pat<(v8i8  (bitconvert GPR64:$Xn)),
   5925                  (REV64v8i8 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
   5926 def : Pat<(v4i16 (bitconvert GPR64:$Xn)),
   5927                  (REV64v4i16 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
   5928 def : Pat<(v2i32 (bitconvert GPR64:$Xn)),
   5929                  (REV64v2i32 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
   5930 def : Pat<(v4f16 (bitconvert GPR64:$Xn)),
   5931                  (REV64v4i16 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
   5932 def : Pat<(v2f32 (bitconvert GPR64:$Xn)),
   5933                  (REV64v2i32 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
   5934 
   5935 def : Pat<(i64 (bitconvert (v8i8  V64:$Vn))),
   5936           (REV64v8i8 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
   5937 def : Pat<(i64 (bitconvert (v4i16 V64:$Vn))),
   5938           (REV64v4i16 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
   5939 def : Pat<(i64 (bitconvert (v2i32 V64:$Vn))),
   5940           (REV64v2i32 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
   5941 def : Pat<(i64 (bitconvert (v4f16 V64:$Vn))),
   5942           (REV64v4i16 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
   5943 def : Pat<(i64 (bitconvert (v2f32 V64:$Vn))),
   5944           (REV64v2i32 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
   5945 }
   5946 def : Pat<(v1i64 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
   5947 def : Pat<(v1f64 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
   5948 def : Pat<(i64 (bitconvert (v1i64 V64:$Vn))),
   5949           (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
   5950 def : Pat<(v1i64 (scalar_to_vector GPR64:$Xn)),
   5951           (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
   5952 def : Pat<(v1f64 (scalar_to_vector GPR64:$Xn)),
   5953           (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
   5954 def : Pat<(v1f64 (scalar_to_vector (f64 FPR64:$Xn))), (v1f64 FPR64:$Xn)>;
   5955 
   5956 def : Pat<(f32 (bitconvert (i32 GPR32:$Xn))),
   5957           (COPY_TO_REGCLASS GPR32:$Xn, FPR32)>;
   5958 def : Pat<(i32 (bitconvert (f32 FPR32:$Xn))),
   5959           (COPY_TO_REGCLASS FPR32:$Xn, GPR32)>;
   5960 def : Pat<(f64 (bitconvert (i64 GPR64:$Xn))),
   5961           (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
   5962 def : Pat<(i64 (bitconvert (f64 FPR64:$Xn))),
   5963           (COPY_TO_REGCLASS FPR64:$Xn, GPR64)>;
   5964 def : Pat<(i64 (bitconvert (v1f64 V64:$Vn))),
   5965           (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
   5966 
   5967 let Predicates = [IsLE] in {
   5968 def : Pat<(v1i64 (bitconvert (v2i32 FPR64:$src))), (v1i64 FPR64:$src)>;
   5969 def : Pat<(v1i64 (bitconvert (v4i16 FPR64:$src))), (v1i64 FPR64:$src)>;
   5970 def : Pat<(v1i64 (bitconvert (v8i8  FPR64:$src))), (v1i64 FPR64:$src)>;
   5971 def : Pat<(v1i64 (bitconvert (v4f16 FPR64:$src))), (v1i64 FPR64:$src)>;
   5972 def : Pat<(v1i64 (bitconvert (v2f32 FPR64:$src))), (v1i64 FPR64:$src)>;
   5973 }
   5974 let Predicates = [IsBE] in {
   5975 def : Pat<(v1i64 (bitconvert (v2i32 FPR64:$src))),
   5976                              (v1i64 (REV64v2i32 FPR64:$src))>;
   5977 def : Pat<(v1i64 (bitconvert (v4i16 FPR64:$src))),
   5978                              (v1i64 (REV64v4i16 FPR64:$src))>;
   5979 def : Pat<(v1i64 (bitconvert (v8i8  FPR64:$src))),
   5980                              (v1i64 (REV64v8i8 FPR64:$src))>;
   5981 def : Pat<(v1i64 (bitconvert (v4f16 FPR64:$src))),
   5982                              (v1i64 (REV64v4i16 FPR64:$src))>;
   5983 def : Pat<(v1i64 (bitconvert (v2f32 FPR64:$src))),
   5984                              (v1i64 (REV64v2i32 FPR64:$src))>;
   5985 }
   5986 def : Pat<(v1i64 (bitconvert (v1f64 FPR64:$src))), (v1i64 FPR64:$src)>;
   5987 def : Pat<(v1i64 (bitconvert (f64   FPR64:$src))), (v1i64 FPR64:$src)>;
   5988 
   5989 let Predicates = [IsLE] in {
   5990 def : Pat<(v2i32 (bitconvert (v1i64 FPR64:$src))), (v2i32 FPR64:$src)>;
   5991 def : Pat<(v2i32 (bitconvert (v4i16 FPR64:$src))), (v2i32 FPR64:$src)>;
   5992 def : Pat<(v2i32 (bitconvert (v8i8  FPR64:$src))), (v2i32 FPR64:$src)>;
   5993 def : Pat<(v2i32 (bitconvert (f64   FPR64:$src))), (v2i32 FPR64:$src)>;
