Home | History | Annotate | Download | only in AArch64
      1 //==- AArch64SchedKryo.td - Qualcomm Kryo Scheduling Defs ---*- tablegen -*-==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the machine model for Qualcomm Kryo to support
     11 // instruction scheduling and other instruction cost heuristics.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 //===----------------------------------------------------------------------===//
     16 // The issue width is set to five, matching the five issue queues for expanded
     17 // uops. Now, the latency spreadsheet has information based on fragmented uops,
     18 // but these do not actually take up an issue queue.
     19 
     20 def KryoModel : SchedMachineModel {
     21   let IssueWidth        =   5; // 5-wide issue for expanded uops
     22   let MicroOpBufferSize = 128; // Out-of-order with temporary unified issue buffer
     23   let LoadLatency       =   4; // Optimistic load latency
     24   let MispredictPenalty =  14; // Fetch + Decode/Rename/Dispatch + Branch
     25 
     26   // Enable partial & runtime unrolling. The magic number is chosen based on
     27   // experiments and benchmarking data.
     28   let LoopMicroOpBufferSize = 16;
     29   let CompleteModel = 1;
     30 
     31   list<Predicate> UnsupportedFeatures = [HasSVE];
     32 
     33   // FIXME: Remove when all errors have been fixed.
     34   let FullInstRWOverlapCheck = 0;
     35 }
     36 
     37 //===----------------------------------------------------------------------===//
     38 // Define each kind of processor resource and number available on Kryo.
     39 
     40 let SchedModel = KryoModel in {
     41   def KryoUnitXA : ProcResource<1>;                   // Type X(A) micro-ops
     42   def KryoUnitXB : ProcResource<1>;                   // Type X(B) micro-ops
     43   def KryoUnitYA : ProcResource<1>;                   // Type Y(A) micro-ops
     44   def KryoUnitYB : ProcResource<1>;                   // Type Y(B) micro-ops
     45   def KryoUnitX : ProcResGroup<[KryoUnitXA,          // Type X micro-ops
     46                                 KryoUnitXB]>;
     47   def KryoUnitY : ProcResGroup<[KryoUnitYA,          // Type Y micro-ops
     48                                 KryoUnitYB]>;
     49   def KryoUnitXY : ProcResGroup<[KryoUnitXA,         // Type XY micro-ops
     50                                  KryoUnitXB,
     51                                  KryoUnitYA,
     52                                  KryoUnitYB]>;
     53   def KryoUnitLSA : ProcResource<1>;                  // Type LS(A) micro-ops
     54   def KryoUnitLSB : ProcResource<1>;                  // Type LS(B) micro-ops
     55   def KryoUnitLS : ProcResGroup<[KryoUnitLSA,        // Type LS micro-ops
     56                                  KryoUnitLSB]>;
     57 }
     58 
     59 let SchedModel = KryoModel in {
     60 
     61 //===----------------------------------------------------------------------===//
     62 // Map the target-defined scheduler read/write resources and latency for
     63 // Kryo.
