Home | History | Annotate | Download | only in BPF
      1 //===-- BPFISelLowering.cpp - BPF DAG Lowering Implementation  ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the interfaces that BPF uses to lower LLVM code into a
     11 // selection DAG.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "BPFISelLowering.h"
     16 #include "BPF.h"
     17 #include "BPFSubtarget.h"
     18 #include "BPFTargetMachine.h"
     19 #include "llvm/CodeGen/CallingConvLower.h"
     20 #include "llvm/CodeGen/MachineFrameInfo.h"
     21 #include "llvm/CodeGen/MachineFunction.h"
     22 #include "llvm/CodeGen/MachineInstrBuilder.h"
     23 #include "llvm/CodeGen/MachineRegisterInfo.h"
     24 #include "llvm/CodeGen/SelectionDAGISel.h"
     25 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
     26 #include "llvm/CodeGen/ValueTypes.h"
     27 #include "llvm/IR/DiagnosticInfo.h"
     28 #include "llvm/IR/DiagnosticPrinter.h"
     29 #include "llvm/Support/Debug.h"
     30 #include "llvm/Support/ErrorHandling.h"
     31 #include "llvm/Support/raw_ostream.h"
     32 using namespace llvm;
     33 
     34 #define DEBUG_TYPE "bpf-lower"
     35 
     36 static cl::opt<bool> BPFExpandMemcpyInOrder("bpf-expand-memcpy-in-order",
     37   cl::Hidden, cl::init(false),
     38   cl::desc("Expand memcpy into load/store pairs in order"));
     39 
     40 static void fail(const SDLoc &DL, SelectionDAG &DAG, const Twine &Msg) {
     41   MachineFunction &MF = DAG.getMachineFunction();
     42   DAG.getContext()->diagnose(
     43       DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc()));
     44 }
     45 
     46 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg,
     47                  SDValue Val) {
     48   MachineFunction &MF = DAG.getMachineFunction();
     49   std::string Str;
     50   raw_string_ostream OS(Str);
     51   OS << Msg;
     52   Val->print(OS);
     53   OS.flush();
     54   DAG.getContext()->diagnose(
     55       DiagnosticInfoUnsupported(MF.getFunction(), Str, DL.getDebugLoc()));
     56 }
     57 
     58 BPFTargetLowering::BPFTargetLowering(const TargetMachine &TM,
     59                                      const BPFSubtarget &STI)
     60     : TargetLowering(TM) {
     61 
     62   // Set up the register classes.
     63   addRegisterClass(MVT::i64, &BPF::GPRRegClass);
     64   if (STI.getHasAlu32())
     65     addRegisterClass(MVT::i32, &BPF::GPR32RegClass);
     66 
     67   // Compute derived properties from the register classes
     68   computeRegisterProperties(STI.getRegisterInfo());
     69 
     70   setStackPointerRegisterToSaveRestore(BPF::R11);
     71 
     72   setOperationAction(ISD::BR_CC, MVT::i64, Custom);
     73   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
     74   setOperationAction(ISD::BRIND, MVT::Other, Expand);
     75   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
     76 
     77   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
     78 
     79   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom);
     80   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
     81   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
     82 
     83   for (auto VT : { MVT::i32, MVT::i64 }) {
     84     if (VT == MVT::i32 && !STI.getHasAlu32())
     85       continue;
     86 
     87     setOperationAction(ISD::SDIVREM, VT, Expand);
     88     setOperationAction(ISD::UDIVREM, VT, Expand);
     89     setOperationAction(ISD::SREM, VT, Expand);
     90     setOperationAction(ISD::UREM, VT, Expand);
     91     setOperationAction(ISD::MULHU, VT, Expand);
     92     setOperationAction(ISD::MULHS, VT, Expand);
     93     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
     94     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
     95     setOperationAction(ISD::ROTR, VT, Expand);
     96     setOperationAction(ISD::ROTL, VT, Expand);
     97     setOperationAction(ISD::SHL_PARTS, VT, Expand);
     98     setOperationAction(ISD::SRL_PARTS, VT, Expand);
     99     setOperationAction(ISD::SRA_PARTS, VT, Expand);
    100     setOperationAction(ISD::CTPOP, VT, Expand);
    101 
    102     setOperationAction(ISD::SETCC, VT, Expand);
    103     setOperationAction(ISD::SELECT, VT, Expand);
    104     setOperationAction(ISD::SELECT_CC, VT, Custom);
    105   }
    106 
    107   if (STI.getHasAlu32()) {
    108     setOperationAction(ISD::BSWAP, MVT::i32, Promote);
    109     setOperationAction(ISD::BR_CC, MVT::i32, Promote);
    110   }
    111 
    112   setOperationAction(ISD::CTTZ, MVT::i64, Custom);
    113   setOperationAction(ISD::CTLZ, MVT::i64, Custom);
    114   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom);