   5994 def : Pat<(v2i32 (bitconvert (v1f64 FPR64:$src))), (v2i32 FPR64:$src)>;
   5995 def : Pat<(v2i32 (bitconvert (v4f16 FPR64:$src))), (v2i32 FPR64:$src)>;
   5996 }
   5997 let Predicates = [IsBE] in {
   5998 def : Pat<(v2i32 (bitconvert (v1i64 FPR64:$src))),
   5999                              (v2i32 (REV64v2i32 FPR64:$src))>;
   6000 def : Pat<(v2i32 (bitconvert (v4i16 FPR64:$src))),
   6001                              (v2i32 (REV32v4i16 FPR64:$src))>;
   6002 def : Pat<(v2i32 (bitconvert (v8i8  FPR64:$src))),
   6003                              (v2i32 (REV32v8i8 FPR64:$src))>;
   6004 def : Pat<(v2i32 (bitconvert (f64   FPR64:$src))),
   6005                              (v2i32 (REV64v2i32 FPR64:$src))>;
   6006 def : Pat<(v2i32 (bitconvert (v1f64 FPR64:$src))),
   6007                              (v2i32 (REV64v2i32 FPR64:$src))>;
   6008 def : Pat<(v2i32 (bitconvert (v4f16 FPR64:$src))),
   6009                              (v2i32 (REV32v4i16 FPR64:$src))>;
   6010 }
   6011 def : Pat<(v2i32 (bitconvert (v2f32 FPR64:$src))), (v2i32 FPR64:$src)>;
   6012 
   6013 let Predicates = [IsLE] in {
   6014 def : Pat<(v4i16 (bitconvert (v1i64 FPR64:$src))), (v4i16 FPR64:$src)>;
   6015 def : Pat<(v4i16 (bitconvert (v2i32 FPR64:$src))), (v4i16 FPR64:$src)>;
   6016 def : Pat<(v4i16 (bitconvert (v8i8  FPR64:$src))), (v4i16 FPR64:$src)>;
   6017 def : Pat<(v4i16 (bitconvert (f64   FPR64:$src))), (v4i16 FPR64:$src)>;
   6018 def : Pat<(v4i16 (bitconvert (v2f32 FPR64:$src))), (v4i16 FPR64:$src)>;
   6019 def : Pat<(v4i16 (bitconvert (v1f64 FPR64:$src))), (v4i16 FPR64:$src)>;
   6020 }
   6021 let Predicates = [IsBE] in {
   6022 def : Pat<(v4i16 (bitconvert (v1i64 FPR64:$src))),
   6023                              (v4i16 (REV64v4i16 FPR64:$src))>;
   6024 def : Pat<(v4i16 (bitconvert (v2i32 FPR64:$src))),
   6025                              (v4i16 (REV32v4i16 FPR64:$src))>;
   6026 def : Pat<(v4i16 (bitconvert (v8i8  FPR64:$src))),
   6027                              (v4i16 (REV16v8i8 FPR64:$src))>;
   6028 def : Pat<(v4i16 (bitconvert (f64   FPR64:$src))),
   6029                              (v4i16 (REV64v4i16 FPR64:$src))>;
   6030 def : Pat<(v4i16 (bitconvert (v2f32 FPR64:$src))),
   6031                              (v4i16 (REV32v4i16 FPR64:$src))>;
   6032 def : Pat<(v4i16 (bitconvert (v1f64 FPR64:$src))),
   6033                              (v4i16 (REV64v4i16 FPR64:$src))>;
   6034 }
   6035 def : Pat<(v4i16 (bitconvert (v4f16 FPR64:$src))), (v4i16 FPR64:$src)>;
   6036 
   6037 let Predicates = [IsLE] in {
   6038 def : Pat<(v4f16 (bitconvert (v1i64 FPR64:$src))), (v4f16 FPR64:$src)>;
   6039 def : Pat<(v4f16 (bitconvert (v2i32 FPR64:$src))), (v4f16 FPR64:$src)>;
   6040 def : Pat<(v4f16 (bitconvert (v8i8  FPR64:$src))), (v4f16 FPR64:$src)>;
   6041 def : Pat<(v4f16 (bitconvert (f64   FPR64:$src))), (v4f16 FPR64:$src)>;
   6042 def : Pat<(v4f16 (bitconvert (v2f32 FPR64:$src))), (v4f16 FPR64:$src)>;
   6043 def : Pat<(v4f16 (bitconvert (v1f64 FPR64:$src))), (v4f16 FPR64:$src)>;
   6044 }
   6045 let Predicates = [IsBE] in {
   6046 def : Pat<(v4f16 (bitconvert (v1i64 FPR64:$src))),
   6047                              (v4f16 (REV64v4i16 FPR64:$src))>;
   6048 def : Pat<(v4f16 (bitconvert (v2i32 FPR64:$src))),
   6049                              (v4f16 (REV32v4i16 FPR64:$src))>;
   6050 def : Pat<(v4f16 (bitconvert (v8i8  FPR64:$src))),
   6051                              (v4f16 (REV16v8i8 FPR64:$src))>;
   6052 def : Pat<(v4f16 (bitconvert (f64   FPR64:$src))),
   6053                              (v4f16 (REV64v4i16 FPR64:$src))>;
   6054 def : Pat<(v4f16 (bitconvert (v2f32 FPR64:$src))),
   6055                              (v4f16 (REV32v4i16 FPR64:$src))>;
   6056 def : Pat<(v4f16 (bitconvert (v1f64 FPR64:$src))),
   6057                              (v4f16 (REV64v4i16 FPR64:$src))>;
   6058 }
   6059 def : Pat<(v4f16 (bitconvert (v4i16 FPR64:$src))), (v4f16 FPR64:$src)>;
   6060 
   6061 let Predicates = [IsLE] in {
   6062 def : Pat<(v8i8  (bitconvert (v1i64 FPR64:$src))), (v8i8  FPR64:$src)>;
   6063 def : Pat<(v8i8  (bitconvert (v2i32 FPR64:$src))), (v8i8  FPR64:$src)>;
   6064 def : Pat<(v8i8  (bitconvert (v4i16 FPR64:$src))), (v8i8  FPR64:$src)>;
   6065 def : Pat<(v8i8  (bitconvert (f64   FPR64:$src))), (v8i8  FPR64:$src)>;
