Home | History | Annotate | Download | only in AArch64
      1 //==- AArch64SchedA53.td - Cortex-A53 Scheduling Definitions -*- tablegen -*-=//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the itinerary class data for the ARM Cortex A53 processors.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 // ===---------------------------------------------------------------------===//
     15 // The following definitions describe the simpler per-operand machine model.
     16 // This works with MachineScheduler. See MCSchedule.h for details.
     17 
     18 // Cortex-A53 machine model for scheduling and other instruction cost heuristics.
     19 def CortexA53Model : SchedMachineModel {
     20   let MicroOpBufferSize = 0; // Explicitly set to zero since A53 is in-order.
     21   let IssueWidth = 2;        // 2 micro-ops are dispatched per cycle.
     22   let LoadLatency = 3;       // Optimistic load latency assuming bypass.
     23                              // This is overriden by OperandCycles if the
     24                              // Itineraries are queried instead.
     25   let MispredictPenalty = 9; // Based on "Cortex-A53 Software Optimisation
     26                              // Specification - Instruction Timings"
     27                              // v 1.0 Spreadsheet
     28   let CompleteModel = 1;
     29 
     30   list<Predicate> UnsupportedFeatures = [HasSVE];
     31 }
     32 
     33 
     34 //===----------------------------------------------------------------------===//
     35 // Define each kind of processor resource and number available.
     36 
     37 // Modeling each pipeline as a ProcResource using the BufferSize = 0 since
     38 // Cortex-A53 is in-order.
     39 
     40 def A53UnitALU    : ProcResource<2> { let BufferSize = 0; } // Int ALU
     41 def A53UnitMAC    : ProcResource<1> { let BufferSize = 0; } // Int MAC
     42 def A53UnitDiv    : ProcResource<1> { let BufferSize = 0; } // Int Division
     43 def A53UnitLdSt   : ProcResource<1> { let BufferSize = 0; } // Load/Store
     44 def A53UnitB      : ProcResource<1> { let BufferSize = 0; } // Branch
     45 def A53UnitFPALU  : ProcResource<1> { let BufferSize = 0; } // FP ALU
     46 def A53UnitFPMDS  : ProcResource<1> { let BufferSize = 0; } // FP Mult/Div/Sqrt
     47 
     48 
     49 //===----------------------------------------------------------------------===//
     50 // Subtarget-specific SchedWrite types which both map the ProcResources and
     51 // set the latency.
     52 
     53 let SchedModel = CortexA53Model in {
     54 
     55 // ALU - Despite having a full latency of 4, most of the ALU instructions can
     56 //       forward a cycle earlier and then two cycles earlier in the case of a
     57 //       shift-only instruction. These latencies will be incorrect when the
     58 //       result cannot be forwarded, but modeling isn't rocket surgery.
     59 def : WriteRes<WriteImm, [A53UnitALU]> { let Latency = 3; }
     60 def : WriteRes<WriteI, [A53UnitALU]> { let Latency = 3; }
     61 def : WriteRes<WriteISReg, [A53UnitALU]> { let Latency = 3; }
     62 def : WriteRes<WriteIEReg, [A53UnitALU]> { let Latency = 3; }
     63 def : WriteRes<WriteIS, [A53UnitALU]> { let Latency = 2; }
     64 def : WriteRes<WriteExtr, [A53UnitALU]> { let Latency = 3; }
     65 
     66 // MAC
     67 def : WriteRes<WriteIM32, [A53UnitMAC]> { let Latency = 4; }
     68 def : WriteRes<WriteIM64, [A53UnitMAC]> { let Latency = 4; }
     69 
     70 // Div
     71 def : WriteRes<WriteID32, [A53UnitDiv]> { let Latency = 4; }
     72 def : WriteRes<WriteID64, [A53UnitDiv]> { let Latency = 4; }
     73 
     74 // Load
     75 def : WriteRes<WriteLD, [A53UnitLdSt]> { let Latency = 4; }
     76 def : WriteRes<WriteLDIdx, [A53UnitLdSt]> { let Latency = 4; }
     77 def : WriteRes<WriteLDHi, [A53UnitLdSt]> { let Latency = 4; }
     78 
     79 // Vector Load - Vector loads take 1-5 cycles to issue. For the WriteVecLd
     80 //               below, choosing the median of 3 which makes the latency 6.