    115   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
    116 
    117   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
    118   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
    119   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
    120   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Expand);
    121 
    122   // Extended load operations for i1 types must be promoted
    123   for (MVT VT : MVT::integer_valuetypes()) {
    124     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
    125     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
    126     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
    127 
    128     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
    129     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Expand);
    130     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
    131   }
    132 
    133   setBooleanContents(ZeroOrOneBooleanContent);
    134 
    135   // Function alignments (log2)
    136   setMinFunctionAlignment(3);
    137   setPrefFunctionAlignment(3);
    138 
    139   if (BPFExpandMemcpyInOrder) {
    140     // LLVM generic code will try to expand memcpy into load/store pairs at this
    141     // stage which is before quite a few IR optimization passes, therefore the
    142     // loads and stores could potentially be moved apart from each other which
    143     // will cause trouble to memcpy pattern matcher inside kernel eBPF JIT
    144     // compilers.
    145     //
    146     // When -bpf-expand-memcpy-in-order specified, we want to defer the expand
    147     // of memcpy to later stage in IR optimization pipeline so those load/store
    148     // pairs won't be touched and could be kept in order. Hence, we set
    149     // MaxStoresPerMem* to zero to disable the generic getMemcpyLoadsAndStores
    150     // code path, and ask LLVM to use target expander EmitTargetCodeForMemcpy.
    151     MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 0;
    152     MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 0;
    153     MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 0;
    154   } else {
    155     // inline memcpy() for kernel to see explicit copy
    156     unsigned CommonMaxStores =
    157       STI.getSelectionDAGInfo()->getCommonMaxStoresPerMemFunc();
    158 
    159     MaxStoresPerMemset = MaxStoresPerMemsetOptSize = CommonMaxStores;
    160     MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = CommonMaxStores;
    161     MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = CommonMaxStores;
    162   }
    163 
    164   // CPU/Feature control
    165   HasAlu32 = STI.getHasAlu32();
    166   HasJmpExt = STI.getHasJmpExt();
    167 }
    168 
    169 bool BPFTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
    170   return false;
    171 }
    172 
    173 std::pair<unsigned, const TargetRegisterClass *>
    174 BPFTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
    175                                                 StringRef Constraint,
    176                                                 MVT VT) const {
    177   if (Constraint.size() == 1)
    178     // GCC Constraint Letters
    179     switch (Constraint[0]) {
    180     case 'r': // GENERAL_REGS
    181       return std::make_pair(0U, &BPF::GPRRegClass);
    182     default:
    183       break;
    184     }
    185 
    186   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
    187 }
    188 
    189 SDValue BPFTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
    190   switch (Op.getOpcode()) {
    191   case ISD::BR_CC:
    192     return LowerBR_CC(Op, DAG);
    193   case ISD::GlobalAddress:
    194     return LowerGlobalAddress(Op, DAG);
    195   case ISD::SELECT_CC:
    196     return LowerSELECT_CC(Op, DAG);
    197   default:
    198     llvm_unreachable("unimplemented operand");
    199   }
    200 }
    201 
    202 // Calling Convention Implementation
    203 #include "BPFGenCallingConv.inc"
    204 
    205 SDValue BPFTargetLowering::LowerFormalArguments(
    206     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
    207     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
    208     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
    209   switch (CallConv) {
    210   default:
    211     report_fatal_error("Unsupported calling convention");
    212   case CallingConv::C:
    213   case CallingConv::Fast:
    214     break;
    215   }
    216 
    217   MachineFunction &MF = DAG.getMachineFunction();
    218   MachineRegisterInfo &RegInfo = MF.getRegInfo();
    219 
    220   // Assign locations to all of the incoming arguments.
