Home | History | Annotate | Download | only in MCTargetDesc
      1 //===-- AVRMCCodeEmitter.cpp - Convert AVR Code to Machine Code -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the AVRMCCodeEmitter class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "AVRMCCodeEmitter.h"
     15 
     16 #include "MCTargetDesc/AVRMCExpr.h"
     17 #include "MCTargetDesc/AVRMCTargetDesc.h"
     18 
     19 #include "llvm/ADT/APFloat.h"
     20 #include "llvm/ADT/SmallVector.h"
     21 #include "llvm/MC/MCContext.h"
     22 #include "llvm/MC/MCExpr.h"
     23 #include "llvm/MC/MCFixup.h"
     24 #include "llvm/MC/MCInst.h"
     25 #include "llvm/MC/MCInstrInfo.h"
     26 #include "llvm/MC/MCRegisterInfo.h"
     27 #include "llvm/MC/MCSubtargetInfo.h"
     28 #include "llvm/Support/Casting.h"
     29 #include "llvm/Support/raw_ostream.h"
     30 
     31 #define DEBUG_TYPE "mccodeemitter"
     32 
     33 #define GET_INSTRMAP_INFO
     34 #include "AVRGenInstrInfo.inc"
     35 #undef GET_INSTRMAP_INFO
     36 
     37 namespace llvm {
     38 
     39 /// Performs a post-encoding step on a `LD` or `ST` instruction.
     40 ///
     41 /// The encoding of the LD/ST family of instructions is inconsistent w.r.t
     42 /// the pointer register and the addressing mode.
     43 ///
     44 /// The permutations of the format are as followed:
     45 /// ld Rd, X    `1001 000d dddd 1100`
     46 /// ld Rd, X+   `1001 000d dddd 1101`
     47 /// ld Rd, -X   `1001 000d dddd 1110`
     48 ///
     49 /// ld Rd, Y    `1000 000d dddd 1000`
     50 /// ld Rd, Y+   `1001 000d dddd 1001`
     51 /// ld Rd, -Y   `1001 000d dddd 1010`
     52 ///
     53 /// ld Rd, Z    `1000 000d dddd 0000`
     54 /// ld Rd, Z+   `1001 000d dddd 0001`
     55 /// ld Rd, -Z   `1001 000d dddd 0010`
     56 ///                 ^
     57 ///                 |
     58 /// Note this one inconsistent bit - it is 1 sometimes and 0 at other times.
     59 /// There is no logical pattern. Looking at a truth table, the following
     60 /// formula can be derived to fit the pattern:
     61 //
     62 /// ```
     63 /// inconsistent_bit = is_predec OR is_postinc OR is_reg_x
     64 /// ```
     65 //
     66 /// We manually set this bit in this post encoder method.
     67 unsigned
     68 AVRMCCodeEmitter::loadStorePostEncoder(const MCInst &MI, unsigned EncodedValue,
     69                                        const MCSubtargetInfo &STI) const {
     70 
     71   assert(MI.getOperand(0).isReg() && MI.getOperand(1).isReg() &&
     72          "the load/store operands must be registers");
     73 
     74   unsigned Opcode = MI.getOpcode();
     75 
     76   // check whether either of the registers are the X pointer register.
     77   bool IsRegX = MI.getOperand(0).getReg() == AVR::R27R26 ||
     78                   MI.getOperand(1).getReg() == AVR::R27R26;
     79 
     80   bool IsPredec = Opcode == AVR::LDRdPtrPd || Opcode == AVR::STPtrPdRr;
     81   bool IsPostinc = Opcode == AVR::LDRdPtrPi || Opcode == AVR::STPtrPiRr;
     82 
     83   // Check if we need to set the inconsistent bit
     84   if (IsRegX || IsPredec || IsPostinc) {
     85     EncodedValue |= (1 << 12);
     86   }
     87 
     88   return EncodedValue;
     89 }
     90 
     91 template <AVR::Fixups Fixup>
     92 unsigned
     93 AVRMCCodeEmitter::encodeRelCondBrTarget(const MCInst &MI, unsigned OpNo,
     94                                         SmallVectorImpl<MCFixup> &Fixups,
     95                                         const MCSubtargetInfo &STI) const {
     96   const MCOperand &MO = MI.getOperand(OpNo);
     97 
     98   if (MO.isExpr()) {
     99     Fixups.push_back(MCFixup::create(0, MO.getExpr(),
    100                      MCFixupKind(Fixup), MI.getLoc()));
    101     return 0;
    102   }
    103 
    104   assert(MO.isImm());
    105 
    106   // Take the size of the current instruction away.