     81 //               May model this more carefully in the future. The remaining
     82 //               A53WriteVLD# types represent the 1-5 cycle issues explicitly.
     83 def : WriteRes<WriteVLD, [A53UnitLdSt]> { let Latency = 6;
     84                                           let ResourceCycles = [3]; }
     85 def A53WriteVLD1 : SchedWriteRes<[A53UnitLdSt]> { let Latency = 4; }
     86 def A53WriteVLD2 : SchedWriteRes<[A53UnitLdSt]> { let Latency = 5;
     87                                                   let ResourceCycles = [2]; }
     88 def A53WriteVLD3 : SchedWriteRes<[A53UnitLdSt]> { let Latency = 6;
     89                                                   let ResourceCycles = [3]; }
     90 def A53WriteVLD4 : SchedWriteRes<[A53UnitLdSt]> { let Latency = 7;
     91                                                   let ResourceCycles = [4]; }
     92 def A53WriteVLD5 : SchedWriteRes<[A53UnitLdSt]> { let Latency = 8;
     93                                                   let ResourceCycles = [5]; }
     94 
     95 // Pre/Post Indexing - Performed as part of address generation which is already
     96 //                     accounted for in the WriteST* latencies below
     97 def : WriteRes<WriteAdr, []> { let Latency = 0; }
     98 
     99 // Store
    100 def : WriteRes<WriteST, [A53UnitLdSt]> { let Latency = 4; }
    101 def : WriteRes<WriteSTP, [A53UnitLdSt]> { let Latency = 4; }
    102 def : WriteRes<WriteSTIdx, [A53UnitLdSt]> { let Latency = 4; }
    103 def : WriteRes<WriteSTX, [A53UnitLdSt]> { let Latency = 4; }
    104 
    105 // Vector Store - Similar to vector loads, can take 1-3 cycles to issue.
    106 def : WriteRes<WriteVST, [A53UnitLdSt]> { let Latency = 5;
    107                                           let ResourceCycles = [2];}
    108 def A53WriteVST1 : SchedWriteRes<[A53UnitLdSt]> { let Latency = 4; }
    109 def A53WriteVST2 : SchedWriteRes<[A53UnitLdSt]> { let Latency = 5;
    110                                                   let ResourceCycles = [2]; }
    111 def A53WriteVST3 : SchedWriteRes<[A53UnitLdSt]> { let Latency = 6;
    112                                                   let ResourceCycles = [3]; }
    113 
    114 def : WriteRes<WriteAtomic, []> { let Unsupported = 1; }
    115 
    116 // Branch
    117 def : WriteRes<WriteBr, [A53UnitB]>;
    118 def : WriteRes<WriteBrReg, [A53UnitB]>;
    119 def : WriteRes<WriteSys, [A53UnitB]>;
    120 def : WriteRes<WriteBarrier, [A53UnitB]>;
    121 def : WriteRes<WriteHint, [A53UnitB]>;
    122 
    123 // FP ALU
    124 def : WriteRes<WriteF, [A53UnitFPALU]> { let Latency = 6; }
    125 def : WriteRes<WriteFCmp, [A53UnitFPALU]> { let Latency = 6; }
    126 def : WriteRes<WriteFCvt, [A53UnitFPALU]> { let Latency = 6; }
    127 def : WriteRes<WriteFCopy, [A53UnitFPALU]> { let Latency = 6; }
    128 def : WriteRes<WriteFImm, [A53UnitFPALU]> { let Latency = 6; }
    129 def : WriteRes<WriteV, [A53UnitFPALU]> { let Latency = 6; }
    130 
    131 // FP Mul, Div, Sqrt
    132 def : WriteRes<WriteFMul, [A53UnitFPMDS]> { let Latency = 6; }
    133 def : WriteRes<WriteFDiv, [A53UnitFPMDS]> { let Latency = 33;
    134                                             let ResourceCycles = [29]; }
    135 def A53WriteFMAC : SchedWriteRes<[A53UnitFPMDS]> { let Latency = 10; }
    136 def A53WriteFDivSP : SchedWriteRes<[A53UnitFPMDS]> { let Latency = 18;
    137                                                      let ResourceCycles = [14]; }
    138 def A53WriteFDivDP : SchedWriteRes<[A53UnitFPMDS]> { let Latency = 33;
    139                                                      let ResourceCycles = [29]; }
    140 def A53WriteFSqrtSP : SchedWriteRes<[A53UnitFPMDS]> { let Latency = 17;
    141                                                       let ResourceCycles = [13]; }
    142 def A53WriteFSqrtDP : SchedWriteRes<[A53UnitFPMDS]> { let Latency = 32;
    143                                                       let ResourceCycles = [28]; }
    144 
    145 //===----------------------------------------------------------------------===//
    146 // Subtarget-specific SchedRead types.