   6066 def : Pat<(v8i8  (bitconvert (v2f32 FPR64:$src))), (v8i8  FPR64:$src)>;
   6067 def : Pat<(v8i8  (bitconvert (v1f64 FPR64:$src))), (v8i8  FPR64:$src)>;
   6068 def : Pat<(v8i8  (bitconvert (v4f16 FPR64:$src))), (v8i8  FPR64:$src)>;
   6069 }
   6070 let Predicates = [IsBE] in {
   6071 def : Pat<(v8i8  (bitconvert (v1i64 FPR64:$src))),
   6072                              (v8i8 (REV64v8i8 FPR64:$src))>;
   6073 def : Pat<(v8i8  (bitconvert (v2i32 FPR64:$src))),
   6074                              (v8i8 (REV32v8i8 FPR64:$src))>;
   6075 def : Pat<(v8i8  (bitconvert (v4i16 FPR64:$src))),
   6076                              (v8i8 (REV16v8i8 FPR64:$src))>;
   6077 def : Pat<(v8i8  (bitconvert (f64   FPR64:$src))),
   6078                              (v8i8 (REV64v8i8 FPR64:$src))>;
   6079 def : Pat<(v8i8  (bitconvert (v2f32 FPR64:$src))),
   6080                              (v8i8 (REV32v8i8 FPR64:$src))>;
   6081 def : Pat<(v8i8  (bitconvert (v1f64 FPR64:$src))),
   6082                              (v8i8 (REV64v8i8 FPR64:$src))>;
   6083 def : Pat<(v8i8  (bitconvert (v4f16 FPR64:$src))),
   6084                              (v8i8 (REV16v8i8 FPR64:$src))>;
   6085 }
   6086 
   6087 let Predicates = [IsLE] in {
   6088 def : Pat<(f64   (bitconvert (v2i32 FPR64:$src))), (f64   FPR64:$src)>;
   6089 def : Pat<(f64   (bitconvert (v4i16 FPR64:$src))), (f64   FPR64:$src)>;
   6090 def : Pat<(f64   (bitconvert (v2f32 FPR64:$src))), (f64   FPR64:$src)>;
   6091 def : Pat<(f64   (bitconvert (v8i8  FPR64:$src))), (f64   FPR64:$src)>;
   6092 def : Pat<(f64   (bitconvert (v4f16 FPR64:$src))), (f64   FPR64:$src)>;
   6093 }
   6094 let Predicates = [IsBE] in {
   6095 def : Pat<(f64   (bitconvert (v2i32 FPR64:$src))),
   6096                              (f64 (REV64v2i32 FPR64:$src))>;
   6097 def : Pat<(f64   (bitconvert (v4i16 FPR64:$src))),
   6098                              (f64 (REV64v4i16 FPR64:$src))>;
   6099 def : Pat<(f64   (bitconvert (v2f32 FPR64:$src))),
   6100                              (f64 (REV64v2i32 FPR64:$src))>;
   6101 def : Pat<(f64   (bitconvert (v8i8  FPR64:$src))),
   6102                              (f64 (REV64v8i8 FPR64:$src))>;
   6103 def : Pat<(f64   (bitconvert (v4f16 FPR64:$src))),
   6104                              (f64 (REV64v4i16 FPR64:$src))>;
   6105 }
   6106 def : Pat<(f64   (bitconvert (v1i64 FPR64:$src))), (f64   FPR64:$src)>;
   6107 def : Pat<(f64   (bitconvert (v1f64 FPR64:$src))), (f64   FPR64:$src)>;
   6108 
   6109 let Predicates = [IsLE] in {
   6110 def : Pat<(v1f64 (bitconvert (v2i32 FPR64:$src))), (v1f64 FPR64:$src)>;
   6111 def : Pat<(v1f64 (bitconvert (v4i16 FPR64:$src))), (v1f64 FPR64:$src)>;
   6112 def : Pat<(v1f64 (bitconvert (v8i8  FPR64:$src))), (v1f64 FPR64:$src)>;
   6113 def : Pat<(v1f64 (bitconvert (v2f32 FPR64:$src))), (v1f64 FPR64:$src)>;
   6114 def : Pat<(v1f64 (bitconvert (v4f16 FPR64:$src))), (v1f64 FPR64:$src)>;
   6115 }
   6116 let Predicates = [IsBE] in {
   6117 def : Pat<(v1f64 (bitconvert (v2i32 FPR64:$src))),
   6118                              (v1f64 (REV64v2i32 FPR64:$src))>;
   6119 def : Pat<(v1f64 (bitconvert (v4i16 FPR64:$src))),
   6120                              (v1f64 (REV64v4i16 FPR64:$src))>;
   6121 def : Pat<(v1f64 (bitconvert (v8i8  FPR64:$src))),
   6122                              (v1f64 (REV64v8i8 FPR64:$src))>;
   6123 def : Pat<(v1f64 (bitconvert (v2f32 FPR64:$src))),
   6124                              (v1f64 (REV64v2i32 FPR64:$src))>;
   6125 def : Pat<(v1f64 (bitconvert (v4f16 FPR64:$src))),
   6126                              (v1f64 (REV64v4i16 FPR64:$src))>;
   6127 }
   6128 def : Pat<(v1f64 (bitconvert (v1i64 FPR64:$src))), (v1f64 FPR64:$src)>;
   6129 def : Pat<(v1f64 (bitconvert (f64   FPR64:$src))), (v1f64 FPR64:$src)>;
   6130 
   6131 let Predicates = [IsLE] in {
   6132 def : Pat<(v2f32 (bitconvert (v1i64 FPR64:$src))), (v2f32 FPR64:$src)>;
   6133 def : Pat<(v2f32 (bitconvert (v4i16 FPR64:$src))), (v2f32 FPR64:$src)>;
   6134 def : Pat<(v2f32 (bitconvert (v8i8  FPR64:$src))), (v2f32 FPR64:$src)>;
   6135 def : Pat<(v2f32 (bitconvert (v1f64 FPR64:$src))), (v2f32 FPR64:$src)>;
   6136 def : Pat<(v2f32 (bitconvert (f64   FPR64:$src))), (v2f32 FPR64:$src)>;
   6137 def : Pat<(v2f32 (bitconvert (v4f16 FPR64:$src))), (v2f32 FPR64:$src)>;