    221   SmallVector<CCValAssign, 16> ArgLocs;
    222   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
    223   CCInfo.AnalyzeFormalArguments(Ins, getHasAlu32() ? CC_BPF32 : CC_BPF64);
    224 
    225   for (auto &VA : ArgLocs) {
    226     if (VA.isRegLoc()) {
    227       // Arguments passed in registers
    228       EVT RegVT = VA.getLocVT();
    229       MVT::SimpleValueType SimpleTy = RegVT.getSimpleVT().SimpleTy;
    230       switch (SimpleTy) {
    231       default: {
    232         errs() << "LowerFormalArguments Unhandled argument type: "
    233                << RegVT.getEVTString() << '\n';
    234         llvm_unreachable(0);
    235       }
    236       case MVT::i32:
    237       case MVT::i64:
    238         unsigned VReg = RegInfo.createVirtualRegister(SimpleTy == MVT::i64 ?
    239                                                       &BPF::GPRRegClass :
    240                                                       &BPF::GPR32RegClass);
    241         RegInfo.addLiveIn(VA.getLocReg(), VReg);
    242         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, RegVT);
    243 
    244         // If this is an value that has been promoted to wider types, insert an
    245         // assert[sz]ext to capture this, then truncate to the right size.
    246         if (VA.getLocInfo() == CCValAssign::SExt)
    247           ArgValue = DAG.getNode(ISD::AssertSext, DL, RegVT, ArgValue,
    248                                  DAG.getValueType(VA.getValVT()));
    249         else if (VA.getLocInfo() == CCValAssign::ZExt)
    250           ArgValue = DAG.getNode(ISD::AssertZext, DL, RegVT, ArgValue,
    251                                  DAG.getValueType(VA.getValVT()));
    252 
    253         if (VA.getLocInfo() != CCValAssign::Full)
    254           ArgValue = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), ArgValue);
    255 
    256         InVals.push_back(ArgValue);
    257 
    258 	break;
    259       }
    260     } else {
    261       fail(DL, DAG, "defined with too many args");
    262       InVals.push_back(DAG.getConstant(0, DL, VA.getLocVT()));
    263     }
    264   }
    265 
    266   if (IsVarArg || MF.getFunction().hasStructRetAttr()) {
    267     fail(DL, DAG, "functions with VarArgs or StructRet are not supported");
    268   }
    269 
    270   return Chain;
    271 }
    272 
    273 const unsigned BPFTargetLowering::MaxArgs = 5;
    274 
    275 SDValue BPFTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
    276                                      SmallVectorImpl<SDValue> &InVals) const {
    277   SelectionDAG &DAG = CLI.DAG;
    278   auto &Outs = CLI.Outs;
    279   auto &OutVals = CLI.OutVals;
    280   auto &Ins = CLI.Ins;
    281   SDValue Chain = CLI.Chain;
    282   SDValue Callee = CLI.Callee;
    283   bool &IsTailCall = CLI.IsTailCall;
    284   CallingConv::ID CallConv = CLI.CallConv;
    285   bool IsVarArg = CLI.IsVarArg;
    286   MachineFunction &MF = DAG.getMachineFunction();
    287 
    288   // BPF target does not support tail call optimization.
    289   IsTailCall = false;
    290 
    291   switch (CallConv) {
    292   default:
    293     report_fatal_error("Unsupported calling convention");
    294   case CallingConv::Fast:
    295   case CallingConv::C:
    296     break;
    297   }
    298 
    299   // Analyze operands of the call, assigning locations to each operand.