    147 
    148 // No forwarding for these reads.
    149 def : ReadAdvance<ReadExtrHi, 0>;
    150 def : ReadAdvance<ReadAdrBase, 0>;
    151 def : ReadAdvance<ReadVLD, 0>;
    152 
    153 // ALU - Most operands in the ALU pipes are not needed for two cycles. Shiftable
    154 //       operands are needed one cycle later if and only if they are to be
    155 //       shifted. Otherwise, they too are needed two cycles later. This same
    156 //       ReadAdvance applies to Extended registers as well, even though there is
    157 //       a separate SchedPredicate for them.
    158 def : ReadAdvance<ReadI, 2, [WriteImm,WriteI,
    159                              WriteISReg, WriteIEReg,WriteIS,
    160                              WriteID32,WriteID64,
    161                              WriteIM32,WriteIM64]>;
    162 def A53ReadShifted : SchedReadAdvance<1, [WriteImm,WriteI,
    163                                           WriteISReg, WriteIEReg,WriteIS,
    164                                           WriteID32,WriteID64,
    165                                           WriteIM32,WriteIM64]>;
    166 def A53ReadNotShifted : SchedReadAdvance<2, [WriteImm,WriteI,
    167                                              WriteISReg, WriteIEReg,WriteIS,
    168                                              WriteID32,WriteID64,
    169                                              WriteIM32,WriteIM64]>;
    170 def A53ReadISReg : SchedReadVariant<[
    171 	SchedVar<RegShiftedPred, [A53ReadShifted]>,
    172 	SchedVar<NoSchedPred, [A53ReadNotShifted]>]>;
    173 def : SchedAlias<ReadISReg, A53ReadISReg>;
    174 
    175 def A53ReadIEReg : SchedReadVariant<[
    176 	SchedVar<RegExtendedPred, [A53ReadShifted]>,
    177 	SchedVar<NoSchedPred, [A53ReadNotShifted]>]>;
    178 def : SchedAlias<ReadIEReg, A53ReadIEReg>;
    179 
    180 // MAC - Operands are generally needed one cycle later in the MAC pipe.
    181 //       Accumulator operands are needed two cycles later.
    182 def : ReadAdvance<ReadIM, 1, [WriteImm,WriteI,
    183                               WriteISReg, WriteIEReg,WriteIS,
    184                               WriteID32,WriteID64,
    185                               WriteIM32,WriteIM64]>;
    186 def : ReadAdvance<ReadIMA, 2, [WriteImm,WriteI,
    187                                WriteISReg, WriteIEReg,WriteIS,
    188                                WriteID32,WriteID64,
    189                                WriteIM32,WriteIM64]>;
    190 
    191 // Div
    192 def : ReadAdvance<ReadID, 1, [WriteImm,WriteI,
    193                               WriteISReg, WriteIEReg,WriteIS,
    194                               WriteID32,WriteID64,
    195                               WriteIM32,WriteIM64]>;
    196 
    197 //===----------------------------------------------------------------------===//
    198 // Subtarget-specific InstRWs.