     64 
     65 def : WriteRes<WriteImm,   [KryoUnitXY]> { let Latency = 1; }
     66 def : WriteRes<WriteI,     [KryoUnitXY]> { let Latency = 1; }
     67 def : WriteRes<WriteISReg, [KryoUnitXY, KryoUnitXY]>
     68       { let Latency = 2; let NumMicroOps = 2; }
     69 def : WriteRes<WriteIEReg, [KryoUnitXY, KryoUnitXY]>
     70       { let Latency = 2; let NumMicroOps = 2; }
     71 def : WriteRes<WriteExtr,  [KryoUnitXY, KryoUnitX]>
     72       { let Latency = 2; let NumMicroOps = 2; }
     73 def : WriteRes<WriteIS,    [KryoUnitXY]> { let Latency = 2; }
     74 def : WriteRes<WriteID32,  [KryoUnitXA, KryoUnitY]>
     75       { let Latency = 8; let NumMicroOps = 1; } // Fragent -1
     76 def : WriteRes<WriteID64,  [KryoUnitXA, KryoUnitY]>
     77       { let Latency = 8; let NumMicroOps = 1; } // Fragent -1
     78 def : WriteRes<WriteIM32,  [KryoUnitX]> { let Latency = 5; }
     79 def : WriteRes<WriteIM64,  [KryoUnitX]> { let Latency = 5; }
     80 def : WriteRes<WriteBr,    [KryoUnitXY]> { let Latency = 1; }
     81 def : WriteRes<WriteBrReg, [KryoUnitXY]> { let Latency = 1; }
     82 def : WriteRes<WriteLD,    [KryoUnitLS]> { let Latency = 4; }
     83 def : WriteRes<WriteST,    [KryoUnitLS]> { let Latency = 4; }
     84 def : WriteRes<WriteSTP,   [KryoUnitLS]> { let Latency = 4; }
     85 def : WriteRes<WriteAdr,   [KryoUnitXY]> { let Latency = 6; }
     86 def : WriteRes<WriteLDIdx, [KryoUnitLS]> { let Latency = 4; }
     87 def : WriteRes<WriteSTIdx, [KryoUnitLS]> { let Latency = 4; }
     88 def : WriteRes<WriteF,     [KryoUnitXY, KryoUnitXY]>
     89       { let Latency = 3; let NumMicroOps = 2; }
     90 def : WriteRes<WriteFCmp,  [KryoUnitXY]> { let Latency = 2; }
     91 def : WriteRes<WriteFCvt,  [KryoUnitX]> { let Latency = 4; }
     92 def : WriteRes<WriteFCopy, [KryoUnitXY]> { let Latency = 6; }
     93 def : WriteRes<WriteFImm,  [KryoUnitXY]> { let Latency = 6; }
     94 def : WriteRes<WriteFMul,  [KryoUnitX, KryoUnitX]>
     95       { let Latency = 6; let NumMicroOps = 2; }
     96 def : WriteRes<WriteFDiv,  [KryoUnitXA, KryoUnitY]>
     97       { let Latency = 12; let NumMicroOps = 2; } // Fragent -1 / NoRSV +1
     98 def : WriteRes<WriteV,     [KryoUnitXY]> { let Latency = 6; }
     99 def : WriteRes<WriteVLD,   [KryoUnitLS]> { let Latency = 4; }
    100 def : WriteRes<WriteVST,   [KryoUnitLS]> { let Latency = 4; }
    101 
    102 def : WriteRes<WriteSys,     []> { let Latency = 1; }
    103 def : WriteRes<WriteBarrier, []> { let Latency = 1; }
    104 def : WriteRes<WriteHint,    []> { let Latency = 1; }
    105 
    106 def : WriteRes<WriteLDHi,    []> { let Latency = 4; }
    107 
    108 def : WriteRes<WriteAtomic, []> { let Unsupported = 1; }
    109 
    110 // No forwarding logic is modelled yet.
    111 def : ReadAdvance<ReadI,       0>;
    112 def : ReadAdvance<ReadISReg,   0>;
    113 def : ReadAdvance<ReadIEReg,   0>;
    114 def : ReadAdvance<ReadIM,      0>;
    115 def : ReadAdvance<ReadIMA,     0>;
    116 def : ReadAdvance<ReadID,      0>;
    117 def : ReadAdvance<ReadExtrHi,  0>;
    118 def : ReadAdvance<ReadAdrBase, 0>;
    119 def : ReadAdvance<ReadVLD,     0>;
    120 
    121 
    122 //===----------------------------------------------------------------------===//
    123 // Specialize the coarse model by associating instruction groups with the
    124 // subtarget-defined types. As the modeled is refined, this will override most
    125 // of the above SchedWriteRes and SchedAlias mappings.
    126 
    127 // Miscellaneous
    128 // -----------------------------------------------------------------------------
    129 
    130 def : InstRW<[WriteI], (instrs COPY)>;
    131 
    132 
    133 // Detailed Refinedments
    134 // -----------------------------------------------------------------------------
    135 include "AArch64SchedKryoDetails.td"
    136 
    137 
    138 } // SchedModel = KryoModel
    139