    107   // With labels, this is implicitly done.
    108   auto target = MO.getImm();
    109   AVR::fixups::adjustBranchTarget(target);
    110   return target;
    111 }
    112 
    113 unsigned AVRMCCodeEmitter::encodeLDSTPtrReg(const MCInst &MI, unsigned OpNo,
    114                                             SmallVectorImpl<MCFixup> &Fixups,
    115                                             const MCSubtargetInfo &STI) const {
    116   auto MO = MI.getOperand(OpNo);
    117 
    118   // The operand should be a pointer register.
    119   assert(MO.isReg());
    120 
    121   switch (MO.getReg()) {
    122   case AVR::R27R26: return 0x03; // X: 0b11
    123   case AVR::R29R28: return 0x02; // Y: 0b10
    124   case AVR::R31R30: return 0x00; // Z: 0b00
    125   default:
    126     llvm_unreachable("invalid pointer register");
    127   }
    128 }
    129 
    130 /// Encodes a `memri` operand.
    131 /// The operand is 7-bits.
    132 /// * The lower 6 bits is the immediate
    133 /// * The upper bit is the pointer register bit (Z=0,Y=1)
    134 unsigned AVRMCCodeEmitter::encodeMemri(const MCInst &MI, unsigned OpNo,
    135                                        SmallVectorImpl<MCFixup> &Fixups,
    136                                        const MCSubtargetInfo &STI) const {
    137   auto RegOp = MI.getOperand(OpNo);
    138   auto OffsetOp = MI.getOperand(OpNo + 1);
    139 
    140   assert(RegOp.isReg() && "Expected register operand");
    141 
    142   uint8_t RegBit = 0;
    143 
    144   switch (RegOp.getReg()) {
    145   default:
    146     llvm_unreachable("Expected either Y or Z register");
    147   case AVR::R31R30:
    148     RegBit = 0;
    149     break; // Z register
    150   case AVR::R29R28:
    151     RegBit = 1;
    152     break; // Y register
    153   }
    154 
    155   int8_t OffsetBits;
    156 
    157   if (OffsetOp.isImm()) {
    158     OffsetBits = OffsetOp.getImm();
    159   } else if (OffsetOp.isExpr()) {
    160     OffsetBits = 0;
    161     Fixups.push_back(MCFixup::create(0, OffsetOp.getExpr(),
    162                      MCFixupKind(AVR::fixup_6), MI.getLoc()));
    163   } else {
    164     llvm_unreachable("invalid value for offset");
    165   }
    166 
    167   return (RegBit << 6) | OffsetBits;
    168 }
    169 
    170 unsigned AVRMCCodeEmitter::encodeComplement(const MCInst &MI, unsigned OpNo,
    171                                             SmallVectorImpl<MCFixup> &Fixups,
    172                                             const MCSubtargetInfo &STI) const {
    173   // The operand should be an immediate.
    174   assert(MI.getOperand(OpNo).isImm());
    175 
    176   auto Imm = MI.getOperand(OpNo).getImm();
    177   return (~0) - Imm;
    178 }
    179 
    180 template <AVR::Fixups Fixup, unsigned Offset>
    181 unsigned AVRMCCodeEmitter::encodeImm(const MCInst &MI, unsigned OpNo,
    182                                      SmallVectorImpl<MCFixup> &Fixups,
    183                                      const MCSubtargetInfo &STI) const {
    184   auto MO = MI.getOperand(OpNo);
    185 
    186   if (MO.isExpr()) {
    187     if (isa<AVRMCExpr>(MO.getExpr())) {
    188       // If the expression is already an AVRMCExpr (i.e. a lo8(symbol),
    189       // we shouldn't perform any more fixups. Without this check, we would
    190       // instead create a fixup to the symbol named 'lo8(symbol)' which
    191       // is not correct.