   6138 }
   6139 let Predicates = [IsBE] in {
   6140 def : Pat<(v2f32 (bitconvert (v1i64 FPR64:$src))),
   6141                              (v2f32 (REV64v2i32 FPR64:$src))>;
   6142 def : Pat<(v2f32 (bitconvert (v4i16 FPR64:$src))),
   6143                              (v2f32 (REV32v4i16 FPR64:$src))>;
   6144 def : Pat<(v2f32 (bitconvert (v8i8  FPR64:$src))),
   6145                              (v2f32 (REV32v8i8 FPR64:$src))>;
   6146 def : Pat<(v2f32 (bitconvert (v1f64 FPR64:$src))),
   6147                              (v2f32 (REV64v2i32 FPR64:$src))>;
   6148 def : Pat<(v2f32 (bitconvert (f64   FPR64:$src))),
   6149                              (v2f32 (REV64v2i32 FPR64:$src))>;
   6150 def : Pat<(v2f32 (bitconvert (v4f16 FPR64:$src))),
   6151                              (v2f32 (REV32v4i16 FPR64:$src))>;
   6152 }
   6153 def : Pat<(v2f32 (bitconvert (v2i32 FPR64:$src))), (v2f32 FPR64:$src)>;
   6154 
   6155 let Predicates = [IsLE] in {
   6156 def : Pat<(f128 (bitconvert (v2i64 FPR128:$src))), (f128 FPR128:$src)>;
   6157 def : Pat<(f128 (bitconvert (v4i32 FPR128:$src))), (f128 FPR128:$src)>;
   6158 def : Pat<(f128 (bitconvert (v8i16 FPR128:$src))), (f128 FPR128:$src)>;
   6159 def : Pat<(f128 (bitconvert (v2f64 FPR128:$src))), (f128 FPR128:$src)>;
   6160 def : Pat<(f128 (bitconvert (v4f32 FPR128:$src))), (f128 FPR128:$src)>;
   6161 def : Pat<(f128 (bitconvert (v8f16 FPR128:$src))), (f128 FPR128:$src)>;
   6162 def : Pat<(f128 (bitconvert (v16i8 FPR128:$src))), (f128 FPR128:$src)>;
   6163 }
   6164 let Predicates = [IsBE] in {
   6165 def : Pat<(f128 (bitconvert (v2i64 FPR128:$src))),
   6166                             (f128 (EXTv16i8 FPR128:$src, FPR128:$src, (i32 8)))>;
   6167 def : Pat<(f128 (bitconvert (v4i32 FPR128:$src))),
   6168                             (f128 (EXTv16i8 (REV64v4i32 FPR128:$src),
   6169                                             (REV64v4i32 FPR128:$src), (i32 8)))>;
   6170 def : Pat<(f128 (bitconvert (v8i16 FPR128:$src))),
   6171                             (f128 (EXTv16i8 (REV64v8i16 FPR128:$src),
   6172                                             (REV64v8i16 FPR128:$src), (i32 8)))>;
   6173 def : Pat<(f128 (bitconvert (v8f16 FPR128:$src))),
   6174                             (f128 (EXTv16i8 (REV64v8i16 FPR128:$src),
   6175                                             (REV64v8i16 FPR128:$src), (i32 8)))>;
   6176 def : Pat<(f128 (bitconvert (v2f64 FPR128:$src))),
   6177                             (f128 (EXTv16i8 FPR128:$src, FPR128:$src, (i32 8)))>;
   6178 def : Pat<(f128 (bitconvert (v4f32 FPR128:$src))),
   6179                             (f128 (EXTv16i8 (REV64v4i32 FPR128:$src),
   6180                                             (REV64v4i32 FPR128:$src), (i32 8)))>;
   6181 def : Pat<(f128 (bitconvert (v16i8 FPR128:$src))),
   6182                             (f128 (EXTv16i8 (REV64v16i8 FPR128:$src),
   6183                                             (REV64v16i8 FPR128:$src), (i32 8)))>;
   6184 }
   6185 
   6186 let Predicates = [IsLE] in {
   6187 def : Pat<(v2f64 (bitconvert (f128  FPR128:$src))), (v2f64 FPR128:$src)>;
   6188 def : Pat<(v2f64 (bitconvert (v4i32 FPR128:$src))), (v2f64 FPR128:$src)>;
   6189 def : Pat<(v2f64 (bitconvert (v8i16 FPR128:$src))), (v2f64 FPR128:$src)>;
   6190 def : Pat<(v2f64 (bitconvert (v8f16 FPR128:$src))), (v2f64 FPR128:$src)>;
   6191 def : Pat<(v2f64 (bitconvert (v16i8 FPR128:$src))), (v2f64 FPR128:$src)>;
   6192 def : Pat<(v2f64 (bitconvert (v4f32 FPR128:$src))), (v2f64 FPR128:$src)>;
   6193 }
   6194 let Predicates = [IsBE] in {
   6195 def : Pat<(v2f64 (bitconvert (f128  FPR128:$src))),
   6196                              (v2f64 (EXTv16i8 FPR128:$src,
   6197                                               FPR128:$src, (i32 8)))>;
   6198 def : Pat<(v2f64 (bitconvert (v4i32 FPR128:$src))),
   6199                              (v2f64 (REV64v4i32 FPR128:$src))>;
   6200 def : Pat<(v2f64 (bitconvert (v8i16 FPR128:$src))),
   6201                              (v2f64 (REV64v8i16 FPR128:$src))>;
   6202 def : Pat<(v2f64 (bitconvert (v8f16 FPR128:$src))),
   6203                              (v2f64 (REV64v8i16 FPR128:$src))>;
   6204 def : Pat<(v2f64 (bitconvert (v16i8 FPR128:$src))),