    199 
    200 //---
    201 // Miscellaneous
    202 //---
    203 def : InstRW<[WriteI], (instrs COPY)>;
    204 
    205 //---
    206 // Vector Loads
    207 //---
    208 def : InstRW<[A53WriteVLD1], (instregex "LD1i(8|16|32|64)$")>;
    209 def : InstRW<[A53WriteVLD1], (instregex "LD1Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
    210 def : InstRW<[A53WriteVLD1], (instregex "LD1Onev(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
    211 def : InstRW<[A53WriteVLD2], (instregex "LD1Twov(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
    212 def : InstRW<[A53WriteVLD3], (instregex "LD1Threev(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
    213 def : InstRW<[A53WriteVLD4], (instregex "LD1Fourv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
    214 def : InstRW<[A53WriteVLD1, WriteAdr], (instregex "LD1i(8|16|32|64)_POST$")>;
    215 def : InstRW<[A53WriteVLD1, WriteAdr], (instregex "LD1Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
    216 def : InstRW<[A53WriteVLD1, WriteAdr], (instregex "LD1Onev(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
    217 def : InstRW<[A53WriteVLD2, WriteAdr], (instregex "LD1Twov(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
    218 def : InstRW<[A53WriteVLD3, WriteAdr], (instregex "LD1Threev(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
    219 def : InstRW<[A53WriteVLD4, WriteAdr], (instregex "LD1Fourv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
    220 
    221 def : InstRW<[A53WriteVLD1], (instregex "LD2i(8|16|32|64)$")>;
    222 def : InstRW<[A53WriteVLD1], (instregex "LD2Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
    223 def : InstRW<[A53WriteVLD2], (instregex "LD2Twov(8b|4h|2s)$")>;
    224 def : InstRW<[A53WriteVLD4], (instregex "LD2Twov(16b|8h|4s|2d)$")>;
    225 def : InstRW<[A53WriteVLD1, WriteAdr], (instregex "LD2i(8|16|32|64)_POST$")>;
    226 def : InstRW<[A53WriteVLD1, WriteAdr], (instregex "LD2Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
    227 def : InstRW<[A53WriteVLD2, WriteAdr], (instregex "LD2Twov(8b|4h|2s)_POST$")>;
    228 def : InstRW<[A53WriteVLD4, WriteAdr], (instregex "LD2Twov(16b|8h|4s|2d)_POST$")>;
    229 
    230 def : InstRW<[A53WriteVLD2], (instregex "LD3i(8|16|32|64)$")>;
    231 def : InstRW<[A53WriteVLD2], (instregex "LD3Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
    232 def : InstRW<[A53WriteVLD4], (instregex "LD3Threev(8b|4h|2s|1d|16b|8h|4s)$")>;
    233 def : InstRW<[A53WriteVLD3], (instregex "LD3Threev2d$")>;
    234 def : InstRW<[A53WriteVLD2, WriteAdr], (instregex "LD3i(8|16|32|64)_POST$")>;
    235 def : InstRW<[A53WriteVLD2, WriteAdr], (instregex "LD3Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
    236 def : InstRW<[A53WriteVLD4, WriteAdr], (instregex "LD3Threev(8b|4h|2s|1d|16b|8h|4s)_POST$")>;
    237 def : InstRW<[A53WriteVLD3, WriteAdr], (instregex "LD3Threev2d_POST$")>;
    238 
    239 def : InstRW<[A53WriteVLD2], (instregex "LD4i(8|16|32|64)$")>;
    240 def : InstRW<[A53WriteVLD2], (instregex "LD4Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
    241 def : InstRW<[A53WriteVLD5], (instregex "LD4Fourv(8b|4h|2s|1d|16b|8h|4s)$")>;
    242 def : InstRW<[A53WriteVLD4], (instregex "LD4Fourv(2d)$")>;
    243 def : InstRW<[A53WriteVLD2, WriteAdr], (instregex "LD4i(8|16|32|64)_POST$")>;
    244 def : InstRW<[A53WriteVLD2, WriteAdr], (instregex "LD4Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