    300   SmallVector<CCValAssign, 16> ArgLocs;
    301   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
    302 
    303   CCInfo.AnalyzeCallOperands(Outs, getHasAlu32() ? CC_BPF32 : CC_BPF64);
    304 
    305   unsigned NumBytes = CCInfo.getNextStackOffset();
    306 
    307   if (Outs.size() > MaxArgs)
    308     fail(CLI.DL, DAG, "too many args to ", Callee);
    309 
    310   for (auto &Arg : Outs) {
    311     ISD::ArgFlagsTy Flags = Arg.Flags;
    312     if (!Flags.isByVal())
    313       continue;
    314 
    315     fail(CLI.DL, DAG, "pass by value not supported ", Callee);
    316   }
    317 
    318   auto PtrVT = getPointerTy(MF.getDataLayout());
    319   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
    320 
    321   SmallVector<std::pair<unsigned, SDValue>, MaxArgs> RegsToPass;
    322 
    323   // Walk arg assignments
    324   for (unsigned i = 0,
    325                 e = std::min(static_cast<unsigned>(ArgLocs.size()), MaxArgs);
    326        i != e; ++i) {
    327     CCValAssign &VA = ArgLocs[i];
    328     SDValue Arg = OutVals[i];
    329 
    330     // Promote the value if needed.
    331     switch (VA.getLocInfo()) {
    332     default:
    333       llvm_unreachable("Unknown loc info");
    334     case CCValAssign::Full:
    335       break;
    336     case CCValAssign::SExt:
    337       Arg = DAG.getNode(ISD::SIGN_EXTEND, CLI.DL, VA.getLocVT(), Arg);
    338       break;
    339     case CCValAssign::ZExt:
    340       Arg = DAG.getNode(ISD::ZERO_EXTEND, CLI.DL, VA.getLocVT(), Arg);
    341       break;
    342     case CCValAssign::AExt:
    343       Arg = DAG.getNode(ISD::ANY_EXTEND, CLI.DL, VA.getLocVT(), Arg);
    344       break;
    345     }
    346 
    347     // Push arguments into RegsToPass vector
    348     if (VA.isRegLoc())
    349       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
    350     else
    351       llvm_unreachable("call arg pass bug");
    352   }
    353 
    354   SDValue InFlag;
    355 
    356   // Build a sequence of copy-to-reg nodes chained together with token chain and
    357   // flag operands which copy the outgoing args into registers.  The InFlag in
    358   // necessary since all emitted instructions must be stuck together.
    359   for (auto &Reg : RegsToPass) {
    360     Chain = DAG.getCopyToReg(Chain, CLI.DL, Reg.first, Reg.second, InFlag);
    361     InFlag = Chain.getValue(1);
    362   }
    363 
    364   // If the callee is a GlobalAddress node (quite common, every direct call is)
    365   // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
    366   // Likewise ExternalSymbol -> TargetExternalSymbol.
    367   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
    368     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), CLI.DL, PtrVT,
    369                                         G->getOffset(), 0);
    370   } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
    371     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT, 0);
    372     fail(CLI.DL, DAG, Twine("A call to built-in function '"
    373                             + StringRef(E->getSymbol())
    374                             + "' is not supported."));
    375   }
    376 
    377   // Returns a chain & a flag for retval copy to use.
    378   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
    379   SmallVector<SDValue, 8> Ops;
    380   Ops.push_back(Chain);
    381   Ops.push_back(Callee);
    382 
    383   // Add argument registers to the end of the list so that they are
    384   // known live into the call.
    385   for (auto &Reg : RegsToPass)
    386     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
    387 
    388   if (InFlag.getNode())
    389     Ops.push_back(InFlag);
    390 
    391   Chain = DAG.getNode(BPFISD::CALL, CLI.DL, NodeTys, Ops);
    392   InFlag = Chain.getValue(1);
    393 
    394   // Create the CALLSEQ_END node.
    395   Chain = DAG.getCALLSEQ_END(
    396       Chain, DAG.getConstant(NumBytes, CLI.DL, PtrVT, true),
    397       DAG.getConstant(0, CLI.DL, PtrVT, true), InFlag, CLI.DL);
    398   InFlag = Chain.getValue(1);
    399 
    400   // Handle result values, copying them out of physregs into vregs that we
    401   // return.