   6205                              (v2f64 (REV64v16i8 FPR128:$src))>;
   6206 def : Pat<(v2f64 (bitconvert (v4f32 FPR128:$src))),
   6207                              (v2f64 (REV64v4i32 FPR128:$src))>;
   6208 }
   6209 def : Pat<(v2f64 (bitconvert (v2i64 FPR128:$src))), (v2f64 FPR128:$src)>;
   6210 
   6211 let Predicates = [IsLE] in {
   6212 def : Pat<(v4f32 (bitconvert (f128  FPR128:$src))), (v4f32 FPR128:$src)>;
   6213 def : Pat<(v4f32 (bitconvert (v8i16 FPR128:$src))), (v4f32 FPR128:$src)>;
   6214 def : Pat<(v4f32 (bitconvert (v8f16 FPR128:$src))), (v4f32 FPR128:$src)>;
   6215 def : Pat<(v4f32 (bitconvert (v16i8 FPR128:$src))), (v4f32 FPR128:$src)>;
   6216 def : Pat<(v4f32 (bitconvert (v2i64 FPR128:$src))), (v4f32 FPR128:$src)>;
   6217 def : Pat<(v4f32 (bitconvert (v2f64 FPR128:$src))), (v4f32 FPR128:$src)>;
   6218 }
   6219 let Predicates = [IsBE] in {
   6220 def : Pat<(v4f32 (bitconvert (f128  FPR128:$src))),
   6221                              (v4f32 (EXTv16i8 (REV64v4i32 FPR128:$src),
   6222                                     (REV64v4i32 FPR128:$src), (i32 8)))>;
   6223 def : Pat<(v4f32 (bitconvert (v8i16 FPR128:$src))),
   6224                              (v4f32 (REV32v8i16 FPR128:$src))>;
   6225 def : Pat<(v4f32 (bitconvert (v8f16 FPR128:$src))),
   6226                              (v4f32 (REV32v8i16 FPR128:$src))>;
   6227 def : Pat<(v4f32 (bitconvert (v16i8 FPR128:$src))),
   6228                              (v4f32 (REV32v16i8 FPR128:$src))>;
   6229 def : Pat<(v4f32 (bitconvert (v2i64 FPR128:$src))),
   6230                              (v4f32 (REV64v4i32 FPR128:$src))>;
   6231 def : Pat<(v4f32 (bitconvert (v2f64 FPR128:$src))),
   6232                              (v4f32 (REV64v4i32 FPR128:$src))>;
   6233 }
   6234 def : Pat<(v4f32 (bitconvert (v4i32 FPR128:$src))), (v4f32 FPR128:$src)>;
   6235 
   6236 let Predicates = [IsLE] in {
   6237 def : Pat<(v2i64 (bitconvert (f128  FPR128:$src))), (v2i64 FPR128:$src)>;
   6238 def : Pat<(v2i64 (bitconvert (v4i32 FPR128:$src))), (v2i64 FPR128:$src)>;
   6239 def : Pat<(v2i64 (bitconvert (v8i16 FPR128:$src))), (v2i64 FPR128:$src)>;
   6240 def : Pat<(v2i64 (bitconvert (v16i8 FPR128:$src))), (v2i64 FPR128:$src)>;
   6241 def : Pat<(v2i64 (bitconvert (v4f32 FPR128:$src))), (v2i64 FPR128:$src)>;
   6242 def : Pat<(v2i64 (bitconvert (v8f16 FPR128:$src))), (v2i64 FPR128:$src)>;
   6243 }
   6244 let Predicates = [IsBE] in {
   6245 def : Pat<(v2i64 (bitconvert (f128  FPR128:$src))),
   6246                              (v2i64 (EXTv16i8 FPR128:$src,
   6247                                               FPR128:$src, (i32 8)))>;
   6248 def : Pat<(v2i64 (bitconvert (v4i32 FPR128:$src))),
   6249                              (v2i64 (REV64v4i32 FPR128:$src))>;
   6250 def : Pat<(v2i64 (bitconvert (v8i16 FPR128:$src))),
   6251                              (v2i64 (REV64v8i16 FPR128:$src))>;
   6252 def : Pat<(v2i64 (bitconvert (v16i8 FPR128:$src))),
   6253                              (v2i64 (REV64v16i8 FPR128:$src))>;
   6254 def : Pat<(v2i64 (bitconvert (v4f32 FPR128:$src))),
   6255                              (v2i64 (REV64v4i32 FPR128:$src))>;
   6256 def : Pat<(v2i64 (bitconvert (v8f16 FPR128:$src))),
   6257                              (v2i64 (REV64v8i16 FPR128:$src))>;
   6258 }
   6259 def : Pat<(v2i64 (bitconvert (v2f64 FPR128:$src))), (v2i64 FPR128:$src)>;
   6260 
   6261 let Predicates = [IsLE] in {
   6262 def : Pat<(v4i32 (bitconvert (f128  FPR128:$src))), (v4i32 FPR128:$src)>;
   6263 def : Pat<(v4i32 (bitconvert (v2i64 FPR128:$src))), (v4i32 FPR128:$src)>;
   6264 def : Pat<(v4i32 (bitconvert (v8i16 FPR128:$src))), (v4i32 FPR128:$src)>;
   6265 def : Pat<(v4i32 (bitconvert (v16i8 FPR128:$src))), (v4i32 FPR128:$src)>;
   6266 def : Pat<(v4i32 (bitconvert (v2f64 FPR128:$src))), (v4i32 FPR128:$src)>;
   6267 def : Pat<(v4i32 (bitconvert (v8f16 FPR128:$src))), (v4i32 FPR128:$src)>;
   6268 }
   6269 let Predicates = [IsBE] in {
   6270 def : Pat<(v4i32 (bitconvert (f128  FPR128:$src))),
   6271                              (v4i32 (EXTv16i8 (REV64v4i32 FPR128:$src),
   6272                                               (REV64v4i32 FPR128:$src),
   6273                                               (i32 8)))>;
   6274 def : Pat<(v4i32 (bitconvert (v2i64 FPR128:$src))),