    245 def : InstRW<[A53WriteVLD5, WriteAdr], (instregex "LD4Fourv(8b|4h|2s|1d|16b|8h|4s)_POST$")>;
    246 def : InstRW<[A53WriteVLD4, WriteAdr], (instregex "LD4Fourv(2d)_POST$")>;
    247 
    248 //---
    249 // Vector Stores
    250 //---
    251 def : InstRW<[A53WriteVST1], (instregex "ST1i(8|16|32|64)$")>;
    252 def : InstRW<[A53WriteVST1], (instregex "ST1Onev(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
    253 def : InstRW<[A53WriteVST1], (instregex "ST1Twov(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
    254 def : InstRW<[A53WriteVST2], (instregex "ST1Threev(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
    255 def : InstRW<[A53WriteVST2], (instregex "ST1Fourv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
    256 def : InstRW<[A53WriteVST1, WriteAdr], (instregex "ST1i(8|16|32|64)_POST$")>;
    257 def : InstRW<[A53WriteVST1, WriteAdr], (instregex "ST1Onev(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
    258 def : InstRW<[A53WriteVST1, WriteAdr], (instregex "ST1Twov(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
    259 def : InstRW<[A53WriteVST2, WriteAdr], (instregex "ST1Threev(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
    260 def : InstRW<[A53WriteVST2, WriteAdr], (instregex "ST1Fourv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
    261 
    262 def : InstRW<[A53WriteVST1], (instregex "ST2i(8|16|32|64)$")>;
    263 def : InstRW<[A53WriteVST1], (instregex "ST2Twov(8b|4h|2s)$")>;
    264 def : InstRW<[A53WriteVST2], (instregex "ST2Twov(16b|8h|4s|2d)$")>;
    265 def : InstRW<[A53WriteVST1, WriteAdr], (instregex "ST2i(8|16|32|64)_POST$")>;
    266 def : InstRW<[A53WriteVST1, WriteAdr], (instregex "ST2Twov(8b|4h|2s)_POST$")>;
    267 def : InstRW<[A53WriteVST2, WriteAdr], (instregex "ST2Twov(16b|8h|4s|2d)_POST$")>;
    268 
    269 def : InstRW<[A53WriteVST2], (instregex "ST3i(8|16|32|64)$")>;
    270 def : InstRW<[A53WriteVST3], (instregex "ST3Threev(8b|4h|2s|1d|16b|8h|4s)$")>;
    271 def : InstRW<[A53WriteVST2], (instregex "ST3Threev(2d)$")>;
    272 def : InstRW<[A53WriteVST2, WriteAdr], (instregex "ST3i(8|16|32|64)_POST$")>;
    273 def : InstRW<[A53WriteVST3, WriteAdr], (instregex "ST3Threev(8b|4h|2s|1d|16b|8h|4s)_POST$")>;
    274 def : InstRW<[A53WriteVST2, WriteAdr], (instregex "ST3Threev(2d)_POST$")>;
    275 
    276 def : InstRW<[A53WriteVST2], (instregex "ST4i(8|16|32|64)$")>;
    277 def : InstRW<[A53WriteVST3], (instregex "ST4Fourv(8b|4h|2s|1d|16b|8h|4s)$")>;
    278 def : InstRW<[A53WriteVST2], (instregex "ST4Fourv(2d)$")>;
    279 def : InstRW<[A53WriteVST2, WriteAdr], (instregex "ST4i(8|16|32|64)_POST$")>;
    280 def : InstRW<[A53WriteVST3, WriteAdr], (instregex "ST4Fourv(8b|4h|2s|1d|16b|8h|4s)_POST$")>;
    281 def : InstRW<[A53WriteVST2, WriteAdr], (instregex "ST4Fourv(2d)_POST$")>;
    282 
    283 //---
    284 // Floating Point MAC, DIV, SQRT
    285 //---
    286 def : InstRW<[A53WriteFMAC], (instregex "^FN?M(ADD|SUB).*")>;
    287 def : InstRW<[A53WriteFMAC], (instregex "^FML(A|S).*")>;
    288 def : InstRW<[A53WriteFDivSP], (instrs FDIVSrr)>;
    289 def : InstRW<[A53WriteFDivDP], (instrs FDIVDrr)>;
    290 def : InstRW<[A53WriteFDivSP], (instregex "^FDIVv.*32$")>;
    291 def : InstRW<[A53WriteFDivDP], (instregex "^FDIVv.*64$")>;
    292 def : InstRW<[A53WriteFSqrtSP], (instregex "^.*SQRT.*32$")>;
    293 def : InstRW<[A53WriteFSqrtDP], (instregex "^.*SQRT.*64$")>;
    294 
    295 }
    296