    402   return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, CLI.DL, DAG,
    403                          InVals);
    404 }
    405 
    406 SDValue
    407 BPFTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
    408                                bool IsVarArg,
    409                                const SmallVectorImpl<ISD::OutputArg> &Outs,
    410                                const SmallVectorImpl<SDValue> &OutVals,
    411                                const SDLoc &DL, SelectionDAG &DAG) const {
    412   unsigned Opc = BPFISD::RET_FLAG;
    413 
    414   // CCValAssign - represent the assignment of the return value to a location
    415   SmallVector<CCValAssign, 16> RVLocs;
    416   MachineFunction &MF = DAG.getMachineFunction();
    417 
    418   // CCState - Info about the registers and stack slot.
    419   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
    420 
    421   if (MF.getFunction().getReturnType()->isAggregateType()) {
    422     fail(DL, DAG, "only integer returns supported");
    423     return DAG.getNode(Opc, DL, MVT::Other, Chain);
    424   }
    425 
    426   // Analize return values.
    427   CCInfo.AnalyzeReturn(Outs, getHasAlu32() ? RetCC_BPF32 : RetCC_BPF64);
    428 
    429   SDValue Flag;
    430   SmallVector<SDValue, 4> RetOps(1, Chain);
    431 
    432   // Copy the result values into the output registers.
    433   for (unsigned i = 0; i != RVLocs.size(); ++i) {
    434     CCValAssign &VA = RVLocs[i];
    435     assert(VA.isRegLoc() && "Can only return in registers!");
    436 
    437     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVals[i], Flag);
    438 
    439     // Guarantee that all emitted copies are stuck together,
    440     // avoiding something bad.
    441     Flag = Chain.getValue(1);
    442     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
    443   }
    444 
    445   RetOps[0] = Chain; // Update chain.
    446 
    447   // Add the flag if we have it.
    448   if (Flag.getNode())
    449     RetOps.push_back(Flag);
    450 
    451   return DAG.getNode(Opc, DL, MVT::Other, RetOps);
    452 }
    453 
    454 SDValue BPFTargetLowering::LowerCallResult(
    455     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
    456     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
    457     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
    458 
    459   MachineFunction &MF = DAG.getMachineFunction();
    460   // Assign locations to each value returned by this call.
    461   SmallVector<CCValAssign, 16> RVLocs;
    462   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
    463 
    464   if (Ins.size() >= 2) {
    465     fail(DL, DAG, "only small returns supported");
    466     for (unsigned i = 0, e = Ins.size(); i != e; ++i)
    467       InVals.push_back(DAG.getConstant(0, DL, Ins[i].VT));
    468     return DAG.getCopyFromReg(Chain, DL, 1, Ins[0].VT, InFlag).getValue(1);
    469   }
    470 
    471   CCInfo.AnalyzeCallResult(Ins, getHasAlu32() ? RetCC_BPF32 : RetCC_BPF64);
    472 
    473   // Copy all of the result registers out of their specified physreg.
    474   for (auto &Val : RVLocs) {
    475     Chain = DAG.getCopyFromReg(Chain, DL, Val.getLocReg(),
    476                                Val.getValVT(), InFlag).getValue(1);
    477     InFlag = Chain.getValue(2);
    478     InVals.push_back(Chain.getValue(0));
    479   }
    480 
    481   return Chain;
    482 }
    483 
    484 static void NegateCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) {
    485   switch (CC) {
    486   default:
    487     break;
    488   case ISD::SETULT:
    489   case ISD::SETULE:
    490   case ISD::SETLT:
    491   case ISD::SETLE:
    492     CC = ISD::getSetCCSwappedOperands(CC);
    493     std::swap(LHS, RHS);
    494     break;
    495   }
    496 }
    497 
    498 SDValue BPFTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
    499   SDValue Chain = Op.getOperand(0);
    500   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
    501   SDValue LHS = Op.getOperand(2);
    502   SDValue RHS = Op.getOperand(3);
    503   SDValue Dest = Op.getOperand(4);
    504   SDLoc DL(Op);
    505 