   6275                              (v4i32 (REV64v4i32 FPR128:$src))>;
   6276 def : Pat<(v4i32 (bitconvert (v8i16 FPR128:$src))),
   6277                              (v4i32 (REV32v8i16 FPR128:$src))>;
   6278 def : Pat<(v4i32 (bitconvert (v16i8 FPR128:$src))),
   6279                              (v4i32 (REV32v16i8 FPR128:$src))>;
   6280 def : Pat<(v4i32 (bitconvert (v2f64 FPR128:$src))),
   6281                              (v4i32 (REV64v4i32 FPR128:$src))>;
   6282 def : Pat<(v4i32 (bitconvert (v8f16 FPR128:$src))),
   6283                              (v4i32 (REV32v8i16 FPR128:$src))>;
   6284 }
   6285 def : Pat<(v4i32 (bitconvert (v4f32 FPR128:$src))), (v4i32 FPR128:$src)>;
   6286 
   6287 let Predicates = [IsLE] in {
   6288 def : Pat<(v8i16 (bitconvert (f128  FPR128:$src))), (v8i16 FPR128:$src)>;
   6289 def : Pat<(v8i16 (bitconvert (v2i64 FPR128:$src))), (v8i16 FPR128:$src)>;
   6290 def : Pat<(v8i16 (bitconvert (v4i32 FPR128:$src))), (v8i16 FPR128:$src)>;
   6291 def : Pat<(v8i16 (bitconvert (v16i8 FPR128:$src))), (v8i16 FPR128:$src)>;
   6292 def : Pat<(v8i16 (bitconvert (v2f64 FPR128:$src))), (v8i16 FPR128:$src)>;
   6293 def : Pat<(v8i16 (bitconvert (v4f32 FPR128:$src))), (v8i16 FPR128:$src)>;
   6294 }
   6295 let Predicates = [IsBE] in {
   6296 def : Pat<(v8i16 (bitconvert (f128  FPR128:$src))),
   6297                              (v8i16 (EXTv16i8 (REV64v8i16 FPR128:$src),
   6298                                               (REV64v8i16 FPR128:$src),
   6299                                               (i32 8)))>;
   6300 def : Pat<(v8i16 (bitconvert (v2i64 FPR128:$src))),
   6301                              (v8i16 (REV64v8i16 FPR128:$src))>;
   6302 def : Pat<(v8i16 (bitconvert (v4i32 FPR128:$src))),
   6303                              (v8i16 (REV32v8i16 FPR128:$src))>;
   6304 def : Pat<(v8i16 (bitconvert (v16i8 FPR128:$src))),
   6305                              (v8i16 (REV16v16i8 FPR128:$src))>;
   6306 def : Pat<(v8i16 (bitconvert (v2f64 FPR128:$src))),
   6307                              (v8i16 (REV64v8i16 FPR128:$src))>;
   6308 def : Pat<(v8i16 (bitconvert (v4f32 FPR128:$src))),
   6309                              (v8i16 (REV32v8i16 FPR128:$src))>;
   6310 }
   6311 def : Pat<(v8i16 (bitconvert (v8f16 FPR128:$src))), (v8i16 FPR128:$src)>;
   6312 
   6313 let Predicates = [IsLE] in {
   6314 def : Pat<(v8f16 (bitconvert (f128  FPR128:$src))), (v8f16 FPR128:$src)>;
   6315 def : Pat<(v8f16 (bitconvert (v2i64 FPR128:$src))), (v8f16 FPR128:$src)>;
   6316 def : Pat<(v8f16 (bitconvert (v4i32 FPR128:$src))), (v8f16 FPR128:$src)>;
   6317 def : Pat<(v8f16 (bitconvert (v16i8 FPR128:$src))), (v8f16 FPR128:$src)>;
   6318 def : Pat<(v8f16 (bitconvert (v2f64 FPR128:$src))), (v8f16 FPR128:$src)>;
   6319 def : Pat<(v8f16 (bitconvert (v4f32 FPR128:$src))), (v8f16 FPR128:$src)>;
   6320 }
   6321 let Predicates = [IsBE] in {
   6322 def : Pat<(v8f16 (bitconvert (f128  FPR128:$src))),
   6323                              (v8f16 (EXTv16i8 (REV64v8i16 FPR128:$src),
   6324                                               (REV64v8i16 FPR128:$src),
   6325                                               (i32 8)))>;
   6326 def : Pat<(v8f16 (bitconvert (v2i64 FPR128:$src))),
   6327                              (v8f16 (REV64v8i16 FPR128:$src))>;
   6328 def : Pat<(v8f16 (bitconvert (v4i32 FPR128:$src))),
   6329                              (v8f16 (REV32v8i16 FPR128:$src))>;
   6330 def : Pat<(v8f16 (bitconvert (v16i8 FPR128:$src))),
   6331                              (v8f16 (REV16v16i8 FPR128:$src))>;
   6332 def : Pat<(v8f16 (bitconvert (v2f64 FPR128:$src))),
   6333                              (v8f16 (REV64v8i16 FPR128:$src))>;
   6334 def : Pat<(v8f16 (bitconvert (v4f32 FPR128:$src))),
   6335                              (v8f16 (REV32v8i16 FPR128:$src))>;
   6336 }
   6337 def : Pat<(v8f16 (bitconvert (v8i16 FPR128:$src))), (v8f16 FPR128:$src)>;
   6338 
   6339 let Predicates = [IsLE] in {
   6340 def : Pat<(v16i8 (bitconvert (f128  FPR128:$src))), (v16i8 FPR128:$src)>;
   6341 def : Pat<(v16i8 (bitconvert (v2i64 FPR128:$src))), (v16i8 FPR128:$src)>;
   6342 def : Pat<(v16i8 (bitconvert (v4i32 FPR128:$src))), (v16i8 FPR128:$src)>;
   6343 def : Pat<(v16i8 (bitconvert (v8i16 FPR128:$src))), (v16i8 FPR128:$src)>;