    192       return getExprOpValue(MO.getExpr(), Fixups, STI);
    193     }
    194 
    195     MCFixupKind FixupKind = static_cast<MCFixupKind>(Fixup);
    196     Fixups.push_back(MCFixup::create(Offset, MO.getExpr(), FixupKind, MI.getLoc()));
    197 
    198     return 0;
    199   }
    200 
    201   assert(MO.isImm());
    202   return MO.getImm();
    203 }
    204 
    205 unsigned AVRMCCodeEmitter::encodeCallTarget(const MCInst &MI, unsigned OpNo,
    206                                             SmallVectorImpl<MCFixup> &Fixups,
    207                                             const MCSubtargetInfo &STI) const {
    208   auto MO = MI.getOperand(OpNo);
    209 
    210   if (MO.isExpr()) {
    211     MCFixupKind FixupKind = static_cast<MCFixupKind>(AVR::fixup_call);
    212     Fixups.push_back(MCFixup::create(0, MO.getExpr(), FixupKind, MI.getLoc()));
    213     return 0;
    214   }
    215 
    216   assert(MO.isImm());
    217 
    218   auto Target = MO.getImm();
    219   AVR::fixups::adjustBranchTarget(Target);
    220   return Target;
    221 }
    222 
    223 unsigned AVRMCCodeEmitter::getExprOpValue(const MCExpr *Expr,
    224                                           SmallVectorImpl<MCFixup> &Fixups,
    225                                           const MCSubtargetInfo &STI) const {
    226 
    227   MCExpr::ExprKind Kind = Expr->getKind();
    228 
    229   if (Kind == MCExpr::Binary) {
    230     Expr = static_cast<const MCBinaryExpr *>(Expr)->getLHS();
    231     Kind = Expr->getKind();
    232   }
    233 
    234   if (Kind == MCExpr::Target) {
    235     AVRMCExpr const *AVRExpr = cast<AVRMCExpr>(Expr);
    236     int64_t Result;
    237     if (AVRExpr->evaluateAsConstant(Result)) {
    238       return Result;
    239     }
    240 
    241     MCFixupKind FixupKind = static_cast<MCFixupKind>(AVRExpr->getFixupKind());
    242     Fixups.push_back(MCFixup::create(0, AVRExpr, FixupKind));
    243     return 0;
    244   }
    245 
    246   assert(Kind == MCExpr::SymbolRef);
    247   return 0;
    248 }
    249 
    250 unsigned AVRMCCodeEmitter::getMachineOpValue(const MCInst &MI,
    251                                              const MCOperand &MO,
    252                                              SmallVectorImpl<MCFixup> &Fixups,
    253                                              const MCSubtargetInfo &STI) const {
    254   if (MO.isReg()) return Ctx.getRegisterInfo()->getEncodingValue(MO.getReg());
    255   if (MO.isImm()) return static_cast<unsigned>(MO.getImm());
    256 
    257   if (MO.isFPImm())
    258     return static_cast<unsigned>(APFloat(MO.getFPImm())
    259                                      .bitcastToAPInt()
    260                                      .getHiBits(32)
    261                                      .getLimitedValue());
    262 
    263   // MO must be an Expr.
    264   assert(MO.isExpr());
    265 
    266   return getExprOpValue(MO.getExpr(), Fixups, STI);
    267 }
    268 
    269 void AVRMCCodeEmitter::emitInstruction(uint64_t Val, unsigned Size,
    270                                        const MCSubtargetInfo &STI,
    271                                        raw_ostream &OS) const {
    272   const uint16_t *Words = reinterpret_cast<uint16_t const *>(&Val);
    273   size_t WordCount = Size / 2;
    274 
    275   for (int64_t i = WordCount - 1; i >= 0; --i) {
    276     uint16_t Word = Words[i];
    277 
    278     OS << (uint8_t) ((Word & 0x00ff) >> 0);
    279     OS << (uint8_t) ((Word & 0xff00) >> 8);
    280   }
    281 }
    282 
    283 void AVRMCCodeEmitter::encodeInstruction(const MCInst &MI, raw_ostream &OS,
    284                                          SmallVectorImpl<MCFixup> &Fixups,
    285                                          const MCSubtargetInfo &STI) const {
    286   const MCInstrDesc &Desc = MCII.get(MI.getOpcode());
    287 
    288   // Get byte count of instruction
    289   unsigned Size = Desc.getSize();
    290 
    291   assert(Size > 0 && "Instruction size cannot be zero");
    292 
    293   uint64_t BinaryOpCode = getBinaryCodeForInstr(MI, Fixups, STI);
    294   emitInstruction(BinaryOpCode, Size, STI, OS);
    295 }
    296 
    297 MCCodeEmitter *createAVRMCCodeEmitter(const MCInstrInfo &MCII,
    298                                       const MCRegisterInfo &MRI,
    299                                       MCContext &Ctx) {
    300   return new AVRMCCodeEmitter(MCII, Ctx);
    301 }
    302 
    303 #include "AVRGenMCCodeEmitter.inc"
    304 
    305 } // end of namespace llvm
    306