    506   if (!getHasJmpExt())
    507     NegateCC(LHS, RHS, CC);
    508 
    509   return DAG.getNode(BPFISD::BR_CC, DL, Op.getValueType(), Chain, LHS, RHS,
    510                      DAG.getConstant(CC, DL, MVT::i64), Dest);
    511 }
    512 
    513 SDValue BPFTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
    514   SDValue LHS = Op.getOperand(0);
    515   SDValue RHS = Op.getOperand(1);
    516   SDValue TrueV = Op.getOperand(2);
    517   SDValue FalseV = Op.getOperand(3);
    518   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
    519   SDLoc DL(Op);
    520 
    521   if (!getHasJmpExt())
    522     NegateCC(LHS, RHS, CC);
    523 
    524   SDValue TargetCC = DAG.getConstant(CC, DL, LHS.getValueType());
    525   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
    526   SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
    527 
    528   return DAG.getNode(BPFISD::SELECT_CC, DL, VTs, Ops);
    529 }
    530 
    531 const char *BPFTargetLowering::getTargetNodeName(unsigned Opcode) const {
    532   switch ((BPFISD::NodeType)Opcode) {
    533   case BPFISD::FIRST_NUMBER:
    534     break;
    535   case BPFISD::RET_FLAG:
    536     return "BPFISD::RET_FLAG";
    537   case BPFISD::CALL:
    538     return "BPFISD::CALL";
    539   case BPFISD::SELECT_CC:
    540     return "BPFISD::SELECT_CC";
    541   case BPFISD::BR_CC:
    542     return "BPFISD::BR_CC";
    543   case BPFISD::Wrapper:
    544     return "BPFISD::Wrapper";
    545   case BPFISD::MEMCPY:
    546     return "BPFISD::MEMCPY";
    547   }
    548   return nullptr;
    549 }
    550 
    551 SDValue BPFTargetLowering::LowerGlobalAddress(SDValue Op,
    552                                               SelectionDAG &DAG) const {
    553   auto N = cast<GlobalAddressSDNode>(Op);
    554   assert(N->getOffset() == 0 && "Invalid offset for global address");
    555 
    556   SDLoc DL(Op);
    557   const GlobalValue *GV = N->getGlobal();
    558   SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i64);
    559 
    560   return DAG.getNode(BPFISD::Wrapper, DL, MVT::i64, GA);
    561 }
    562 
    563 unsigned
    564 BPFTargetLowering::EmitSubregExt(MachineInstr &MI, MachineBasicBlock *BB,
    565                                  unsigned Reg, bool isSigned) const {
    566   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
    567   const TargetRegisterClass *RC = getRegClassFor(MVT::i64);
    568   int RShiftOp = isSigned ? BPF::SRA_ri : BPF::SRL_ri;
    569   MachineFunction *F = BB->getParent();
    570   DebugLoc DL = MI.getDebugLoc();
    571 
    572   MachineRegisterInfo &RegInfo = F->getRegInfo();
    573   unsigned PromotedReg0 = RegInfo.createVirtualRegister(RC);
    574   unsigned PromotedReg1 = RegInfo.createVirtualRegister(RC);
    575   unsigned PromotedReg2 = RegInfo.createVirtualRegister(RC);
    576   BuildMI(BB, DL, TII.get(BPF::MOV_32_64), PromotedReg0).addReg(Reg);
    577   BuildMI(BB, DL, TII.get(BPF::SLL_ri), PromotedReg1)
    578     .addReg(PromotedReg0).addImm(32);
    579   BuildMI(BB, DL, TII.get(RShiftOp), PromotedReg2)
    580     .addReg(PromotedReg1).addImm(32);
    581 
    582   return PromotedReg2;
    583 }
    584 
    585 MachineBasicBlock *
    586 BPFTargetLowering::EmitInstrWithCustomInserterMemcpy(MachineInstr &MI,
    587                                                      MachineBasicBlock *BB)
    588                                                      const {
    589   MachineFunction *MF = MI.getParent()->getParent();
    590   MachineRegisterInfo &MRI = MF->getRegInfo();
    591   MachineInstrBuilder MIB(*MF, MI);
    592   unsigned ScratchReg;
    593 
    594   // This function does custom insertion during lowering BPFISD::MEMCPY which
    595   // only has two register operands from memcpy semantics, the copy source
    596   // address and the copy destination address.
    597   //
    598   // Because we will expand BPFISD::MEMCPY into load/store pairs, we will need
    599   // a third scratch register to serve as the destination register of load and
    600   // source register of store.
    601   //
    602   // The scratch register here is with the Define | Dead | EarlyClobber flags.