   6344 def : Pat<(v16i8 (bitconvert (v2f64 FPR128:$src))), (v16i8 FPR128:$src)>;
   6345 def : Pat<(v16i8 (bitconvert (v4f32 FPR128:$src))), (v16i8 FPR128:$src)>;
   6346 def : Pat<(v16i8 (bitconvert (v8f16 FPR128:$src))), (v16i8 FPR128:$src)>;
   6347 }
   6348 let Predicates = [IsBE] in {
   6349 def : Pat<(v16i8 (bitconvert (f128  FPR128:$src))),
   6350                              (v16i8 (EXTv16i8 (REV64v16i8 FPR128:$src),
   6351                                               (REV64v16i8 FPR128:$src),
   6352                                               (i32 8)))>;
   6353 def : Pat<(v16i8 (bitconvert (v2i64 FPR128:$src))),
   6354                              (v16i8 (REV64v16i8 FPR128:$src))>;
   6355 def : Pat<(v16i8 (bitconvert (v4i32 FPR128:$src))),
   6356                              (v16i8 (REV32v16i8 FPR128:$src))>;
   6357 def : Pat<(v16i8 (bitconvert (v8i16 FPR128:$src))),
   6358                              (v16i8 (REV16v16i8 FPR128:$src))>;
   6359 def : Pat<(v16i8 (bitconvert (v2f64 FPR128:$src))),
   6360                              (v16i8 (REV64v16i8 FPR128:$src))>;
   6361 def : Pat<(v16i8 (bitconvert (v4f32 FPR128:$src))),
   6362                              (v16i8 (REV32v16i8 FPR128:$src))>;
   6363 def : Pat<(v16i8 (bitconvert (v8f16 FPR128:$src))),
   6364                              (v16i8 (REV16v16i8 FPR128:$src))>;
   6365 }
   6366 
   6367 def : Pat<(v4i16 (extract_subvector V128:$Rn, (i64 0))),
   6368            (EXTRACT_SUBREG V128:$Rn, dsub)>;
   6369 def : Pat<(v8i8 (extract_subvector V128:$Rn, (i64 0))),
   6370            (EXTRACT_SUBREG V128:$Rn, dsub)>;
   6371 def : Pat<(v2f32 (extract_subvector V128:$Rn, (i64 0))),
   6372            (EXTRACT_SUBREG V128:$Rn, dsub)>;
   6373 def : Pat<(v4f16 (extract_subvector V128:$Rn, (i64 0))),
   6374            (EXTRACT_SUBREG V128:$Rn, dsub)>;
   6375 def : Pat<(v2i32 (extract_subvector V128:$Rn, (i64 0))),
   6376            (EXTRACT_SUBREG V128:$Rn, dsub)>;
   6377 def : Pat<(v1i64 (extract_subvector V128:$Rn, (i64 0))),
   6378            (EXTRACT_SUBREG V128:$Rn, dsub)>;
   6379 def : Pat<(v1f64 (extract_subvector V128:$Rn, (i64 0))),
   6380            (EXTRACT_SUBREG V128:$Rn, dsub)>;
   6381 
   6382 def : Pat<(v8i8 (extract_subvector (v16i8 FPR128:$Rn), (i64 1))),
   6383           (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>;
   6384 def : Pat<(v4i16 (extract_subvector (v8i16 FPR128:$Rn), (i64 1))),
   6385           (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>;
   6386 def : Pat<(v2i32 (extract_subvector (v4i32 FPR128:$Rn), (i64 1))),
   6387           (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>;
   6388 def : Pat<(v1i64 (extract_subvector (v2i64 FPR128:$Rn), (i64 1))),
   6389           (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>;
   6390 
   6391 // A 64-bit subvector insert to the first 128-bit vector position
   6392 // is a subregister copy that needs no instruction.
   6393 multiclass InsertSubvectorUndef<ValueType Ty> {
   6394   def : Pat<(insert_subvector undef, (v1i64 FPR64:$src), (Ty 0)),
   6395             (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
   6396   def : Pat<(insert_subvector undef, (v1f64 FPR64:$src), (Ty 0)),
   6397             (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
   6398   def : Pat<(insert_subvector undef, (v2i32 FPR64:$src), (Ty 0)),
   6399             (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
   6400   def : Pat<(insert_subvector undef, (v2f32 FPR64:$src), (Ty 0)),
   6401             (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
   6402   def : Pat<(insert_subvector undef, (v4i16 FPR64:$src), (Ty 0)),
   6403             (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
   6404   def : Pat<(insert_subvector undef, (v4f16 FPR64:$src), (Ty 0)),
   6405             (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
   6406   def : Pat<(insert_subvector undef, (v8i8 FPR64:$src), (Ty 0)),
   6407             (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
   6408 }
   6409 
   6410 defm : InsertSubvectorUndef<i32>;
   6411 defm : InsertSubvectorUndef<i64>;
   6412 
   6413 // Use pair-wise add instructions when summing up the lanes for v2f64, v2i64
   6414 // or v2f32.