    603   // The EarlyClobber flag has the semantic property that the operand it is
    604   // attached to is clobbered before the rest of the inputs are read. Hence it
    605   // must be unique among the operands to the instruction. The Define flag is
    606   // needed to coerce the machine verifier that an Undef value isn't a problem
    607   // as we anyway is loading memory into it. The Dead flag is needed as the
    608   // value in scratch isn't supposed to be used by any other instruction.
    609   ScratchReg = MRI.createVirtualRegister(&BPF::GPRRegClass);
    610   MIB.addReg(ScratchReg,
    611              RegState::Define | RegState::Dead | RegState::EarlyClobber);
    612 
    613   return BB;
    614 }
    615 
    616 MachineBasicBlock *
    617 BPFTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
    618                                                MachineBasicBlock *BB) const {
    619   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
    620   DebugLoc DL = MI.getDebugLoc();
    621   unsigned Opc = MI.getOpcode();
    622   bool isSelectRROp = (Opc == BPF::Select ||
    623                        Opc == BPF::Select_64_32 ||
    624                        Opc == BPF::Select_32 ||
    625                        Opc == BPF::Select_32_64);
    626 
    627   bool isMemcpyOp = Opc == BPF::MEMCPY;
    628 
    629 #ifndef NDEBUG
    630   bool isSelectRIOp = (Opc == BPF::Select_Ri ||
    631                        Opc == BPF::Select_Ri_64_32 ||
    632                        Opc == BPF::Select_Ri_32 ||
    633                        Opc == BPF::Select_Ri_32_64);
    634 
    635 
    636   assert((isSelectRROp || isSelectRIOp || isMemcpyOp) &&
    637          "Unexpected instr type to insert");
    638 #endif
    639 
    640   if (isMemcpyOp)
    641     return EmitInstrWithCustomInserterMemcpy(MI, BB);
    642 
    643   bool is32BitCmp = (Opc == BPF::Select_32 ||
    644                      Opc == BPF::Select_32_64 ||
    645                      Opc == BPF::Select_Ri_32 ||
    646                      Opc == BPF::Select_Ri_32_64);
    647 
    648   // To "insert" a SELECT instruction, we actually have to insert the diamond
    649   // control-flow pattern.  The incoming instruction knows the destination vreg
    650   // to set, the condition code register to branch on, the true/false values to
    651   // select between, and a branch opcode to use.
    652   const BasicBlock *LLVM_BB = BB->getBasicBlock();
    653   MachineFunction::iterator I = ++BB->getIterator();
    654 
    655   // ThisMBB:
    656   // ...
    657   //  TrueVal = ...
    658   //  jmp_XX r1, r2 goto Copy1MBB
    659   //  fallthrough --> Copy0MBB
    660   MachineBasicBlock *ThisMBB = BB;
    661   MachineFunction *F = BB->getParent();
    662   MachineBasicBlock *Copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
    663   MachineBasicBlock *Copy1MBB = F->CreateMachineBasicBlock(LLVM_BB);
    664 
    665   F->insert(I, Copy0MBB);
    666   F->insert(I, Copy1MBB);
    667   // Update machine-CFG edges by transferring all successors of the current
    668   // block to the new block which will contain the Phi node for the select.
    669   Copy1MBB->splice(Copy1MBB->begin(), BB,
    670                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
    671   Copy1MBB->transferSuccessorsAndUpdatePHIs(BB);
    672   // Next, add the true and fallthrough blocks as its successors.