   6415 def : Pat<(i64 (add (vector_extract (v2i64 FPR128:$Rn), (i64 0)),
   6416                     (vector_extract (v2i64 FPR128:$Rn), (i64 1)))),
   6417            (i64 (ADDPv2i64p (v2i64 FPR128:$Rn)))>;
   6418 def : Pat<(f64 (fadd (vector_extract (v2f64 FPR128:$Rn), (i64 0)),
   6419                      (vector_extract (v2f64 FPR128:$Rn), (i64 1)))),
   6420            (f64 (FADDPv2i64p (v2f64 FPR128:$Rn)))>;
   6421     // vector_extract on 64-bit vectors gets promoted to a 128 bit vector,
   6422     // so we match on v4f32 here, not v2f32. This will also catch adding
   6423     // the low two lanes of a true v4f32 vector.
   6424 def : Pat<(fadd (vector_extract (v4f32 FPR128:$Rn), (i64 0)),
   6425                 (vector_extract (v4f32 FPR128:$Rn), (i64 1))),
   6426           (f32 (FADDPv2i32p (EXTRACT_SUBREG FPR128:$Rn, dsub)))>;
   6427 
   6428 // Scalar 64-bit shifts in FPR64 registers.
   6429 def : Pat<(i64 (int_aarch64_neon_sshl (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
   6430           (SSHLv1i64 FPR64:$Rn, FPR64:$Rm)>;
   6431 def : Pat<(i64 (int_aarch64_neon_ushl (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
   6432           (USHLv1i64 FPR64:$Rn, FPR64:$Rm)>;
   6433 def : Pat<(i64 (int_aarch64_neon_srshl (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
   6434           (SRSHLv1i64 FPR64:$Rn, FPR64:$Rm)>;
   6435 def : Pat<(i64 (int_aarch64_neon_urshl (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
   6436           (URSHLv1i64 FPR64:$Rn, FPR64:$Rm)>;
   6437 
   6438 // Patterns for nontemporal/no-allocate stores.
   6439 // We have to resort to tricks to turn a single-input store into a store pair,
   6440 // because there is no single-input nontemporal store, only STNP.
   6441 let Predicates = [IsLE] in {
   6442 let AddedComplexity = 15 in {
   6443 class NTStore128Pat<ValueType VT> :
   6444   Pat<(nontemporalstore (VT FPR128:$Rt),
   6445         (am_indexed7s64 GPR64sp:$Rn, simm7s8:$offset)),
   6446       (STNPDi (EXTRACT_SUBREG FPR128:$Rt, dsub),
   6447               (CPYi64 FPR128:$Rt, (i64 1)),
   6448               GPR64sp:$Rn, simm7s8:$offset)>;
   6449 
   6450 def : NTStore128Pat<v2i64>;
   6451 def : NTStore128Pat<v4i32>;
   6452 def : NTStore128Pat<v8i16>;
   6453 def : NTStore128Pat<v16i8>;
   6454 
   6455 class NTStore64Pat<ValueType VT> :
   6456   Pat<(nontemporalstore (VT FPR64:$Rt),
   6457         (am_indexed7s32 GPR64sp:$Rn, simm7s4:$offset)),
   6458       (STNPSi (EXTRACT_SUBREG FPR64:$Rt, ssub),
   6459               (CPYi32 (SUBREG_TO_REG (i64 0), FPR64:$Rt, dsub), (i64 1)),
   6460               GPR64sp:$Rn, simm7s4:$offset)>;
   6461 
   6462 // FIXME: Shouldn't v1f64 loads/stores be promoted to v1i64?
   6463 def : NTStore64Pat<v1f64>;
   6464 def : NTStore64Pat<v1i64>;
   6465 def : NTStore64Pat<v2i32>;
   6466 def : NTStore64Pat<v4i16>;
   6467 def : NTStore64Pat<v8i8>;
   6468 
   6469 def : Pat<(nontemporalstore GPR64:$Rt,
   6470             (am_indexed7s32 GPR64sp:$Rn, simm7s4:$offset)),
   6471           (STNPWi (EXTRACT_SUBREG GPR64:$Rt, sub_32),
   6472                   (EXTRACT_SUBREG (UBFMXri GPR64:$Rt, 32, 63), sub_32),
   6473                   GPR64sp:$Rn, simm7s4:$offset)>;
   6474 } // AddedComplexity=10
   6475 } // Predicates = [IsLE]
   6476 
   6477 // Tail call return handling. These are all compiler pseudo-instructions,
   6478 // so no encoding information or anything like that.
   6479 let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [SP] in {
   6480   def TCRETURNdi : Pseudo<(outs), (ins i64imm:$dst, i32imm:$FPDiff), []>,
   6481                    Sched<[WriteBrReg]>;
   6482   def TCRETURNri : Pseudo<(outs), (ins tcGPR64:$dst, i32imm:$FPDiff), []>,
   6483                    Sched<[WriteBrReg]>;
   6484 }
   6485 
   6486 def : Pat<(AArch64tcret tcGPR64:$dst, (i32 timm:$FPDiff)),
   6487           (TCRETURNri tcGPR64:$dst, imm:$FPDiff)>;
   6488 def : Pat<(AArch64tcret tglobaladdr:$dst, (i32 timm:$FPDiff)),
   6489           (TCRETURNdi texternalsym:$dst, imm:$FPDiff)>;
   6490 def : Pat<(AArch64tcret texternalsym:$dst, (i32 timm:$FPDiff)),
   6491           (TCRETURNdi texternalsym:$dst, imm:$FPDiff)>;
   6492 
   6493 include "AArch64InstrAtomics.td"
   6494 include "AArch64SVEInstrInfo.td"
   6495