    673   BB->addSuccessor(Copy0MBB);
    674   BB->addSuccessor(Copy1MBB);
    675 
    676   // Insert Branch if Flag
    677   int CC = MI.getOperand(3).getImm();
    678   int NewCC;
    679   switch (CC) {
    680   case ISD::SETGT:
    681     NewCC = isSelectRROp ? BPF::JSGT_rr : BPF::JSGT_ri;
    682     break;
    683   case ISD::SETUGT:
    684     NewCC = isSelectRROp ? BPF::JUGT_rr : BPF::JUGT_ri;
    685     break;
    686   case ISD::SETGE:
    687     NewCC = isSelectRROp ? BPF::JSGE_rr : BPF::JSGE_ri;
    688     break;
    689   case ISD::SETUGE:
    690     NewCC = isSelectRROp ? BPF::JUGE_rr : BPF::JUGE_ri;
    691     break;
    692   case ISD::SETEQ:
    693     NewCC = isSelectRROp ? BPF::JEQ_rr : BPF::JEQ_ri;
    694     break;
    695   case ISD::SETNE:
    696     NewCC = isSelectRROp ? BPF::JNE_rr : BPF::JNE_ri;
    697     break;
    698   case ISD::SETLT:
    699     NewCC = isSelectRROp ? BPF::JSLT_rr : BPF::JSLT_ri;
    700     break;
    701   case ISD::SETULT:
    702     NewCC = isSelectRROp ? BPF::JULT_rr : BPF::JULT_ri;
    703     break;
    704   case ISD::SETLE:
    705     NewCC = isSelectRROp ? BPF::JSLE_rr : BPF::JSLE_ri;
    706     break;
    707   case ISD::SETULE:
    708     NewCC = isSelectRROp ? BPF::JULE_rr : BPF::JULE_ri;
    709     break;
    710   default:
    711     report_fatal_error("unimplemented select CondCode " + Twine(CC));
    712   }
    713 
    714   unsigned LHS = MI.getOperand(1).getReg();
    715   bool isSignedCmp = (CC == ISD::SETGT ||
    716                       CC == ISD::SETGE ||
    717                       CC == ISD::SETLT ||
    718                       CC == ISD::SETLE);
    719 
    720   // eBPF at the moment only has 64-bit comparison. Any 32-bit comparison need
    721   // to be promoted, however if the 32-bit comparison operands are destination
    722   // registers then they are implicitly zero-extended already, there is no
    723   // need of explicit zero-extend sequence for them.
    724   //
    725   // We simply do extension for all situations in this method, but we will
    726   // try to remove those unnecessary in BPFMIPeephole pass.
    727   if (is32BitCmp)
    728     LHS = EmitSubregExt(MI, BB, LHS, isSignedCmp);
    729 
    730   if (isSelectRROp) {
    731     unsigned RHS = MI.getOperand(2).getReg();
    732 
    733     if (is32BitCmp)
    734       RHS = EmitSubregExt(MI, BB, RHS, isSignedCmp);
    735 
    736     BuildMI(BB, DL, TII.get(NewCC)).addReg(LHS).addReg(RHS).addMBB(Copy1MBB);
    737   } else {
    738     int64_t imm32 = MI.getOperand(2).getImm();
    739     // sanity check before we build J*_ri instruction.
    740     assert (isInt<32>(imm32));
    741     BuildMI(BB, DL, TII.get(NewCC))
    742         .addReg(LHS).addImm(imm32).addMBB(Copy1MBB);
    743   }
    744 
    745   // Copy0MBB:
    746   //  %FalseValue = ...
    747   //  # fallthrough to Copy1MBB
    748   BB = Copy0MBB;
    749 
    750   // Update machine-CFG edges
    751   BB->addSuccessor(Copy1MBB);
    752 
    753   // Copy1MBB:
    754   //  %Result = phi [ %FalseValue, Copy0MBB ], [ %TrueValue, ThisMBB ]
    755   // ...
    756   BB = Copy1MBB;
    757   BuildMI(*BB, BB->begin(), DL, TII.get(BPF::PHI), MI.getOperand(0).getReg())
    758       .addReg(MI.getOperand(5).getReg())
    759       .addMBB(Copy0MBB)
    760       .addReg(MI.getOperand(4).getReg())
    761       .addMBB(ThisMBB);
    762 
    763   MI.eraseFromParent(); // The pseudo instruction is gone now.
    764   return BB;
    765 }
    766 
    767 EVT BPFTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
    768                                           EVT VT) const {
    769   return getHasAlu32() ? MVT::i32 : MVT::i64;
    770 }
    771 
    772 MVT BPFTargetLowering::getScalarShiftAmountTy(const DataLayout &DL,
    773                                               EVT VT) const {
    774   return (getHasAlu32() && VT == MVT::i32) ? MVT::i32 : MVT::i64;
    775 }
    776